
KerTheme: Testing Aspect Oriented Models

Andrew Jackson1, Jacques Klein2, Benoit Baudry2, Siobhán Clarke1

1 Distributed Systems Group, Computer Science Dept., Trinity College Dublin,
Dublin, Ireland.

{andrew.jackson, siobhan.clarke}@cs.tcd.ie
2 IRISA, Campus Beaulieu, 35042 Rennes Cedex,

Rennes, France.
{jacques.klein, benoit.baudry}@irisa.fr

Abstract. Design validation is important for detecting errors early in the devel-
opment life cycle. Testing the design is one significant means to achieve design
validation. In this paper we introduce the KerTheme model. KerTheme pro-
vides a means for symmetrically decomposing concern based executable class
diagrams and concern test scenarios. KerTheme also facilitates synchronised
merging of these decomposed models into a coherent composite concern based
executable class model and corresponding test scenarios. The KerTheme model
allows us to investigate whether decomposed concern based executable class
diagrams simplifies the definition of concern test scenarios. This will also allow
us to investigate whether this approach ensures more rigorous testing of a com-
plete system.

1 Introduction

Design validation is important for detecting errors early in the development life cycle.
The earlier an error is detected, the easier and cheaper it is to resolve. Testing the
design is one significant means to achieve design validation [6]. When concerns are
scattered and tangled in one monolithic design, the design becomes harder to test.
This is because it is harder to write a test case that targets one concern in complete
isolation. If concerns are scattered and tangled an error in the design of one concern
can have a negative impact on other concerns with which it is entangled. As such, it is
difficult to detect the error and localize the effect of resolution.

The UML enables the designer to separate some kinds of concerns. Aspect ori-
ented modelling (AOM) approaches typically extend the UML increasing the scope
for concern separation at design time. It is claimed that concern separation improves
design reusability, compensability and flexibility [5]. Various AOM approaches exist
for separating concerns within the design space [7]. Theme/UML [4] is unique within
this space, as it provides both a model which supports symmetric decomposition and
well defined composition semantics. A symmetric decomposition model ensures that
both crosscutting and non-crosscutting concerns can be modularized. In Theme/UML
crosscutting and non-crosscutting concerns are modularized as themes. Themes en-
capsulate the standard UML structural and behavioural diagrams required to capture

the concerns structure and behaviour. Well defined composition semantics describe
the effect the composition operator (e.g., merge) has on themes.

Testing can be seen as an activity that consists of checking the consistency be-
tween what the developer wants and what the designer has. Typically this would be
the execution of a test case against a program. In our case, we need to be capable of
comparing two views on the same design model (what the developer wants and what
the designer has). Theme/UML provides two views that would allow us to test a
Theme model (behavioural and structural diagrams). Behavioural diagrams have been
illustrated as a good means for generating test cases [6]. They define some particular
expected traces through a system based on a defined context. The behavioural dia-
grams for a particular theme can be used to describe test cases. For a theme to be
testable, the structural diagrams need to be executable.

We are investigating the extent to which concern separation at the design level also
improves the testability of design. Design models that represent concerns are focused
on one area of interest in a system. Through this work we are investigating if it is
easier to express scenarios as test cases for a specific concern. We are also investigat-
ing whether it is possible to synchronize tests and concern composition such that tests
and their associated concerns can be composed into full and coherent system models
which are fully covered by composed tests. Moreover, we expect that when errors are
detected, it will be easier to identify the precise causes of these errors and resolve
them quickly.

To facilitate this investigation, we introduce the KerTheme model. The KerTheme
model supports the decomposition of concerns and concern tests into KerThemes. A
KerTheme comprises of an executable class diagram and test scenarios. KerThemes
are units of composition. The composition semantics for executable class diagrams
are based on composition semantics defined in Theme/UML. The scenario weaving
approach [8] is used to compose test scenarios. To ensure that both executable class
diagrams and test scenarios are merged in a synchronized manner, we are aligning the
merges defined for scenarios and executable themes.

In this paper we motivate and illustrate the Theme/UML, Scenario Weaving and
KerTheme models through an Auction System Case study1. This case study has pre-
viously been used in [7, 8]. In this paper we focus on two concerns, a login concern
and a persistence concern, which are part of the Auction System. The persistence
concern crosscuts the login concern at points where login attempts are made. The
persistence concern deals with the recording of login attempts.

In section 2 we describe composable executable class diagrams for building test-
able models. Section 3 describes why scenarios are good for defining tests and how
scenarios can be composed. Section 4 introduces the KerTheme model and describes
how this model both supports concern testing and synchronised composition of con-
cern models and tests. Section 5 outlines the benefits and limitations of this approach
and also includes a brief discussion. Finally, Section 6 concludes the paper and out-
lines future work.

1 A description of the Auction System is available at http://lgl.epfl.ch/research/fondue/case-

studies/auction/problem-description.html

2 Executable Class Diagrams

Theme/UML [4] is a MOF based extension [5] to the UML that supports AOM.
Theme/UML facilitates the symmetric concern based decomposition of a system and
the specification of how (base and aspect) design modules are to be composed. In
Theme/UML composition is specified as a merge relationship between themes. The
top half of Figure 1 illustrates the design of the login and persistence concerns as
themes. The login theme is a base theme and the persistence is an aspect theme. A
base theme is an extension of the UML package meta-class, instances of which en-
capsulate the structural and behavioural UML diagrams that the designer needs to
describe a concern. An aspect theme extends the template package meta-class. The
template parameters associated with the template package are used in the description
of crosscutting behaviour. The template parameters are representative of any join
points affected by aspectual behaviour. In the login and persistence themes at the top
of Figure 1, class and sequence diagrams are used to describe the structure and be-
haviour of concerns.

<<theme>>

Persistence
sd persist

<<theme>>

Auction
Compose

<<theme>>

Login

Server.someOp(..): Result

Bind[Servier.login(): Boolean]
ThemeName(Auction)

match[name]

sd login Customer
login()

Server

ok
loop until(ok)

someOp(..): Result
Server Database

_do_someOp(..): Result
saveExchange(someOp, Result)

DatabaseServer
someOp(..): Result
_do_someOp(..): Result

saveExchange(someOp, Result)

Server
login(): Boolean Customer

sd persist

Login()
Server Database

_do_login
saveExchange(login, ok)

Database

Server
login: Boolean
_do_login: Boolean

saveExchange(someOp, Result)

Customersd login Customer
login()

Server

ok
loop until(ok)

Aspect theme

Base theme

Template ParametersJoin point behaviour

Composed behaviour Structure behaviour

Composite theme

aspectual behaviour

Figure 1 Composition of login and persistence themes

Figure 1 also illustrates the specification of a merge composition of the persistence
and login concerns. As persistence is crosscutting the merge specification a join point
binding is specified as part of the merge. A join point binding specifies elements that
exist within themes as points that are to be crosscut. In Figure 1 the
Server.login(): Boolean method is bound to the template parameter ex-
posed by the persistence theme. The result if this binding is presented at the bottom of
Figure 1 in the Auction composite theme. The class diagrams that were defined in the
persistence and login themes are unified into one class diagram. There are two se-
quence diagrams in the composite theme. The login sequence diagram (SD) is equiva-
lent to the login SD in the login theme. The persist SD shows how the join point
specified in the join point binding replaces the template parameter to describe com-
posed behaviour.

KerMeta [9] is a meta-modelling language that has been designed as an extension
to the EMOF 2.0 to be the core of a meta-modelling platform. KerMeta extends
EMOF with an action language2 that allows the specification of behavioural seman-
tics formetamodels. This action language is imperative and object-oriented. It is used
to provide an implementation of operations defined in meta-models. As a result the
KerMeta language can, not only be used for the definition of meta-models but also for
implementing their semantics, constraints and transformations.

KerMeta has been used in the successful implementation of class diagram compo-
sition in [15] but also as a model transformation language in [10]. Executable
Theme/UML and more specifically executable class diagrams have been defined in a
manner similar to [15]. Executable class diagrams are constructed by defining struc-
tural meta-models (similar to class diagrams in Theme/UML) wherein the themes
behaviours (defined in behavioural diagrams, such as sequence diagrams in
Theme/UML) are defined in the methods of the structural meta-models with the Ker-
Meta action language. The merge semantics for executable class diagrams are defined
within a merge composition operator which defines the composition of both struc-
tures and behaviours modelled in KerMeta. The merge has been architected as pre-
scribed in [7]. When the merge operator is applied to executable themes, the result is
a composite executable theme model in which the structural meta-models are com-
posed and the behaviours modelled in the KerMeta action language are composed
(similar to composite themes).

3 Weaveable Scenarios for Concern Test Cases

A number of works study the use of sequence diagrams (which represent scenar-
ios) to define and generate test cases. In [6], the authors propose a technique to auto-
matically generate test cases for UML design models. The UML design models con-
sist of a class diagram, OCL pre and post conditions for methods and activity dia-
grams that model the behaviour of each method. From this design model, the authors
can generate an executable form of the model, which can be tested using dynamic
testing techniques. Concerning test generation, they propose to model test cases using
UML2.0 sequence diagrams. From these test cases specification and the class dia-
gram, they generate a graph that corresponds to all possible execution paths defined
in the different scenarios. The authors then use coverage criteria, defined in [1]. From
the graph, it is possible to automatically generate test data and an initial system con-
figuration to cover each execution path.

Other works also propose to use scenarios as a basis to generate cases for pro-
grams. In [11, 12], Pickin et al. investigate the use of sequence diagrams as a formal
language to write test cases for distributed systems. The UML model of the system
has to be composed of a class diagram and a state diagram. Then, from test objec-
tives, modelled with sequence diagrams and a description of the initial state of the
application in the form of an object diagram, the authors propose a technique to syn-
thesize test cases for the system. The approach uses input/output labelled transition

2 A complete description of the action language definition can be found in [9]

systems (IOLTS) as an intermediate formal model from test cases are generated.
Thus, they have a transformation from a UML model to IOLTS, and a reverse trans-
formation to represent the generated test cases with sequence diagrams. The test cases
specify the ordering of call sequences that should be sent to the system and associated
test verdicts.

:Customer :Server
*

*
save

exchange

sd save

:DataBase:Customer :Server
*

*
save

exchange

sd save

:DataBase

:Customer :Server
log in
no

bsd retry

:Customer :Server
log in

bsd propose

:Customer :Server
ok

bsd accept

sd log
:Customer :Server

*

*

bsd pointcut

sd log

log in
:Customer :Server

ok

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

no

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

ok

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

ok

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

no

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

no

bsd accept

save
exchange

:DataBase

Compose

Aspect

Advice (Aspectual behaviour)

Base behaviour

loop

Composed behaviour
Figure 2 Scenario Weaving

The Object Management Group also considers sequence diagrams as a practical
language to write test cases for object-oriented systems. The UML testing profile [14]
proposes a meta-model that captures all the concepts needed to design and generate
black-box test cases: test objective, test case, test data, test environment, system under
test (SUT)... In this profile, the behaviour of a test case (the behaviour a test case
aims at validating) is described using a sequence diagram. The profile also includes
mappings from test scenarios to JUnit and TTCN.

In [2], Briand et al. propose to use scenarios associated with use cases as high level
test cases. The authors propose to use activity diagrams to model the ordering of use
cases. It is then possible to extract paths from the activity diagram, which correspond
to legal sequences of use cases. Once these sequences are available, each use case is
replaced by its corresponding sequence diagram to build a global test case. The gen-
erated test cases correspond to requirements level test cases that should be executed
on the final implementation of the system.

In [8], Klein et al. propose a semantic-based weaving of scenarios, where the
weaving is based on the dynamic semantics of the models used. An example of this
approach is presented in Figure 2. This example illustrates the modelling and compo-
sition of the login and persistence scenarios3. In this approach, an aspect is described

3 Please note that the scenario models and composition specification is similar to the

Theme/UML model.

as behavioural aspect because it is specified with behavioural modelling languages.
An aspect, in this approach, is defined as a pair of SDs, one SD for the pointcut
(specification of the behaviour to detect), and the second one for an advice represent-
ing the expected behaviour at the join point. Similarly to Aspect-J4, where an aspec-
tual behaviour can be inserted ’around’, ’before’ or ’after’ a join point, with the ap-
proach defines in [8], an advice may indifferently complete the matched behaviour,
replace it with a new behaviour, or remove it entirely to create composed behaviour.

One of the difficulties in weaving SDs is that dynamic behaviour needs to be
woven at modelling time. Therefore, we need to statically find where the join points
are in the base behaviour. While this can be trivially implemented with a syntactic
match for simple SDs, the hierarchical nature of UML 2.0 SD (similar to HMSCs
[16]) makes it necessary to address the problem at the semantic level [8] with static
analysis techniques such as loop unrolling, etc… In the next section, the weaver pro-
posed in [8] is used to compose scenarios (represented as sequence diagrams).

4 Merging Models and Tests: KerThemes

To facilitate our investigation into the extent to which concern separation at the
design level improves the testability of design, we are integrating executable class
diagrams (described in Section 2) and weaveable scenarios (described in Section 3).
As mentioned in Section 1, testing is checking the consistency between what the
developer wants and what the designer has. It is expected that symmetric concern
decompositions will make it easier for the developer to describe what he/she wants in
from a specific concern. Once developed, an executable class diagram is what the
designer has to test. For defining what the designer wants (or the test), we use scenar-
ios. The executable theme model is thus really executable since both the global struc-
ture and the behaviour are defined. Moreover, a KerTheme contains a set of scenarios
which correspond to behaviours the designer would like to see. Our claim in this
paper is that these scenarios can serve as a basis for test case generation to test the
executable class diagram. A KerTheme is thus said to be testable. This is because it
contains an executable design model of the theme and scenarios that can be used to
validate this theme.

The KerTheme model also facilitates the synchronised merge of both concern
model and concern test scenarios. This is achieved by ensuring that the semantics of
behavioural composition in Executable Theme/UML are consistent with those de-
fined for Weaveable Scenarios.

Figure 3 illustrates an example of the KerTheme model. In this model, there are
two KerThemes: LogIn and Persistence. Concern models denoted with the «Ker-
Theme» stereotype are defined as being executable and testable. Each KerTheme
contains both executable class diagram (executability of classes is represented by a
lightening symbol) and sequence diagrams, which represent test case scenarios.

4 http://www.eclipse.org/aspectj/

<<KerTheme>>
Persistence

<<KerTheme>>
LogIn

KerThemeName(Auction)

:Customer :Server
log in
no

bsd retry

:Customer :Server
log in

bsd propose

:Customer :Server
ok

bsd accept

sd log

Customer Server
logIn: Boolean

Customer

Server

DataBase
save()

:Customer :Server
*

*
save

exchange

sd save

:DataBase:Customer :Server
*

*
save

exchange

sd save

:DataBase

:Customer :Server
*

*

bsd pointcut

sd log

log in
:Customer :Server

ok

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

ok

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

no

bsd accept

save
exchange

:DataBase
log in

:Customer :Server

no

bsd accept

save
exchange

:DataBase

<<KerTheme>>
Auction

Customer

Server
logIn: Boolean

Compose

DataBase
save()

3.Test(State)

Synchronised Merge

4.Test(State)

Figure 3 KerTheme models and composition

KerTheme provides an effective approach for system modelling and design, thanks
to a clear separation of concerns. It also offers an interesting solution for test case
generation. Using this method, it is possible to model test cases for each concern
separately without, caring about the complex interactions that might appear in the
global design. For example, in Figure 3, it is possible to describe the expected behav-
iour of the Persistence concern with a very simple model. Each time messages are
exchanged between the client and the server, this exchange should be saved. When
describing this abstract test case, we do not need to consider every case where such
an exchange can occur; we really focus on the expected behaviour of the single con-
cern.

However, since each concern is modelled separately, these models have to be
merged to get a model of the global behaviour of the system. This, in turn, means that
the executable class diagrams have to be merged to get a global design and that the
scenarios also need to be merged to obtain consistent test cases for the system. In-
deed, in most cases, it is not possible to run the test case directly on the concern
model, independently from the rest of the model.

The LogIn KerTheme is an example where it may be possible5 to test the theme in-
dependently. It is possible because an initialization step may be modelled in the ex-
ecutable class diagram for bootstrapping the auction system elements. Using the se-
quence diagram associated with this concern, we can generate at least two test cases:
one with positive test case and negative test. We could then run those test cases

5 Customer and server objects may need to be initialised.

against the executable class diagram and check that it behaves correctly in these
cases.

The Persistence KerTheme can not be solely tested using the information given in
the model. Since this is a cross-cutting concern, both KerTheme class model and
sequence diagram test cases are parameterized and incomplete until bound through
composition. This facilitates the development of a simplified, generic test case that
could take into account any exchange between client and server that would appear at
any time during execution. To be able to execute the class diagram and run the test
case, we have to merge both the executable class model and the sequence diagrams
test cases with the LogIn executable class model and sequence diagrams test cases.
The bottom of Figure 3 illustrates the composition of the LogIn and Persistence Ker-
Themes. In this diagram the executable class models and the sequence diagrams are
composed in a synchronized manner by using the weaving process presented in sec-
tion 2 and 3. It is then possible to generate at least two cases, one positive test, where
a login is performed correctly and one negative test, where a bad login in performed.
In both cases, a check to ensure that the exchange is saved is required. Then, when
running these test cases against the design model, we can validate that the executable
classes actually conform to the expected behaviour.

We can also regression test the composite KerTheme with the sequence diagram
test cases defined in LogIn KerTheme. When test scenarios are considered to define
contracts for an executable class model, then the result from the application of both
woven and unwoven test scenarios to a composite executable class model should be
consistent.

5 Discussion

We believe that this approach shows merit. More work is required to investigate how
comparisons of scenarios and execution traces through a system may be realised. We
have identified several benefits and limitations of this approach.
The benefits include:

1. The correctness of the design model can be validated: the designer can
be more confident that errors in the design logic will not emerge during
Aspect and Object oriented implementation.

2. Test cases are easier to create and change: the designer can focus on
creating tests for one concern in isolation and as such tests are more con-
centrated and easier to change.

3. Finding errors is easier: when a test fails it is possible to relate the error
to a particular concern. As we check execution paths against sequence
diagram test cases, it should be easier to identify where errors arise.

4. The affect of fixing errors in minimized: Changes to the design model
are localised within a KerTheme and as such the negative effects of
change may be reduced.

5. Improved Reusability: As KerTheme represents a modular unit of de-
sign logic and tests for that design logic. As such, KerThemes are easier
to reuse.

The limitations we have identified include:
1. May need global tests: Untested behaviour may emegre in composite

models. This may be due to interactions between inputs that form the
composite. It may be difficult to write test cases in isolation to test these
behaviours. In some cases it is necessary to add global test cases for the
global design to ensure tests cover these types of behaviours.

2. Weaving correctness: It may be difficult to ensure that tests and models
have been composed correctly, unless additional tests are applied to the
composite. For this approach to succeed, we need to validate the composi-
tion tools. Such that, if an error is detected in the global composite design,
we know it comes from one of the models and that it is not an error intro-
duced by the weaving mechanisms.

3. Join point selection: It may be difficult to assess whether a join point
designator is correct. This is because test flows through composite tests
may lead the execution flow away from the operations where join points
may emerge.

Another issue that is of interest is the difference between an executable class dia-

gram and an object-oriented program. An executable class diagram is not the same
than an object-oriented program. Firstly, with an executable class diagram, the level
of abstraction is higher: it is independent of a platform. Secondly, when a class dia-
gram is implemented with an OO language, the initial model is not really preserved.
For instance, the associations between classes are changed into attributes, or multiple
inheritances are removed by using interface, etc… These differences between model
and OO code make that it is difficult to continue to properly work at a model level as
soon as an OO language is used, whereas with an executable class diagram, where the
code is added in the methods, the static model remains unchanged: so it is easier to
continue to work at a model level.

6 Conclusions and future work

Although work is being done in the area of testing in AOSD [3], little of this work
is focusing on the model level [17]. In this paper we have introduced the KerTheme
model. KerTheme provides a means for symmetrically decomposing concern based
executable class diagrams and concern test scenarios. KerTheme also facilitates syn-
chronised merging of these decomposed models into a coherent composite concern
based executable class model and corresponding test scenarios.

In our future work the KerTheme model will allow us to investigate whether de-
composed concern based executable class diagrams simplifies the definition of con-
cern test scenarios. This will also allow us to investigate whether this approach en-
sures more rigorous testing of a complete system. We will evaluate our emerging
approach through the Auction Case study described and used in [7] and [8].

Acknowledgements

This work is supported by European Commission grant IST-2-004349: European
Network of Excellence on Aspect-Oriented Software Development (AOSD-Europe),
2004-2008

References

[1] Andrews, A., France, R., Ghosh, S., Craig, G.: Test adequacy criteria for UML design
models, Software Testing, Verification and Reliability, 13(2): 95 -127, 2003

[2] Briand, L., Labiche, Y.: A UML-based approach to System Testing. Software and Sys-
tems Modeling, 1(1): 10 – 42, 2002

[3] Ceccato, M., Tonella, P., Ricca, F.: Is AOP code easier or harder to test than OOP code?,
WTAOP workshop at AOSD ‘05, Chicago, USA, March 2005

[4] Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design the Theme Approach,
ISBN: 0321246748, Addison-Wesley, 2005

[5] Clarke, S., Walker, R. J.: Composition Patterns: An Approach to Designing Reusable
Aspects, in Proc: ICSE ‘01, Toronto, Canada, May 2001.

[6] Dinh-Trong, T., Kawane, N., Ghosh, S., France, R., Andrews A. A.: A Tool-Supported
Approach to Testing UML Design Models, in Proc: ICECCS ‘05, Shanghai, China, June
2005

[7] Jackson, A., Clarke, S., Initial Version of Aspect-Oriented Design Approach, aosd-
europe.net, Feburary, 2006

[8] Klein, J., Helouet L., Jézéquel, J.M.: Semantic-based Weaving of Scenarios, in Proc:
AOSD ‘06, Bonn, Germany, March 2006.

[9] Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-oriented
meta-languages, in Proc: MODELS/UML ‘05, Montego Bay, Jamaica, October 2005

[10] Muller, P.A., Fleurey, F., Vojtisek, D., Drey, Z., Pollet, D., Fondement, F., Studer, P.,
Jezequel, J.M.: On Executable Meta-Languages applied to Model Transformations, in
MTIP Workshop, Montego Bay, Jamaica, October 2005

[11] Pickin, S., Jézéquel J.M.: Using UML sequence diagrams as basis for a formal test descrip-
tion language. in Proc: IFM ‘04, Canterbury, Kent, England, 2004

[12] Pickin, S., Jard, C., Le Traon, Y., Jéron, T., Jézéquel J.M., Le Guennec, A.: System Test
Synthesis from UML Models of Distributed Software. in Proc: FORTE ‘02

[13] UML Superspec p107-115, http://www.omg.org/, 2004
[14] UML Testing Profile, Accessed on: April 2006. http://www.omg.org/docs/formal/05-07-

07.pdf [5]
[15] Reddy, R., France, R., Ghosh, S., Fleurey, F., Baudry, B.: Model Composition - A Signa-

ture-Based Approach. AOM Workshop AOSD ’05, Montego Bay, Jamaica, October 2005
[16] TS, I., ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). 1993, Geneva:

ITU-TS
[17] Xu, D., Xu, W.: State-Based Incremental Testing of Aspect-Oriented Programs, in Proc:

AOSD ‘06, Bonn, Germany, March 2006

