
Pairwise testing for software product lines: comparison
of two approaches

Gilles Perrouin • Sebastian Oster • Sagar Sen • Jacques Klein •

Benoit Baudry • Yves le Traon

� Springer Science+Business Media, LLC 2011

Abstract Software Product Lines (SPL) are difficult to validate due to combinatorics

induced by variability, which in turn leads to combinatorial explosion of the number of

derivable products. Exhaustive testing in such a large products space is hardly feasible.

Hence, one possible option is to test SPLs by generating test configurations that cover all

possible t feature interactions (t-wise). It dramatically reduces the number of test products

while ensuring reasonable SPL coverage. In this paper, we report our experience on

applying t-wise techniques for SPL with two independent toolsets developed by the

authors. One focuses on generality and splits the generation problem according to strate-

gies. The other emphasizes providing efficient generation. To evaluate the respective

merits of the approaches, measures such as the number of generated test configurations and

the similarity between them are provided. By applying these measures, we were able to

derive useful insights for pairwise and t-wise testing of product lines.

G. Perrouin (&)
University of Namur, PReCISE, B-5000 Namur, Belgium
e-mail: gilles.perrouin@fundp.ac.be

S. Oster
Real-Time Systems Group, Technische Universität, Darmstadt, Germany
e-mail: sebastian.oster@es.tu-darmstadt.de

S. Sen
INRIA Sophia Antipolis, 2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
e-mail: sagar.sen@sop.inria.fr

J. Klein � Y. le Traon
University of Luxembourg, SnT and LASSY, Campus Kirchberg, Luxembourg-Kirchberg,
Luxembourg
e-mail: jacques.klein@uni.lu

Y. le Traon
e-mail: yves.letraon@uni.lu

B. Baudry
Triskell Team, IRISA/INRIA Rennes Bretagne Atlantique, Rennes, France
e-mail: bbaudry@irisa.fr

123

Software Qual J
DOI 10.1007/s11219-011-9160-9



Keywords Model-based engineering and testing � Test generation � t-wise and pairwise �
Software product lines � Alloy

1 Introduction

When a company rapidly derives a wide range of different products, a key challenge is to

ensure correctness and safety of most of these products (if not all) at a low cost. Software

Product Line (Pohl et al. 2005; Clements and Northrop 2001a) (SPL) techniques and tools

allow to engineer such families of related products. However, they rarely focus on testing

the SPL as a whole. A software product line is usually modeled with a feature diagram

(Kang et al. 1990), describing the set of features in the SPL and specifying the constraints

and relationships between these features. For example, mandatory features as well as

mutually exclusive ones can be described. As a result, from a feature diagram, it is possible

to derive products by selecting a set of features that satisfy all the constraints. The product

is a software system built by composing the software assets that implement each feature

(Perrouin et al. 2008).

Product line testing consists in deriving a set of products and in testing each product.

Although required to achieve 100% SPL coverage, testing each product individually is

rarely feasible in practice. In the automotive domain, each car of a certain brand may have

a different software configuration induced by different choices made in the feature dia-

gram. Generally, the number of possible configurations induced by a given feature diagram

grows exponentially with the number of features quickly leading to millions of possible

configurations to test. As a result, test engineers are seeking solutions to reduce the number

of configurations to test in order to meet release deadlines and cost constraints.

Previous work (Cohen et al. 1997; Kuhn et al. 2004) has identified combinatorial

interaction testing (CIT) as a relevant approach to reduce the number of products for

testing. CIT is a systematic approach for sampling large domains of test data. It is based on

the observation that most of the faults are triggered by the interactions between a small

numbers of variables. This has led to the definition of pairwise (or 2-wise) testing. This

technique selects the set of all combinations so that all possible pairs of variable values are

included in the set of test data. Pairwise testing has been generalized to t-wise testing,

which samples the input domain to cover all t-wise combinations (Lei et al. 2008; Bryce

and Colbourn 2009). In the context of SPL testing, this consists of selecting a small set of

products in which all t-wise feature interactions occur at least once.

Such algorithms enable to drastically reduce the number of configurations to test from

millions or billions to a few dozens or hundreds, making the testing effort tractable. How-

ever, questions remain with respect to the merits of CIT for everyday SPL testing practice.

CIT algorithms require the use of constraint solvers to generate pairwise configurations.

Constraint satisfaction problems (CSP) are known to be NP-complete in the general case.

This inevitably leads to scalability issues. These issues have to be handled pragmatically

because the ‘‘phase transitions’’ which distinguish tractable problems from untractable ones

are not known à priori (Monasson et al. 1999). Also, these algorithms do not natively

consider constraints between features. As such constraints are common in SPL modeling,

extensions of CIT algorithms are needed (Calvagna and Gargantini 2009, 2008; Bryce and

Colbourn 2006; Cohen et al. 2007). Furthermore, SPL engineers are used to design feature

diagrams but not to write CNF clauses—inputs of CSP solvers—that are numerous for any

realistic case. Hence, solutions have to be proposed to automatically derive such inputs from

feature diagrams handled by modeling tools. Finally, to increase confidence of test engineers

Software Qual J

123



in the viability of such techniques for SPL testing, considerations about the efficiency,

quality, and flexibility of the generation approach are important. These considerations lead to

questions about test diversity, size of test suites, or computation time.

1.1 Contribution

In this paper, we report on our efforts toward solving the aforementioned questions. In

particular, we describe two approaches developed by the authors (Oster et al. 2010;

Perrouin et al. 2010), exhibiting different concerns and choices in the implementation of

the pairwise algorithms for testing software product lines. Our goal is to provide decision

criteria to the software tester willing to apply t-wise testing for SPL. To support these

criteria in an objective way, we generalize measures, initially presented in Perrouin et al.

(2010) to qualify any t-wise generation algorithm. For example, we are able to characterize

whether and how optimally the t-wise criteria are met by analyzing the number of times a

given interaction appears in a generated test suite. Such a value can be used by testers to

gain confidence that their tests will cover the same interaction in various cases. Providers

of t-wise toolsets can also use such a measure to improve their implementations. Another

important criterionis the similarity of generated test configurations: depending on their

needs, testers validate small variations in important products or test the SPL broadly. To

assess this, we form the concept of test configuration similarity based on a distance metric.

We present these measures in Sect. 4, and this is the first contribution of this paper.

The second contribution is formed by the lessons we have learned in applying these

measures on several feature diagrams with our two approaches. By applying our measures,

we are able to highlight the particular impact the choice of implementation technologies

(and the theories underlying them) has on generated test suites. We confirm here previously

identified tendencies in our previous work (Oster et al. 2010; Perrouin et al. 2010). Our

conviction is that what we have learned with these approaches is transferable to other

approaches as well, serving as an evaluation framework for pairwise and t-wise testing of

software product lines.

1.2 Outline

The remainder of this paper is structured as follows: Section 2 provides the background of

our approach. There, we first introduce the context of our contribution together with our

running example, which we use throughout this paper. Furthermore, those preliminaries give

a short introduction to feature modeling and SPL testing and define the vocabulary used to

introduce and compare both approaches. A problem statement describing the challenges of

our contribution is provided at the end of Sect. 2. Both approaches are described in Sect. 3

using our running example. To compare both approaches, we define a comparison frame-

work in Sect. 4 by defining criteria for comparison. The actual experimentation is presented

in Sect. 5. Section 6 deals with experimental results and summarizes pros and cons of each

approach in order to assist the tester in his choice. Section 7 discusses related work. Finally,

Sect. 8 concludes this paper and discusses the ongoing research and open research questions.

2 Background

In this section, we provide the preliminaries of our contribution describing the use of

feature models within SPL engineering and how it can be related to SPL testing purposes.

Software Qual J

123



Furthermore, this section provides the detailed problem description we address in this

paper.

2.1 Context and example

In this paper, we address the problem of testing software developed according to the SPL

paradigm— ‘‘a set of software intensive systems, that share a common, managed set of

features satisfying the specific needs of a particular market segment or mission, and that

are developed from a common set of core assets in a prescribed way’’ (Clements and

Northrop 2001b)—to effectively address differences required by each product while

reusing common parts to increase productivity. Hence, the key to success in any SPLE

approach is the sensible management of commonalities and differences or variability
management (Metzger et al. 2007). One of the most practical techniques is feature mod-
eling (Kang et al. 1990) that aims at representing the common and variable features1 of a

product family. Feature modeling can be used to document and analyze variability during

any phase of the SPL development lifecycle. Hence, every stakeholder can manipulate

features ‘‘as is’’, independently of the kind of variability and the level of abstraction.

Moreover, feature models (FMs) encourage defining a standard vocabulary for a domain

language and are ideal abstractions which customers, experts, and developers can easily

understand. FMs hierarchically structure domain concepts into multiple levels of

increasing detail, thus proposing a taxonomy. The upper most feature is called the root.
Root feature is then decomposed in sub-features (children), and when a feature has no

child, it is denoted as a leaf. (On the contrary, the root feature has no parent.) When

decomposing a feature into sub-features, the sub-features may be optional or mandatory or

may form alternative (XOR), or (OR), or and (AND) groups. We can also denote the fact

that a feature requires another one or excludes it. A particular product is formed according

to the valid selection of features in the feature model. Such a valid selection of features is

called a configuration of the feature model. The process of actually building the corre-

sponding software on the basis of a configuration is called product derivation (Ziadi and

Jézéquel 2006).

Figure 1 depicts the feature model for a smartphone-based SPL based on the Google

Android operating system. This example will be used as a running example throughout the

paper to illustrate and compare our two approaches for pairwise testing. The FM was added

to the FM repository on the SPL Online Tool website (Mendonca et al. 2009) in order to

provide it to the community.

The features Basic Functions, Messages, Voice Call, and SMS are mandatory and part

of every product derived from the cell phone SPL. The feature MMS is optional for

product instantiation. Communication and its subfeatures: WLAN, Bluetooth, and

UMTS are optional as well. The feature Extras is mandatory and the underlying or-group

demands that at least one element of the or-group (MP3 or Camera) has to be selected. It

is also possible to select both MP3 and Camera within the same product. Either the 3MP
(3 megapixel) or the 8MP (8 megapixel) has to be chosen if Camera is included. As this

example illustrates, there are certain rules to fulfill in order to correctly select features for a

given configuration of the feature model; (1) The root feature has to be in the selection, (2)

The selection should evaluate to true for all operators referencing them, (3) All constraints

(require and exclude) must be satisfied, and (4) For any feature that is not the root, its

1 Defined by Pamela Zave as ‘‘An increment in functionality’’. See http://www.research.att.com/pamela/
faq.html and Batory et al. 2006).

Software Qual J

123

http://www.research.att.com/pamela/faq.html
http://www.research.att.com/pamela/faq.html


parent(s) have to be in the selection. Considering this, 61 valid products can be derived on

the basis of this FM.

2.2 Feature modeling and SPL testing

Due to its intuitiveness and conciseness, feature modeling has become a de facto standard to

represent and analyze SPL. Indeed, feature models have to be considered for integration with

the concrete syntax of current attempts to standardize a common variability modeling lan-

guage at the object management group (OMG)2 However to be a suitable for automated SPL

testing (and verification), feature models have to satisfy two requirements: (1) be precise

enough so that automatic extraction of test configurations can be performed against well-

defined criteria and (2) be able to relate ‘‘concrete’’ assets of the SPL. Regarding this last

requirement, it is important to note that the notion of ‘‘feature’’ can have many different

meanings depending on the context (Classen et al. 2008). To preserve concision, a feature

should abstract the details of its realization while efficiently associating them to allow product

construction. Providing such solutions (Czarnecki and Antkiewicz 2005; Perrouin et al.

2008) are out of the scope of this paper as we focus on the problem of generating abstract test

cases and not executing them. Regarding the first requirement, feature models have been

equipped with formal semantics (Schobbens et al. 2006, 2007; Czarnecki et al. 2005; Batory

2005; Czarnecki and Wasowski 2007) and automated analysis (Benavides et al. 2010),

techniques, and tools. There are three main benefits of formal semantics for SPL testing:

– Notation-independent toolsets. Since their original proposal 20 years ago, a plethora of

different notations (Czarnecki et al. 2005; Griss et al. 1998; Kang et al. 1998) to name

a few) have been developed. Indeed, feature models can be considered as a product line

of notations sharing commonalities and exposing syntactical and semantic differences

which were not always explicitly motivated. In such a context, it is not obvious for

modelers to choose a specific notation on objective grounds. Furthermore, similar tool

support performing analysis and derivation has to be developed for each notation.

Based on a formal evaluation framework to evaluate the expressiveness of feature

models, we were able to define a generic metamodel (Perrouin et al. 2008) for feature

modeling, independent of any concrete syntax, and able to capture various feature

modeling approaches. This metamodel is used to characterize the inputs of (Perrouin

et al. 2010) testing approach and broaden its applicability.

8MP

Basic Functions

Voice Call

Cell Phone

Bluetooth UMTSWLAN

Communication Extras

MP3 CameraMessage

MMSSMS 3MP

Or 2Or 1

Mandatory

Optional

OrEither

Or-Group

Alternative-
Group

exclude

require

Fig. 1 Feature model of our AndroidSPL running example

2 See document ad/09-12-03 on the OMG website for the full request for proposals.

Software Qual J

123



– Test configuration generation. Automated test case generation requires the ability to

form automatically valid configuration of the feature model. As we have seen, this

implies satisfying all the constraints of the feature model. Formally, this can be seen as

a constraint satisfaction problem (CSP). Formalization in terms of propositional logic

(Batory 2005; Schobbens et al. 2007) helps encoding the problem in terms of inputs

processable by CSP or SAT solvers. The testing approaches described in this paper

make use of these solvers.

– Test metrics and coverage. Formalization of feature models also permits to define

metrics for testing and assess coverage. For example, it is possible to compute all the

possible valid configuration of a feature model as we have done for our example above.

Even if we usually do not build all the possible members of a product line, this is an

important metric to evaluate the efficiency of test case reduction. Another interesting

figure is the number of core or common features (Mendonça et al. 2009). This helps to

characterize the distribution of feature in the generated test configurations. This

contribution focuses on feature model–based metrics and coverage criteria and does not

take into account metrics and coverage addressing code or models for test or

implementation purposes linked to the features of the feature model.

Therefore, we can use feature models as a relevant artifact to generate test configuration

suites for SPLs. We introduce some vocabulary to establish a mapping between feature

modeling concepts and testing ones.

2.2.1 SPL test case

A SPL test case is one valid product of the product line. Therefore, a test case is formed by

a valid configuration of the feature model and its appropriate derivation. Once this test case

is generated from a feature diagram, its behavior has to be tested. This is the goal pursued

by the MoSo-PoLiTe (Oster et al. 2010) approach. However, in this article, we focus only

on the first step, obtaining a set of abstract test cases with respect to a given criteria.

2.2.2 SPL test configuration

A SPL test configuration is one valid configuration of a feature model. This configuration is

then used to form a test case. In the following, we will simply refer to SPL test config-

uration as ‘‘test configuration’’.

2.2.3 SPL test configuration suite

A SPL test configuration suite is a set of SPL test configurations. We will refer this term to

as ‘‘test suite’’.

2.2.4 Valid/Invalid t-Tuple

A t-Tuple (where t is a natural integer giving the number of features present in the t-Tuple3)

of features is said to be valid (respectively invalid), if it is possible (respectively impossible)

3 In general, we will use the term ‘‘tuple’’ to mention a t-Tuple when t does not matter. In the special case of
pairwise, i.e., when t = 2, we denote a 2-tuple by the term ‘‘pair’’.

Software Qual J

123



to derive a product that contains the pair (t-Tuple) while satisfying the feature model’s

constraints.

2.2.5 SPL test adequacy criterion

SPL variability represented in feature models can induce billions of possibilities, making

any attempt of exhaustive testing unfeasible. Thus, to determine whether a test suite is able

to cover all the SPL configurations represented by the feature model, we need to express

test adequacy conditions that will allow reducing the number of test configurations to

handle. In this paper, we use the combinatorial interaction testing techniques that were

successfully applied to test software where multiple combinations are possible such as

medical systems (Kuhn et al. 2004) or web browsers on multiple platforms (Kuhn et al.

2008). In particular, we consider the ‘‘t-wise’’ (Kuhn et al. 2004; Cohen et al. 2006)

adequacy criterion (all-t-Tuples) where each valid t-Tuple of features is required to appear

in at least one test case.

2.2.6 Test generation

In our context of SPL testing, test generation consists of analyzing a feature model in order

to generate a test configuration suite that satisfies pairwise coverage of features.

Pairwise (and more generally t-wise) is a set of constraints over a range of variables

[mathematically defined as covering arrays (Phadke 1995)]. Thus, it is possible to use

SAT-solving technology (Torlak and Jackson 2007; Mahajan and Fu 2004; Niklas Een and

Niklas Sorensson 2005) to compute such arrays. In our case, variables are the features of a

given feature model. As we have seen, feature models can be formalized in terms of

propositional logic which enable to see the problem ‘‘t-wise generation for feature models’’

as constraint satisfaction problem (CSP). Another possibility besides SAT-solving is to

apply another well-known CSP solver: forward checking (Haralick and Elliott 1980).

Extensions of original CIT techniques have been proposed to handle constraints. Cal-

vagna and Gargantini (2008) generate pairwise test sets on abstract state machines and

propositional formulas representing constraints over the variables. A satisfiability modulo

theory (SMT) solver is employed to verify consistency of the test configuration to include

in the suite. This approach is very close to one of strategies developed in Perrouin et al.

(2010) though the models and technologies employed differ. Cohen et al. (2007) examine

the need for mixing pairwise algorithms with SAT solvers to handle constraints and present

possible extensions of AETG in this respect. Bryce et al. (2006) distinguish different kinds

of constraints and assign priorities to pairs. However, this last method is not directly

applicable to feature models since ‘‘hard constraints’’ (constraints that prevents unfeasible

combination of pairs to occur in a test configuration) are not covered by the approach.

3 Two approaches for t-wise testing

In this section, we present the toolsets developed by the authors to address pairwise (and

more generally t-wise) testing of software product lines. The first one has been developed

by Perrouin et al. (2010) and called ‘‘alloy-based toolset/approach’’ in the reminder of this

paper. The second one has been developed by Oster et al. (2010) and called ‘‘dedicated

CSP-based toolset/approach’’.

Software Qual J

123



3.1 Alloy-based approach (Perrouin et al. 2010)

In the following, we describe the automatic generation of test products from a feature

diagram that satisfy the t-wise SPL test adequacy criteria. Our tool support has been

designed to support any value of t. The toolset has been implemented mostly in JAVA

(approximately 2.3 KLOC) for t-wise generation and metrics computation and Kermeta

(Muller et al. 2005) for transforming feature diagrams into alloy specifications. The

methodology consists of five key steps shown in Fig. 2.

The generation is based on Alloy as the underlying formalism to formally capture all

dependencies between features in a feature diagram as well as the interactions that should

be covered by the test configurations. Alloy is a formalism dedicated to lightweight

formal analysis (Jackson 2006). Alloy provides a set of concepts allowing to specify

elements and constraints between them. The first construct is Signature (sig). A sig-

nature defines a set of elements and possibly the relationships with other elements.

Signatures are similar to type declarations in an object-oriented language. Facts (fact)

are axioms that specify constraints about elements and relationships. These axioms must

always hold, and they are close to the concept of invariants in other specification lan-

guages. Predicates, (pred), as opposed to facts, define constraints which can evaluate to

true or false. With these constructs, it is possible to build various kinds of alloy models

and to ask alloy whether it is possible to find instances that satisfy all constraints and

evaluate one predicate to true. The scope is an integer bound on the maximum number of

instances for each signature (Jackson 2006). This allows the limitation of the search space

in which alloy looks for a solutions, and this is a way to finely tune how alloy builds

instances satisfying a model.

Fig. 2 Product Line Test Generation Methodology

Software Qual J

123



3.1.1 Step 1: transforming feature diagrams to alloy

In order to generate valid test configurations directly from a feature diagram, we need to

transform the diagram in a model that captures constraints between features. The FeatureDi-
agram2Alloy transformation automatically generates an alloy model AF from any feature model

F expressed in our generic feature diagram formalism (Perrouin et al. 2008) (Listing 1).

The AF model captures all features as alloy signatures and a set of alloy signatures that

capture all constraints and relationships between features. This model also declares two

signatures that are specific to test generation: configuration that corresponds to a test

configuration and that encapsulates a set of features (Listing 2); ProductConfiguration
(Listing 3) that will encapsulate a set of test cases.

Example In the cell phone SPL, shown in Fig. 1, we have 15 features f1; f2; . . .; f15: The

transformation FeatureDiagram2Alloy generates 15 signatures to represent these features

shown in Listing 1. Signatures representing mandatory features are preceded by the alloy

keyword one stating that their valuation is always one. Signatures representing variable

features are preceded by the alloy keyword lone (meaning zero or one).

The FeatureDiagram2Alloy transformation generates Alloy facts in AF.

Listing 1 Generated signatures for features for the cell phone SPL

Listing 2 Generated signature for configuration of features for the cell phone SPL

Listing 3 Generated signature for set of configurations

Software Qual J

123



3.1.1.1 Example In the Listing 4, we present two generated Alloy facts corresponding to

the XOR and AND operators. These facts must be true for all configurations. The first

constraint states that if Camera (f14) is selected, then the sum resulting from the selection

of children features (ThreeMP and EightMP, respectively, f8 and f9) cannot be greater

than 1.

The FeatureDiagram2Alloy transformation has been implemented as a model trans-

formation in the Kermeta metamodeling environment (Muller et al. 2005). Since our

feature diagram formalism is generic (Perrouin et al. 2008) various kinds of feature dia-

grams can be automatically transformed, e.g., FODA FMs (Kang et al. 1990) or the

orthogonal variability model (OVM) proposed by Pohl et al. (2005).

3.1.2 Step 2: generation of tuples

In Step 2, we automatically compute the set I of all possible tuples from feature diagram

AF and the number t. The tuples enumerate all t-wise interactions between all selections of

features in AF.

Example The 3-tuple t = \#f15 = 1, #f2 = 0, #f13 = 1 [ for the value t = 3 contains 3

features and their valuations. In the tuple, we state that the test suite must contain at least

one test configuration that has features f15 (CellPhone), not f2 (MMS) but f13 (Extras).

The initial set of tuples I is the set of tuples that cover all combinations of t features

taken at a time. For example, if there are N features, then the size of I is 2NCT minus all

tuples with repetitions of the same feature (e.g.\#f15 = 1, #f15 = 1 [). In the case of the

cell phone SPL and considering pairwise (or 2-wise), there are 435 possible combinations

of features. As there are 15 repetitions of the same feature, we consider only 420 tuples in

our set I.
Each tuple t in I also has an alloy predicate representation. An alloy predicate repre-

sentation of a tuple t is t.predicate.

Example The tuple t = \ #f15 = 1, #f2 = 0, #f13 = 1 [ is shown in Listing 5.

Listing 4 Generated facts for XOR and AND operators

Listing 5 Example tuple predicate

Software Qual J

123



3.1.3 Step 3: detection of valid tuples

In this third step, we use the predicates derived from each possible tuple in order to select

the valid ones according to the feature model. We say that a tuple is valid if it can be

present in a valid instance of the feature diagram F.

Example Consider our running example, t = \#f2 = 1,#f14 = 0 [ is not a valid tuple, as

the feature f2 (MMS) required the existence of feature f14 (Camera) and hence we neglect it.

On the other hand, the 3-tuple t = \ #f1 = 1, #f2 = 0, #f4 = 1 [ is valid since all feature

selections hold true for F. We determine the validity of each such tuple t by solving AF [
t.predicate for a scope of exactly 1. This translates to solving the alloy model to obtain

exactly one product for which the tuple t holds true. For the cell phone case study, we have

420 tuples for pairwise (t = 2) interactions in the initial set I. We select 257 valid tuples in

the set V.

3.1.4 Step 4: creating and solving conjunctions of multiple tuples

Once we have a set of valid tuples, we can start generating a test suite according to the

t-wise SPL adequacy criteria. Intuitively, this consists in combining all valid tuples from V
with respect to AF in order to generate test products that cover all t-wise interactions.

Example For pairwise testing in the case of cell phone SPL, this amounts to solving a

conjunction of 257 tuple predicates t1:predicate \ t2:predicate \ . . . \ t257:predicate for a

certain scope.

Though the number of tuples to solve in this example is reasonable, it changes rapidly

with the value of t. For instance, computing 3-wise on the same example, would require

solving 1639 tuples instead of 257. If the number of tuples can be evaluated quickly, the

difficulty of solving them over a given alloy model is impossible to guess á priori. As a

result, depending on the number of tuples and the ‘‘solving complexity’’ (driven by the

number of operators and cross-tree constraints) of the feature model, solving all these

tuples at once may fail. A pragmatic approach is to divide the solving phase in sets that the

solver can process more easily. Hence, we derived two ‘‘divide-and-compose’’ strategies to

breakdown the problem of solving a conjunction of tuples to smaller subsets of conjunction

of tuples. The strategies we present are binary split and incremental growth. Each strategy

is parameterized by intervals of values defining the scope of research for each (sub)-

conjunction of tuples, the duration in which alloy is authorized to solve the conjunction as

well as a strategy defining how features are picked in a tuple. We describe these strategies

in more detail below. The combination of solutions is a test suite TS that covers all tuples.

3.1.4.1 Binary split The binary split strategy shown in Algorithm 1 is based on splitting

the set of all valid tuples V into subsets (halves) until all subsets of tuples are solvable. We

first order the set of valid tuples based on the strategy Str. The strategy can be random or

based on distance measure. In this paper, we consider a random ordering. The Pool is set of

sets of tuples. Initially, Pool contains the entire set of valid tuples V. If each set of tuples

Pool[i], 0 B i B Pool.size in Pool is not solvable in the given range of scopes mnSc and

mxSc or within the maximum duration mxDur then result is False for Pool[i]. A single

value of result = False renders AllResult = False. In such a case, we select the largest set
in Pool[i] and split it into halves { H1 } and { H2}. We insert the halves { H1 } and { H2 }

into Pool[i]. The process is repeated until all sets of tuples in Pool can be solved given the

Software Qual J

123



time limits and AllResult = True. In the worst case, halves are made with one tuple, by

definition solvable.

3.1.4.2 Incremental growth The incremental growth strategy is shown in Algorithm 2. In

the algorithm, we incrementally build a set of tuples in the conjunction CT and add it to the

Pool. The select function based on a strategy Str selects a tuple in V and inserts it into CT.

Algorithm 1 binSplit(AF, V, mnSc, mxSc, mxDur, Str)

AllResult True

V  orderðV ; StrÞ
Pool ffVgg
repeat

result False

i 0

repeat

{result, Pool[i].solution}

 solveðAF ;Pool½i�;mnSc;mxSc;mxDurÞ
i iþ 1

AllResult AllResult ^ result

until i = = Pool.size

if AllResult = = False then

{L} = max(Pool)

{ { H1 }, { H2 } } = split({ L }, 2)

Pool.add({ H1 })

Pool.add({ H2 })

until AllResult = false

Return Pool

Algorithm 2 incGrow(AF, V, mnScp, mxScp, mxDur, Str)

Pool fg
repeat

CT  fg
repeat

tuple V :selectðStrÞ
CT.add(tuple)

{ result, CT.solution }

 solveðAF ;CT;mnSc;mxSc;mxDurÞ
if result = = False then

CT.remove(tuple)

V.add(tuple)

until result = = False

Pool.add(CT)

until V.isEmpty

Return Pool

Software Qual J

123



The strategy Str can be random or based on a distance measure between tuples. In this

paper, we consider only a random strategy for selection. We select and remove a tuple from

V and add it to CT until the conjunction cannot be solved anymore, i.e. result = False. We

remove the last tuple and put it back into V. We include CT into Pool. In every iteration,

we initialize a new conjunction of tuples until we obtain sets of tuples in Pool that contain

all tuples initially in V or when V is empty.

3.1.5 Step 5: analysis

Once the solutions have been generated, we can perform some analyses to assess the

quality of the generated test suites. In Perrouin et al. (2010), we have defined a set of

metrics to compare our two strategies. We will reuse and extend some of these metrics with

the aim of comparing the two approaches for t-wise generation dealt with in this paper.

3.2 Dedicated CSP-based approach (Oster et al. 2010)

The second approach applies graph transformation, combinatorial testing, and forward

checking for the test suite generation. The goal is to apply pairwise algorithms similar to

AETG (Cohen et al. 1997) and IPO (Lei and Tai 1998) to feature models.

To apply combinatorial testing to feature models, we either have to adapt an existing

combinatorial algorithm so that it can handle the hierarchical structure, the different node

notations, and constraints of the feature model or have to change the structure of the feature

model so that it can be processed using existing pairwise algorithms.

We combine both ideas: First, the structure of the feature model is changed so that it is

processable by combinatorial algorithms. This flattening translates a feature model into a

binary constraint solving problem (CSP), extracting parameters and parameter values. The

second step realizes pairwise combination by integrating a pairwise algorithm and standard

constraint solving techniques such as forward checking. A subset extraction algorithm

generates all valid pairwise combinations of features regarding cross-tree dependencies,

the hierarchical structure, and the different feature notations in the feature model.

3.2.1 CSP Translation

A so-called CSP translation algorithm reduces the depth of the feature model to extract

parameters with corresponding values. This translation can easily be adapted to be applied

to different kinds of feature models or to an OVM (Pohl et al. 2005).

The algorithm consists of two steps:

1. Every feature with its associated notation and dependencies is iteratively pulled up

until it is placed directly beneath the root node. Every feature then serves as a

parameter.

2. The algorithm assigns every parameter its correspondent parameter value.

Several model transformation rules control the CSP translation; they are iteratively

applied to a subtree of a feature model. A subtree always consists of three levels: the

grandparent node, the parent node, and the child node. Different rules are required for the

translation process depending on the notations of the involved features. We currently

support four different node notations: mandatory, optional, or, and alternative. For every

possible combination of parent and child notation, a separate transformation rule is

required: 4 9 4 = 16 rules are needed. As examples, we depict three rules to describe

Software Qual J

123



our flattening approach. For a complete description of all the rules, refer to (MoSo-PoLiTe

2011).

Figure 3 depicts three transformation rules: (1) pulling up a mandatory and (2) an

optional node beneath a mandatory-parent node and (3) pulling up an alternative-group of

child nodes with a parent node placed in an or-group.

Figure 3a shows the transformation rules 1 and 2. A mandatory child node is always

included within its parent node. Thus, SMS and Message are combined to be one feature,

because it is not possible to select a configuration without SMS when Message is selected.

An optional child node (MMS) stays optional and is pulled up besides the parent node.

Figure 3b shows rule number 3. The parent or-group stays unchanged, and the alter-
native-group is pulled up beside the parent. Because the features 3MP and 8MP can only

be chosen if Camera is selected, we have to add require dependencies. Furthermore, an

additional feature is added into the alternative group: the :Camera feature which is

required for the situation that Camera is not selected. Without adding this feature, either

3MP or 8MP is always selected and, therefore, Camera is always required. Selecting

:Camera, the feature Camera is excluded, and we preserve the semantic equivalence

between both FMs.

After the first step of the translation algorithm, all features are placed directly beneath

the root node serving as parameters. Figure 4 depicts the flat feature model.

In the next step, we extract the corresponding values. Again, different rules are applied

to extract the values of the features.

– optional: An optional feature is changed to a mandatory feature with two child nodes.

The optional feature MMS turns into a mandatory node with an alternative-child group

containing a feature MMS and :MMS. For product instantiation, the feature MMS is

selected and one element of the alternative group has to be chosen as well. Therefore,

either the feature MMS or the feature :MMS is selected.

– mandatory: Mandatory nodes stay mandatory and obtain an additional child node with

the same notation and name. (e.g. Extras)

3MP

Camera

8MP

MP3

...

3MPCamera 8MPMP3 ¬

exclude

require
require

...

SMS

Message

...

Message, SMS

MMS

MMS

(A) (B)

Fig. 3 Transformation rule pulling up an alternative-child with an or-parent

8MP
Basic Functions, Message,

SMS, Voice Call

Cell Phone

BluethoothWLANCommunication Extras MP3 CameraMMS 3MP ¬ CameraUMTS

exclude

require

Fig. 4 Flat feature model of our case study

Software Qual J

123



– or: Extracting the parameter values of an or-group is the most complex rule. Each

feature of the or-group is handled like an optional feature. To ensure that a least one

element of the or-group has to be chosen within a product, the values for not including

the features within a product exclude each other.

– alternative: An alternative group stays unchanged, but we add a single placeholder

feature in-between the alternative group and the root node representing the parameter

(ALT_F).

Figure 5 shows the flat feature model of our running example including feature values.

This flat feature model exhibits the following variability: 112223242526172829310.

A valid pair is a combination of two features not violating cross-tree dependencies, the

hierarchical structure, and the different feature notations in the FM (cf. lines 2–3). Then,

the algorithm incrementally combines those pairs of features to create valid test configu-

rations (cf. lines 5–12). The algorithm starts with the first pair and iteratively adds pairs of

the remaining parameters (cf. line 8). For each step, forward checking (Haralick and Elliott

1980) is applied to determine whether the selected pair can be combined with remaining

pairs of parameters to create a valid test configuration (cf. line 9). If a certain pair results in

such a deadlock, another pair is selected instead (cf. line 11). The algorithm continues until

all pairwise combinations are covered by at least one configuration and will return the list

of selected configurations.

Compared to AETG and IPO, we adopted the following ideas for our algorithm:

– Building product by product as in AETG.

– Using a list of pairs that need to be covered as in IPO.

– Using a weighting/priority function to decide which value to select within a certain

configuration similar to AETG. This function calculates the priority of a certain value

according to its occurrence within the list of pairs that need to be covered. The value

which has the most required combinations obtains the highest priority.

We applied our algorithm to the presented running example. The algorithm identified 8

test configurations which are listed in Fig. 6 covering all pairwise interactions of features.

Basic Functions,
Message, SMS,

Voice Call

Cell Phone

Blue-
thooth

WLAN
Commu-
nication

Extras MP3 CameraMMS ALT_F1UMTS

exclude
require

8MP

Basic
Functions,

Message, SMS,
Voice Call

BTWLANCom Extras MP3 CameraMMS 3MP
¬

Camera
UMTS ¬ MP3

¬
Camera

¬
UMTS

¬BT¬WLAN¬Com¬MMS

1: ALT_F = Additional parameter node

values

parameters

root

Fig. 5 Flat feature model with parameters and values

P1 CellPhone B, M, S, V Extras Comm. ¬MMS ¬UMTS ¬WLAN ¬BT Camera 8MP ¬3MP MP3
P2 CellPhone B, M, S, V Extras ¬Comm. MMS ¬UMTS ¬WLAN ¬BT Camera ¬8MP 3MP MP3
P3 CellPhone B, M, S, V Extras Comm. ¬MMS UMTS WLAN ¬BT ¬Camera ¬8MP ¬3MP MP3
P4 CellPhone B, M, S, V Extras Comm. MMS UMTS WLAN BT Camera 8MP ¬3MP ¬MP3
P5 CellPhone B, M, S, V Extras ¬Comm. ¬MMS ¬UMTS ¬WLAN ¬BT Camera 8MP ¬3MP ¬MP3
P6 CellPhone B, M, S, V Extras Comm. ¬MMS ¬UMTS WLAN BT Camera ¬8MP 3MP ¬MP3
P7 CellPhone B, M, S, V Extras ¬Comm. ¬MMS ¬UMTS ¬WLAN ¬BT ¬Camera ¬8MP ¬3MP MP3
P8 CellPhone B, M, S, V Extras Comm. MMS UMTS ¬WLAN BT Camera ¬8MP 3MP ¬MP3

Fig. 6 The resulting test suite covering all valid pairs of features of the running example

Software Qual J

123



Furthermore, the subset extractor can handle seeds to be provided by the user. To realize

this functionality, the pairs of these seeds are extracted and stored. When generating the set

of pairs to cover, these pairs are marked as already covered and the algorithm uses the

remaining pairs.

4 Comparison framework

In this section, we introduce some measures to evaluate the quality of our test generations

approaches. These measures are inspired from earlier work (Perrouin et al. 2010).

4.1 Performance

Concerning performance, time required for the toolset to perform the computation of a

solution is the most obvious metrics. We therefore use execution time to measure the

performance of the compared toolsets and give values for examples of the SPLOT

repository in Sect. 5.

4.2 Test suite size

One of the simplest metrics to characterize generation is the number of test configurations

generated by the t-wise toolset:

Definition 1 Test Suite Size. The number of test configurations composing it gives the

size of a test suite.

As discussed in Perrouin et al. (2010), there is a trade-off to find between two antagonist

goals, optimality and coverage. Optimality requires the minimum number of test config-

urations meeting the t-wise criteria. In the cell phone SPL, this can be obtained with only 8

test configurations over the 61 possible ones induced by the feature model. Thus, having

more test configurations than absolutely necessary implies a greater testing effort but also

to the benefit of a greater coverage. This metric is also an indirect indicator of the degree of

‘‘repetition’’ a given t-wise strategy may produce by splitting tuple conjunction and

composing results. This ‘‘repetition’’ issue is more finely captured in the following metrics.

4.3 t-Tuple occurrence and frequency

The t-wise criterion states that every valid t-Tuple must be present in a least one test

configuration of the test suite (exactly one being the optimum in this respect). However,

this optimum is barely achieved. There are three main reasons for this:

– Mandatory and Common Features. The occurrence of a given tuple is strongly

influenced by the nature of the features composing it. A common feature (or core
feature) (Benavides et al. 2010; Mendonça et al. 2009) has to be present in all valid

configurations of the feature model. This comprises mandatory features but also their

dependencies (parents, require/exclude constraints. . .). Therefore, a non-mandatory

feature may be always included to satisfy complex combinations of constraints and

operators. Such features are therefore considered as ‘‘false-optional’’ (Benavides et al.

2010). As noticed by Mendonça et al. (2009), this can be an undesirable design flaw.

Software Qual J

123



Therefore, tuples that are composed only of common features will appear in every test

configuration of the suite; their occurrence will correspond to the size of the test suite.

– Constraints. Cross-tree constraints (such as require/exclude) by enforcing relationships

between features are likely to increase the number of times a given tuple appears in the

test configurations.

– Generation Algorithm/Strategy. The generation algorithm or the ‘‘divide-and-com-

pose’’ strategy used to incorporate tuples in test configurations may deterministically or

randomly deviates from the optimum.

These reasons motivated our will to measure by ‘‘how much’’ the t-wise criteria was

over met. We define two related metrics.

Definition 2 t-Tuple Occurrence. t-Tuple occurrence is the number of times a given

t-Tuple appears in a test suite.

Example The pair \:3MP;MP3 [ appearing three times in Fig. 6 representing a

pairwise compliant test suite for the cell phone feature model has a tuple occurrence of 3.

The mandatory pair \CellPhone, BasicFunctions [ has tuple occurrence of 8.

We initially used this metric to assess the optimality of t-wise generation by measuring

the number of repetitions of a t-Tuple in a suite. Yet, as the number of generated products

may vary depending on the algorithm or strategy used, the raw occurrence is difficult to

comment without information on the test suite size. Furthermore, for same reason, t-Tuples

composed of only common features, may be harder to detect. Hence, we take into account

the number of test configurations in this related metric:

Definition 3 t-Tuple Frequency. t-Tuple frequency is the ratio between the t-Tuple

occurrence and the size of the test suite.

Example The pair \:3MP;MP3 [ has a tuple frequency of 0.375, while the mandatory

pair \CellPhone, BasicFunctions [ has a tuple frequency of 1.

As a result, t-Tuple frequency is a value in the [0,1] interval. A value of 0 for a given

t-Tuple means that there is no occurrence of this tuple in test suite. This cannot normally

happen: we are dealing only with valid t-Tuples needing to appear at least once to meet the

t-wise criteria. This can be used as a sanity check to exhibit bugs in the t-wise generation

algorithm. A value of 1 means that the t-Tuple appears in all generated test configurations,

implying that the t-Tuple is comprised of common features. This also can be used as a

conformity check: If one or more t-Tuples consisting of common features has a frequency

less than 1, then test configuration generation is invalid with respect to the feature model.

4.4 Test configuration similarity

The objective of this metric is to answer the question: ‘‘How similar are my generated test

configurations ?’’. In fact, t-wise generation techniques rearrange t-Tuples in test config-

urations in different ways (as we have seen this can be done by splitting the t-Tuple subset

or by incrementally constructing them). This results in some test configurations that cover

‘‘almost the same’’ product or very different ones. Furthermore, ‘‘divide-and-compose’’

strategies allow by construction that identical test configurations are generated. These

points form the main motivation of proposing a similarity metric (Cartaxo et al. 2011). A

few similarity functions have been proposed in the literature in the context of model-based

testing (Cartaxo et al. 2011; Hemmati and Briand 2010). However, to our knowledge, none

Software Qual J

123



has been proposed to compare test configuration generated from a feature model. Ours is

based on the Jaccard index (Tan et al. 2006), which is devoted to the comparison of two

sample sets:

JacðA;BÞ ¼ kA \ Bk
kA [ Bk

Here, the sample sets are the sets of variants features (all features that are not common

(Benavides et al. 2010)) of the SPL. Thus, variant features represent the possible decisions

(to select a feature or not) one can make on the feature model.

Definition 4 Test Configuration Similarity. Test configuration similarity is defined

between two test configurations as the Jaccard index of the number of identical variant

features (i.e. identical decisions) over the possible number of variants features.

Hence,

Simðtci; tcjÞ ¼
kTciv \ Tcjvk
kTciv [ Tcjvk

where tci, tcj are test configurations, Tciv , Tcjv sets of their variants features.

Example The SPL test configurations P11 and P2 illustrated Fig. 6 have 5 variants fea-

tures in common out of 9, this Sim(P1,P2) = 0.55.

4.5 Test suite similarity

After having introduced the notion test configuration similarity, we generalize it to define

test suite similarity:

Definition 5 Test Suite Similarity. Test suite similarity is the arithmetical mean of test

configuration similarities computed over the Cartesian product of the test suite by itself.

More precisely, for any test suite ts, we have:

Simts ¼
Pt

i¼1

Pt
j¼1 Simðtci; tcjÞ

t2

where tci, tcj are test configurations, Sim(tci, tcj) their similarity and t = | ts | i.e., the

number of test configurations present in the test suite.

5 Experimentation

In this section, we apply the measures defined in the previous section on the toolsets

developed by the authors. In particular, we compare the alloy-based approach (with its two

strategies: BinarySplit and IncrementalGrowth) with the dedicated CSP-based approach for

pairwise testing on examples present in the SPLOT repository for feature models.

5.1 Case studies validation

As we have seen, the alloy-based approach and the dedicated CSP-based approach have

different inputs and model-driven transformation chains. Therefore, there is a risk that the

source models (created by the designer either in PureVariants for the CSP approach or

Software Qual J

123



using an EMF compliant4 tool for the t-wise approach) are not semantically equivalent, and

therefore, we do not generate comparable results for pairwise. To eliminate this risk, we

cross-checked our feature model implementations. Indeed, we ensured that all invalid pairs

generated by dedicated CSP-based approach are also invalid when applied on the generated

alloy model. We used pairs generated by the alloy-based approach (Perrouin et al. 2010)

with the generated test configurations from the dedicated CSP-based approach (Oster et al.

2010). We also inspected manually generated test configurations for the examples

considered.

5.2 Experiment design

As discussed in Perrouin et al. (2010) and as for any solution based on Alloy, the choice of

the scope is a very important parameter to set. As we have shown, there is an optimal value

for the scope that minimizes the number of generated test configurations and similarity.

This cannot be determined in advance and depends of the case study. The toolset auto-

matically generates sets of test suites in order to study the effects of random ordering of

tuples (Perrouin et al. 2010). When it was possible, we therefore generated 10 test suites

for each strategy and we report on the measures performed using ‘‘boxplot and whiskers’’

to illustrate the results distribution. As the Dedicated CSP-based approach does not have

this kind of setting, varying the scope cannot be taken into account in the comparison. One

big difference between the alloy-based approach (with its 2 strategies) and dedicated CSP-

based approach (incremental pairwise) is that the latter is deterministic; it generates the

same set of test configurations. As a consequence, one test suite is sufficient to compare the

generation behavior with other strategies.

5.3 2-wise testing

5.3.1 Execution times

We report execution times for examples taken in the SPLOT online repository in Table 1

above. Figures such as [32400000 indicate that we stopped the alloy-based framework

from running after more than nine hours of computation, either having partial results (may

not fully respect the pairwise criterion) for the incremental growth strategy or with no

result at all for the binary split strategy.

An obvious observation one can make from this table is the CSP-dedicated approach is

at least 1,000 times faster than any of the strategies of the alloy-based solution. Further-

more, the CSP-dedicated approach execution times grows gently with the feature model

complexity while the alloy-based strategies execution times follows a steeper increasing

curve. It is not that surprising as the strategies decompose the problems in hundreds or

thousands of solving steps. Yet, what matters to the tester is that the overall computation

time may be judged unreasonable for large feature models.

As initially stated (Perrouin et al. 2010), we confirm here that the binary split strategy is

faster than the incremental growth one. However, we observed a greater stability of the

incremental growth strategy that may be used when the binary decomposition fails to give

a result.

4 EMF (Budinsky et al. 2003) is an Eclipse framework dedicated to the manipulation of models, on which
we based our generic feature modeling approach (Perrouin et al. 2008).

Software Qual J

123



5.3.2 Test suite size

Table 2 below shows the number of products obtained by pairwise testing the considered

feature models.

In the following, we focus on our running example (cell phone) and a larger feature

model, the arcade game feature model.

5.3.2.1 Cell phone Figure 7 shows the boxplots for the two approaches. For BinarySplit,

the size of the test suite varies between 12 and 20 test configurations, with an average of

15.6 and a standard deviation 2.7. Regarding IncrementalGrowth, we compute as less as 15

test configurations and as much as 18, with a mean of 15.7 with a standard deviation of 1.5.

While these two strategies are comparable in the number of generated test configurations,

we observe a greater stability of IncrementalGrowth with respect to BinarySplit. This

confirms our initial assumption (Perrouin et al. 2010); the incremental way is more

accurate in finding an extremum (whether local or global) and reproducing this extremum

while BinarySplit will be more or less ‘‘lucky’’ while distributing halves of tuples. This

trend is confirmed with the dedicated CSP-based approach; it always generate 8 test

configurations for the suite which is the exact minimum for satisfying the pairwise criteria.

As we have discussed it above, BinarySplit and IncrementalGrowth can generate

redundant test configurations. This fact can also be revealed by similarity computation.

IncrementalGrowth can generate as many as 4 duplicates (with a minimum of 0) with a

mean of 2.0 and a standard deviation of 1.15. BinarySplit can generate as many as 5.0

duplicates and as less as 0 with a mean of 2.3 and a standard deviation of 1.5. The greater

diversity of BinarySplit in the generation is also confirmed here. The dedicated CSP-based

approach has reached the minimum in computing the solution ‘‘all-at-once’’: there are no

redundant test configurations in the test suite.

Table 1 Execution times for pairwise generation on feature models

CP SH AG MT ES

Features 19 35 61 88 287

Possible products 61 10,48,576 3.3 * 109 1.65 * 1013 2.26 * 1049

Cross-tree constraints (%) 26 0 55 0 11

CSP-dedicated (ms) 0 0 32 46 797

BinarySplit (ms) 11,812 11,457 33,954 [3,24,00,000 [3,24,00,000

IncrementalGrowth (ms) 56,494 13,72,094 1,38,47,835 [3,24,00,000 [3,24,00,000

Key: CP cell phone, SH smart home, AG arcade game, MT model transformation, ES electronic shopping

Table 2 Test suites sizes obtained for pairwise generation

CP SH AG MT ES

CSP-dedicated 8 40 46 92 215

BinarySplit 12 92 514 N/A N/A

IncrementalGrowth 15 28 74 N/A N/A

Key: CP cell phone, SH smart home, AG arcade game, MT model transformation, ES electronic shopping

Software Qual J

123



5.3.2.2 Arcade game It is interesting to see whether these tendencies are confirmed for

larger examples. We therefore decided to report test suite size obtained for the arcade game

feature model. However, due to important execution times (see Table 1), it was not pos-

sible to generate set of 10 solutions for the alloy-based strategies. We thus adopted a ‘‘best

guess’’ approach in which we report one solution for each of the strategies. Since there is

only one value for the size of test suite for all CSP-based and alloy-based toolsets, we

report obtained results in Table 3.

A first observation is that the test suite size varies in a large extent between CSP-

dedicated and alloy-based toolsets and within strategies themselves. This observation can

be explained by the fact that the strategies need many more steps to compute the test suite

yielding more test case configurations. Another important observation is that on this

example there is no duplicate. It can be surprising as BinarySplit and IncrementalGrowth

strategies produce duplicates on smaller examples and more ‘‘divide-and-compose’’ steps

can mean more chances of deriving redundant test case configurations. In fact, the arcade

game model allows a significant number of variants (3.3*109) to be derived from the model

implying that the probability of twice the same test case configurations decrease with the

number of possible variants.

5.3.3 t-Tuple occurrence and frequency

In the next paragraphs, we provide the computed tuple occurrences for the Cell Phone and

Arcade Game feature models.

Fig. 7 Number of generated test
configurations for the cell phone
feature model (pairwise)

Table 3 Test suite size and
duplicates for the arcade game
feature model

Test suite size Duplicates

CSP-dedicated 46 0

BinarySplit 514 0

IncrementalGrowth 74 0

Software Qual J

123



5.3.3.1 Cell phone t-Tuple occurrence is depicted in Fig. 8. As it can be seen, the

pairwise criterion is satisfied as no t-Tuple appears less than once in any test suite. As there

are more than two common features (6), there are necessarily 2-tuples that are composed of

common features. Therefore, their occurrences correspond to the size of the generated test

suite, represented in the box plot as outliers. As result of generating less test configurations,

the dedicated CSP-based approach has a lower number of tuple occurrences. We also

observed a remarkably stable frequency distribution. On average, a tuple is appearing in

41% of all the generated test configurations.

5.3.3.2 Arcade game Regarding t-Tuple occurrences for the arcade game feature model

shown Fig. 9, the pairwise criterion is met as well as the minimal occurrence of a tuple

is 1. However, due to the fact of generating more test case configurations, BinarySplit

BinarySplit IncrementalGrowth CSP

5
10

15
20

Fig. 8 Tuple occurrences for the cell phone feature model (pairwise)

CSPIncrementalGrowthBinarySplit

0
10

0
20

0
30

0
40

0
50

0

Fig. 9 Tuple occurrences for the arcade game feature model (pairwise)

Software Qual J

123



and IncrementalGrowth strategies have a tendency to over meet this criterion: the

minimal occurrence of a tuple is 10 for IncrementalGrowth and 32 for BinarySplit. It is

important to note that the frequency of apparition of a tuple is 58% for CSP-dedicated

approach and 31% both for BinarySplit and IncrementalGrowth. As opposed to the cell

phone example, the difference appears more clearly. High frequencies are to be looked

for to test the same couple of features in various contexts which is essential for critical

ones.

5.3.4 Similarity

The last measure is similarity that we provide for our two examples.

5.3.4.1 Cell phone Similarity is plotted in Fig. 10. What is important here are the median

values. They are the same for the ‘‘incrementally driven’’ approaches (0.44 for CSP and

IncrementalGrowth) while a little bit higher for BinarySplit. Hence, within a test suite, if

diversity-based testing is an objective (Hemmati et al. 2010), testers should privilege an

incremental approach to pairwise testing.

5.3.4.2 Arcade game Test suite similarity is depicted Fig. 11. The CSP-dedicated

approach tends to produce more similar (mean = 0.66 compared to 0.44 for Incremen-

talGrowth or 0.52 for BinarySplit) results on average. Yet, it has to be noted that there is a

few interesting outliers in which few decisions regarding feature selection are common.

The alloy-based strategies are not able to reach such extremes while they maintain a good

diversity on average despite a larger set of test configurations. This is made possible by the

nature of the feature model. There are 43 variant features in the model which allows many

more choices to pick a given test configuration.

BinarySplit IncrementalGrowth CSP

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 10 Test suite similarity distribution for the cell phone feature model (pairwise)

Software Qual J

123



5.4 Beyond pairwise

As mentioned in Sect. 3, both approaches were meant to generate tests configurations for

values of t C 2. In the following, we report on experimentations carried out for t = 3.

5.4.1 Execution times

Table 4 details execution times for 3-wise generation on SPLOT examples. Unsurpris-

ingly, execution times are higher than those obtained for pairwise. While still low for CSP-

dedicated, there are at least 10 times greater regarding alloy-based strategies. The tendency

between IncrementalGrowth and BinarySplit is also confirmed, BinarySplit performing

much faster than IncrementalGrowth.

We also observed scalability issues from the Smart Home feature model onwards. Issues

encountered were linked to ‘‘out of memory’’ errors arising at two different steps of

the computation: (i) during the solving, after several hours of computation and (ii) after the

generation of valid tuples in the arcade game case. This last problem was generated by the

fact that the alloy model representing the whole problem was too big (the model is several

hundred of thousands lines) to be handled by the alloy API.

5.4.2 Test suite size

Table 5 below shows the number of products obtained by 3-wise testing the considered

feature models.

An higher value of t also induces greater test suite sizes. The expected effects on test

suite size of the ‘‘divide-and-compose’’ strategies appear clearly. As the problem is more

difficult, the decomposition proceeds with more steps and adds more test configurations to

the suite. Decomposition side effects are also revealed by the number of generated

duplicated as illustrated in Table 6.

BinarySplit IncrementalGrowth CSP

0.
0

0.
2

0.
4

0.
6

0.
8

Te
st

 S
ui

te
 S

im
ila

rit
y

Fig. 11 Test Suite Similarity Distribution for the Arcade Game Feature Model (pairwise)

Software Qual J

123



This increase in test suite size indicates that there is a trade-off to find between the value

of t and the number of possible test configurations induced by the feature model. For

example, using the alloy-based framework, even if we remove duplicates, leading to test

suites of 51 test configurations for BinarySplit and 45 for IncrementalGrowth, reduction in

the test suite size is small compared to exhaustive testing (61 possibilities). Naturally, this

trade-off heavily depends on the t-wise generation framework used, as 3-wise testing is still

valuable for the CSP-dedicated approach.

5.4.3 t-Tuple occurrence and frequency

5.4.3.1 Cell phone t-Tuple occurrence distribution for the cell phone feature model is

depicted Fig. 12. Again, the t-wise criteria are satisfied with a minimum of 5 occurrences

for IncrementalGrowth and 7 for BinarySplit, while the CSP-dedicated approach is getting

the optimal value of 1. We also observe that there are tuples uniquely composed of

common features, which appear on all the generated test configurations.

Regarding frequency distribution, which is depicted Fig. 13, as for pairwise we

observe very similar results. On average, a 3-tuple is appearing in 28% of the gen-

erated test configurations. We explain this lower average frequency by the fact that

3-tuples are more difficult to place in test configurations due to dependencies and

constraints.

Table 4 Execution times obtained for 3-wise generation

CP SH AG MT ES

CSP-dedicated (ms) 0 56 83 118 2,586

BinarySplit (ms) 5,84,893 [3,24,00,000 Fail N/A N/A

IncrementalGrowth (ms) 44,97,255 Fail Fail N/A N/A

Key: CP cell phone, SH smart home, AG arcade game, MT model transformation, ES electronic shopping

Table 5 Test suites sizes obtained for 3-wise generation

CP SH AG MT ES

CSP-dedicated 23 61 257 643 841

BinarySplit 207 N/A N/A N/A N/A

IncrementalGrowth 133 N/A N/A N/A N/A

Key: CP cell phone, SH smart home, AG arcade game, MT model transformation, ES electronic shopping

Table 6 Test suite size and
duplicates for the cell phone
feature model (3-wise)

Test suite size Duplicates

CSP-dedicated 23 0

BinarySplit 207 156

IncrementalGrowth 133 88

Software Qual J

123



5.4.3.2 Arcade game Since for 3-wise the alloy-based framework was not able to ter-

minate computations, we only report obtained results by the CSP-dedicated approach in

Table 7.

We observe that the CSP-dedicated approach is able to reach the optimality regarding

t-Tuple occurrence (minimum 1) and that there are again 3-tuples composed of only

common features forced to appear in every test configuration. Frequency values are lower

than for the cell phone case as we can predict it, since there are much more possibilities

(3,3*109) for the arcade game feature model, and therefore more ways to combine tuples.

CSPIncrementalGrowthBinarySplit

0
50

10
0

15
0

20
0

Fig. 12 t-Tuple Occurrence Distribution for the Cell Phone Feature Model (3-wise)

CSPIncrementalGrowthBinarySplit

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 13 t-Tuple Frequency Distribution for the Cell Phone Feature Model (3-wise)

Table 7 t-Tuple occurrence and frequency for the arcade game feature model (3-wise, CSP-Dedicated)

Min Max Mean SD

t-Tuple occurence 1 238 52.6 39.9

t-Tuple frequency 0.004 1 0.22 0.17

Software Qual J

123



5.4.4 Test suite similarity

5.4.4.1 Cell phone Test suite similarity is depicted Fig. 14. While the distribution is similar

for the CSP-dedicated approach (Mean = 0.53 for 3-wise and 0.44 for pairwise), both

BinarySplit and IncrementalGrowth have much higher similarity (mean = 0.90 for Incre-

mentalGrowth and BinarySplit with a very small standard deviation of 0.04). The great number

of duplicates has played a major role toward the obtention of such high similarity scores.

5.4.4.2 Arcade game Table 8 details results for similarity. Interestingly, the choice of 3-

wise is adapted for such feature model offering many possibilities. Indeed, similarity is on

average two times smaller than for the pairwise case implying that chosen test configu-

rations are more different, which can be regarded as an advantage for coverage.

6 Synthesis

In this section, we synthesize the findings of our comparison and give insights to help the

software tester choosing the approach that best suits her or his needs.

6.1 Synthesis

Comparison of main test generation characteristics is presented Table 9.

CSPIncrementalGrowthBinarySplit

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 14 Test suite similarity distribution for the cell phone feature model (3-wise)

Table 8 Test suite similarity for
the arcade game feature model
(3-wise, CSP-Dedicated)

Min Max Mean Std. Deviation

Similarity 0 0.88 0.32 0.25

Table 9 Test generation
characteristics

CSP-based Alloy-based

# Number of products ? -

Generation time ? -

Determinism ? -

t-wise support ? ?

Software Qual J

123



Based on the above table, several points are worth detailing; Execution times & Sca-
lability, Quality of generated tests, measures, and threats to validity.

6.1.1 Execution times and scalability

Regarding execution times, results are explicit: The dedicated CSP-based performs much

faster on all the examples on which it was applied to for pairwise and 3-wise testing. This

performance is also an indicator that the CSP-dedicated approach may scale to larger

examples though we cannot provide such evidence.

Regarding ‘‘divide-and-compose’’ strategies, this article provides important results

since their original publication in Perrouin et al. (2010). On the one hand, we provided

evidence that these strategies may be employed on larger feature models than the 17

features representing the size of the original case study that initially motivated their def-

inition. On the other hand, the price to pay to break complexity into pieces is rather high:

this decomposition in a smaller set of problems that are easier to solve is associated with a

performance degradation, and for even larger models/higher values of t, we still encounter

scalability issues. In other terms, ‘‘divide-and-compose’’ strategies improved the scalability

up to a certain limit, imposing a complete redesign of the approach and questioning

technological choice if we want to push this limit further.

Thus, there is an important issue emerging from this comparison between a generic

solution (using Alloy) and a dedicated one (CSP). The scalability dimension is managed

either ’a posteriori’ (Alloy-Based strategies) or ’a priori’ with a dedicated SAT solution

(CSP-Dedicated approach). In ’a posteriori’ approach, the pairwise generation and the

feature model are directly encoded into the generic alloy format: the price to pay for this

apparent simplicity is scalability. Since we do not control finely how such an alloy speci-

fication is translated to a SAT input, the scalability issue has to be managed ’a posteriori’

with divide-and-compose strategies. These strategies transform the scalability issue into a

set of smaller problems. The scalability issue is changed into a performance one. (Each

smaller problem requires a certain time to be solved.) Thus, solving the scalability issue

’a posteriori’ leads to other problems such as performance. On the contrary, for the dedi-

cated CSP-based approach, significant attention has been devoted ’a priori’ to the flattening

of the model in an efficient structure. Much more effort has been spent proving that the

model flattening preserves the semantics of the input feature model, but the benefit of such a

dedicated approach is avoiding both scalability and performance issues. This is certainly an

important point explaining such a divergence in the results. Given the complexity of gen-

erating pairwise tests for feature models, instead of addressing the problem at a general

level, one should delve into the details of the encoding and solving technology (SAT, CSP,

SMT. . .) in order to develop ’a priori’ scalable solutions. To summarize, the main lesson

learnt from these two different approaches is that the simplicity of use of a generic approach

does not compensate the efficiency of dedicated CSP-based approach. In practice, a generic

approach is useful for prototyping, to precisely define how to solve the problem (e.g.

generating pairwise tests), but should then be replaced by a dedicated solution.

6.1.2 Quality of generated tests

Going along the same considerations opposing generic versus dedicated SAT, the CSP

approach performs particularly well in minimizing test suites. Although alloy-based strate-

gies can compete on small examples, ‘‘divide-and-compose’’ strategies necessarily generate

more test configurations due to the fact that they create test suites based on a subset of all valid

Software Qual J

123



tuples and merge them in a single test suite. The largest the examples are, the most likely non-

minimal test suites are produced and higher the number of duplicates is, due to more steps

required by the algorithms to terminate. Also regarding the size, incrementally driven

approaches (IncrementalGrowth and CSP-dedicated) are doing better that the BinarySplit.

Yet, more products may also mean more interactions and more chances to reveal complex or

rare bugs. In that case, higher similarity degrees can be looked at for regression testing.

Another option is to use higher order t-wise which is necessary in some situations (Kuhn

et al. 2008), as we demonstrated it in the Arcade Game model with the CSP-dedicated

approach. However, in the case of software product lines, the number of generated test con-

figurations can become huge: there are already 238 products for 3-wise for the arcade game

model with respect to 46 for the pairwise case. Therefore, on small models, it is probably more

fruitful to test exhaustively the SPL rather than using high values of interaction strength.

Determinism also influences the quality of generated tests. The CSP-dedicated approach

behaved consistently with respect to the satisfaction of the t-wise criteria. On the contrary,

the alloy-based approach is not necessarily reaching this optimum, but generates

‘‘extreme’’ test suites which can be sought after (e.g. highly similar test configurations)

depending on tester needs.

6.1.3 T-wise support

Both approaches are dealing with t-wise generation, and we applied them for pairwise and

3-wise. The method followed by the alloy-based approach is generic, and the strategies do not

depend on the value of t, which can be set at any arbitrary value. Yet, in practice, we run into

scalability and performance issues for the pairwise and 3-wise cases, suggesting that higher

value of t may not be practically supported. The CSP-dedicated approach performs well on

pairwise and 3-wise but requires some adaptation for t [ 3. The algorithm executes a lot of

different operations on the list of parameter/value combinations and on the list containing the

pairs of values that need to be covered. The algorithm with T \ 3 operates on hashmap/

hashset combinations, and the algorithm handling T [ 3 operates on ordinary lists. Hence, the

latter thus much slower. We are currently working on further optimizations for T [ 3.

6.1.4 About measures

While we believe that measures are helpful to determine the merits and issues of test

generation approaches, we should not forget that they also witness some specific charac-

teristics inherent to the model under study and the coverage criteria. For example, tuple

occurrence is a good indicator of the pairwise coverage criteria. Similarity measures have

to be interpreted carefully. As shown by Hemmati et al. (2011), high similarity may both

be considered negatively (dissimilar test cases detect different faults) or positively (for

diagnosis purpose, similar test cases may help diagnose the location of an error), depending

on the testing context (validation or diagnosis). So, when a test suite is said to be better

than another because the generated products are dissimilar, we implicitly consider that

these products are used in a validation context.

6.1.5 Threats to validity

We tried to be as ‘‘fair’’ as possible in this extension regarding the strategies and measures

considering the original paper in which they were initially published (Perrouin et al. 2010).

Software Qual J

123



Having a competing approach was fruitful in the sense that we could verify each other

implementation on the same examples. This increases confidence in the trends initially sketched

and confirms the applicability of the measures initially defined and generalized in this article.

We mitigated external validity threats by applying our toolsets on several examples and

detailing two in this paper. However, performance issues of alloy-based strategies did not

allowed us to perform experiments for the arcade game feature model as thoroughly as it

was possible for the cell phone one. However, we believe the examples chosen are rep-

resentative of typical feature models. For example, considering the SPLOT online repos-

itory statistics5, the feature models chosen are balanced with respect to the mean number of

features and constraints.

6.2 Additional comparison points

In the following, we discuss additional points that are related to our experience using the

toolsets.

6.2.1 Expressivity

Table 10 summarizes the commonalities and differences regarding feature modeling

support. The alloy-based approach is more expressive in the sense that it natively supports

cardinalities, complex constraints, or the possibility for a feature to have multiple parents.

We are not claiming that this difference in the types of models the two approaches can

handle are related to their underlying technologies. It is rather a choice derived from the

generic against specific design philosophy.

6.2.2 Usability

Both approaches were designed with the same usability goal: make CIT approaches
accessible to the SPL tester who is not a CSP/SAT-solving specialist. However, as men-

tioned in Sect. 5, the alloy-based strategies require to set value for the alloy scope and a

timeout value to be used at each step of the ‘‘divide-and-compose’’ algorithm. The CSP-

dedicated approach works fully automatically without having any parameter to set, which

is better from a usability perspective.

6.2.3 Which approach to choose from ?

These characteristics witness two design philosophies. If a ready-to-use and predictable

solution is needed for industrial purposes, then the CSP-dedicated approach is the best

choice. If an academic is more interested by evaluating different strategies and see how the

quality of the generated results evolves with respect to some parameters, then the alloy-

based framework will provide support for such evaluations.

7 Related work

The work related to our research covers SPL testing approaches as well as combinatorial

testing and transformations of the feature model.

5 http://www.splot-research.org/.

Software Qual J

123

http://www.splot-research.org/


7.1 SPL testing

Concerning test generation for PL (1), McGregor (2001) and Tevanlinna et al. (2004)

propose a well-structured overview of the main challenges for testing product lines. SPL

testing approaches can roughly be divided in two categories, product-focused testing and

SPL-focused testing. The first category considers a bottom-up approach in which products

derived from feature configurations are successively tested. The second category of

approaches works top-down from the product line level to extract relevant configurations

and derive test cases from them. We cover these two categories with a special emphasis for

the latter, in which our research fits in.

7.1.1 Product-focused testing

Studying related work focusing on SPL testing, we identified two common practices:

‘‘SPL-ignorant’’ techniques: These approaches do not take into account commonalities

and variabilities between family members to perform testing. Rather, they consider testing

each member individually in an independent way using general testing methods. In

Tevanlinna et al. (2004), the authors refer to this approach as product-by-product testing.

However, considering the number of derivable products of today’s SPLs, this approach is

unpractical. This expected result has been confirmed empirically (Ganesan et al. 2007).

Reuse-Techniques: Methods of this category utilize reuse-techniques to reduce the test

effort. These approaches either make use of regression testing techniques to incrementally

test products or realize the reuse of domain tests during application testing. Reusing

domain tests created during domain engineering for product tests is a very popular

approach especially in the model-based testing community. A summary of model-based

testing approaches for SPLs can be found in Oster et al. (2011). Uzuncoava et al. (2008)

use alloy to generate a test suite incrementally from the specification of a product, directly

modeled as alloy formulae. The interesting point in this work is that tests are reused from

one product to another in a cumulative way. Hence, such a product-focused approach

allows to perform cumulative coverage as described in Cohen et al. (2006). However, even

when they efficiently take the SPL’s features to minimize the testing effort, they do require

a particular product to start with. Our approaches do not require such an ‘‘initial’’ product

to generate test configurations. Yet, the CSP-dedicated approach is able to take into

account already tested configurations into account to complete them with t-wise based

generation.

7.1.2 SPL-focused testing

Subset-Heuristics: This approach aims at reducing the effort for testing by extracting a

subset of feature combinations or products. Instead of testing every product of the SPL, a

Table 10 Expressivity support for input feature models

CSP-based Alloy-based

Cardinalities - ?

Multiple parents - ?

Binary constraints ? ?

N-ary constraints - ?

Software Qual J

123



subset for testing is created. We identified two different methodologies: methods gener-

ating a subset of representative products for testing purposes for the whole SPL, and

approaches using combinatorial testing. In Scheidemann (2007), the author introduces an

approach generating a representative set for each requirement. The major disadvantage of

this approach is the fact that it does not scale with real-world SPLs and that the effort to set

up the representative set is enormous. In Yoon et al. (2007), the authors propose a method

to generate test plans covering user-specified portions of the huge number of possible

configurations of a component-based software system.

7.2 Combinatorial testing

McGregor initially introduced combinatorial testing to SPLs in McGregor (2001). How-

ever, he neither describes how combinatorial testing may be applied to SPLs nor describes

how SPL models like FMs or OVMs can be mapped onto an appropriate representation to

apply existing combinatorial testing algorithms.

Cohen et al. use the OVM approach to model the variable and common parts of the SPL

which are mapped onto a relational model. This relational model serves as a semantic basis

for defining coverage criteria for the SPL under test (Cohen et al. 2006). Furthermore,

Cohen et al. describe the development of combinatorial interaction testing (CIT) achieving

a desired level of coverage. Kuhn et al. (2004) led to the definition of pairwise testing and,

then, its generalization to t-wise testing. Cohen et. al. have applied CIT to systematically

select configurations/products (2006) that should be tested. They consider various algo-

rithms in order to compute configurations that satisfy pairwise and t-wise criteria (Cohen

et al. 2007).

Our two implementations regarding combinatorial testing differ in the following ways:

– (t-wise:) goes along the same lines but deals with scalability of the test generation,

noting that CIT?SAT approaches do not scale directly with real-case feature diagrams,

such as the AspectOPTIMA SPL example.

– CSP-based: combines graph transformation, a well-known pairwise algorithm associ-

ated with forward checking, to generate a set of products achieving 100% pairwise

interaction coverage in the whole SPL on the basis of the corresponding FM. The

reason for choosing a CSP approach for pairwise testing is that we want to apply this

approach to the FMT approach that utilizes large ranges of values. Especially for such

problems, a CSP-based approach seems to be a natural choice (Bennaceur 2004;

Westphal and Wölfl 2009).

7.3 Feature model translation

Since both approaches are based on feature modeling, we provide related work to our

translation algorithms.

7.3.1 Cartesian flattening

In White et al. (2009), the authors realize a Cartesian flattening of FMs, which is a similar

to our flattening algorithm. There, the motivation is to translate the FM into a knapsack

problem which is then used to generate highly optimal architectural variants/products of

the SPL. There are some significant differences to our flattening approaches: In White

Software Qual J

123



et al. (2009), cardinality groups (or-groups in our approach) are translated into an XOR

(alternative group in our approach) with a maximum number boundary.

For testing purposes, all valid feature combinations need to be identified. We lose

semantic equivalence between the original FM and the flat FM if we use a boundary,

limiting the maximum number of combinations. In White et al. (2009), a different rule for

flattening an alternative group beneath an alternative parent node is presented. Figure 15

shows an abstract example used in White et al. (2009).

In the Cartesian flattening approach, the features N and O are merged with its parent

node. Let us now assume that the parent feature L is required by some other feature X. The

feature X would then require L,N XOR L,O. As you can imagine, this dependency relation

cannot be captured using a binary constraint such as the ones we support in our subset

extraction algorithm. Because of distinct needs, White et al. apply different transformation

rules to prepare the FM for their algorithms. This approach offers additional evidence that

it is possible to change the structure of the FM to apply well-known algorithms for

different purposes. Unfortunately, due to fact that not all rules keep semantic equivalence,

we cannot apply this method for our t-wise approaches.

7.3.2 Feature model into alloy

We choose a model-driven technique to automatically map a feature diagram into an alloy

input format. The user of the approach can thus manipulate directly feature diagrams and

transform them directly in alloy. A formalization for feature models in alloy can be found

in Gheyi and Borba (2006), but is not dedicated to testing, and feature diagrams have to be

written by hand. Our work focuses on testing the SPL as whole rather than individual

products. Indeed, these techniques of SPL testing are complementary; our approaches

focus on automated selection of products, which can then be individually tested.

8 Conclusion

As software product line engineering is taking momentum in software engineering, testing

software product lines is of growing importance. A particular problem in SPL testing is the

number of test cases to consider, which increases exponentially with the number of features

the SPL owns. In this article, we focus on reducing the number of test cases in a product

line context. In particular, we compared two approaches (CSP-dedicated, alloy-based) for

test cases reduction both based on t-wise interaction testing.

K

N O

L

G G

K L N O ¬L

G

K LN LO

MoSo-PoLiTe
FlatteningCartesian Flattening

exclude

require

Fig. 15 Comparison of the flattening approaches of an alternative parent with alternative-child elements

Software Qual J

123



At first sight, both approaches are functionally equivalent from the t-wise testing per-

spective, since they provide the same guarantee in terms of pairwise interaction coverage:

they ensure that all valid pairs of features with regard to the feature model notation,

dependencies, and hierarchy are tested together. Furthermore, both approaches have the

main advantage that the test suite consists of configurations that can be tested using well-

known single system test methods from the software engineering community. In order to

make the comparison possible, we provide a set of metrics, capturing the number of

generated test configurations (the test effort) and the similarity degrees between these test

configurations.

However, while functionally equivalent, comparing the different philosophies using

these metrics, some major differences were identified. Compared to alloy-based strategies,

the CSP-dedicated philosophy:

– is deterministic and more stable and finds a better/smaller solution

– is focused on pairwise and 3-wise interaction testing, but could be adapted to higher

interaction strengths. The alloy-based testing approach is independent of the value of t.
– currently only supports binary constraints between features. Thus, n-ary constraints

cannot be solved by the dedicated CSP approach. This is a drawback compared to a

more generic toolset, like alloy offers.

– is much faster, especially on large/highly constrained feature models. While pragmatic,

alloy-based strategies failed to produce quality results in due time. Several

improvements could be envisioned such as conversion of the feature model in alloy

or the usage of atomic sets (Benavides et al. 2010). Yet, issues that emerged from the

comparison are severe enough to require redesigning this alloy-based approach from

the start.

This work opens two main research perspectives. First, we would like to extend our

comparison approach and metrics in a fully-fledged evaluation framework to assess various

CIT-based solutions for SPL testing. We are convinced that detailed evaluation of these

techniques is the key to gaining confidence in CIT-based approaches and toolsets and so

help such toolsets permeate SPL testing practice.

Second, we outlined two strategies to deal with scalability: one working a priori by

optimizing the feature model and its flattening, and the other a posteriori by providing

‘‘divide-and-compose’’ strategies decomposing the problem in smaller solvable problems.

Although such strategies can significantly degrade the quality of generated results, they

may be the last option if a priori optimization failed. We would like to investigate the

combination of a priori and a posteriori philosophies on very large feature models such as

the linux kernel (Berger et al. 2010) with more than 6000 features or with additional

elements, such as attributes or priorities.

Acknowledgments The authors would like to thank Professor Andy Schürr for his valuable comments on
the paper. This research was partly funded by the NAPLES project funded by the Walloon Region
(Belgium).

References

Batory, D. S. (2005). Feature models, grammars, and propositional formulas. In: Software product line
conference (SPLC) (pp. 7–20).

Batory, D., Benavides, D., & Ruiz-Cortés, A. (2006). Automated analysis of feature models: Challenges
ahead. Communications of the ACM.

Software Qual J

123



Benavides, D., Segura, S., & Ruiz-Cortés, A. (2010). Automated analysis of feature models 20 years later: A
literature review. Information Systems, 35(6), 615–636.

Bennaceur, H. (2004). A comparison between SAT and CSP techniques. Constraints, 9(2), 123–138.
Berger, T., She, S., Lotufo, R., Wasowski, A., & Czarnecki, K. (2010). Variability modeling in the real: A

perspective from the operating systems domain. In: Proceedings of the IEEE/ACM international
conference on automated software engineering (pp. 73–82). New York, NY, USA: ACM, automated
software engineering conference (ASE) ’10.

Bryce, R., & Colbourn, C. (2009). A density-based greedy algorithm for higher strength covering arrays.
Software Testing, Verification and Reliability, 19(1), 37–53.

Bryce, R. C., & Colbourn, C. J. (2006). Prioritized interaction testing for pair-wise coverage with seeding
and constraints. Information and Software Technology, 48(10):960–970, advances in Model-based
Testing.

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., & Grose, T. (2003). Eclipse modeling framework. The
Eclipse Series, Addison Wesley Professional.

Calvagna, A., & Gargantini, A. (2009). Combining satisfiability solving and heuristics to constrained
combinatorial interaction testing. In: International conference on tests and proofs (pp. 27–42). Berlin,
Heidelberg: Springer.

Calvagna, A., & Gargantini, A. (2008). A logic-based approach to combinatorial testing with constraints. In
Beckert, B., Hähnle, R., (Eds.), Tests and proofs (Vol. 4966, pp. 66–83). Berlin/Heidelberg: Springer,
Lecture Notes in Computer Science.

Cartaxo, E. G., Machado, P. D. L., & Neto F. G. O. (2011). On the use of a similarity function for test case
selection in the context of model-based testing. Software Testing, Verification & Reliability, 21,
75–100.

Classen, A., Heymans, P., & Schobbens, P. (2008). What’s in a feature: A requirements engineering
perspective. In Proceedings of the theory and practice of software, 11th international conference on
fundamental approaches to software engineering (pp. 16–30). Springer.

Clements, P., & Northrop, L. (2001a). Software product lines: Practices and patterns. Reading, MA, USA:
Addison Wesley.

Clements, P., & Northrop, L. (2001b). Software product lines: practices and patterns. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.

Cohen, M., Dwyer, M., & Shi, J. (2007). Interaction testing of highly-configurable systems in the presence
of constraints. In International symposium on software testing and analysis (Vol. 4961/2008,
pp. 129–139).

Cohen, M. B., Dwyer, M. B., & Shi, J. (2006). Coverage and adequacy in software product line testing. In
ROSATEA@ISSTA (pp. 53–63).

Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). The AETG system: An approach
to testing based on combinatorial design. IEEE Transactions on Software Engineering, 23(7),
437–444.

Czarnecki, K., Wasowski, A. (2007). Feature diagrams and logics: There and back again. In 11th software
product line conference (pp. 23–34). Kyoto, Japan: IEEE Computer Society.

Czarnecki, K., & Antkiewicz, M. (2005). Mapping features to models: A template approach based on
superimposed variants. In Generative programming and component engineering (GPCE) (Vol. 3676,
pp. 422–437). Springer, LNCS.

Czarnecki, K., Helsen, S., & Eisenecker, U. (2005). Formalizing cardinality-based feature models and their
specialization. Software Process Improvement and Practice, 10(1), 7–29.

Ganesan, D., Knodel, J., Kolb, R., Haury, U., & Meier, G. (2007). Comparing costs and benefits of different
test strategies for a software product line: A study from testo ag. In: 11th International software
product line conference (pp. 74–83). Los Alamitos, CA, USA: IEEE Computer Society.

Griss, M. L., Favaro, J., & d’ Alessandro, M. (1998). Integrating feature modeling with the RSEB. In Fifth
international conference on software reuse (pp. 76–85). Washington, DC, USA.

Haralick, R., & Elliott, G. (1980). Increasing tree search efficiency for constraint satisfaction problems.
Artificial Intelligence, 14(3), 263–313.

Hemmati, H., & Briand, L. (2010). An industrial investigation of similarity measures for model-based test
case selection. In International symposium on software reliability engineering (ISSRE) (pp. 141–150).
Los Alamitos, CA, USA: IEEE Computer Society.

Hemmati, H., Arcuri, A., & Briand, L. (2010). Reducing the cost of model-based testing through test case
diversity. In 22nd IFIP international conference on testing software and systems (ICTSS)— formerly
TestCom/FATES (Vol. 6435/2010, pp. 63–78).

Software Qual J

123



Hemmati, H., Arcuri, A., & Briand, L. (2011). Empirical investigation of the effects of test suite properties
on similarity-based test case selection. In 4th international conference on software testing, verification
and validation (ICST) (pp. 327–336), Berlin, Germany.

Jackson, D. (2006). Software abstractions: Logic, language, and analysis. MIT Press: Cambridge.
Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. (1990). Feature-oriented domain analysis (FODA)

feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute.
Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M. (1998). FORM: A feature-oriented reuse method

with domain-specific reference architectures. Annals of Software Engineering, 5, 143–168.
Kuhn, R., Lei, Y., Kacker, R. (2008). Practical combinatorial testing: Beyond pairwise. IT Professional, 10,

19–23. http://doi.ieeecomputersociety.org/10.1109/MITP.2008.54.
Kuhn, D. R., Wallace, D. R., & Gallo, A. M. (2004). Software fault interactions and implications for

software testing. IEEE Transactions on Software Engineering, 30(6), 418–421.
Lei, Y., & Tai, K. (1998). In-parameter-order: A test generation strategy for pairwise testing. In IEEE high

assurance systems engineering symposium (pp. 254–261).
Lei, Y., Kacker, R., Kuhn, D., Okun, V., & Lawrence, J. (2008). IPOG/IPOG-D: Efficient test generation for

multi-way combinatorial testing. Software Testing, Verification and Reliability, 18(3), 125–148.
Mahajan, Y. S., Fu, Z. S. M. (2004). Zchaff2004: An efficient sat solver. In SAT 2004 (pp. 360–375).
McGregor, J. (2001). Testing a software product line. Tech. Rep. ESC-TR-2001-022, CMU/SEI.
Mendonça, M., Wasowski, A., & Czarnecki, K. (2009). Sat-based analysis of feature models is easy. In 13th

international software product line conference (SPLC) (pp. 231–240). San Francisco, CA, USA.
Mendonca, M., Branco, M., & Cowan, D. (2009). SPLOT: Software product lines online tools. In Pro-

ceeding of the 24th ACM SIGPLAN conference companion on object oriented programming systems
languages and applications (pp. 761–762). ACM.

Metzger, A., Pohl, K., Heymans, P., Schobbens, P. Y., & Saval, G. (2007). Disambiguating the docu-
mentation of variability in software product lines: A separation of concerns, formalization and auto-
mated analysis. In IEEE conference on requirements engineering (pp. 243–253). Delhi, India: IEEE
Computer Society.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., & Troyansky, L. (1999). Determining computa-
tional complexity from characteristic phase transitions. Nature, 400(6740), 133–137.

MoSo-PoLiTe (2011). http://www.sharq.tu-darmstadt.de/projects/mosopolite/. Accessed 8th April 2011.
Muller, P. A., Fleurey, F., & Jézéquel, J. M. (2005). Weaving executability into object-oriented meta-

languages. In MODELS/UML. Springer.
Niklas, E., & Niklas, S. (2005). MiniSat: A SAT solver with conflict-clause minimization, poster. In SAT

2005.
Oster, S., Markert, F., & Ritter, P. (2010). Automated incremental pairwise testing of software product lines.

In Bosch, J., & Lee, J. (Eds.), Software product line conference (SPLC) (Vol. 6287, pp. 196–210).
Springer, Lecture Notes in Computer Science.

Oster, S., Wübbeke, A., Engels, G., & Schürr, A. (2011). Model-based software product lines testing survey.
In Zander, J., Schieferdecker, I., & Mosterman, P. (Eds.), Model-based testing for embedded systems.
CRC Press Taylor & Francis, to appear on September 9th, 2011.

Perrouin, G., Klein, J., Guelfi, N., & Jézéquel, J. M. (2008). Reconciling automation and flexibility in
product derivation. In Software product line conference (SPLC) (pp. 339–348). Limerick, Ireland:
IEEE Computer Society.

Perrouin, G., Sen, S., Klein, J., Baudry, B., & le Traon, Y. (2010). Automated and scalable t-wise test case
generation strategies for software product lines. In International conference on software testing,
verification, and validation (ICST) (pp. 459–468). IEEE Computer Society, Paris, France.

Phadke, M. (1995). Quality engineering using robust design. Upper Saddle River, NJ, USA: Prentice Hall
PTR

Pohl, K., Böckle, G., & van der Linden. F. J. (2005). Software Product Line Engineering: Foundations,
Principles and Techniques. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Gheyi, R. T. M., & Borba, P. (2006). A theory for feature models in alloy. In First alloy workshop
(pp. 71–80).

Scheidemann, K. (2007). Verifying families of system configurations. Doctoral Thesis TU Munich.
Schobbens, P. Y., Heymans, P., Trigaux, J. C., & Bontemps, Y. (2006). Feature diagrams: A survey and a

formal semantics. In Requirements engineering, IEEE international conference on (pp. 139–148).
Schobbens, P., Heymans, P., Trigaux, J., & Bontemps, Y. (2007). Generic semantics of feature diagrams.

Computer Networks, 51(2), 456–479.
Tan, P., Steinbach, M., Kumar, V., et al. (2006). Introduction to data mining. Boston: Pearson Addison

Wesley

Software Qual J

123

http://doi.ieeecomputersociety.org/10.1109/MITP.2008.54
http://www.sharq.tu-darmstadt.de/projects/mosopolite/


Tevanlinna, A., Taina, J., & Kauppinen, R. (2004). Product family testing: A survey. SIGSOFT Software
Engineering Notes, 29(2), 12–12.

Torlak, E., & Jackson, D. (2007). Kodkod: A relational model finder. In Tools and algorithms for con-
struction and analysis of systems (Vol. 4424/2007, pp. 632–647).

Uzuncaova, E., Garcia, D., Khurshid, S., & Batory, D. (2008). Testing software product lines using
incremental test generation. In ISSRE (pp. 249–258). IEEE Computer Society.

Westphal, M., & Wölfl, S. (2009). Qualitative csp, finite csp, and sat: Comparing methods for qualitative
constraint-based reasoning. In IJCAI’09: Proceedings of the 21st international jont conference on
artificial intelligence (pp. 628–633). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

White, J., Dougherty, B., & Schmidt, D. C. (2009). Selecting highly optimal architectural feature sets with
filtered cartesian flattening. Journal of Systems and Software, 82(8), 1268–1284.

Yoon, I., Sussman, A., Memon, A., & Porter, A. (2007). Direct-dependency-based software compatibility
testing. In Automated software engineering conference (ASE) (pp. 409–412). Atlanta, Georgia, USA.

Ziadi, T., & Jézéquel, J. M. (2006). Product line engineering with the UML: Deriving products. In Families
research book. Springer.

Author Biographies

Gilles Perrouin is currently a postdoctoral researcher at the Faculty of
Computer Science, University of Namur (FUNDP), Belgium. He is a
member of the PReCISE research centre, in which he explores Soft-
ware Product Lines, Modelling, Requirements Engineering and Test-
ing. Dr. Gilles Perrouin also serves regularly as a (co)-referee for
journals and conferences. Dr. Gilles Perrouin holds a joint PhD Degree
from the University of Luxembourg and Namur.

Sebastian Oster was born in Hamburg, Germany in November, 1981.
He studied Computer Science at the University of Duisburg-Essen and
received his Diploma in August, 2007. Currently, he is a research
associate at the Technische Universität Darmstadt finishing is doctoral
thesis. His main research activities are in the field of Software Product
Line engineering, model-based testing and quality assurance.

Software Qual J

123



Sagar Sen obtained a PhD from the University of Rennes 1, France
and M.Sc. from McGill Univeristy, Montreal, Canada as a Common-
wealth Fellow. He has a Postdoc from INRIA Sophia-Antipolis, France
on applying MDE techniques and formal methods to computer vision
systems. Here he supervised projects to develop software prototypes
for self-adaptive computer vision. Currently, he is a Research Fellow at
Ecole des Mines, Nantes. His research interests are in model-driven
software development/validation, software product lines, scaling for-
mal methods, and their application to other domains such as computer
vision.

Jacques Klein In 2003, Dr. Jacques Klein received an engineering
degree in Computer Science from the ESSAIM (ENSISA) and a
Master in Computer Science from the University of Haute-Alsace,
France. He received a PhD degree in Computer Science from the
University of Rennes, France in 2006 for a dissertation on the weaving
of behavioral models (UML) in a Model-Driven Engineering and
Product Line contexts. Part of his doctorate work has been to propose
new software engineering tools to reduce the cost and the risk of
software development by adapting software systems to wide ranges of
new contexts. In 2007/2008, he worked for two years at the University
of Luxembourg as a scientific collaborator. He participated in the
SPLIT project to propose new transformation languages to support
software product lines. He is also participating in the VERITY project
to ease the design of reliable software systems. Finally, he successfully
proposed two research projects, one on the security testing of resilient
systems and one on the mix of SPL and AOSD. In 2009, he moved to a

full time position at the CRP-Gabriel Lippmann, Belvaux, Luxembourg, to work on several IT projects as
project manager. He worked in the ISC department of the CRP-Gabriel Lippmann. One of the main research
topics of the research centre is to foster the development of high-value added business services by using
Service-Oriented Architecture (SOA). In March 2010, he came back to the University of Luxembourg to
work in the team of the Prof. Yves Le Traon.

Benoit Baudry received his PhD in computer science from the Uni-
versity of Rennes, France in 2003. He first worked at CEA (French
government nuclear agency) before joining INRIA in 2004. He is now
a researcher in software engineering in the Triskell team at INRIA
Rennes Bretagne Atlantique. In 2008 he was an invited scientist at
Colorado State University. His research interests include software
testing, aspect-oriented software development, model transformation
and model-driven development. He is the vice-chair of the steering
committee of the International Conference on Software Testing Veri-
fication and Validation. He is a member of the IEEE and the IEEE
Computer Society.

Software Qual J

123



Yves le Traon is professor at University of Luxembourg in the domain
of software engineering, reliability, validation and security. He is also
a member of the Interdisciplinary Centre for Security, Reliability and
Trust (SnT), where he leads the joint research group SERVAL
(SEcuRity and VALidation of services and networks). His research
interests include OO testing, design for testability, model-driven val-
idation, model based testing, evolutionary algorithms and software
measurement. Professor Le Traon received his engineering degree and
his PhD in Computer Science at the ‘‘Institut National Polytechnique’’
in Grenoble, France, in 1997. From 1998 to 2004, he was an associate
professor at the University of Rennes, in Brittany, France. He is the co-
founder of the Triskell INRIA team, which focuses on innovating
design, modeling and testing techniques, such as Model-driven Engi-
neering. During this period, Professor Le Traon studied design for
testability techniques, validation and diagnosis of object-oriented
programs and component-based systems. From 2004 to 2006, he was

an expert in Model-Driven Architecture and Validation in the EXA team (Requirements Engineering and
Applications) at ‘‘France Télécom R&D’’. In 2006, he became professor at Telecom Bretagne (Ecole
Nationale des Télécommunications de Bretagne) and led the SERVAL team (Validation and Security of
Services and Networks), where he pioneered the application of testing for security assessment of web-
applications, P2P systems and the promotion of intrusion detection systems using contract-based techniques.
He is author of more than 90 publications in international journals and conferences.

Software Qual J

123


	Pairwise testing for software product lines: comparison of two approaches
	Abstract
	Introduction
	Contribution
	Outline

	Background
	Context and example
	Feature modeling and SPL testing
	SPL test case
	SPL test configuration
	SPL test configuration suite
	Valid/Invalid t-Tuple
	SPL test adequacy criterion
	Test generation


	Two approaches for t-wise testing
	Alloy-based approach (Perrouin et al. 2010)
	Step 1: transforming feature diagrams to alloy
	Example

	Step 2: generation of tuples
	Step 3: detection of valid tuples
	Step 4: creating and solving conjunctions of multiple tuples
	Binary split
	Incremental growth

	Step 5: analysis

	Dedicated CSP-based approach (Oster et al. 2010)
	CSP Translation


	Comparison framework
	Performance
	Test suite size
	t-Tuple occurrence and frequency
	Test configuration similarity
	Test suite similarity

	Experimentation
	Case studies validation
	Experiment design
	2-wise testing
	Execution times
	Test suite size
	Cell phone
	Arcade game

	t-Tuple occurrence and frequency
	Cell phone
	Arcade game

	Similarity
	Cell phone
	Arcade game


	Beyond pairwise
	Execution times
	Test suite size
	t-Tuple occurrence and frequency
	Cell phone
	Arcade game

	Test suite similarity
	Cell phone
	Arcade game



	Synthesis
	Synthesis
	Execution times and scalability
	Quality of generated tests
	T-wise support
	About measures
	Threats to validity

	Additional comparison points
	Expressivity
	Usability
	Which approach to choose from ?


	Related work
	SPL testing
	Product-focused testing
	SPL-focused testing

	Combinatorial testing
	Feature model translation
	Cartesian flattening
	Feature model into alloy


	Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


