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Abstract. The idea behind Aspect-Oriented Modeling (AOM) is to ap-
ply aspect-oriented techniques to (software) models with the aim of mod-
ularizing crosscutting concerns. This can be done within different model-
ing notations, at different levels of abstraction, and at different moments
during the software development process. This paper demonstrates the
applicability of AOM during the software design phase by presenting
parts of an aspect-oriented design of a crisis management system. The
design solution proposed in this paper is based on the Reusable Aspect

Models (RAM) approach, which allows a modeler to express the structure
and behavior of a complex system using class, state and sequence dia-
grams encapsulated in several aspect models. The paper describes how
the model of the “create mission” functionality of the server backend can
be decomposed into 23 inter-dependent aspect models. The presentation
of the design is followed by a discussion on the lessons learned from
the case study. Next, RAM is compared to 8 other AOM approaches
according to 6 criteria: language, concern composition, asymmetric and
symmetric composition, maturity, and tool support. To conclude the pa-
per, a discussion section points out the features of RAM that specifically
support reuse.

1 Introduction

The idea behind Aspect-Oriented Modeling (AOM) is to apply aspect-oriented
techniques to (software) models with the aim of modularizing crosscutting con-
cerns. This can be done within different modeling notations, at different levels of
abstraction, and at different moments during the software development process.

In [1,2,3] we have proposed Reusable Aspect Models (RAM), an aspect-
oriented multi-view modeling approach that 1) integrates existing class diagram,
sequence diagram and state diagram AOM techniques into one coherent ap-
proach; 2) packages aspect models for easy and flexible reuse; 3) supports the
creation of complex aspect dependency chains; 4) performs elaborate consistency
checks to verify correct aspect composition and reuse; 5) defines a detailed weav-
ing algorithm that resolves aspect dependencies to generate independent aspect
models and ultimately the final application model.
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So far we have applied RAM only to one big case study: AspectOptima [4,5,6],
a product line of transaction middleware implementations consisting of 17 as-
pects. From previous work we had acquired in-depth knowledge in object-oriented
implementations of transaction middleware, and as a result the identification
of the crosscutting concerns in transaction middleware was therefore pretty
straightforward. Nevertheless, this first experience has provided us with many
insights on AOM, and we evolved RAM to be able to deal with complex aspect
dependencies and interactions in a way that does not compromise the reusability
of the individual aspect models.

In [7] the authors propose a common case study, a crisis management system

(CMS), to evaluate the strength and weaknesses of different AOM approaches. In
this paper we present how we applied RAM to design parts of the functionality
of the crisis management system backend according to the requirements listed
in [7]. The design solution shown here is useful for software developers who
want to learn about aspect-oriented design in general, as well as for developers
who want to understand the details of the RAM approach. Please note that the
complete models of all aspects involved in this case study can be downloaded
from [8].

The outline of the paper is as follows. Section 2 presents a set of selected
models of our design of the CMS backend, while at the same time explaining
the main concepts of RAM. The design is split into resource management, com-
munication, workflow, logistics, and “base design”, each presented in a separate
subsection. Section 3 discusses the insights we gained when applying RAM to
the CMS. Section 4 presents an in-depth comparison of RAM to 8 other AOM
approaches based on 6 criteria. Section 5 comments on how RAM facilitates
aspect model reuse, and the last section draws some conclusions.

2 Crisis Management System Design
In this section we present the aspect-oriented design of the backend of the car
crash crisis management system (CCCMS) using the aspect-oriented modeling
approach Reusable Aspect Models (RAM) [1,2,3]. Just like in the original doc-
ument that describes the CCCMS, we are focusing on the design of the create

mission functionality that is executed at the CCCMS server backend.
The create mission functionality provided by the backend is triggered in the

following context: for every crisis, at least one super observer, an expert in car
crashes, is assigned to the scene to observe the emergency situation and identify
the tasks necessary to cope with the crisis. These tasks are called missions. In [7],
the super observer’s activities are described in use case 6. The super observer
sends the mission requests to the backend (use case 6, step 4), which has to
allocate suitable resources (humans, vehicles, etc...) to fulfill the mission (use
case 1, step 4). Once appropriate resources have been identified, the involved
workers have to be contacted with the mission assignment (use case 3, step 1).
The object-oriented design of the create mission functionality is presented in [7]
in Fig. 8.

In RAM, any concern or functionality that is reusable is modeled in an aspect

model. This is different from asymmetric aspect techniques, which usually only
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encapsulate crosscutting concerns within aspects. The RAM way of looking at
this is that even if an aspect is only used once in the same application, it is
(or can be) reused again in other applications. In this case, the structure and
behavior models of a reusable aspect cut across the models of the application(s)
in which the aspect is reused.

The philosophy in RAM is to decompose aspects that provide high-level func-
tionality into aspects that provide lower-level functionality. For this case study,
we decided to split the create mission functionality into 4 separate reusable
concerns at a high level of abstraction: resource management, communication,

workflow management and logistics, and two CCCMS-specific concerns: initial-

ization and create mission. Subsection 2.1 presents the aspect models involved
in the resource management concern in detail and at the same time explains the
basic concepts of RAM. The communication, workflow management and logis-
tics concerns are presented in subsections 2.2, 2.3, 2.4 with less details for space
reasons. Finally, subsection 2.5 shows how the initialization and create mission
concerns reuse the previous aspects to achieve the desired application function-
ality, and subsection 2.6 presents a design summary and comments on possible
improvements. Please note that the complete models of all aspects involved in
this case study can be downloaded from [8].

2.1 Resource Management

Resource management is one of the key concerns of the CCCMS. At all time, the
system should be aware of the availability of resources – human resources such
as first aid workers, drivers, doctors, etc. as well as vehicles, rescue equipment,
etc. The system should also keep track of other relevant information, such as the
condition and location of the resources in order to allow the most efficient and
effective deployment of the resources in case of a crisis.

At a high level, resource management can be split into resource search, i.e.
finding an available resource that exhibits a desired capability, and resource

allocation, i.e., allocating a set of resources to a task. The design of resource
allocation is explained first, since it is conceptually simple. At the same time the
notation of the Reusable Aspect Models modeling approach is introduced.

2.1.1 Allocating Resources
We are going to present the three aspects that make up the design of the

resource allocation aspect in a bottom-up way: first the lower-level aspects Ze-

roToManyAssociation and Allocatable, and then ResourceAllocation itself.

ZeroToManyAssociation

In our Reusable Aspect Models (RAM) approach, an aspect model is a spe-
cial UML package that encapsulates all model elements related to the structure
and/or behavior of a concern. The current version of RAM [2] supports aspect
models that use class diagrams, state diagrams and sequence diagrams.

Fig. 1 presents the aspect model ZeroToManyAssociation that shows the
design of a concern that occurs very frequently in applications, and that is also
used in resource allocation: an object of some class A needs to be associated with



4

aspect ZeroToManyAssociation

structural view

message view initializeAssociation

caller: Caller
new:
|Data

new := create(..)

Pointcut

Advice

|Data
|Associated

caller: Caller
new:
|Data

new := create(..)

Default Instantiation
caller → *
Caller → *
new → *

Any  getAssociated

state view |Data

mySet:
Set<|Associated>

mySet := create()

state view Set<|Associated>

Existing

create/size:=0

remove[size>0]
/size--

add/size++

delete

message view |Data.add

caller: Caller target: |Data
add(|Associated a)

Pointcut Advice

caller: Caller target: |Data
add(|Associated a)

Default Instantiation
caller → *, Caller → *, target → *

mySet:
Set<|Associated>

insert(a)

message view |Data.remove

caller: Caller target: |Data
remove(|Associated a)

Pointcut Advice

caller: Caller target: |Data
remove(|Associated a)

mySet:
Set<|Associated>

remove(a)

message view cleanup

caller: Caller target: |Data
delete(..)

Pointcut Advice

caller: Caller target: |Data
delete(..)

mySet:
Set<|Associated>

delete()

Pointcut

AddAllowed

RemoveAllowed

Any

Advice

AddAllowed
add

RemoveAllowed

remove

Default Instantiation
AddAllowed → *

RemoveAllowed → *
Any→ *

1
mySet

0..*
+ add(|Associated a)
+ remove(|Associated a)
+ Set<|Associated> getAssociated()

 
|Data

|Associated~ Set create()
~ add(|Associated )
~ remove(|Associated)
~ delete()

int size
Set |Associated

Default Instantiation
caller → *, Caller → *, target → *

Default Instantiation
caller → *, Caller → *, target → *

Fig. 1. The ZeroToManyAssociation Aspect
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many objects of another class B. While in UML this situation can be shown with
a standard association that has the multiplicity 0..*, it is usually implemented
during the detailed design phase using an intermediate set (or list or array)
object contained in the object of class A. To associate an object b with an object
a, b is inserted into the set contained in a.

Structural View
The class diagram representing the structure of the design of ZeroToManyAs-

sociation is presented in the structural view compartment of Fig. 1. It defines
three classes: |Data, |Associated and the template class Set.

The Set class implements a set abstraction: it provides a constructor and
destructor, as well as operations to insert elements into and remove elements
from the set. It is parametrized with the |Associated class, thus creating a “Set
of |Associated”. Many object-oriented programming language libraries provide
such classes, e.g. the generic Set class in Java, or the set class in the C++
standard template library.

|Data and |Associated are partial classes. A partial class needs to be com-
pleted before it can be used in an application. Partial classes, for instance, do not
define constructors and destructors, and hence it would be impossible to create
instances of the class. All partial classes of an aspect are therefore exported as
mandatory instantiation parameters of the aspect, and shown as UML template
parameters on the top right corner of the aspect package. In order to use the as-
pect and weave it with a target model, the mandatory instantiation parameters
must be mapped to model elements from the target model.

The public interface of a RAM aspect is comprised of all the public op-
erations declared by classes inside the aspect. In UML, the public operations
are marked with a +. In the ZeroToManyAssociation example, only the opera-
tions add, remove and getAssociated provided by |Data are publicly accessible.
The operations of the Set class are part of the intra-aspect interface of Zero-

ToManyAssociation, i.e. they can only be called from other objects that are part
of the aspect. The intra-aspect operations are tagged in RAM using the UML
package modifier ∼.

Message Views
To provide the functionality related to a concern, the model elements within

an aspect model must collaborate at run-time. In RAM, collaboration between
objects is shown in the message view compartments using sequence diagrams.
A RAM aspect must specify a message view for each public operation that
involves message exchanges between objects. If a public operation does not have
a corresponding message view, it is assumed that it only modifies or reads the
state of the object5.

The message view initializeAssociation, shown in the first message view com-
partment of the aspect in Fig. 1, shows that whenever a constructor is invoked
on an object of the class |Data (see pointcut sequence diagram), then the con-

5 This is, for instance, the case for the method getAssociated, which simply returns
the set mySet to the caller
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structor also creates an instance of the class Set and stores a reference to it in
mySet (see advice sequence diagram). This guarantees that there will never be a
|Data object without a Set object that belongs to it. The cleanup message view
makes sure that the set is deallocated when the |Data object disappears. The
message view add describes that adding an object of the class |Associated is
done by inserting a reference to it into the set referenced by mySet. Removing
objects from the association, described in the message view remove, follows the
same pattern.

State Views
RAM also allows the modeler to show how the state of an object dictates

the messages it accepts in state views with the help of state diagrams. For each
class in the structural view that defines operations, a corresponding state view
has to be specified. The state diagram must contain at least one transition for
each operation that the class defines.

In Fig. 1, for example, the Set<Associated> state view describes the protocol
of the Set class. It specifies that after being created, an instance of Set accepts
calls to the add operation, and, if not empty, calls to remove, until the instance is
destroyed. The |Data state view looks different: just like the message views, it has
a pointcut state diagram and an advice state diagram. The reason for this is that
|Data is a partial class. It is impossible to specify a complete state diagram, with
initial state and end state, for a partial class. It is possible, however, to define
states that are relevant with respect to the operations that the partial class offers.
The |Data class, for example, has 3 states that are important: AddAllowed,
RemoveAllowed and Any. They represent the states in which a |Data instance
accepts calls to add, remove, and getAssociated, respectively.

Instantiation
In order to use the ZeroToManyAssociation aspect in a target model, it has

to be instantiated by mapping the mandatory instantiation parameters of the
aspect to model elements in a target model. In our example, the mandatory in-
stantiation parameters, shown as UML template parameters on the top right cor-
ner of the aspect package, are the classes |Data and |Associated. For instance,
to associate a capability with zero to many resources, a modeler would write
the following instantiation: |Data → Resource, |Associated → Capability.
At run-time, a capability c can now be associated with a resource r by calling
c.add(r).

Allocatable

Another simple low-level aspect of resource management is Allocatable, shown
in Fig. 2.

Notice how Allocatable provides the functionality of being able to tag an
|Allocatable object as being allocated by calling allocate, free it again by
calling deallocate, and query its state using isAllocated. The Allocatable

aspect is really simple, in the sense that it contains only one class |Allocatable.
The three public operations of |Allocatable form the interface of the aspect.
None of the public operations of |Allocatable involve object interactions, and
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aspect Allocatable

structural view

Pointcut Advice

|Allocatable

+ bool isAllocated()
+ allocate()
+ deallocate()

bool allocated
|Allocatable

|Free

state view |Allocatable

Any

isAllocated

Default 
Instantiation

Any→ *

|Busy Any |Free |Busy

allocate |Free, |Busy

deallocate

Fig. 2. The Allocatable Aspect

therefore this aspect does not contain any message views, nor do its classes need
to worry about declaring an intra-aspect interface.

The state view of |Allocatable specifies that an instance of the class |Allo-
catable has at least two states, here named |Free and |Busy, and that the
instance must be in the |Free state to be able to execute allocate, and in the
|Busy state to execute deallocate.

ResourceAllocation

ResourceAllocation, shown in Fig. 3, is an example of a higher-level aspect that
depends on the low-level functionality of both Allocatable and ZeroToManyAs-

sociation. ResourceAllocation is in charge of allocating resources to a task, and
tagging the resources as being allocated. To this aim, the structural view of
ResourceAllocation defines the two partial classes |Resource and |Task. |Task
provides the public operations allocateResources, deallocateResources, and
getResources. The structural view also contains an instantiation directive for
the aspects ZeroToManyAssociation and Allocatable. It maps |Data to |Task

and |Associated to |Resource, thus reusing the functionality provided by Ze-

roToManyAssociation to associate each |Task object with a set of |Resources.
ResourceAllocation also reuses Allocatable to be able to mark a resource as being
allocated by mapping |Allocatable to |Resource.

A similar instantiation has to be done in the |Task state view in order to spec-
ify how the AddAllowed and RemoveAllowed states of ZeroToManyAssociation

relate to the states |NoAllocation and |Allocated.
The message view allocateResources also reuses functionality provided by Al-

locatable and ZeroToManyAssociation. It demonstrates how behavior of lower-
level aspects is reused. The sequence diagram describes that when requested to
allocate a set of resources to a task, the task object loops through the set of
resources, calling allocate (provided by Allocatable) for each of them and sub-
sequently adding it (provided by ZeroToManyAssociation) to the set of resources
associated with the task. Although it would be possible to provide specific in-
stantiation directives to reuse the message views of ZeroToManyAssociation and
Allocatable, it is in this case also possible to use a shortcut. Since the message
views in ZeroToManyAssociation and Allocatable both define default instantia-
tion directives that map caller, Caller and target to any model element in
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aspect ResourceAllocation depends on Allocatable, ZeroToManyAssociation

structural view

state view |Task Pointcut

|Task
|Resource

+ allocateResources(Set<|Resource> r)
+ Set<|Resource> getResources()
+ deallocateResources()

 
|Task

 
|Resource

state view |Resource is Allocatable.|Allocatable

caller: Caller target: |Task
allocateResources(Set<|Resource> r)

Pointcut

Advice

caller: Caller
allocateResources(Set<|Resource> r)

ZeroToManyAssocation instantiation
|Data → |Task

|Associated → |Resource
getAssociated → getResources

Allocatable instantiation
|Allocatable→ |Resource

AdviceallocateResources

|NoAllocation

ZeroToManyAssociation instantiation
AddAllowed→ |Allocated

RemoveAllowed→ |NoAllocation

loop [res within r] res: |Resource

target: |Task

allocate()

|Allocated |NoAllocation |Allocated

deallocateResources allocateResources

|NoAllocation
|Allocated

Any

Any

 getAssociated

add(res)

caller: Caller target: |Task
deallocateResources()

Pointcut

Advice

caller: Caller
deallocateResources()

loop [res within r] res: |Resource

target: |Task

deallocate()

remove(res)

                r := getResources()

message view deallocateResources affected by getResources, remove, deallocate

message view allocateResources affected by ZeroToManyAssociation.add, Allocatable.allocate

Default Instantiation
Any→ *

Default Instantiation
caller → *, Caller → *, target → *

Default Instantiation
caller → *, Caller → *, target → *

Fig. 3. The ResourceAllocation Aspect
the target model (see Fig. 1 and Fig. 2), it is enough to simply state that the
message view allocateResources is affected by the message views allocate and
add. The weaver will know how to combine the models correctly.

The state view |Task specifies that while it is possible to incrementally allo-
cate resources to a task by calling allocateResources multiple times, a call to
deallocateResources always frees all of the resources.

Weaving
The weaver in RAM supports aspect hierarchies of arbitrary depth. Given an
aspect A that depends on lower-level aspects B and C, the weaver must first
create an independent model of A before A can be woven into a base application
model or be reused in a higher-level aspect. The independent model of A is
an aspect model that contains all the structural entities, states and message
exchanges defined in the aspects A depends on, i.e., in B and C. Weaving is
performed in pairs. If no specific weave order is specified for B and C, the weaver
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chooses one randomly, e.g. first weaving B with A, and then C with the result of
the previous weaving. Since B and C can themselves depend on other aspects,
our weaving algorithm is recursive in nature, processing the dependency graph
in depth-first order.

Resource
Allocation

ZeroToMany
Association

Allocatable

Fig. 4. Resource Allocation
Dependencies

The dependency graph of ResourceAllocation

is shown in Fig. 4. In order to create an inde-
pendent aspect model of ResourceAllocation, the
weaver first weaves the aspect Allocatable into Re-

sourceAllocation in order to get a model of Re-

sourceAllocation that is independent of Allocat-

able. Second, ZeroToManyAssociation is woven
into the resulting model to finally obtain a model
of ResourceAllocation that is independent of both
Allocatable and ZeroToManyAssociation.

Fig. 5 shows the independent model of ResourceAllocation after weaving.
Note how the structural views have been merged, and how the advice of the
|Data state view added transitions to the advice of the |Task state view at the
states identified by the pointcut of the |Data state view.

Encapsulation and Information Hiding
In order to make information hiding possible in aspect hierarchies, the RAM

aspect weaver automatically removes the public interface of the model elements
of an aspect when it is woven into a target model by changing the visibility of the
model elements from public to package. This effectively “moves” the operations
from the public interface of the aspect to the intra-aspect interface.

The aspect interface of the independent ResourceAllocation aspect, just like
the dependent one, therefore contains 3 public operations. The public opera-
tions of the lower-level aspects had their visibility changed from public to pack-
age as they were copied into the woven model. As a result, model elements
in higher-level aspects that instantiate ResourceAllocation cannot directly use
the functionality provided by Allocatable and ZeroToManyAssociation. Conse-
quently, information hiding principles are maintained even in the woven model
and exposure of internal design decisions of ResourceAllocation are prevented.

Some times, however, a modeler may want to “re-expose” lower-level opera-
tions at the higher level. This situation occurs when an operation of the lower-
level aspect directly implements a functionality that the higher-level aspect needs
to provide. In the ResourceAllocation aspect, for example, it should be possible
to query all the resources that are allocated to a task. This functionality is
already provided by the operation getAssociated in ZeroToManyAssociation.

In RAM, the modeler can explicitly “re-expose” lower-level operations by first
declaring the re-exposed operation in the appropriate class. The same operation
name can be chosen, but a different name can also be used if it better reflects
the semantics of the operation in the context of the high-level aspect. Second,
when instantiating the lower-level aspect in the high-level aspect, the lower-
level operation is simply mapped to the high-level operation. Concretely, if a
modeler wishes to “re-expose” getAssociated in ResourceAllocation, he can add
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aspect ResourceAllocation

structural view
|Task

|Resource

+ allocateResources(Set<|Resource> r)
+ Set<|Resource> getResources()
+ deallocateResources()
~ add(|Resource a)
~ remove(|Resource a)

 
|Task

~ bool isAllocated()
~ allocate()
~ deallocate()

- bool allocated
|Resource

~ create()
~ add(|Resource )
~ remove(|Resource)
~ delete()

 
Set

1
mySet

0..*

|Resource

caller: Caller target: |Task
allocateResources(Set<|Resource> r)

Pointcut

Advice

caller: Caller
allocateResources(Set<|Resource> r)

loop [res within r] res: |Resource

target: |Task

allocate()

add(res)

caller: Caller target: |Task
deallocateResources()

Pointcut

Advice

caller: Caller
deallocateResources()

loop [res within r] res: |Resource

target: |Task

deallocate()

remove(res)

                r := getAssociated()

message view deallocateResources

message view allocateResources

mySet:
Set<|Resource>

add(res)

mySet:
Set<|Resource>

remove(res)

Pointcut Advice

|Free

state view |Resource

Any

isAllocated

Binding
Any→ *

|Busy Any |Free |Busy

allocate |Free, |Busy

deallocate

state view |Task

Pointcut

Advice

allocateResources

|NoAllocation

|Allocated

|NoAllocation |Allocated

deallocateResources allocateResources

|NoAllocation
|Allocated

AnyAny

 getResources
Binding
Any→ *

addremovestate view Set<|Resource>

Existing

create/size:=0

remove[size>0]
/size--

insert/size++

delete

Default Instantiation
caller → *, Caller → *, target → *

Default Instantiation
caller → *, Caller → *, target → *

Fig. 5. The Independent ResourceAllocation Aspect
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a public operation getResources in the |Task class and map getAssociated to
getResources in the instantiation directives as shown in Fig. 3. This tells the
weaver to rename the getAssociated operation during the weaving process and
to not change its visibility modifier. For more details on the weaving algorithm,
the reader is referred to [2]. For details on automated encapsulation, the reader
is referred to [3].

2.1.2 Finding Resources
In the context of the CCCMS, the resource search concern encapsulates the

functionality of finding the most appropriate set of resources that are available
and that have the required capabilities to carry out a mission.

Solving the general problem of finding an optimal set of resources that fulfill
a given criteria is very hard, and a research area in itself. Since resource search
is not the main focus of this paper, we make an assumption that simplifies the
problem considerably: a resource has exactly one capability.

With this assumption, fulfilling a request for n resources with capability
c can be done simply by finding all available resources that have capability c

and choosing n of them. This is the essence of the functionality of the simple
ResourceSearch aspect shown in Fig. 6.

Resource Search

The structural view of ResourceSearch defines three classes: |Capability,
|Resource and Request. |Resource is a partial class representing resources,
|Capability is a partial class that represents the expertise, quality or function
a resource can have or is able to perform. The specified association between
the two partial classes makes sure that every resource has exactly one capabil-
ity. In order to keep track of all the resources that have a certain capability,
ZeroToManyAssociation is instantiated.

The Request class is central to the ResourceSearch aspect. To perform a
search, a request must be created, and the desired capabilities and number added
to it. The find operation performs the actual search for resources, and returns
a set of available resources that have the desired capabilities. Internally, the
Request class is designed using the Map aspect. The Map aspect is again a
concern that occurs very frequently in applications. It basically provides the
functionality of a hash table, mapping key objects to value objects. It therefore
represents a design implementing a qualified association in UML. The internal
design of the aspect is similar to the ZeroToManyAssociation aspect, and hence
not shown here for space reasons. The interested reader can look at the model
by downloading the set of all CCCMS models from [8].

The initiateAssociation and cleanup message views make sure that, when-
ever a resource is created with a capability c, the resource is also added to or
removed from the set of resources associated with c. Finally, the most interesting
message view is find. The request object first starts by creating a set of resources
to store the result of the search. Then it obtains the set of capabilities requested
using the getCapabilities functionality, which is actually the getKeys func-
tionality provided by Map. For each requested capability, it queries the number
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myCapability
1

aspect ResourceSearch depends on Allocatable, ZeroToManyAssociation, Map

structural view

Pointcut Advice

|Resource
|Capability

Existing

state view |Resource

Binding

Existing! *

+ Request create()
+ Set<|Resource> find()
+ add(|Capability cap, Integer num)
+ Set<|Capability> getCapabilities()
+ int getNumber(|Capability c)
+ delete()

!

|Request

Advicestate view |Capability

Any
findResources

Any

state view Request

Allocatable instantiation

|Allocatable ! |Resource

ZeroToMany instantiation

|Data ! |Capability

|Associated ! |Resource

caller: Caller target: Request

solution := find()

Pointcut

Advice

caller: Caller

solution := find()
Binding

caller ! *

Caller ! *

target ! *

loop [k within keys]

num := getValue()

Allocatable instantiation

|Free ! Existing

|Busy ! Existing

Map instantation

AddAllowed ! Existing

Any ! Existing

solution := create()

resSet := getAssociated()

loop [r within resSet and 

!!!!!!!!!counter < num]

allocated := isAllocated()

opt [not allocated]

r: |Resource

k: |Capability

solution:
Set<|Resource>

target: Request

insert(r)

Map instantiation

|Key ! |Capability

|Value ! Integer

|Data ! Request

ZeroToManyAssociation instantiation

AddAllowed ! Any

RemoveAllowed ! Any

Any ! Any

i := getValue(key) i: Integer

counter := 0

keys := getKeys()

counter := ++

+ |Resource create
!!!!(.., |Capability myCapability, ...)

!

|Resource

+ Set<|Resource> findResources()
!

|Capability

create
Existing

create

Pointcut

Existing

create

find

delete

message view findResources is ZeroToManyAssociation.getAssociated

message view initializeAssociation and Cleanup not shown for space reasons

message view add is Map.add

message view getCapabilities is Map.getKeys

message view find instantiates getAssociated, getValue, getKeys, isAllocated, insert

caller: Caller target: Request

result := getNumber(c)

Pointcut

caller: Caller target: Request

result := getNumber(c)

Advice

i := getValue(c)

result := getValue()

i: Integer

Binding

caller ! *

Caller ! *

target ! *

message view getNumber instantiates Map.getValue

Fig. 6. The ResourceSearch Aspect
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aspect OptimalResourceSearch depends on ResourceSearch

structural view

Pointcut Advice

|ResourceWithFitness
|Capability

SetAllowed

state view |ResourceWithFitness

Default Instantiation
SetAllowed → *

Existing → *

|Capability

+ Set<|Resource> findFittest()
 

Request

Pointcut Advicestate view Request

Any
findFittest

state view |Capability is ResourceSearch.|Capability

caller: Caller target: Request
solution := findFittest()

Pointcut

Advice

caller: Caller
solution := findFittest()

loop [k within keys]

ResourceSearch instantiation
Existing → Existing

solution := create()

resSet := findResources()

loop [r within resSet ]

allocated := isAllocated()

opt [not allocated] fit := getFitness()

num :=
    getNumber(k)

keys := getCapabilities()

ResourceSearch binding
Any → Existing

Public ResourceSearch instantiation
|Resource → |ResourceWithFitness

|Capability → |Capability
Request → |Request

temp := create()

insert(r, fit )

loop [ i = 0; i < num; i++ ]

solution:
Set<|Resource
WithFitness>

target: Request

temp:
PriorityQueue

chosenRes := removeFirst()

insert(chosenRes)

+ create(.., real Fitness, ..)
+ setFitness(real Fitness)
+ real getFitness()

- real fitness
|ResourceWithFitness

Existing

SetAllowed Existing

setFitness getFitness

Any

message view findFittest affected by getResources, getCapabilities, getNumber, isAllocated

delete()

k: |Capability

r: |ResourceWithFitness

Default Instantiation
caller → *, Caller → *, target → *

Fig. 7. The OptimalResourceSearch Aspect

of requested resources of that capability by calling the getNumber functionality,
which uses the getValue functionality provided by Map. Then, a set of resources
having the requested capability is obtained using findResources, which is actu-
ally getAssociated provided by ZeroToManyAssociation. For each resource in
this set, isAllocated provided by Allocatable is called to check if the resource
is still available, and if it is, the resource is inserted into the result set. When
enough resources of the current capability have been found, the next capabil-
ity of the request is looked at. This continues until the entire request has been
handled.

Optimal Resource Search

The OptimalResourceSearch aspect, shown in Fig. 7, illustrates a slightly more
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advanced searching algorithm. It associates with each resource a fitness value – a
real number between 0 and 1– that stores how good a resource is in performing
its associated capability. It provides the findFittest functionality, that fulfills
a request by finding the most adequate available resources. As shown in the
message view findFittest of Fig. 7, the available resources that have the required
capability are first sorted according to their fitness value using a priority queue,
and then the top-most resources are chosen to fulfill the request.

Resource
Allocation

Resource
Search

Optimal
ResourceSearch

Map
ZeroToMany
Association

Allocatable

Networked
Command

Socket
Communication

SerializerMap Command

Fig. 8. Dependencies of the Resource Management and Communication Aspects

2.1.3 Dependency Summary
The dependencies between the aspects involved in the resource management

design are shown in Fig. 8. It shows clearly that ZeroToManyAssociation and
Allocatable are concerns that crosscut the design of resource management, since
both ResourceSearch and ResourceAllocation depend on them.

2.2 Communication
The main functionality of the communication infrastructure is to allow remote
resources, such as first aid workers or vehicles, to communicate with the CCCMS
backend. The assumption here is that humans that need to communicate with
the backend are carrying a laptop or a PDA (Personal Digital Assistant) that
can establish a secure wireless connection (for instance using Virtual Private
Network (VPN) technology) to access the CCCMS network. The super observer
is an example of a human resource that uses his PDA to communicate new
missions to the backend.

Fig. 8 shows a high-level overview of the dependencies among the aspects
that handle communication within the CCCMS. The designs of the individual
aspects are not shown here for space reasons. The ideas are briefly explained
below, and the full models can be downloaded from [8].

The main idea of the design of the communication infrastructure is to send
messages and data over the network in form of commands. The Command as-
pect implements the command design pattern [9], the essence of which is to
encapsulate a method call in an instance of a Command object. The value of the
parameters of the invocation are stored inside fields of the Command class. Ev-
ery command class has an execute operation that triggers the execution of the
actual command.

The Serializer aspect implements the serializer design pattern [10], which en-
sures that the state of any Serializable object can be flattened into a stream
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of bytes in order to be written to a Backend. Conversely, it also offers the func-
tionality of recreating the Serializable object from a stream of bytes read from
a Backend.

The SockedCommunication aspect implements socket-based communication
on top of the Serializer aspect. Its design is heavily inspired by how Java does
socket-based communication. It defines a SocketServer class that provides the
functionality of listening for incoming connections using a server thread, and a
Socket class that can be instantiated by a client to establish a connection with
a server, or that is automatically instantiated by the server when a connection is
accepted. A Socket has an associated Receiver and Sender object that provide
the functionality to receive and send |Sendable objects, respectively.

Finally, the NetworkedCommand aspect ties the different aspects together. It
defines a |RemoteCommand class, which is both a |Sendable (provided by Sock-

etCommunication) and a Command (provided by Command). It also defines the
CommandChannel class that provides the functionality to send a remote command
to a host identified by a string. At the same time, creating a CommandChannel

also instantiates a server socket and starts a thread in order to listen for incom-
ing connections. When an incoming connection is established, another thread is
instantiated in order to listen for incoming commands and execute them. This
functionality is provided by the CommandListener class. Finally, in order to not
have to establish new connections for each command, the CommandChannel ob-
ject stores all existing connections in a hash table provided by the Map aspect.

2.3 Workflow Management

The main functionality of the reusable concern workflow management is to al-
low the modeler to define and later on execute workflows, which control the
sequence and conditions that coordinate activities. In the CCCMS requirements
document, for example, the use cases define the different activities that con-
stitute the workflow for missions that can be carried out by CCCMS workers.

Workflow
Engine

Workflow

ExecutableMap Composite

Looped
Execution

Conditional
Execution

Sequential
Execution

Parallel
Execution

ZeroToMany
Association

Fig. 9. Dependencies of the Workflow Management Aspects
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Fig. 9 shows a summary of the dependencies among the aspects that provide
workflows to the CCCMS. The central aspect of workflow management is the
aspect Executable, which only defines a partial class |Executable and a partial
class |Context. An |Executable represents an activity within a workflow. The
execute operation triggers the execution of the activity. The class also contains
an operation waitForTermination that suspends the calling thread until the ex-
ecution of the activity is completed. The method getOutcome returns a boolean
that communicates if an activity completed successfully or not.

The aspects SequencialExecution, ParallelExecution, LoopedExecution, and
ConditionalExecution are control structures which allow the modeler to create
complex control flows of activities. For instance, the aspect SequencialExecution

contains an ordered set of |Executable instances and provides the functionality
of executing them in sequence. It also uses the composite pattern [9] by instanti-
ating the Composite aspect to pose itself as an |Executable, and hence inherits
the operations of the latter. Another example of control structure is the aspect
ConditionalExecution. This aspect implements a “If Then Else” block, where
the |Executable in the “then part” or the “else part” is executed depending on
a condition. The condition itself is also an |Executable, which is evaluated by
executing it and then querying the outcome with the getOutcome operation.

The Workflow aspect implements basic workflows. This aspect contains a
class Workflow which is associated with a root activity. This root activity can be
any |Executable, and hence complex workflows can be built using the control
structures presented above. The Workflow aspect also defines the |Variable

class, which an activity can use to store results for following activities. The
variables are all linked to the |Context in which a workflow executes. The class
|Context uses the functionality of the Map aspect to store the variables indexed
by their name.

Finally, the WorkflowEngine aspect provides the functionality of executing
workflows. The class WorkflowExecution links an execution context with a
workflow, and also implements the interface Runnable. The class WorkflowEngine
implements a virtual machine which, when requested to do so, launches the ex-
ecution of a workflow within a given context. It does this by instantiating a new
thread, which starts by calling the run operation of WorkflowExecution, which
in turn starts executing the root activity of the associated workflow.

2.4 Logistics
An orthogonal concern within the CCCMS is logistics: a crisis usually affects
a certain physical area, and missions to address the crisis situation need to be
executed at specific locations, or involve transporting victims, goods or other
resources from one location to another. Treating the logistics concern of the
CCCMS in its entirety is out of the scope of this paper. However, it is interesting
to show how the logistics concern interacts with resource management in general,
and resource search in particular.

Locatable

Fig. 10 shows the design of a simple aspect called Locatable. It allows a modeler
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aspect Locatable

structural view

Pointcut Advice

|Locatable

+ |Locatable create(.., Location myLocation, ..)
+ Location getLocation()
+ updateLocation(Location location)
+ int travelTime(Location destination)

- Location myLocation
|Locatable

Any

state view |Locatable

Any

getLocation

Default Instantiation
Any→ *updateLocation

travelTime

Fig. 10. The Locatable Aspect

to augment the state of any class with a physical location. It defines getter and
setter operations that can be used to query or to update the location of the
object, and a travelTime operation that calculates how long it would take the
object to reach a certain destination location.

The logistics concern also includes a Timing aspect which allows the modeler
to store a deadline in the state of an object. The RAM model of the Timing

aspect is even simpler than Locatable, and therefore not shown here for space
reasons.

Conflict Resolution Aspects
As mentioned before, the logistics concern has an impact on resource manage-
ment. For instance, when a resource such as a vehicle is put under control of the
CCCMS, its location has to be initialized, and continuously updated whenever
the resource changes position. Searching for resources is also affected by logistics.
In order to determine if a resource is fit to fulfill a certain mission, it not only
has to be capable of performing the task, but it must also be able to reach the
location of a time-constrained mission within the deadline.

This kind of situation, i.e., a situation in which the simultaneous application
of two or more aspects requires one or several of the aspect’s state and behavior
to be altered in order to provide a semantically correct functionality, has been
called aspect interference or aspect conflicts [11].

In RAM, a modeler that detected a conflict between two aspect models A
and B can express the adaptations that have to be made to both aspects in
order to obtain a semantically correct woven model. In order to keep aspects
A and B reusable and independent, the structural and behavioral modifications
that are necessary to cope with the aspect conflicts are specified in a separate
conflict resolution aspect model. The conflict resolution aspect model, of course,
depends on the aspects whose conflicts it resolves. The conflicting aspect models,
however, do not have to be changed, and hence remain independent from each
other. They are therefore still individually reusable.

A conflict resolution aspect model is different from a standard aspect model,
because it defines a set of modification views instead of standard views. Each
modification view contains a conflict criteria condition that specifies under which
condition the conflict occurs. If the condition is verified, the adaptation defined
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in the remainder of the view is woven with the structure and behavior of one of
the conflicting aspects.

conflict resolution aspect Locatable / Timing / OptimalResourceSearch

modification OptimalResourceSearch.findFittest affected by getLocation, travelTime, getDeadline

target: Requesttarget: Request r: |Resource
fit := getFitness()

Pointcut Advice

r: |Resource

time := travelTime(destination)

destination := getLocation()

fit := max(0, fit * (1 - time/deadline))

fit := getFitness()

deadline := getDeadline()

conflict criteria
OptimalResourceSearch.|Resource = Locatable.|Locatable

OptimalResourceSearch.Request = Locatable.|Locatable
OptimalResourceSearch.Request = Timing.TimeConstrained

Fig. 11. Locatable / Timing / OptimalSearch Conflict Resolution

Fig. 11 illustrates this idea. It describes the modifications that have to be
applied to the findFittest message view of the OptimalResourceSearch aspect
(shown in Fig. 7) in order to deal with locations and deadlines. The modifications
are only applied in the case where the resources are locatable (as defined by the
Locatable aspect), the request is locatable (because the physical location of the
mission is known), and there is a deadline associated with the request (as defined
by the TimeConstrained class specified in the Timing aspect). This condition
is specified in the conflict criteria box of the modification view.

If the RAM weaver detects that the conflict condition is verified, then the
modifications are automatically applied to the findFittest message view, i.e. the
specified pointcut is matched within the advice sequence diagram of findFittest,
and all occurrences of the pointcut (in our case there is only 1 match), are
replaced by the advice specified in the conflict resolution model. In our case this
amounts to decreasing the fitness value returned by the getFitness operation
according to the time it takes the resource to reach the mission location.

2.5 Base Design
All the aspects described in sections 2.1 to 2.4 are general in the sense that they
do not specify any classes or operations that only apply to the CCCMS. Rather,
they attempt to capture the structure and behavior of resource management,
communication, workflow and logistics in a reusable way, independent of each
other, and independent of a specific application or context.

In order to use these aspects to build the design model of the CCCMS, the
general aspects have to be carefully mapped to CCCMS-specific model elements.
Traditionally, the models that contain the application-specific elements have
been called the base.

The base model of the CCCMS is huge, and hence we again use the decom-
position possibilities offered by RAM to modularize even application-specific
concerns into separate aspect models. As a result, the only “special” property of
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aspect Initialize depends on OptimalResourceSearch, Locatable, Timing

structural view

message views and state views not shown for space reasons

OptimalResourceSearch instantiation
|Resource → Worker, Vehicle

|Capability → Expertise, VehicleClass
Request → Mission

+ create(String name)
+ String getName()
+ initRequiredResources(Mission m)

- String name
MissionKind

+ Expertise create(String name )
+ String getName()

- String name
Expertise

+ VehicleClass create(String name)
+ String getName()

- String name
VehicleKind

+ Worker create(String name)
+ String getName()

- String name
Worker

+ Vehicle create(String licensePlate)
+ String getPlate()

- String licensePlate
Vehicle

+ create(String description, MissionKind myKind)
+ String getName()
+ MissionKind getKind()
+ delete()

- String description
Mission

1
myKind

+ init()
 
Initializer

Locatable instantiation
|Locatable → Worker, Vehicle, Mission

Timing instantiation
TimeConstrained → Mission

1
myFlow

+ RescueMissionKind create(String name, MissionWorkflow m)
+ initRequiredResources(Mission m)
+ MissionWorkflow getWorkflow()

 
RescueMissionKind

+ MissionWorkflow create()
 

MissionWorkflow

Fig. 12. The Initialize Aspect

a base aspect model is the fact that all of the classes it defines are complete, and
hence it does not declare any mandatory instantiation parameters.

As mentioned in the introduction, we are going to concentrate on the func-
tionality of the CCCMS that is triggered when a super observer orders the exe-
cution of a new mission to help resolve the crisis. The design of this functionality
is provided in the CreateMission aspect. In order for CreateMission to execute,
however, the backend system has to be initialized: several objects need to be
created (such as workers and vehicles), associations need to be established (such
as between workers and their expertise), and workflows need to be instantiated.
The Initialize aspect takes care of this.

Initialize

Fig. 12 shows the structural view of Initialize. At its heart, it defines the
Mission and MissionKind classes. Every mission has an associated mission
kind. MissionKind is actually an abstract class, and concrete classes must be
defined for each kind of mission. Currently, only one concrete kind is defined:
RescueMissionKind.

Initialize also defines the Worker and Vehicle classes, which are two exam-
ples of resources, and the Expertise and VehicleKind classes, which represent
capabilities that resources can have. Locatable is instantiated to associate a lo-
cation with workers, vehicles and missions. Timing is instantiated in order to
associate deadlines with missions. OptimalResourceSearch is instantiated to es-
tablish a mapping between resources, i.e. workers and vehicles, and capabilities,
i.e. expertise and vehicle kinds.
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The state views and message views of the Initialize aspect are not shown for
space reasons. The most important message view is the init operation of the
Initializer class, which performs the actual initialization of all the objects in
the system. It creates capabilities, e.g firstAid, superObserver or ambulance,
and resources, e.g. wisam, who is a superobserver located initially at the crisis
control center, joerg, a first aid worker located initially at the hospital, or a1,
an ambulance stationed at the hospital. In addition, it creates a workflow engine,
and workflows for each mission as specified in the use cases of the requirements
document. For instance, a rescue mission workflow is created by instantiating
SequencialExecution, and then adding in sequence the individual activities, which
would also have to be defined in separate aspect models, as specified in use case
UC7 [12].

In a real CCCMS system, initialization should of course not be “hard coded”.
Usually, information about resources such as workers and vehicles would be
stored in a database, and during system start-up, the in-memory data structures
would be initialized with data from the database. Even mission workflows could
be initialized in such a way, or even dynamically created at run-time using a
mission workflow editor. Database access and dynamic mission editing – yet
more concerns of the CCCMS – are, however, out of the scope of this paper.

CreateMission

Fig. 13 shows the design of the CreateMission aspect. Its design links together
the resource management, communication and workflow concerns.

The structural view of CreateMission defines a CreateMissionCommand, a
CreateMissionReceiver, a ReceiverQueue and a WaitForCreateMissionStep

class. The following describes how objects of these classes collaborate to achieve
the create mission functionality.

On the backend, when a new crisis is created, a CreateMissionReceiver

object is instantiated and the operation initialize is invoked. As shown in the
initialize message view, this results in instantiating a ReceiverQueue object,
which is a blocking queue of Mission objects thanks to the instantiation of the
BlockingQueue aspect. The CreateMissionReceiver object stores the reference
to this queue object in a hash table indexed by crisis number. This functionality
is provided by the Map aspect. Finally, it creates a CommandListener object to
listen for incoming commands.

When a super observer is dispatched to observe the crisis, the super ob-
server mission workflow is instantiated and given to the workflow execution
engine to execute. At some point, after the super observer reached the crisis
location, the workflow execution engine executes the performStep operation of
a WaitForCreateMissionStep. As described in the performStep message view,
this results in calling the take operation of the blocking queue corresponding to
the crisis that the super observer is handling. As a result, the workflow execution
is suspended, effectively waiting for the super observer to send a create mission
command.

When a super observer wants to create a mission, he uses his PDA to instan-
tiate the CreateMissionCommand class with the appropriate parameters, and
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aspect CreateMission depends on Locatable, Initialize,
    ResourceAllocation, NetworkedCommand, BlockingQueue, Map, OptimalResourceSearch, WorkflowEngine

structural view

+ performStep()
 

WaitForCreateMissionStep

Pointcut Advice

caller:
Caller

target: WaitFor
CreateMissionStep

performStep()

caller:
Caller

performStep()

: CreateMission
Receiver

q := getValue(cr)

+ initialize(Crisis cr)
- Mission getMission(Crisis cr)

 
CreateMissionReceiver

+ CreateMissionCommand
   create(Location l, MissionKind k)
+ execute()

Crisis cr
MissionKind k
String d

CreateMissionCommand

Pointcut

Advice

caller: Caller target: Create
MissionCommand

execute()

caller:
Caller

target: Create
MissionCommand

execute()
newMission: 

Mission
newMission := create(k, d, l, 300)

: CreateMission
Receiver

q := getValue(cr)

m: Mission
kind := getKind()

solution := findFittest()

kind: 
MissionKind

target: WaitFor
CreateMissionStep

allocateResources(solution)

Initialize instantiation
Initialize.Mission → Mission

Initialize.MissionKind → MissionKind

ResourceAllocation instantiation
|Task → Mission

|Resource → Initialize.Vehicle
|Resource → Initialize.Worker

Mission

ReceiverQueue

Map instantiation
Map.|Data → CreateMissionReceiver

Map.|Key → Crisis
Map.|Value → ReceiverQueue

BlockingQueue instantiation
|Element → Mission

BlockingQueue → ReceiverQueue

Pointcut

Advice

caller: Caller target: Create
MissionReceiver

initialize(cr)

caller: Caller target: Create
MissionReceiver

initialize(cr)
q: ReceiverQueue

create()

initRequiredResources(m)

add(cr, q)

message view initialize affected by Map.add

insert(newMission)
q: ReceiverQueue

message view execute affected by Map.getValue, BlockingQueue.insert

m := take()
q: ReceiverQueue

message view performStep
    affected by getValue, take, getKind, initRequiredResources, findFittest, allocateResources, launch

NetworkedCommand instantiation
|RemoteCommand → CreateMissionCommand

l: CommandListener
create()

Locatable instantiation
Locatable → CreateMissionCommand

newWorkflow := getWorkflow()

theEngine: 
WorkflowEngine

launch(newWorkflow, m)

WorkflowEngine instantiation
|Context → Mission

|Activity → 
WaitForCreateMissionStep

Default Instantiation
caller → *, Caller → *, target → *

Default Instantiation
caller → *, Caller → *, target → *

Fig. 13. The CreateMission Aspect
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sends the command to the backend. This functionality is provided by Networked-

Command. On the backend, the command listener receives the command, and
invokes the execute operation on it. As shown in the message view execute, this
results in the instantiation of a Mission object, which is subsequently inserted
into the blocking queue of the corresponding crisis.

As a result, the workflow execution engine thread is awakened, and it con-
tinues the sequence of execution described in the performStep message view. It
asks the MissionKind object associated with the retrieved mission to initialize
the required resources for this mission. This operation, provided by the Initialize

aspect, initializes the mission object, which is also a request, with the capabil-
ity requests that describe the resources needed to complete the mission. Then,
performStep invokes the findFittest operation provided by OptimalResource-

Search on the mission object. The found set of resources is then allocated to
the mission by using the functionality provided by ResourceAllocation. Finally,
the workflow that needs to be executed in order to process the new mission is
obtained from the MissionKind object, and passed to the workflow execution
engine to be executed.

2.6 Design Summary and Comments
Fig. 14 summarizes the dependencies among all the aspects that are part of the
CCCMS backend design of the create mission functionality. In total, there are
23 aspects. Only 2 aspects, i.e. CreateMission and Initialize, are application-
specific in the sense that they contain model elements that are specific to crisis
management systems. All other aspects are CCCMS independent, and could
hence be reused in many other applications.

One of the central classes of the CCCMS that is part of many concerns
is the Mission class. It not only stores the CCCMS-specific mission informa-
tion, it is also a Request of ResourceSearch, a Task of ResourceAllocation,
a Locatable, a TimeConstrained, and a Context of Workflow. The central
message view of the CCCMS design is the performStep message view of the
WaitForCreateMissionStep class of CreateMission. After receiving the infor-
mation about the mission that is to be created from the super observer using
NetworkedCommand, the best resources are determined using OptimalResource-

Search, allocated using ResourceAllocation, and then the new mission workflow
is launched using WorkflowEngine.

The woven class diagram that our weaver generates after weaving all depen-
dent aspects into the structural view of CreateMission is shown in Fig. 15. The
interested reader can compare this design class diagram with the one provided
in the case study description document in Fig. 96 [7].

2.6.1 Design Improvements
The design presented in this paper is of course only an initial design, and

6 The main reason why our generated class diagram has more classes than the one
provided in the case study document is that ours shows the design of one-to-many
associations and qualified associations using Set, List and Map classes.
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~ execute(M
ission c)

  W
aitForC

reateM
issionStep

+ initialize(Crisis cr)
- M

ission getM
ission(Crisis cr)

~ add(Crisis key, ReceiverQ
ueue val)

~ rem
ove(Crisis key)

~ Set<Crisis> getKeys()
~ ReceiverQ

ueue getValue(Crisis k)

 
C
reateM

issionR
eceiver

+ CreateM
issionCom

m
and

   create(Location m
yLoc, M

issionKind k)
+ execute()
~ Location getLocation()
~ updateLocation(Location location)
~ int travelTim

e(Location destination)
- readFrom

(SocketReceiver r)
- writeTo(SocketSender w)

- Crisis cr
- M

issionKind k
- String d
- Location m

yLocation

C
reateM

issionC
om

m
and

~ create(String nam
e)

~ String getNam
e()

~ initR
equiredR

esources(M
ission m

)

- String nam
e M
issionK

ind

~ Expertise create(String nam
e )

~ String getNam
e()

- String nam
e Expertise

~ VehicleClass create(String nam
e)

~ String getNam
e()

- String nam
e VehicleK

ind

~ W
orker create(String nam

e, 
Capability cap, real fitness, 
Location m

yLoc)
~ String getNam

e()

- String nam
e W
orker

~ Vehicle create(String licensePlate, 
Capability cap, real fitness, Location 
m

yLoc)
~ String getPlate()

- String licensePlate
Vehicle

~ create(String description, M
issionKind m

yKind, 
      Location m

yLocation, int deadline)
~ String getNam

e()
~ M

issionKind getKind()
~ destroy()
~ allocateResources(Set<Resource> r)
~ Set<Resource> getResources()
~ deallocateResources()
~ add(Resource a)
~ rem

ove(Resource a)
~ Set<Resource> findFittest()
~ Set<Resource> find()
~ add(Capability cap, Integer num

)
~ Set<Capability> getCapabilities()
~ int getNum

ber(Capability c)
~ Location getLocation()
~ updateLocation(Location location)
~ int travelTim

e(Location destination)
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could be enhanced significantly. The remainder of this subsection comments on
weaknesses of our current design, and presents suggestions for improvement.

Improvement of Current Aspects
The low-level aspects of our design provide minimal functionality, just enough

for being useful in the CCCMS context. For example, the ZeroToManyAssocia-

tion aspect does not provide query operations that can be used to determine if
two objects are currently associated or not. Similarly, the BlockingQueue aspect
does not provide query operations to determine the current length of the queue.

The workflow management concern described in subsection 2.3 is also only
a basic design, implemented specifically for the create mission functionality. In
practice, the complete CCCMS might require more advanced workflow capabil-
ities to efficiently capture the scenarios associated to all kind of missions. For
example, the workflow management concern could support the definition of pro-

cedures in order to share parts of workflows between different types of missions.
In practice, support for defining and calling procedures could be added by defin-
ing an additional Procedure aspect. Other possible extensions include the ability
to define explicit parameters for the workflow activities, the support for local
variables or advanced synchronization mechanisms (see http://www.workflow-

patterns.com/ for a extensive list of potential workflow features). We believe
that most of these features can be captured in RAM aspects in order to enrich
the initial version developed for this case study.

Adding New Aspects
In the current CCCMS design, the resources are stored in lists in memory (see

ResourceSearch aspect). In a realistic CCCMS system, a database management
system is required in order to persist all application data such as resources,
missions, etc. Implementing this persistence layer would require specific data
management aspects for data access, caching and transaction management. It
has been shown at the programming language level that aspects can be used to
encapsulate database access [13], and it should be possible to model the structure
and behavior of such functionality with RAM.

One other important feature of the crisis management system is its con-
nectivity with external services such as police departments, fire departments,
hospitals, weather or traffic centers. These connections and the management of
events coming from these external systems have not been covered in the design
of the create mission functionality. A set of RAM aspects should be defined to
provide such functionality.

3 Lessons Learned from the Case Study

So far we have not done an in-depth empirical analysis of the practicality of
aspect-oriented design in general, and RAM in particular. Working on this case
study has nevertheless given us some insight on the usability of our approach.
These insights are presented in this section, split into the categories aspect-

oriented design process, importance of tool support, and support for variability.
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3.1 Aspect-Oriented Design Process

In typical object-oriented design we usually start by designing a small part of
the functionality of the system in detail, and then keep on adding functionality
iteratively to the existing design, growing our design models gradually. When
approaching this case study from an aspect-oriented perspective, we found our-
selves starting off with the domain model from the requirements document that
contained classes representing the most important CCCMS concepts. We then
proceeded by identifying related concepts, and breaking the domain model apart,
creating aspects along the way. To each aspect model that now contained some
parts of the classes of the domain model we added the detailed design classes
that were needed to implement the functionality of the aspect. As a result, our
domain model was slowly shrinking, while the number of aspect models were
increasing. Whenever possible we would try and reuse already existing aspect
models, especially the design pattern aspects that had already been created for
other designs.

It was not easy to group related concepts based on the domain model, and
then encapsulate them in RAM aspects. The process required a good deal of
thought and debate. Several times we had created an aspect model that was
later on split into several aspect models, because longer thought had revealed
that the aspect was actually providing two distinct functionalities. For instance,
initially we had created a ResourceManagement aspect that provided operations
to search for resources as well as to allocate them. Only while working on the
detailed design of ResourceManagement we realized that searching and allocat-
ing were actually two sub-functionalities that can easily be separated. It also
happened that we had designed an aspect model that was later on discovered
to not provide a sufficiently distinct functionality from the aspects that it de-
pended on, and as a result we merged it with a higher-level aspect. For example,
we had a ResourceToCapabilityMapping aspect that ensured that every resource
is associated with exactly one capability at creation time, and vice versa. In the
end we decided that such an aspect was not adding much functionality beyond
what ZeroToManyAssociation already provides, and therefore it was merged
with ResourceSearch.

It was also not always easy to apply good information hiding principles during
the CCCMS design. Ideally, a modeler using an aspect A would not have to know
about the aspects that A depends on. Our experience shows us that a lot of care
needs to be put into the design of the interface of A in order to make this possible.

RAM currently does not provide any algorithm or heuristic on how to discover
aspect models during the design, or how simple or complex each aspect model
should be, or how to design good aspect model interfaces. The initial hurdle
that a modeler has to overcome in order to identify RAM design aspects starting
from a requirements document is not small. This struggle is not necessarily a
bad thing, though, as it forces the modeler to think deeply about the problem,
to look at the design from many angles and perspectives, thus increasing the
modeler’s understanding of the problem and the designed solution.
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Model Scalability The CCCMS is a system of considerable size. However,
so far we only concentrated on the design of the create mission functionality.
Nevertheless, we decomposed the problem into 23 different aspect models.

Complexity of Individual Aspect Models

Each individual aspect model is small in size. Most models fit entirely on
one letter page, some require two pages to print. The structural views of our
models contain on average 3 classes. Not surprisingly, Initialize, which defines
the main CCCMS-specific data structures contains 9 class definitions. The public
interfaces of our aspects define on average 8 operations. The state views specify
on average 3 states, and the message views depict interaction sequences that
involve on average 5 object instances. Again, the init operation of the Initialize

aspect, which takes care of creating and initializing the CCCMS data structures,
defines the message view with the most object instances.

Based on our experience, the small size of our aspect models makes them easy
to work with. Of course it is easier to understand how a small number of objects
work together to achieve a very specific functionality than it is to understand
the structure and behavior of the full application. Even if a modeler only looks
at the objects that are related to a specific functionality in a non-aspect-oriented
design, these objects define state and behavior that are related to many concerns,
which is confusing. The model elements inside our aspect models only define the
state and behavior relevant to a specific functionality, and hence the modeler is
not distracted by unrelated information.

During our design activities, we observed yet another reason why the small
size of RAM models is beneficial to a modeler: all information pertaining to a
given functionality can be visualized simultaneously on one screen or on one
sheet. This allows the modeler to understand the internal workings of an aspect
without having to piece information together from multiple windows or sources,
which saves considerable time.

Composition Complexity

Our tool helps the modeler to reuse one aspect within the context of another
in a consistent way. Complex aspects can depend on many lower-level aspects,
e.g., A can depend on B, C and D. Nevertheless, composition is always specified
in pairs, e.g. A+B, A+C and A+D. Reasoning about pair-wise composition is
relatively simple: the modeler must always only look at two views simultaneously,
e.g. the structural view of A and B, in order to specify the desired instantiation
or binding directives.

In some rare cases, the order in which the pair-wise compositions are per-
formed matters. To address these situations, RAM allows to specify an ordering
for the composition. Conflicts that occur between B, C and D if applied to the
same model elements can be resolved by writing conflict resolution aspect models
(see section 2.4) that are automatically applied by the weaver when a modeler
reuses the conflicting aspects together.

Although lots of effort has been put into limiting composition complexity for
the users of RAM, in-depth empirical experiments have to be conducted in the
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future to determine if modelers are faced with challenges when having to specify
compositions of many aspects in real-world sized systems.

Inheritance vs. Merging At several times during the design of the CC-
CMS, our object-oriented design background made us want to use generaliza-
tion/specialization relationships (inheritance) to implement a design solution for
a particular situation. For instance, we wanted to create an abstract superclass
CCCMSResource, with subclasses Worker and Vehicle, because we would like
Worker and Vehicle to share common attributes and operations. Since RAM
supports one-to-many mappings during instantiation, the same effect can be
achieved simply by mapping both Worker and Vehicle to ResourceWithFitness.
Both former classes, as a result, “inherit” the attributes and operations of Re-

sourceWithFitness. A similar situation occurred within the workflow manage-
ment aspects, where we initially had the intention of creating a ControlStruc-

tures super class to group together our many workflow control structures.
It is not clear to us, for now, if weaving can completely replace inheritance.

Further experiments are necessary to find an answer to this question.

3.2 Importance of Tool Support

After having completed a major part of the design of the CCCMS, a new member
joined our design team. In order to understand the details of the design of one
aspect, he had to also look at and understand the structure and behavior of
the instantiated aspect models. Sometimes, he had to dig even deeper, and look
at aspects that were two levels below the aspect he wanted to understand in
order to get a feeling of how the design was supposed to work. The RAM tool
provides essential help in such a situation, because it allows a modeler to create
an independent model of any aspect. Since the independent model contains all
the model elements of the instantiated aspects, the modeler can look at the “full
picture” of the aspect under study, and is able to understand the design in detail.

For example, a modeler trying to understand the structure of OptimalRe-

sourceSearch does not see any association between Capability and Resource-

WithFitness. Even an inspection of ResourceSearch does not reveal that Capabi-
lity is linked to a set of Resources. It is only when looking at ZeroToManyAs-

sociation that the association between |Data and |Asssociated appears. In
the independent aspect model of OptimalResourceSearch generated by our tool,
however, the association between the two classes is readily visible.

Having realized the importance of the tool support that a designer can rely
on, we are planning in the future to extend our tool with additional features that
could improve the usability of RAM. As a first step, we are planning to extend the
tool to color-code model elements in an independent aspect model depending on
the aspect(s) they originated from. Ultimately, the goal is to implement a tool in
which it would be possible to interactively “unfold” instantiated aspects in order
to see the structure and behavior they provide in detail.

Correctness Checks The RAM weaver performs extensive consistency checks
within the generated independent aspect model and within the final base model.
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Our tool compares, for each object life line in the final generated sequence dia-
grams, that the ordering in which the object accepts incoming messages corre-
sponds to the ordering of the messages accepted by the woven state diagram. If
the state diagram refuses a message, consistency is violated. This signals to the
developer that the instantiations and bindings (or the ordering of the instanti-
ations and bindings) of the state and message views contradict each other and
have to be revisited.

Although this does not guarantee correctness of the compositions, the prob-
ability of detecting erroneous composition directives is significant: the modeler
has to specify the same composition from two points of view: the state view and
the message view. The only situation in which the tool cannot detect the error is
the one where the modeler specifies the same wrong composition in both views.

The consistency checks provided by RAM have helped us to detect com-
position problems during the design of the CCCMS. It is not clear, however,
how effective these checks are when models grow even bigger. In-depth empirical
experiments have to be conducted in the future to determine if modelers are
faced with challenges when having to specify compositions of many aspects in
real-world sized systems.

3.3 Support for Variability
Often, a given functionality can be implemented (and hence modeled) in different
ways. Likewise, in a product line approach, several applications with similar,
but not identical functionality are to be modeled. When applying an aspect-
oriented approach, a high-level functionality (or a super-set of features in a
product line) can be decomposed into many lower-level functionalities (or many
individual features), each one modeled in a separate aspect. When the aspect-
oriented approach is applied over several abstraction layers (high–medium–low-
level functionalities or features–subfeatures–subsubfeatures), it is necessary to
express the rules that govern the correct use of the aspect models. Since RAM
encourages the use of multiple abstraction layers, we extended RAM with a
software product line approach to handle variabilities, i.e. to model the set of
correct configurations of aspects that are available in an aspect framework or
product line.

We have not presented the feature model support of RAM in this paper for
space reasons. The 23 aspects that constitute the design of one functionality, e.g.
create mission, of one specific CCCMS backend are already sufficiently complex
to illustrate the power of RAM. The only optional variant we partially designed
and presented is Logistics. One could imagine instantiating a CCCMS backend
design that does not support keeping track of the location of resources, and
does not optimize the allocation of resources based on travel time to the mission
location. In the AspectOptima [14] case study, which describes a product line of
transaction support systems, the need for variability support becomes apparent.
Indeed, the 15 aspect models can be combined in 10 different ways to generate
the model of a concrete transaction support product.

While the designer of a model of a product line composed of many interde-
pendent and potentially conflicting aspect models has a very difficult task, using
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the product line model to derive a specific model of a product is very simple.
Our tool presents to the user of the product line a feature diagram describing
all variation points of the product line. Once the user made his choice, our tool
weaves the corresponding aspect models together to create the detailed design
model for the specific product. For instance, for the current CCCMS design,
a user could instruct the tool to include the feature Logistics, or to generate
a model without the Logistics feature enabled. If Logistics is not chosen, then
the Initialize aspect does not instantiate Locatable and Timing, and as a result
the LocatableTimingOptimalResourceSearch conflict resolution aspect is not ac-
tivated, and consequently OptimalResourceSearch looks for resources based on
capability ratings only.

4 In-Depth Comparison to Related Work

The goal of this section is to present an in-depth comparison of RAM with
related work. In [15], a freely available 71 page technical report, Schauerhuber et
al. present an overview of 8 different AOM approaches. The surveyed approaches
are:

1. The Aspect-Oriented Design Model of Stein et al. [16,17]
In [17], Stein et al. introduce a way to express various conceptual models of
pointcuts (called JPDDs for Join Point Designation Diagrams) in aspect-
oriented design. Structural and behavioral modeling is achieved by employing
for instance class diagrams, state charts, and sequence diagrams. Their ob-
jective is not to perform the weaving at the modeling level, but rather to
generate code for aspect-oriented programs (such as generating AspectJ [18]
code) from an aspect-oriented design as shown in [19].

2. The JAC Design Notation of Pawlak et al. [20,21]
The JAC Design Notation is a lightweight UML 1.x extension that was cre-
ated to make it possible to model a design that uses the JAC Framework,
a middleware (including IDE and modeling support) for the development of
J2EE applications that require support for persistence, security, fault toler-
ance, load balancing and other concerns. The approach only supports class
diagrams, and hence modeling of behaviour is not supported. Nevertheless,
� pointcut � stereotypes can be used to decorate associations that link
an � aspect � class to a base class. Instructions written in a proprietary,
textual language are used to statically describe which operations of a base
class are advised by operations defined in the aspect class. The main use of
the approach being design documentation, model weaving is not supported.

3. Aspect-Oriented Software Development with Use Cases of Jacobson et al. [22]
The AOSD with Use Cases approach defines a software development process
that emphasizes the separation of concerns from requirements elicitation
with use cases down to the implementation. High level models specified in
the form of use cases slices are successively refined and mapped to design
models that use class diagrams to represent structure and sequence diagrams
to represent behaviour. In the end, the design is mapped to aspect-oriented
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code. As a consequence, model weaving is not needed, and hence not sup-
ported. The power of the approach is its support for traceability: explicit
� trace� dependencies among artifacts produced at various stages of soft-
ware development are used to link models that pertain to the same concern.

4. Behavioral Aspect Weaving with the Approach of Klein et al. [23,24]
This approach proposes a weaver for scenarios (sequence diagrams or Mes-
sage Sequence Charts). An aspect is defined as a pair of scenarios. For in-
stance, to weave an aspect sequence diagram into a target sequence diagram,
the aspect sequence diagram is composed of a pair of sequence diagrams: one
sequence diagram representing the pointcut (specification of the behavior to
detect), and the other sequence diagram representing the advice that spec-
ifies the expected behavior at the join point. Similar to AspectJ, where an
aspectual behavior can be inserted ’around ’, ’before’ or ’after ’ a join point,
an advice in this behavioral weaving approach may extend the matched
behavior, replace it with a new behavior, or remove it entirely. The ap-
proach defines a two-phased process weaving: 1) a generic detection where
the pointcut is used to determine all the join points in the target model and
2) a generic composition mechanism where the advice model is composed
with the target model at the join points previously detected. RAM uses this
approach to weave the message views of the RAM aspects models.

5. The Motorola WEAVR Approach of Cottenier et al. [25,26]
The Motorola WEAVR approach and tool have been developed in an indus-
trial setting. Behavior is modeled using the Specification and Description
Language (SDL), a formalism related to state diagrams. In order to be able
to reuse aspects, mappings have to be defined (equivalent to our instantia-
tions) that link a reusable aspect to the application-specific context in which
it is to be deployed. The WEAVR approach focuses exclusively on SDL, and
supports model execution and code generation.

6. The AOSD Profile of Aldawud et al. [27,28]
The AOSD profile is a UML 1.x profile that can be used to model the struc-
ture of a concern using class diagrams and the behaviour using state dia-
grams. The AOSD profile is mostly aimed at modeling an aspect-oriented
program, since model-weaving is currently not supported.
Aspects are represented by an� aspect� stereotype, which is derived from
the meta-class Class. Concurrent state machines are used to specify cross-
cutting behavior in orthogonal regions. The behaviour defined in different
orthogonal regions is combined using event broadcasting. � crosscut� de-
pendencies between aspects and base classes or aspects and aspects dictate
the ordering in which events are propagated between the orthogonal regions.

7. The Theme/UML Approach of Clarke et al. [29]
Theme/UML introduces a theme module that can be used to represent a
concern at the modeling level. Themes are declaratively complete units of
modularization, in which any of the diagrams available in the UML can be
used to model one view of the structure and behavior the concern requires to
execute. In Theme/UML, class diagrams and sequence diagrams are typically
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used to describe the structure and behavior of the concern being modeled.
The binding to a base model is done by template parameter instantiation.

8. Aspect-Oriented Architecture Models of France et al. [30,31]
The symmetric model composition technique proposed by France et al. [30,31]
supports composition of model elements that present different views of the
same concept. This composition technique has been implemented in a tool
called Kompose [32,?]. The model elements to be composed must be of the
same syntactic type, that is, they must be instances of the same meta model
class. An aspect view may also describe a concept that is not present in a
target model, and vice versa. In these cases, the model elements are included
in the composed model. The process of identifying model elements to com-
pose is called element matching. To support automated element matching,
each element type (i.e., the element’s meta-model class) is associated with a
signature type that determines the uniqueness of elements in the type space:
two elements with equivalent signatures represent the same concept and thus
are composed. Currently, Kompose focuses mainly on the merging of class
diagrams. RAM uses this approach to compose the structural views of the
RAM aspect models.

In [15], the authors present how to model the Observer Design Pattern using
each of these 8 approaches, and show how to apply the observer pattern in the
context of a model of a library management system. The authors then proceed to
compare the 8 approaches according to 6 criteria: a) language, b) concern compo-
sition, c) asymmetric concern composition, d) symmetric concern composition,
e) maturity, and f) tool support.

In the following subsections, mimicking the presentation of [15], we show how
to model the Observer Design Pattern aspect with RAM and how to apply the
observer aspect to the library management system. We then proceed to evalu-
ate RAM based on the 6 criteria presented in [15]. Note that for each of the 6
criteria, a table is proposed in [15] to summarize the evaluation of the 8 AOM ap-
proaches. In this section, we present the same tables for RAM, and point out the
advantages or the disadvantages of RAM in comparison to the other approaches.
Using this information, the interested reader can compare RAM with the 8 AOM
approaches presented in [15]. Note that there are other AOM approaches that
RAM could be compared to, such as UML Package Merge [33] which defines how
the contents of one package are extended by the contents of another package,
Whittle and Araujo’s approach [34], which represents behavioral aspects with
scenarios, and the Whittle and Jayaraman approach called MATA [35].

4.1 Observer Design Pattern and Library Management System
The classic Observer Design Pattern [9] is a software design pattern in which
an object, called the subject, maintains a list of dependents, called observers.
Whenever the subject’s state changes, it notifies all observers by calling one
of the their operations. The observer design pattern has been used in many
publications to demonstrate different aspect-oriented programming and aspect-
oriented modeling techniques.
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message view |m affected by notification

Fig. 16. The Observer Design Pattern Aspect modeled with RAM
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The Observer RAM aspect model is shown in Fig. 16. The structural view
contains two partial classes, the |Subject and the |Observer class. The Zero-

ToManyAssociation aspect described in subsection 2.1 in Fig. 1 is reused to
associate one subject to many observers. The Observer class defines the two
public operations startObserving and stopObserving that allow an observer
instance to register, rsp. deregister, with a subject instance. The two corre-
sponding message views show that the operations add and remove, introduced
by ZeroToManyAssociation, are used to update the set of observers of a sub-
ject. The Subject class defines the |m operation which represents operations that
modify the state of the subject instance. The message view |m specifies that
every call to |m is to be affected by the notification message view. Notification
states that a call to callToBeObserved should be followed by a call to notify,
which successively loops through all the registered observers (obtained by call-
ing getAssociated provided by ZeroToManyAssociation) invoking the |update
operation. The default instantiation states that all calls to instances of the class
|Subject are to be observed, which means in our case that every call to |m is
observed. The state view |Observer specifies that after invoking startObserving

on an observer instance, any number of calls to |update are allowed to execute,
until the stopObserving operation is executed.

Fig. 17 shows how the Observer aspect is applied in the context of the Li-

brary Management System model. The observer instantiation directives in the
structural view specify that instances of the BookCopy class are the subject
of observation, and that instances of the BookManager class are the observers.
The modifying operations are borrowBook and returnCopy, and the operation
that should be called whenever a subject’s state is modified is updateBook. The
structural view also shows that, in order to design the library management sys-
tem, we were able to reuse many of the aspects that we designed for the CMS.
Allocatable is used to remember the availability of a book copy. Locatable is
reused to provide customers with an address. Finally, ZeroToMany is used to
associate a book with many book copies, as well as to associate a book with
many authors. Books, customers and authors also reuse Named, an aspect from
the AspectOptima framework that associates a name in form of a string with a
class.

The message view buyBook describes how, whenever a new copy of a book is
bought, the book manager registers as an observer of the book copy by invoking
startObserving. The most interesting message views are borrowCopy and return-

Copy. They are both affected by the notification message view of the Observer

aspect. The result of this is presented in Fig. 18, which illustrates the final mes-
sage view of borrowCopy after our weaver resolved all aspect model dependencies
and created an independent base model.

4.2 Language
The first criteria that [15] uses to compare different AOM approaches is the
language criteria. The evaluation results for RAM for this criteria are presented
in Table 1. A RAM aspect is specified with UML 2.x. The concepts of pointcut

and advice are explicitly present in a RAM aspect. Consequently, the UML
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base Library depends on Observer, Named, ZeroToMany, Locatable

structural view

state view BookCopy

state view BookManager

Observer.|Subject instantiation
Any → Existing

Observer instantiation
|Subject → BookCopy

|Observer → BookManager
|update → updateBook

|m → borrowCopy, returnCopy
Locatable instantiation

|Locatable → Customer
getLocation → getAddress
setLocation → setAddress

Allocatable instantiation
|Allocatable → BookCopy

isAllocated → getAvailability
ZeroToMany instantiation

|Data → Book
|Associated → Author

ZeroToMany instantiation
|Data → Book

|Associated → BookCopy
add → addCopy

remove → removeCopy

+ addBook(Book)
+ removeBook(Book)
+ searchBook(Book)
+ buyBook(BookCopy)
+ discardBook(BookCopy)
~ updateBook(BookCopy)

 
BookManager

+ create(int id)
+ delete()
+ boolean getAvailability()
+ borrowCopy(Customer c)
+ returnCopy(Customer c)

int copyId
BookCopy

Any
create

addBook

delete

caller: Caller book: BookCopy
borrowCopy(Customer c)

message view borrowCopy affected by notification, allocate

create delete

Existing

Taken
borrowCopy

returnCopy

Any getAvailability

removeBook

searchBookbuyBook

discardBook

caller: Caller manager: BookManager
updateBook(BookCopy b)

b: BookCopymessage view updateBook affected by getAvailablity

a := getAvailability()

Public Named instantiation
|Named → Customer

Public Named instantiation
|Named → Book

Public Named instantiation
|Named → Author

message view buyBook affected by startObserving

+ create(String n, String i)
+ String getTitle()
+ String getISBN()
+ addCopy(BookCopy b)
+ removeCopy(BookCopy b)

String ISBN
Book

+ String getName()
+ setName(String)
+ Location getAddress()
+ setAddress(Location)

 
Customer borrowedBy

0..1

+ String getName()
+ setName(String)

 
Author

Available

state view Customer, Author, Book  are 
uninteresting and have been skipped for 
space reasons

caller: Caller manager: BookManager
buyBook(BookCopy b)  

     startObserving(b)

caller: Caller book: BookCopy
returnCopy(Customer c)

message view returnCopy affected by notification, deallocate

 
     allocate()

 
        deallocate()

Fig. 17. The Library Management System
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caller: Caller book: BookCopy
borrowCopy(Customer c)

message view borrowCopy

 
     allocate()

loop [o within observers]
o: BookManager

updateCopy(book)

 
                      observers := getAssociated()

a := getAvailability()

 
     notify()

Fig. 18. Woven borrowCopy Message View

SD, 
RAM CD

SD, 
SMD ? D?

ra
ce
ab

ili
ty

.T
)

e
si
gn

ro
ce
ss

.D
P
)

M
o
d
e
lin

g

an
gu
ag
e

.L
)

xt
e
n
si
o
n

M
e
ch
an

is
m

.E
)

I.
)

ia
gr
am

s

.D
)

p
p
in
g

h
as
e
(L
.A
)

ca
la
b
ili
ty

.S
)

U
M
L
1
.X

U
M
L
2
.0

M
e
ta
m
o
d
el

U
M
L
P
ro
fi
le

St
ru
ct
u
ra
l

D
ia
gr
am

s

(L
.D
)

B
eh

av
io
ra
l

D
ia
gr
am

s

(L
.D
)

p
ro
ce
ss

d
e
sc
ri
p
ti
o
n

gu
id
lin
e
s

h
ig
h
le
ve
l

m
o
d
e
lin
g

e
le
m
e
n
ts

p
ro
ve
n
w
it
h

e
xa
m
p
le
s

in
te
rn
al

e
xt
e
rn
al

RAM CD SD, SMD ~ D

Tr
a

(L
.

D
e

P
r

(L
.

M
o

La (L
.

Ex M
e

(L
.

P
la
tf
o
rm

In
n
n
fl
u
e
n
ce
s(
L.
I

D
ia

(L
.

R
e
fi
n
e
m
e
n
t
M
ap

(L
.R
)

A
lig
n
m
e
n
t
to

P
h

Sc (L
.

RAM C S , SM

Table 1. “Language” applied to RAM

metamodel has been extended. A RAM aspect is composed of a class diagram,
sequence diagrams and state diagrams. In [2] and in this paper, some guidelines
have been stated on how to do aspect-oriented design using RAM, but we don’t
propose a full process description or a methodology yet. In [15], scalability is
defined as “the ability to cope with small as well as large modeling projects”,
and scalability is “investigated with respect to first, which high-level modeling

elements of an approach support scalability, e.g., UML packages, and/or high-

level diagram types, and second, if scalability has been proven or not proven in

real-world projects or by modeling examples that go beyond the composition of

two concern modules”. In this context, by defining the depends on relationship
between aspects, RAM proposes a way to describe a system with models at
different levels of abstraction. The scalability of RAM has been demonstrated by
2 big case studies: AspectOptima and now also the CMS. The RAM aspects are
woven according to the instantiation and binding directives expressed explicitly
in the models. While this provides internal traceability, RAM currently does
not provide external traceability, which is defined in [15] as “how aspect-oriented

design models relate to the full software development life cycle”.
Discussion: In [15], the authors identify several issues related to the 8 AOM

approaches studied:

1. “Behavioral Diagrams are Catching up”: Only half of the studied approaches
support behavioral diagrams. RAM stands out in this respect, because it
currently supports the use of two kinds of behavioral diagrams (state and
sequence diagrams).



37

2. “Missing Guidance in the Design Process”: Only the Theme/UML and AOSD

with Use Cases approaches are integrated into the software development
process, the other studies approaches did not provide guidance on how the
design models are created. RAM does not yet propose a methodology, but
the large case studies used to describe RAM have allowed us to elaborate a
set of design guidelines.

3. “Missing Full External Traceability”: Except from Theme/UML and AOSD

with Use Cases, no approach supports external traceability. RAM also does
not support external traceability.

4. “Moderate Scalability”: Only half of the studied approaches provide informa-
tion hiding means for aspect models. Most studied approaches only showed
examples containing a small number of aspects. Only Theme/UML, AOSD

with Use Cases, and the Motorola WEAVR approach present examples that
weave 3 or more aspects together. RAM clearly provides superior scalability.
Each RAM aspect model defines a precise aspect interface, and the weaver
performs automatic information hiding when the aspect is reused in some
other model. The scalability of RAM has been demonstrated using 2 big
case studies, where over 20 aspects were woven together to produce the final
application model.

4.3 Concern Composition
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Table 2. “Concern Composition” applied to RAM

The comparison of RAM with the other approaches according to the concern
composition criteria is presented in Table 2. In RAM, a concern module is a spe-
cial UML package that encapsulates all model elements related to the structure
and/or behavior of a concern. The current version of RAM [2] supports aspect
models that use class diagrams, state diagrams and sequence diagrams. RAM
uses two composition mechanisms:

1. A compositor (CMP) to merge the class diagrams. This compositor is the
symmetric model composition technique proposed by France et al. [30,31]
which has been implemented in Kermeta in a tool called Kompose [32].
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2. A weaver where the aspects are expressed with a pair Pointcut-Advice (PA)
to weave the behavioral diagrams.

By supporting these two composition mechanisms, RAM supports both symmet-
ric (composition base-base) and asymmetric (weaving aspect-base) paradigms.
Currently, the effects of the weaving of a RAM aspect into a base model or into
another aspect are not visually represented in the woven model. Note that we
are currently working on using the same techniques as presented in [36,37] to
automatically add tags (such as introduced, updated, ...) on the model elements
of the woven model to clearly identify the effect of the weaving of an aspect
model, if desired.

The composition approach proposed by RAM for the behavioral diagrams is
decomposed into two steps: a step of detection of the join points corresponding
to the pointcut model, and a step of composition of the advice model at the
level of the join points previously detected. This weaving process is static, in
the sense that the weaving is not preformed while the models are executed, but
rather during a separate weaving process. However, since the weaving is applied
to behavioral models, the weaving of RAM aspects modifies the system run-time
behavior. Also, the sequence diagram weaving technique employed by RAM [23]
composes aspects based on the semantics of the sequence diagrams as opposed
to the syntax. The final model that the RAM weaver produces is a “standard”
UML diagram. Finally, RAM allows a modeler to specify the interaction between
aspects (using explicit dependencies among aspects), and RAM provides means
to the detection and the resolution of aspect conflicts.

Discussion: In [15], the authors identify several issues related to the 8 AOM
approaches studied:

1. “Popularity of Asymmetric Concern Composition”: Schauerhuber et al. note
that “up to now little interest has been shown in evaluating when asymmet-

ric and symmetric approaches have prevailing advantages and shall be em-

ployed ”. RAM combines symmetric and asymmetric composition approaches.
Based on our experience, both paradigms are needed for an AOM approach
to be general and reusable.

2. “Composition often Deferred to Implementation”: [15] notes that composition
at the modeling level is only supported by half of the surveyed approaches.
RAM aspects can be composed at the modeling level.

3. “Moderate Support for Modeling Interactions”: Schauerhuber et al. argue that
for an unambiguous specification of a system it is necessary to make module
interaction explicit. They note that only the Motorola WEAVR approach
explicitly specifies dependencies between aspects. In RAM, dependencies
between aspects are clearly specified using explicit depends on links among
aspect modules. This allows the weaver to automatically resolve indirect
dependencies. As a result, aspect reuse is very simple: reusing a high-level
aspect does not require the modeler to be aware of the low-level aspects that
the high-level aspect depends on.

4. “Conflict Resolution Based on an Ordering for Composition, Only”: Only
the approach of France et al. can detect syntactical conflicts among aspects.



39

None of the surveyed approaches provide a sophisticated conflict resolution
mechanism apart from specifying the composition order. RAM has strong
support for conflict detection and resolution as explained in the following
paragraphs.

Aspect Model Conflicts When several aspect models are applied within the
same product model, conflicts can occur. A conflict between aspects A and B
refers to the situation in which the correct model expressing the composition of
the aspects A and B cannot be obtained by simply weaving A and B into the
target model. In these situations, one or both of the aspect models’ structure
and behavior must be modified to take into account the co-existence of the other
aspect model.

RAM does not allow to detect aspect conflicts automatically. However, our
weaving tool can warn the modeler that two aspects are potentially conflicting.
Conflicts occur only in a certain well-defined conditions: when the two aspects
A and B are such that at least one of the pointcuts of A matches at least one of

the elements within the pointcuts or advice of B. The following two special cases
fall into this category:

• When model elements from two aspects are bound to the same base model
elements, and one of the aspects removes structure or functionality from the
elements it is applied to, and the other aspect expressed the presence of the
removed functionality in one of its pointcuts.

• When model elements from two aspects are bound to the same base model el-
ements, and one of the aspects defines behavior that uses a template method
call in its pointcut that matches a call in an advice of the other aspect.

By cross-checking each aspect with each other aspect, our tool generates warn-
ings listing the aspects that potentially conflict. However, our tool never reports
a conflict between aspects A and B if A directly or indirectly depends on B,
even if A’s pointcut matches elements of B’s pointcuts or advice or some of the
generic elements of A are bound to the elements of B. In this case we assume that
the modeler who expressed the dependency is aware that both aspects apply to
common modeling elements, and has designed A in a way that takes this into
account. As a result, our tool only generates conflict warnings for aspect model
pairs which are not linked by a dependency relationship.

Once identified, conflicts can be resolved by the modeler by designing a con-
flict resolution aspect model as explained in section 2.4. The conflict resolution
model contains conflict criteria conditions that specifies under which conditions
the conflict occurs, and modification compartments that model the required
adaptations that have to be applied to the conflicting models to resolve the
conflict. Whenever all of the aspects that a conflict resolution model depends
on are used within a target model, our tool automatically checks the conflict
criteria specified in the conflict resolution model. If the condition is verified, the
adaptations expressed in the modification are automatically applied to the target
model.
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We did not identify many conflicts within the CCCMS. The only conflict
is the one between OptimalResourceSearch, Locatable and Timing. The conflict
resolution model shown in Fig. 11 demonstrates how OptimalResourceSearch

is adapted in order to take resource and mission location into account when
determining the best match for a given request.

4.4 Asymmetric Concern Composition
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Table 3. “Aspectual Subject” and “Aspectual Kind” applied to RAM

Table 3 shows the evaluation of RAM with respect to the asymmetric concern
criteria. The asymmetric concern composition operator of RAM (the sequence
diagram weaver [23,24] and GeKo [36,38]) allows a modeler to use any model
element in the pointcut, and therefore any model element can be used as a
join point. As a result, RAM supports the specification of both static and dy-
namic structural join points (for instance, class and objects respectively), but
also static behavioral join points (such as message). However, RAM does not
allow the specification of dynamic behavioral join points, which can only be de-
tected at runtime. The join points in RAM are explicitly and formally defined
(see [23,24,36]). The pointcuts are standardized, since a pointcut is an instance of
a given metamodel. For instance, for sequence diagram model weaving, a point-
cut is a standardized sequence diagram. In RAM, a pointcut is graphical and not
textual, and RAM partially supports refinement of pointcuts. The quantification
method is declarative, but simple enumeration of join points is also possible. Fi-
nally, an advice can be added before or after a join point, but it can also replace
a join point. The level of abstraction can be high, when a user of RAM specifies
that an aspect depends on another aspect, but also low, because a join point
detection mechanism can precisely define where the join points are.

The “Aspectual Kind” table in Fig. 4 shows that in RAM an advice can be
behavioral or structural, depending on the nature of the model used. A RAM
aspect can express composite advice. The level of abstraction of a RAM aspect
can be low (level of the model elements used), but also high because an aspect
can depend on other aspects.
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Discussion: In [15], the authors identify several issues related to the 8 AOM
approaches studied:

1. “Missing Formal Definition of Join Point Models”: Half of the surveyed ap-
proaches only implicitly define the join point model via their pointcut mech-
anism. The remaining approaches provide a join point model description in
terms of natural language. The weavers used in RAM formally define the
join point model for class, sequence and state diagrams.

2. “Modeling Aspectual Subjects at a Low Level of Abstraction”: [15] stresses
that while all approaches allow a modeler to express low-level design, only
half of the surveyed approaches support the creation of aspect models with a
higher level of abstraction. RAM’s support for multi-abstraction level mod-
eling is very elaborate: RAM aspects can form complex hierarchies, which
allows a RAM aspect providing high-level functionality to depend on low-
level functionality provided by other aspects. In addition, aspect models
define clear aspect interfaces which hide dependencies on lower-level aspects
from the outside world.

For the other points mentioned in [15] in the section discussing the asymmetric
concern composition criteria there are no real differences between RAM and the
other approaches.

4.5 Symmetric Concern Composition
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Table 4. “Symmetric Concern Composition” applied to RAM

Asymmetric composition approaches make a distinction between aspect and
base model elements, whereas symmetric approaches don’t make this distinction
[39]. Table 4 shows the evaluation of RAM for symmetric concern composition.
To merge class diagrams, RAM uses the symmetric model composition tech-
nique proposed by France et al., which has been implemented in Kermeta in a
tool called Kompose [32]. Consequently, concerning the symmetric composition
technique, the features of both the approach proposed by France et al. and RAM
are similar, and the comments on the France et al. approach presented in [15]
are also valid for RAM.

4.6 MaturityTable 5 shows the summary of the maturity evaluation of RAM. Until now, RAM
has been applied to two big case studies and several small academic examples.
The current version of the AspectOptima case study has 18 RAM aspect models
and 5 conflict resolution models. The CCCMS model presented in this paper has
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Table 5. “Maturity” applied to RAM

23 aspect models and 1 conflict resolution model. RAM has been published in
the main conference of the domain (AOSD, [2]), plus a workshop and a master
thesis [6,1]. Moreover, the AOM weaving techniques on which RAM is based on
(France approach, Klein approach), have been largely published in high quality
conferences or journals [30,31,23,24]. The most recent publication related to
RAM was in 2009 [2].

Discussion: In [15], the authors identify several issues related to the 8 AOM
approaches studied:

1. “Missing Complex Examples”: In [15], the authors state “The majority of the

surveyed approaches have demonstrated their techniques on the basis of rather

trivial examples in which not more than two concerns are composed. In this

respect, Jacobson, Cottenier et al., and Clarke et al. set a good example by

demonstrating their approaches with non-trivial modeling problems.” RAM
has been demonstrated with the AspectOptima and Crisis Management
System cases studies, which are large and non-trivial case studies coming
from two different domains.

2. “Lack of Application in Real-World Projects”: The approach of Pawlak et al.
has been applied to 3 industrial projects. The Motorola WEAVR is currently
used inside Motorola for software development. So far, RAM has not been
applied in the context of a real-world project.

4.7 Tool Support
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Table 6. “Tool Support” applied to RAM

In order to use aspect-oriented modeling techniques to build real-world size
models, tool support is essential. We have implemented a RAM tool prototype
within the Kermeta [40] environment, an imperative, object-oriented language
suitable for the specification of model transformations. Kermeta runs within the
Eclipse Modeling Framework, which allows us to use the Eclipse tools to edit,
store and visualize models. The RAM prototype is available online7. Table 6 sum-
marizes the features our tool currently supports. To weave our class diagrams,
7

http://se2c.uni.lu/tiki-index.php?page=AspectOptima+Modeling
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we use the symmetric model composition technique proposed by France et al.
[30,31], which has been implemented in Kermeta in a tool called Kompose [32].
To weave our behavior models, we use the implementation of a sequence diagram
weaver proposed in [23,24].

In order to also support the weaving of state diagrams, we are currently
working on replacing the Kompose and sequence diagram weaver with GeKo [38],
a generic aspect-oriented model composition and weaving approach that can be
used to weave any kind of model with a well-defined meta model.

Discussion: In [15], the authors comment on “Missing Tool Support for Com-

position and Code Generation” for the 8 surveyed approaches. While modeling
support in many approaches is implicitly available due to the use of UML’s
profile mechanism, support for code generation and composition is rare. The
approach of Cottenier et al. is the only one that allows for modeling, compo-
sition, and code generation. The approaches by France et al. and Klein et al.
provide model weaving only. Even if the tool supporting RAM is currently only
a prototype, since RAM is based on Kompose (France et al.) and the Sequence
Diagram Weaver (Klein et al.), the tool can generate independent aspect models
and final application models consisting of class and sequence diagrams. Once the
final application model is generated, it can be mapped to code using “standard”
mapping techniques. Our prototye tool does not provide this functionality, but
since we output the model in XMI, it is possible to load the generated model in
a standard UML tool that supports code generation. However, the behavioral
models of RAM only specify message exchanges between objects, as well as op-
tional, alternative and looping control flows. As a result, only code skeletons for
all classes and operations can be generated.

When working with real-world size models, scalability of the tool itself is of
great importance. Since our weaving algorithm performs composition in pairs, we
do not face algorithmic challenges when augmenting the number of aspects in a
design. For each additional aspect model that is instantiated, only one additional
weaving step must be performed. However, the independent aspect models, and
of course the final application model, grow as more aspects are added to the
system. Currently, our tool requires all models, i.e. the source, the aspect and
the target model, to fit into main memory.

The performance of our prototype is currently not optimal. The creation of
the independent model of the CreateMission aspect takes several minutes. There
are many factors that contribute to this slow performance:

1. The version of Kermeta we are running is interpreted. We are hoping to be
able to run the prototype with the compiled version soon.

2. We are exporting, in XMI, all intermediately generated independent aspect
models. This step speeds up the weaving for aspects that are reused several
times, since the independent aspect model is only generated once, but slows
down the weaving for aspects that are used only once. Currently, we generate
all the models for debugging reasons, but our recursive weaving algorithm
could be adapted to only save independent aspect models that are reused
again at a later time.
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3. We are outputting lots of debugging information into the Eclipse console.
This step could be omitted.

5 Discussion on Reuse
A comparison criteria that has been explicitly excluded from the study presented
in [15] is reusability. The authors argue justifiably that reusability cannot reason-
ably be measured without empirical studies. Reuse is one of the main strength
of RAM, since RAM has been designed to allow the modeler to develop highly
reusable aspect models. We have not performed in-depth studies to back up this
claim with empirical evidence. However, we successfully reused aspect models
within the design of the CCCMS. Using the CCCMS models as example, this
section points out the features of RAM that specifically support reuse.

5.1 Encapsulation and Information Hiding

In RAM, a special UML package encapsulates all model elements that define the
structure and behavior of an aspect. This aspect package is the unit of reuse.
The interface of the aspect consists of the set of public operations defined by the
classes in the structural view of the aspect. By hiding design decisions that are
likely to change behind a well-designed interface, information hiding principles
as defined by [41] can be applied to aspects, sometimes even more effectively as
for objects [3].

For instance, in the CCCMS, the ResourceSearch aspect shown in Fig. 6
defines an interface that allows a user to create requests, to add the desired
capabilities, and to perform a resource search. Internal design decisions, such as
the fact that a request is implemented using a map, are hidden from the outside
world.

5.2 Reuse Hierarchies

RAM supports the creation of elaborate aspect dependency chains. This makes
it possible to model aspects that provide complex functionality by decompos-
ing them into aspects that provide simpler functionality. Vice versa, aspects
providing simpler functionality can be reused in several aspects of complex func-
tionality. As a result, scattering and tangling of models can be prevented at all
levels of abstraction.

5.3 Consistent Reuse with Tool Assistance
To make reuse possible, it is important that instantiations and bindings observe
strict rules: if an aspect A provides a functionality whose design needs a simpler
functionality provided by an aspect B, then A depends on B. In this case, and
only then, A is allowed to instantiate views of B, or bind A’s model elements to
model elements defined in B. Circular dependencies are forbidden.

Each aspect model that defines partial classes clearly identifies those classes
as mandatory instantiation parameters. To help the modeler when reusing an
existing aspect model, our tool (see subsection 3.1) ensures that compatible
model elements are provided for all mandatory instantiation parameters when
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the aspect is instantiated. Flexibility is achieved by allowing any model element
to optionally be instantiated or extended through bindings, if desired. Finally, to
facilitate the composition process, an aspect model can also define bindings that
are used as defaults when an aspect model is instantiated. In the case where A
reuses B and the modeler designing A decides to override the bindings specified in
B with his own instantiation directives, our tool ensures that the new directives
are compatible [2].

Thanks to the above, reusing an aspect model in a consistent way within
another model is simple. Indirect dependencies of aspects are hidden from the
user of an aspect: when a developer reuses an aspect A by instantiating it, our
tool takes care of performing the indirect instantiations and bindings of aspects
that A depends on. To fully exploit the benefits of reuse, aspect dependencies are
kept unresolved until the aspects are woven with the final model. As a result,
if A directly or indirectly depends on B, then a change that is made to B is
automatically propagated to A when the final model is created. In case there
are any conflicts between aspect models that are reused and that have been
identified by the designers of the reused aspects, the tool automatically applies
the appropriate conflict resolution aspect models.

Keeping aspect dependencies unresolved also facilitates maintenance: in the
case where the design of a low-level aspect is improved, the new design is prop-
agated automatically to all higher-level aspects that depend on the improved
aspect when the higher models are re-woven.

5.4 Reuse in the CCCMS

Among the 23 aspect models we created for this case study, all aspects except
Initialization and CreateMission are generally reusable in the sense that they do
not contain any CCCMS-specific model elements. They could be reused in any
application that requires the functionality that they provide. But even within
the CCCMS design, reuse of aspects is happening at several abstraction levels.

Map is an example of a low-level aspect that is reused in many higher-level
aspects: it is reused in ResourceSearch, where a request is implemented using
Map; it is reused in NetworkedCommand, where a map is created that stores ex-
isting channels to communicate with remote hosts for future use; it is reused in
Workflow, where a map is used to associate a variable to its name; and finally, it
is reused in CreateMission, where a map is used to find the receiver queue corre-
sponding to a given crisis. Many of the aspects grouped under the name “Generic
/ Design Pattern Aspects” in Fig. 14 are used frequently in other applications
as well. That is the reason why most programming languages provide standard
libraries that offer such functionality, especially if the functionality can easily
be encapsulated in an object. An indication that our low-level aspect models
are reusable is the fact that when designing the CCCMS we were actually able
to reuse some of the models designed for our first big case study to which we
applied the RAM approach: the AspectOptima case study [5,14]. For instance,
Map and ZeroToManyAssociation are low-level aspects that are also used within
the AspectOptima RAM models [2]. ZeroToManyAssociation was also reused
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in the Observer aspect model as well as the Library Management System model
presented in section 4.

Within the CCCMS design, an example of an aspect that is not in the
“Generic / Design Pattern Aspects” group that is reused is Locatable: it is instan-
tiated several times in Initialization to associate a location with workers, vehicles
and missions. Locatable was also reused in the Library Management System to
associate an address with a customer.

If we had completed more of the design, we would have probably reused even
more higher-level aspects. For example, the resource management aspects could
be reused in a CCCMS that supports missions with several scenarios that can
lead to their fulfillment. In this case, when a super observer orders the execution
of a specific mission, the backend would have to determine the most appropriate
scenario for the mission under the current crisis conditions. ResourceSearch could
be reused to accomplish that task: the resource would be the scenario, and the
capability of the resource is the kind of mission that a scenario can deal with.

Finally, the aspects grouped under “Communication Aspects” in Fig. 14 are
encountered in many distributed applications. For instance, multi-player turn-
based games often use the NetworkedCommand design to send player movements
to the other players.

6 Conclusion

This paper presented an aspect-oriented design of parts of the crisis management
systems case study based on the Reusable Aspect Models approach. In total, 23
aspect models forming a hierarchy of inter-dependent aspects were created to
model the create mission functionality of the crisis management system back-
end. This experience confirms that the features of RAM allow a modeler to design
aspects that provide complex functionality by decomposing them into aspects
that provide simpler functionality. Vice versa, aspects providing simpler func-
tionality can be reused in several aspects of complex functionality. As a result,
scattering and tangling of models can be prevented at all complexity levels.

The crisis management system case study was specifically proposed in [12]
as a case study for aspect-oriented modeling and aspect-oriented software devel-
opment in general. In addition to demonstrating the power of aspect-oriented
modeling during the software design phase, the results presented in this paper
can be analyzed in the light of the results obtained using other AOM approaches
applied to the crisis management system. Not only will this allow us to compare
RAM to other aspect-oriented design approaches more accurately than we did
in this paper, it will also give us more insight on how to bridge the gap between
aspect-oriented approaches that work at the requirements engineering phase and
approaches such as RAM that work at the detailed design phase. Understanding
this transition is a key step towards the creation of an aspect-oriented software
development process.
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