
Advances in Model-Driven Security

Levi Lúcio1, Qin Zhang1, Phu H. Nguyen1, Moussa Amrani1, Jacques
Klein1, Hans Vangheluwec, Yves Le Traon1

aModeling Simulation and Design Lab, McGill University, Montreal QC, Canada
bCentre for Security Reliability and Trust, University of Luxembourg, Luxembourg

cAntwerp Systems and Software Modeling, University of Antwerp, Antwerp, Belgium

Abstract

In this paper we summarize the most important developments of Model
Driven Security during the past decade. In order to do so we start by build-
ing a taxonomy of the most important concepts for this domain. We then use
our taxonomy to describe and evaluate a set of representative and influen-
tial Model Driven Security approaches in the literature. In our development
of this topic we concentrate on the concepts shared by Model Driven Engi-
neering and Model Driven Security. This allows us to identify and debate
the advantages, disadvantages and open issues when applying Model Driven
Engineering to the Information Security domain.

Keywords: Information Security, Model Driven Security, Model Driven
Engineering, Separation of Concerns, Survey

1. Introduction

The world is becoming more and more digital. On the one hand, advances
in computers and information technology bring us many benefits. On the
other hand, information security is becoming more and more crucial and
challenging. Few days pass without new stories in the newspapers about
malware, software vulnerabilities, botnet attacks, etc. Thus, information

Email addresses: levi@cs.mcgill.ca (Levi Lúcio), qin.zhang@uni.lu (Qin
Zhang), phuhong.nguyen@uni.lu (Phu H. Nguyen), moussa.amrani@uni.lu (Moussa
Amrani), jacques.klein@uni.lu (Jacques Klein), hv@cs.mcgill.ca (Hans
Vangheluwe), yves.letraon@uni.lu (Yves Le Traon)

Preprint submitted to Advances in Computers October 5, 2013



security is a significant issue in computer science and keeps attracting the
interest of researchers and engineers (Howard and Lipner, 2006).

Security requirements for software are becoming more complex in order
to deal with the diverse and constantly changing threats. Given security
requirements are often tangled with functional requirements, it is di�cult
to integrate them properly in the traditional software development process.
Also, security requirements are rarely dealt with at the early stages of the
development process (Cysneiros and Sampaio do Prado Leite, 2002). Tra-
ditional methods for developing security-critical systems are thus becoming
increasingly ine�cient. Moreover, due to economic pressure, development
time is often short and the frequency of required modifications is high. This
leads in practice to many security defects that have been exploited and made
the headlines in the newspapers. All these issues show the need for more
timely, innovative, and sound methods in this area.

Model-Driven Security (Mds) has emerged more than a decade ago as
a specialized Model-Driven Engineering (Mde) approach for supporting the
development of security-critical systems. Mde has been considered by some
authors as a solution to the handling of complex and evolving software sys-
tems (Bezivin, 2006). The paradigm consists of electing models and trans-
formations as primary artifacts for each software development stage. By
manipulating models, engineers work a higher-level of abstraction than code.
Mds applies this paradigm to security engineering. There are several ben-
efits to this. First, Mds models security concerns explicitly from the very
beginning and throughout the development lifecycle. An Mds approach is
expected to deliver a complete secure system implementation, not only the
security infrastructure or the secure specification. Second, using models at a
higher-level than the final target platform and independently from business
functionality enables platform independence as well as cross-platform inter-
operability. Security experts can therefore focus on security-related issues,
instead of dealing with the technical problems of integrating those issues
in the system infrastructure. Third, Mds leverages on Mde automation
provided by model transformations such that human interference, which is
naturally error-prone, is reduced.

In this paper we start by summarizing the background theory of Mds in
the light of Mde. We then propose a taxonomy for Mds, based on which
we evaluate and discuss in depth five representative technical approaches
from the Mds research community. The main contributions of this work are:
1) a comprehensive taxonomy for Mds; and 2) an thorough evaluation and

2



discussion of some of today’s most relevant Mds approaches. The goal of
this paper is to help readers better understand Mds and, if needed, point a
potential Mds researcher or engineer towards an appropriate Mds approach
among the existing ones in the literature. Overall, we provide a broad picture
of research activities in Mds for the last decade.

The remainder of this paper is organized as follows. In Section 2, we in-
troduce some background information on Mde. Section 3 recall several Mds
definitions in the literature which help us to identify Mds approaches among
a mass of security-related research studies. Then, a set of characteristics of
Mds is identified and described in Section 3.2 in order to form a taxonomy
for further evaluation of Mds approaches. In Section 4 we describe a few
selected Mds approaches against our taxonomy. Section 5 summarizes the
result of our evaluation of the Mds approaches in a comparison table and
provides a discussion of our findings during this study. Finally, the paper
ends with some conclusive remarks in Section 7.

2. Model-Driven Engineering

Model Driven Engineering (Mde) encompasses both a set of tools and
a loose methodological approach to the development of software. The claim
behind Model Driven Engineering is that by building and using abstractions
of the processes the software engineer is trying to automate, the produced
software will be of better quality than by using a general purpose program-
ming languages (Gpl). The reasoning behind this claim is that abstractions
of concepts and of processes manipulating those concepts are easier to un-
derstand, verify and simulate than computer programs. The reason for that
is that those abstractions are close to the domain being addressed by the en-
gineers, whereas general Gpls are built essentially to manipulate computer
architecture concepts.

2.1. Models, Metamodels and Model Transformations

The central artifact in Mde is the model. A model in the computing
world is a simplification of a process one wishes to capture or automate. The
simplification is such that it does not take into account details that can be
overseen at a given stage of the engineering cycle. The purpose is to focus
on the relevant concepts at hand – much as for example a plaster model of a
car studying aerodynamicity will not take into account the real materials a
car is made of.

3



��
��
��
��

��
�	
�

�
��
��


�	�
���� 
�	�
����


�
�� �������

��
�	
�

�
��
��

��
�	
�

�
��
��

��
�	
�

�
��
��

��
�	
�

�
���
� ���	�
�

����

������
���	
����


�	����
���	
����


��	������	����
��������	����

��	������	����
���������

�����
����
���

������
����
���

���	
���	

����


��	������	����
�	���	��

Figure 1: The Model Transformation Process (adapted from Syriani, 2011)

In the computing world a model is defined by using a given language.
Coming back to the car analogy, if an engineer wishes to have a computa-
tional model of a car for 3D visualisation, a language such as the one defined
by a Computer Assisted Design (CAD) tool will be necessary to express
a particular car design. In the computing world several such languages –
called metamodels – are used to describe families of models of computational
artifacts that share the same abstraction concerns. Each metamodel is a
language (also called formalism) that may have many model instantiations,
much as in a CAD tool many di↵erent car designs can be described.

The missing piece in this set of concepts are Model Transformations.
Model transformations allow passing relevant information from one modeling
formalism to another and are, according to Sendall and Kozaczynski (Sendall
and Kozaczynski, 2003) the “heart and soul of model-driven software devel-
opment”. Model transformations have been under study from a theoretical
point a view for a number of years (see e.g. the work (Ehrig et al., 2006)),
but only recently have become a first class citizen in the the software develop-
ment world. Their need came naturally with the fact that Mde started to be
used professionally in some software development environments, e.g. software

4



for mobile phones or software for the automotive industry. Implementations
for transformation languages such as ATL (ATLAS, 2008), Kermeta (Muller
et al., 2005) or QVT (Grégoire Dupe et al.) have been developed in the
last few years and provide stable platforms for writing and executing model
transformations.

Model transformations can have multiple uses in Mde: for example, if it
becomes necessary to transform a Uml statechart into code a model trans-
formation can be seen as a compiler ; also, a transformation to translate the
statechart into a formalism amenable to verification by some existing tool
may be seen as a translator. These transformations clearly exist in tradi-
tional software development, although in an implicit fashion. Being that in
an Mde setting model transformations are responsible for translating models
from one formalism into another, it becomes important for the quality of the
whole software development process that those transformations are correct.
The validation, verification and testing of model transformations is currently
an active research topic as witnessed by the amount of recent publications
on the topic such as (Fabian Büttner et al., 2012; Esther Guerra et al., 2013;
Levi Lúcio et al., 2010; Gehan M.K. Selim et al., 2012a,b; Antonio Vallecillo
and Martin Gogolla, 2012).

2.2. Model-Driven Engineering Approaches

In this Section, we briefly detail the main approaches following the Mde
paradigm, namely Model-Driven Architecture, an early, Omg standard gen-
erative approach; Domain-Specific Modelling, an approach aiming at defin-
ing a language for each di↵erent domain that contributes to an applica-
tion; Multi-Paradigm Modeling, a generalisation of Domain-Specific Mod-
elling Languages where di↵erent models of computation interact; and Aspect-
Oriented Modelling, studying more precisely how di↵erent models can be
combined, or composed, together.

2.2.1. Model-Driven Architecture

Model-Driven Architecture (Mda) is an Omg proposal launched in 2001
to help standardise model definitions, and favor model exchanges and com-
patibility. The Mda consists of the following points (Kleppe et al., 2003):

• It builds on Uml, an already standardised and well-accepted notation,
already widely used in object-oriented systems. In an e↵ort to har-
monise notations and clean the uml internal structure, they proposed
Mof for coping with the plethora of model definitions and languages;

5



Figure 2: Model-Driven Architecture Overview (from Kleppe et al., 2003)

• It proposes a pyramidal construction of models 3: artifacts populating
the level M0 represents the actual system; those in the M1 level model
the M0 ones; artifacts belonging to the M2 level are metamodels, al-
lowing the definition of M1 models, and finally, the unique artifact at
the M3 level is Mof itself, considered as meta-circularly defined as a
model itself;

• Along with this pyramid, it enforces a particular vision of software
systems development seen as a process with the following step: re-
quirements are collected in a Computation Independent Model (CIM),
independently of how the system will be ultimately implemented; then
a Platform Independent Model (PIM) describes the design and anal-
ysis of all system parts, independently of any technical considerations
about the final execution platforms and their embedded technologies;
these are then refined into Platform Specific Models (Psm) and com-
bined with Platform Description Models (Pdm) to finally use model
transformations to reach the specific code running on the platform.

Mda promotes a vertical separation of concerns: the system is designed
at a high level, without any considerations about the target platform speci-
ficities; these specificities are then integrated within automated generators
to produce code compliant with each platform. This methodology directly

6



Figure 3: The Mda Pyramid

inspired several Mds proposals for enforcing security concerns within appli-
cations.

2.2.2. Domain Specific Modelling

A common way to tackle the increasing complexity of current software
systems consists in applying the “divide-and-conquer” approach: by dividing
the design activity into several areas of concerns, and focusing each one on
a specific aspect of the system, it becomes possible not only to raise the ab-
straction level of the produced specifications, with the immediate benefit of
raising the confidence attached to them, but also to make them closer to each
domains experts, which facilitate the control of the produced artifacts, and
sometimes even delegating their creations to these experts. Within Mde,
Domain-Specific Modelling (Dsm) becomes a key methodology for the e↵ec-
tive and successful specification of such systems. This methodology makes
systematic use of Domain-Specific Modelling Languages (Dsmls, or Dsls for
short) to represent the various artifacts of a system, in terms of models. The
idea is simple: focusing designers e↵orts on the variable parts of the design
(e.g., capturing the intricacies of a new insurance product), while the un-
derlying machinery takes care of the repetitive, error-prone, and well-known
processes that make things work properly within the whole system.

A well-known white paper on the subject from Metacase (2009) presents
annecdotal evidence that Dsls can boost productivity up to 10 times, based

7



on experiences with developing operating systems for cell phones for NokiaTM

and LucentTM . These encouraging results pushed the scientific community
to investing further this topic, and build environments to facilitate the con-
struction, management and maintenance of Dsls. This e↵ort has been ma-
terialised with concrete frameworks: EMF and GMF (Moore et al., 2004),
AToM3 (de Lara and Vangheluwe, 2002) or Microsoft’sTM DSL Tools (Cook
et al., 2007), among others.

2.2.3. Multi-Paradigm Modelling

Multi-Paradigm Modeling (Mpm), as introduced in (Mosterman and Vangheluwe,
2004), is a perspective on software development that advocates not only that
models should be built at the right level of abstraction regarding their pur-
pose, but also that automatic model transformations should be used to pass
information from one representation to another during development. In this
case it is thus desirable to consider modeling as an activity that spans dif-
ferent models, or paradigms. The main advantage that is claimed of such an
approach is that the software engineer can benefit from the already existing
multitude of languages and associated tools for describing and automating
software development activities – while pushing the task of transforming data
in between formalisms to specialized machinery.

To make this idea more concrete, one may think of a Uml statechart
model representing the abstract behavior of a software system being con-
verted into a Java model for execution on a given platform; or of the same
statechart being transformed into a formalism that is amenable for verifica-
tion. Another possible advantage of this perspective on software development
is the fact that toolsets for implementing a particular software development
methodology become flexible. This is due to the fact that formalisms and
transformations may be potentially plugged in and out of a development
toolset given their explicit representation.

The idea of Multi-Paradigm Modeling is close to the idea of Model Driven
Architecture (Mda): in Mpm the emphasis is mainly on the fact that sev-
eral modeling paradigms are employed at the right level of abstraction dur-
ing software development; Mda is rather focused on proposing a systematic
methodology where a set of model transformations are chained in order to
pass from a set of requirements for a system to software to be run on a given
platform. Mda can thus be seen as an instance of Mpm.

8



2.2.4. Aspect-Oriented Modelling

In Mds, when specified in isolation, security models can be composed
into a business model (or target model) using Aspect-Oriented Modelling
(Aom) techniques (including model composition).

Modularisation of crosscutting concerns has been popularised by the As-
pectJ programming language (Kiczales et al., 1997), but there is a growing
interest in also handling them earlier in the software life-cycle, for instance
at design time (Clarke, 2001), or during requirements analysis (Jacobson
and Ng, 2004). Aosd follows the well-known Roman principle of divide and
conquer. Put another way, separation of concerns is a long-standing idea
that simply means a large problem is easier to manage if it can be broken
down into pieces; particularly so if the solutions to the sub-problems can
be combined to form a solution to the large problem. More specifically,
Aosd aims at addressing crosscutting concerns (such as security, synchro-
nisation, concurrency, persistence, response time, . . . ) by providing means
for their systematic identification, separation, representation and composi-
tion. Crosscutting concerns are encapsulated in separate modules, known as
aspects. Once the di↵erent aspects are specified, they can be assembled to
build the whole application. This mechanism of integration is called weaving.
Generally, the weaving process is decomposed into two phases: a phase of
detection, where a part of an aspect (called pointcut) is used as a predicate
to find all the areas in a model (called base model) where the aspects have
to be woven; and a phase of composition, where a second part of the aspect
(called advice) is composed or merged with the base model at the previously
detected areas (called join points).

Currently several techniques exist to represent, compose or weave aspects
at a modelling level. Clarke and Baniassad (2005) define an approach called
Theme/Uml. It introduces a theme module that can be used to represent a
concern at the modelling level. Themes are declaratively complete units of
modularisation, in which any of the diagrams available in the UML can be
used to model one view of the structure and behaviour the concern requires
to execute.

France et al. (August 2004); Raghu Reddy et al. (2006) propose a sym-
metric model composition technique that supports composition of model el-
ements that present di↵erent views of the same concept. This composition
technique has been implemented in a tool called Kompose (Fleurey et al.,
2007). The model elements to be composed must be of the same syntactic

9



type, that is, they must be instances of the same metamodel class. An aspect
view may also describe a concept that is not present in a target model, and
vice versa. In these cases, the model elements are included in the composed
model. The process of identifying model elements to compose is called ele-
ment matching. To support automated element matching, each element type
(i.e., the elements meta-model class) is associated with a signature type that
determines the uniqueness of elements in the type space: two elements with
equivalent signatures represent the same concept and thus are composed.

Similar contributions follow the same lines and develop specific weaving
techniques: either based on behavioral aspects (Whittle and Araújo, 2004;
Cottenier et al., 2007; Klein et al., 2007, 2006), or on generic weavers that
can be applied to any modelling language with a well-defined meta model:
e.g., Mata (Whittle et al., 2009), SmartAdapter (Morin et al., 2009), Geko
(Kramer et al., 2013; Morin et al., 2008). Finally, advanced mechanisms have
been proposed to unweave an aspect previously woven (Jacques Klein et al.,
2009), to finely tune the weaving (Morin et al., 2010), or to weave aspects
(or views) instance of di↵erent metamodels (Atkinson et al., 2011).

3. Model-Driven Security

Model-Driven Security (Mds) can be seen as a specialization of Mde for
supporting the development of security-critical applications. Mds leverages
the conceptual approach of Mde as well as the associated techniques and
tools to propose sound methods for engineering security-critical applications.
To be more specific, models have to be the central artifacts in every Mds
approach. More importantly, models are used extensively to capture security
concern(s) and are the main materials throughout the development process
in order to introduce/enforce security into the application. In this section,
first we briefly mention several approaches that provide early the general
concept of Mds. Then, we propose a taxonomy for Mds which we use later
to evaluate di↵erent Mds approaches.

3.1. A brief history of Mds

Several contributions provided early tentative definitions for Mds. We
review them to extract their common features.

The pioneering work of Jan Jürjens (2001) proposed in 2001 UmlSec:
it is based on the Uml extension mechanism for modeling and analyzing
systems. Several Uml diagrams are combined to ensure at di↵erent levels:

10



class diagrams for the static structure, statecharts for the dynamic behavior,
interaction diagrams for object interactions within distributed systems and
deployment diagrams to enforce security in the target platform. Jan Jürjens
already considered a preliminary formal semantics of UmlSec su�cient for
the set of addressed security properties. This approach does not explicitly
mention Mde.

In 2002, Basin noticed, together with other authors (Torsten Lodderstedt
et al., 2002), that the Mda approach already has partial answers for the prob-
lem of security enforcement: models allow the direct manipulation of business
domain’s concepts (in this case, business processes); and model transforma-
tions enable the automatic generation of executable systems with fully con-
figured security infrastructures. With SecureUml (Basin et al., 2003), the
authors demonstrated the feasibility and e�ciency of the approach: in the
course of the following decade (Basin et al., 2011), the authors applied Se-
cureUml to various application domains, showing that models are powerful
enough to precisely document security and design requirements and to al-
low their analysis, and that model transformations can successfully generate
secure systems on di↵erent platforms.

Those two seminal works opened the way to an extensive use of Mds.
MacDonald (2007) promoted the use of Dsls for each concern, business and
security, and introduced the key idea of Separating of Concerns (Soc): “the
use of visual models or domain specific modeling languages during applica-
tion design, development and composition to represent and assign security
primitives - such as confidentiality, integrity, authentication, authorization
and auditing - to application, process and information flows independent of
the specific security enforcement mechanisms used at runtime. (MacDonald,
2007)”.

Not longer after, Lang and Schreiner (2008) introduced the necessity of
using Domain-Specific Languages (Dsl) for capturing requirements at higher
levels of abstraction, and generating code automatically: they view Mds as
“the tool-supported process of modeling security requirements at a high level of
abstraction, and using other information sources available about the system
(produced by other stakeholders). These inputs, which are expressed in Do-
main Specific Languages, are then transformed into enforceable security rules
with as little human intervention as possible. Mds explicitly also includes the
run-time security management (e.g. entitlements / authorizations), i.e. run-
time enforcement of the policy on the protected IT systems, dynamic policy
updates and the monitoring of policy violations. (Lang and Schreiner, 2008)”

11



They also highlighted the necessity of supporting these security engineering
phases by appropriate tools.

3.2. Evaluation Taxonomy

This section identifies and describes a set of concepts pertaining to Model-
Driven Security approaches which we use to build a taxonomy for Mds. We
have based our taxonomy on the work of Khwaja and Urban (2002); Kasal
et al. (2011); Nguyen et al. (2013). The taxonomy entries we have identified
are as follows:

Application Domains. In order to develop secure systems targeting di-
verse application domains such as web applications, e-commerce systems,
embedded systems, distributed systems, or others, an Mds approach may be
more or less specifically developed with a domain in mind. The application
domains entry of our taxonomy is devoted to evaluating each selected Mds
approach in terms of its domains of applicability.

Security Concerns. There is a broad range of security concerns when in-
formation systems are considered. The European Network and Information
Security Agency stipulates that systems need to address the various security
aspects in a unified manner. According to that entity, security is “the capacity
of networks or information systems to resist unlawful or malicious accidents
or actions that compromise the availability, authorization, authenticity, in-
tegrity and confidentiality of stored or transferred data with a certain level
of confidence, as well as the services that are o↵ered and made accessible by
these networks” (Muñoz, 2009).

An Mds approach may be so specific that it deals only with a special-
ized security concern. For example, the authorization concern encompasses
several sub-concerns such as access control, delegation, obligation among oth-
ers. In contrast, other Mds approaches might handle more than one “large”
security concern simultaneously.

Regarding this taxonomy entry we will identify in Sect. 4 which security
concern(s) the selected Mds approach deals with. If specific languages have
been associated with the identified security concerns, we will also describe
the metamodels of those languages.

Modeling Approach. Given Model-Driven Security specializes Model-Driven
Engineering, it is natural that we classify Mds approaches according to their
modeling paradigm. An Mds approach can for example rely on standard

12



Uml modelling, where cross-cutting concerns are scattered across several re-
lated models such as is typically used in Mda. On the other hand, another
Mds approach may make use of the Aspect-Oriented Modeling paradigm
(Aom) in such a manner that crosscutting concerns are modeled in sepa-
rately and subsequently woven into a primary model using a set of model
weaving rules. Domain Specific Modelling (Dsm) can also be used where a
customized approach is required.

Together with the modeling paradigm, another important issue regard-
ing modelling is the modeling language used: standard Uml diagrams; Uml
profiles; tailored Dsls; or formal specification languages (e.g. Petri nets).
According to the systematic review (Nguyen et al., 2013), standard Uml
and Uml profiles are the most commonly used in the literature, undoubt-
edly due to Uml’s reach within the modelling and engineering communi-
ties. Nonetheless, several researchers make use of Dsls with the goal of
achieving more customized modeling capabilities. Formal specification lan-
guages are not very much used in the literature we analyzed, possibly due
to the di�culty of integrating them with with standard engineering tools.
Formal specification languages are nevertheless well-accepted for handling
specialized security/safety related issues at certain moments of the software
development lifecycle, in particular for the verification of security protocols
(Armando et al., 2005) or extending access control frameworks (Shafiq et al.,
2005).

Separation of Security from Business. Separation of Concerns (Soc)
is nowadays becoming a well-accepted design principle in computer science: it
consists of dividing a system into distinct features (aspects) that are ideally
loosely coupled, i.e. their functionalities overlap minimally (Kienzle et al.,
2010).

Security is one of these aspects: security concerns are clearly orthogonal
to other application functionalities (Shin and Gomaa, 2009). According to
the systematic review (Nguyen et al., 2013), most of the selected primary
studies follow the principle of Soc, meaning that the security concerns are
specified separately from the business logic in platform independent models
(Pims) and are later transformed into platform specific models (Psms). The
Psms which are then are then refined into the security infrastructure and
integrated with the system application logic.

In Sect. 4, we will evaluate for each selected Mds approach whether it
deals with the security concerns separately from the business logic and, if so,

13



how that separation is achieved.

Model Transformations. Model transformations play a key role in the
Mde development process. Model transformations allow preserving the con-
sistence and preciseness of a family of Mde artifacts from the abstract models
to the final running system’s infrastructure. The goal of employing model
during Mde transformations is to automate as much as possible of the de-
velopment process and as such to reduce error-prone manual activities.

In our Mds context there are two main kinds of model transformations: 1)
Model-To-Model Transformation (MMT), which normally serves the purpose
of (but is not restricted to) refining between levels of abstraction during the
development process; and 2) Model-To-Text Transformation (MTT) which
allows producing textual artifact from models. Such textual artifacts may
include source code, test cases, etc.

Another classification criterion described in (Nguyen et al., 2013) includes
the notions of endogenous and exogenous transformations. This criterion
distinguishes if the models involved in the transformation are expressed in
the same language (endogenous) or in di↵erent languages (exogenous).

Verification. After deriving a number of security properties from security
requirements, a key issue is how to make sure those properties hold on the
artifacts generated by the Mds approach.

Ideally, a model at a given level of abstraction during an Mds process
is executable. By executable we mean that the model has well understood
operational semantics and can be interpreted by a model checker or a theorem
prover such that properties about it can be formally shown. At the lowest
level of abstraction the generated code and system infrastructure are by
definition executable since they are built to run on a specific platform.

In classic software engineering methodologies, various manual/automatic
testing techniques can be applied to the final artifacts (source code or runnable
system infrastructure) to check for their correctness. Examples of such tech-
niques are black-box, white-box or mutation testing (Mike Papadakis and
Nicos Malevris, 2012), among others. However, despite their success within
the developed community, these testing techniques are often error-prone
themselves and require a large time investment. Furthermore, testing tech-
niques are often only applied at the final stage of the development lifecycle.

An important advantage of Mds approaches is the possibility of per-
forming security property checking on abstract Mds models. In terms of

14



verification approaches, while model checking verifies the conformance of the
semantics a model to a specific security requirement expressed as a temporal
logic formula, theorem proving involves verifying if the system’s specification
expressed as a theory entails the requirement expressed as a logic formula.
Automatic test case generation from abstract models is also a possible veri-
fication method.

Traceability. Traceability is a very important feature of Mde as it allows
keeping a history of how the models generated throughout the software life-
cycle relate to each other. We distinguish between backward and forward
traceability. Backward traceability helps in tracing design flaws back to a
model when a counterexample is detected during the verification of less ab-
stract model or errors are found during the testing of the produced sys-
tem’s infrastructure. On the other hand, forward traceability implies that
when a design flaw is corrected in a model at a higher level of abstraction,
the corresponding modifications are propagated, when such propagation is
meaningful, throughout the lower-level models onto the produced system’s
infrastructure.

From our experience and after analyzing the literature, Mds traceability
is usually done manually. In fact, automating traceability is hard due to the
semantic gaps between layers of abstraction during the software generation
lifecycle. Because of the fact that models in the Mds lifecycle are often
refined, composed and recomposed, it becomes di�cult to trace mistakes
among di↵erent, or even within the same, layer of abstraction. For example
errors in the generated system’s infrastructure are particularly hard to trace
back given that security concerns can be distributed all over the generated
code due to its low-level nature.

Tool Support. Tool support naturally plays a very important role regarding
the usability of an Mds approach. By automating error-prone manual tasks
the overall quality of the code resulting from the Mds process also improves.
Tool support can cover many of the phases of an Mds development process.
This includes modelling editors, model transformations editors and engines,
checking the syntax and consistency of the system specification, consistency
checks between di↵erent levels of abstraction, validation of the specification
against user requirements, traceability of errors between layers of abstraction,
automatic code generation, automatic testing, among others.

15



Taxonomy

Entry

Description

Application
Domains

Is the Mds approach domain specific or can it be used for
multiple domains?

Security What security concern(s) does the Mds approach focus on?
Concerns
Modeling Modelling paradigm(s) used? (Mda, Aom, Dsm)
Approach Modeling language(s) used? (standard Uml; Uml profiles;

Domain Specific Languages; Formal Languages)
Separation of Is separation of concerns (Soc) used?
Security If yes how is it implemented?
from Business
Model Are Model-To-Model Transformations (Mmt) used?
Transformations Are Model-To-Text (Mtt) transformations used?

What model transformation engine is used?
Verification What verification techniques are used? (model checking; the-

orem proving; testing)
Traceability Are backward and/or forward traceability implemented?

Is traceability automatic or manual?
Tool Support What is the automation level of the Mds approach and what

features does it provide?
Validation What studies exist and how large and meaningful are they?

Has the approach been industrially validated?

Table 1: Mds Taxonomy Entries

16



Validation. The validity of a particular Mds approach is evaluated by an-
alyzing the case studies available in the literature. For each approach we will
evaluate how many proof-of-concept and / or industrial case studies exist,
what are the conclusions of those studies.

In table 3.2 we provide a summary of the taxonomy entries identified
in this chapter including a brief description of each of them. Despite the
fact that we describe them separately, the Mds concepts that compose our
taxonomy naturally relate and depend on to each other. As an example,
if an Mds approach uses the taxonomy concept separation of security from
business to distinguish security concerns from business logic at the modelling
level, further in the Mds chain the taxonomy concept model transformations
is required to allow integration of the security and business models at the
level of code and overall infrastructure generation. As another example, the
verification methods used depend on the modelling approach that has been
taken, and in particular on the modelling languages used. If languages with
formally defined operational semantics are used in the Mds lifecycle, then
model checking can be used as a verification technique for models of those
languages.

4. Evaluation of Current Model-Driven Security Approaches

In Section 3.1 we have explored various Mds definitions in the literature.
These definitions have helped helps us to identify Mds studies among a mass
of security-related studies in the literature.

In this section, we evaluate five Mds approaches selected from the lit-
erature against the taxonomy defined in Sect. 3.2. In order to select which
approaches are part of our set we have based ourselves on the popularity of
the approach. We have measured popularity using the number of citations
of the major publications for the approach and how the approach stands in
recent surveys (Jensen and Jaatun, 2011; Kasal et al., 2011; Nguyen et al.,
2013).

The remainder of this section presents the result of our evaluation of the
five selected approaches: UMLSec, secureUML, SECTET, ModelSec
and SecureMDD.

17



4.1. UMLsec

Application Domains. UMLsec (Jan Jürjens, 2001; Jürjens, 2002; Jan
Jürjens, 2004, 2005b; Best et al., 2007; Hatebur et al., 2011) is a Uml pro-
file extension for the analysis of secure systems. Uml stereotypes are used
with annotations called tags in order to specify security requirements and
assumptions. Additional constraints attached to the stereotypes provide the
means to understand when security requirements are violated. UMLsec
takes advantage of the wide-spread use of Uml as a general-purpose model-
ing approach and can be applied to model and analyze security concerns from
a wide range of domains, including web applications (Houmb and Jürjens,
2003), embedded systems (Jan Jürjens, 2007), and distributed systems.

Security Concerns. UMLsec deals with relatively large number of secu-
rity requirements: confidentiality, integrity, authenticity, authorization, fresh-
ness, secure information flow, non-repudiation and fair exchange.

UMLsec concentrates on providing the means to analyze the enforce-
ment of security concerns in system models specified in the UMLsec profile.
As such, the approach requires building of attacker models, also called Ad-
versary Machines, to execute adversary behaviors during system analysis.
For example, in order to analyse the integrity security property the system
is jointly executed with a particular adversary machine attempts to assign
to a system variable a erroneous value. The integrity property holds if no
constraints associated to the variable are violated during the attack.

UMLsec is relatively di↵erent from the other Mds approaches in the
literature given that it concentrates on providing analysis capabilities for
security models, rather than on insisting on the security modelling languages.
Although clear formal semantics have been defined in (Jan Jürjens, 2001) for
the Uml fragment used in the UMLsec profile, no explicit metamodel has
been provided.

Modeling Approach and Separation of Security from Business.
UMLsec does implement the principle of separation of security concerns
from business logic, but in a manner that di↵ers from our definition of Sepa-
ration of Security from Business in section 4. In Fig. 4 we provide a graphical
depiction of the UMLsec methodology, where:

• Stereotypes and tags are used to model and formulate security require-
ments in the system models;

18



System 
Requirements

Adversary Machines
(UML Machines)

User-System 
Interactions

(Use Case Diagrams)

Business Process
(Activity Diagrams)

Physical Layer
(Deployment Diagrams)

Component 
Interactions

(Sequence Diagrams)

Component State 
Changes

(Statechart Diagrams)

System Models

Constraints

Concretized Model
(Integrated Model)

attacks

restricts

theorem 
proving

SoC

SoCSoC

MTT

Security Properties
(in first-order logic)

Concretized Model 
(in first-order logic)

Figure 4: Overview of the UMLsec approach

• Potentially malicious attacks are modeled in adversary machines, in-
dependently from system models;

• Constraints attached to the stereotypes contain criteria for checking
whether a security requirement violation is caused by adversaries of
the system design;

• Security and recovery mechanisms are defined together with the busi-
ness logic in the system models.

Due to the fact that the security issues are deeply coupled with system
models, the Soc in UMLsec is relatively weak when compared to other

19



Mds approaches we survey in this paper. For example, in order to prevent
a certain attack, it may be necessary to add a new condition guard on a
particular transition in an activity diagram which is a subsystem specification
covering non-security related functions. This being, such diagram cannot be
dedicated to security specialists only.

Regarding system modeling, Uml diagrams are employed to model the
di↵erent perspectives of the system, where each diagram is a subsystem spec-
ification (see Fig. 4):

• Use Case Diagram is used to capture user-system interactions.

• Activity Diagram specifies the business workflow of the system.

• Sequence Diagram concentrates on component interactions, such as
inter-component data flow and protocol.

• Statechart Diagram models the dynamic behaviors of a component
and the corresponding state changes.

• Deployment Diagram is used to model communication links among
components such as the client, server, database, etc.

Note that the fragment of Uml used by UMLsec as well as the adver-
sary machines are provided a precise semantics using the Uml Machines (Jan
Jürjens, 2005b). These machines are a type of state machine with input/output
interfaces for which behavior can be specified in a notation similar to that
of the well known Abstract State Machines. A composed model (called con-
cretized model in UMLsec) can be created by weaving the constraints and
adversary machines with the system models. The concretized model is the
system design model that can be used for further security analysis.

Model Transformations and Tool Support. UMLsec does not explic-
itly use model transformations during the development process.

Renaming is used for model composition of the system models, constraints
and adversary machines (see Fig. 4). Renaming is a form of mapping used by
UMLsec that associates stereotypes, tags and constraints such that the three
separate models can be woven in a concretized model. From the concretized
model, a first-order logic theory is generated and security properties can be
proved on it using a dedicated Prolog-based tool called aiCall.

20



UMLsec’s toolset does not generate code from the models, given the
purpose of the approach is to provide analysis capabilites. It is possible
to apply the approach to existing systems by reverse-engineering the model
directly from code Best et al. (2007).

Verification. As previously mentioned, the UMLsec approach focuses on
the security analysis of the system’s design. For this purpose, UMLsec com-
poses the behavioral model of the system with that of the potential attackers
of the system. The integrated model is compiled into first-order logic axioms
which can be verified by a theorem prover, called aiCall. A Prolog-based tool
is then used to verify the system’s specified security requirements. When an
attack is feasible, i.e. a security concern can be violated, the tool automati-
cally generates an attack sequence showing how the attack may occur.

Traceability. In UMLsec, the security analysis of the system reveals the
security concerns that may be violated by potential attack sequences. This
information may be used for the identification of system design flaws. How-
ever, no tool-supported automatic traceability is provided.

Validation. UMLsec has been applied for analyzing the security of several
industrial applications, such as the development of the biometric authenti-
cation system (Jan Jürjens, 2005a; Lloyd and Jürjens, 2009), the Common
Electronic Purse Specifications (CEPS) project (Jan Jürjens, 2004), a web-
based banking application Jan Jürjens (2005c); Houmb and Jürjens (2003),
the embedded system described in (Jan Jürjens, 2007) and the mobile sys-
tem described in (Jürjens et al., 2008). Most case study results are positive
regarding the benefits of the UMLsec approach.

4.2. SecureUML

Application Domains. In 2002 Basin et al. have proposed SecureUML
(Torsten Lodderstedt et al., 2002; Basin et al., 2003, 2006, 2011) to allow
knitting system models with security concerns. This is achieved using Uml-
like modeling languages for system modeling, and a Role-Based Access Con-
trol (Rbac) language (Sandhu et al., 1996) to describe security policies. All
languages are defined as Uml profiles. The framework is su�ciently general
to be applied to other system model or security languages, but these new

21



Role

Subject

Group User

0..*

0..*
RoleHierarchy

0..*
0..*

SubjectAssignment

0..*

0..*
SubjectGroup

Permission

Authorization
Constraint

0..*1..*
Permission
Assignment 0..*

0..1

ConstraintAssignment

Action

AtomicAction CompositeAction

Resource

0..* 1..*
Action

Assignment
0..*

0..* Action
Hierarchy

0..*

1 ResourceAction

Figure 5: SecureUML metamodel (Basin et al., 2006)

languages need to be defined as new Uml profiles. Given its generality Se-
cureUML can be applied to many domains. Nonetheless, several concrete
examples presented in the SecureUML literature refer to web applications.

Security Concerns. The SecureUML approach is focuses on access con-
trol, in particular Rbac. The metamodel for SecureUML is depicted in
Fig. 5 and consists of an extension of Rbac’s metamodel. While Rbac’s
central concepts are subject, role and permission, in the metamodel in Fig. 5
the additional notions of resource and action are introduced. A resource is,
as the name indicates, an abstraction of a system’s resource that where se-
curity should be enforced and actions corresponds to activities that can be
performed on a resource. By enforcing Rbac permissions on actions Basin
et al. are thus capable of attaching security policies to the resources described
in a separate system model.

All examples found in the SecureUML literature use an Rbac security
language. To point out the approach is not restricted to access control,
in (Basin et al., 2006) the authors sketch the applicability of SecureUML
to other access control methods such as Chinese Wall policies or the Bell-
LaPadula model. Later, in (Basin et al., 2011) the authors mention the
potential modelling of usage control policies whithin SecureUML.

Modeling Approach and Separation of Security from Business.
We present in Fig. 6 a graphical depiction of the SecureUML approach.
Separation of Concerns is a naturally embedded in the framework as can
be seen by the explicit separate modelling of the business and the security
Rbac concerns. Basin et al. use in their work two main Uml-based mod-
eling languages for system modelling: simplified Uml Class Diagrams and
simplified Uml Statecharts.

22



Integrated 
Model

EJB, .NET or 
Web application

Business 
Requirements

Access
Control

RBAC metamodelSystem Modeling 
Language metamodel

dialect

UML Profile

Application 
Requirements

SoC SoC

instance of

associates associates

instance of instance of

MTT

instance of

designed for designed for

Figure 6: Overview of the SecureUML approach

Composing the business and security models is achieved by a dialect lan-
guage, linking the system modelling language to the access control Rbac
language. This dialect language is also defined as a Uml profile and allows
specializing the class of Resource and Action in the SecureUML metamodel
in Fig. 5 into the several concepts of the system modeling language that re-
quire security.

For example, Basin et al. defined in (Basin et al., 2003) a statechart-like
system modeling language. Its protected resources naturally include State

and StateMachineAction and the actions on those resources are for example
Execution or Activation. The dialect language specializes the Resource and
Action classes in the SecureUML in Fig. 5 into the State and StateMa-

chineAction concepts of the statechart-like system modelling language. By
specializing also the Action class into actions that can be specifically per-
formed on the statechart’s resources a composed dialect language is created.

23



Naturally, if either the system modelling language or the security language
change, a new dialect language will need to be created. Integrated models
can then be built as instances of the dialect.

Model Transformations and Tool Support. From the integrated model
in Fig. 5, code can be automatically generated. In (Basin et al., 2006) the
authors describe both Enterprise Java Beans (EJB) and .NET systems can
be generated from a dialect model of a composed SecureUML and a Uml
class diagram-like language called ComponentUML. Both instances of the
code generation technique map the security language’s concepts into built-in
security mechanisms in both EJB and .NET. For example, for the EJB plat-
form roles and permissions are mapped into an EJB security infrastructure
based on RBAC. Additionally, Java assertions are used to enforce authoriza-
tion constraints.

Despite the fact that code generation can be seen as a model transfor-
mation, the generation of EJB and .NET code is not accomplished using a
model transformation language. Basin et al. refer nonetheless in (Basin et al.,
2011) to the usage of Qvt to automate the composition of several separate
parts of a system’s model with a single security model. The goal is to avoid
redundant information scattered in several models. An example of this kind
of composition for a web application can be found in (David A. Basin et al.,
2010).

Verification. In (Basin et al., 2006) a proof sketch of the code generation
procedure for EJB from a model of secure ComponentUML is presented.
The proof is a correct-by-construction argument for the soundness of the
EJB code generated from the secure model. If other system modeling lan-
guages are considered then similar proofs will need to be provided, taking
into consideration the new target platform for code generation.

The verification of secure models is the subject of (Basin et al., 2009),
where the authors describe the SecureMOVA tool. The tool allows verify-
ing security related properties about integrated models (see Fig. 6). Security
properties are expressed as Ocl constraints and regard relations between
users, roles, permissions, actions and systems states. Coming back to our
statechart-like system modelling language, it is for example possible to show
using SecureMOVA that a certain user will be able to activate at least
once a certain state in the model of the system.

Traceability. No explicit traceability exists in SecureUML.

24



Validation. Several simple examples of using SecureUML can be found
in (Basin et al., 2006). A large E-Commerce J2EE “Pet Store” application
has also by Lodderstedt (2003) in his Ph.D. thesis. Finally, Manuel Clavel
et al. (2008) reports about the applicability of SecureUML to an industrial
case study. The conclusion is that the SecureUML approach allows better
understanding of the manipulated concepts, early analysis and fault detec-
tion, reusability and evolvability. He also mentions that while access control
proved relevant in the case study, it is merely one of the several security
concerns that their industrial partner demonstrated interest in.

4.3. Sectet

Application Domains. Sectet (Alam et al., 2007a; Fernández Medina
et al., 2006; Alam et al., 2006c,a; Hafner et al., 2008; Breu et al., 2007) is an
extensible Mds framework for supporting the design, implementation and
management of secure workflows for social structures such as government,
health or education (Breu et al., 2005; Hafner et al., 2005). The framework
assumes a distributed peer-to-peer technological space based on the concept
of Service-Oriented Architecture (Soa) that is implemented as web services.

Security Concerns. Sectet handles two categories of security policies:

• Basic Security Policies: integrity, confidentiality and non-repudiation
for messages passed among components of the distributed system. By
non-repudiation we mean that correct messages are not denied;

• Advanced Security Policies: Static and dynamic Role-based access con-
trol (Rbac).

Regarding the three basic security policies, their implementation is achieved
in Sectet by using known and proven mechanisms for message passing in
peer-to-peer systems. Existing component communication protocols at the
level of the web-services are used to enforce confidentiality and integrity.
Cryptography is used to implement non-repudiation. The authors of Sectet
have thus concentrated their e↵orts on the modeling, analysis and enforce-
ment of access control policies, especially dynamic access control constraints,
and on how to integrate those policies with system models expressed in the
Uml (Breu et al., 2007; Agreiter and Breu, 2009; Hafner et al., 2008; Alam
et al., 2006a,b).

25



SecurityRequiremnt

SecurityPolicy

AdvancedSecurity
Policy

Permission RoleObject

Constraint

RoleDocument

<<enforces>>

<<realizes>>

<<confines>>

<<refers to>> <<refers to>>

subRolessubDocs

Security Domain

Application Domain

Integrity

Confidentiality

Non-repudiation

Figure 7: The metamodel of Rbac in the Sectet framework (Hafner and Breu, 2009)

We illustrate in Fig. 7 the metamodel of Rbac policies in the Sectet
framework. It consists of a standard Rbac metamodel including the notions
of subject, role and permission, extended by dynamic constraints defined on
the permission. The role and the subject (resource) are mapped to the cor-
responding entities in the application domain metamodel. Other than access
control, Sectet can be extended to deal with other advanced security poli-
cies, such as availability (Hafner and Breu, 2009), delegation of rights (Alam
et al., 2006c) or trust management (Alam et al., 2007a,b). In order to do
this, the lower part of the metamodel in Fig. 7 needs to be extended in order
to realize other instances of the AdvancedSecurityPolicy class.

26



System 
Requirements

Dynamic 
Constraints

(SECTET-PL)

Global Workflow 
Model

Local Workflow 
Model

Workflow View (SECTET-UML)

Interface 
Model

Role 
Model

Document 
Model

Interface View (SECTET-UML)

Platform-independent
Integrated Model

Target 
Architecture

XACML Policy
files

Orchestration 
Language files
(eg. BPEL4WS)

System Infrastructures

MMT

MMT

MMT

MTT

Running on

SoC

SoC

SoC

Figure 8: Overview of the Sectet methodology

Modeling Approach and Separation of Security from Business.
The Sectet framework makes use of a methodological standard (Model-
Driven Architecture), an architectural paradigm (Service-Oriented Architec-
ture) and a technical standard (Web Services). It uses Uml profiles to create
two languages: 1) a system modeling language Sectet-Uml and 2) an Ob-
ject Constraint Language (Ocl)-style predicative language Sectet-Pl.

Sectet-Uml is used to model business requirements and static security
requirements, such as roles and their hierarchies, which can be expressed in
three kinds of workflow views (as shown in Fig. 8):

• Global Workflow : The global workflow represents a virtual and dis-

27



tributed inter-organizational workflow, which models an abstract view
of interactions among partners (organizations);

• Local Workflow : The local workflow represents an intra-organizational
workflow which is assumed to be the execution of a business process by
a particular service component. Thus a local workflow model can be
an input to a workflow management system;

• Interface View : The interface view presents the properties and permis-
sions of each service component in the system. It incorporates three
sub-models, i.e. the interface model, the document model and the role
model, corresponding to the public visible part of the local workflow
which is accessible to the inter-organizational global workflow.

Sectet uses a subset of the metamodel of Uml 2.0 Activity Diagrams
to model both global workflows and local workflows. Stereotyped Uml Class
Diagrams are used to model the interface view.

Dynamic security requirements such as access control constraints are ex-
pressed in the Sectet-Pl language, as shown in Fig. 8. In Sectet security
policies are separated from the business logic at the language level as can be
seen from the fact that the elements in the Security Domain part of the
Sectet metamodel in Fig. 7 refer to elements in the Application Domain
metamodel. As such, the Sectet framework implements the principle of
separation security concerns from business logic.

As can be seen in Fig. 8, an integrated platform independent application
model is built by composing Sectet-Uml models with the dynamic security
requirement expressions in Sectet-Pl. Verification activities can then be
performed on this Pim.

Model Transformations and Tool Support. As shown in Fig. 8, in the
Sectet methodology the system requirements are first concretized into three
separate modeling views, i.e. the workflow view, the dynamic constraints
and the interface view. Model construction at this level is supported by
MagicDraw which allows exporting the Uml models to Xmi files.

Model-to-Model Transformations (Mmt) are then applied to integrate
these models. Model composition based on annotated models is used to
integrate Sectet-Uml models with the dynamic security requirement ex-
pressions in Sectet-Pl to form a platform-independent application model
(Pim). These Mmt transformations rely on the transformation language

28



Qvt. From the composed model, Model-to-Text transformations are used
to generate two kinds of system infrastructure: 1) the orchestration files gen-
erated from the workflow models, and 2) the Xacml policy files for security
configuration. Regarding the Xacml artifacts generation, the Xpand model
transformation language is used. The produced infrastructure can then be
executed by a workflow engine (the Target Architecture in Fig. 8).

Verification. No verification method has been used in Sectet.

Traceability. Traceability has not been defined or implemented in Sectet.

Validation. Various case studies from the healthcare and e-government do-
mains can be used to validate the Sectet framework in real life scenarios. In
(Breu et al., 2007; Agreiter and Breu, 2009; Hafner et al., 2008; Alam et al.,
2004; Breu et al., 2005; Hafner et al., 2005; Alam et al., 2006a,b), Sectet
is mainly used to deal with Rbac policies in web applications. Also, Alam
et al. (2006c) depict how to handle delegation of rights in Sectet and case
studies in (Alam et al., 2007a,b) show Sectet can handle trust manage-
ment. Additionally, in (Fernández Medina et al., 2006; Hafner et al., 2006)
the authors also illustrates the extensibility of the Sectet framework.

Regarding the complexity reach of the case studies, (Hafner et al., 2008;
Breu et al., 2008) conducted a large research project called health@net in-
volving many of academic and industrial partners. The project’s goal was
to handle complex healthcare scenarios based on Usage Control and dealing
with multiple advanced access control policies such as dynamic access control
or delegation of rights.

4.4. ModelSec

Application Domains. In Sánchez et al. (2009) the authors illustrate
ModelSec approach using an example taken from (Eduardo Fernández
Medina and Mario Piattini, 2005) of a web application for the manage-
ment of medical patients. The core of the example is the design of a secure
database where the authors show how ModelSec deals with access control
and database security code. The ModelSec approach allows dealing with
other security concerns as is shown in the metamodel in Fig. 9. Even though
the authors demonstrate their approach via the secure database example, to
the best of our knowledge the ModelSec approach is not restricted to a
particular application domain.

29



SecurityRequirements
Cluster

0..* 1..* 0..* 1

Contingency
Plan

1

0..1
0..*

1..*

Non-FunctionalRequirement

0..*
0..1

Authorization

Non-repudiation

Privacy Integrity Access
Control

Audit

Availability

1 0..*1
0..*

AccessControl
Method

Condition

Authentication

SecurityRequirement

Threat

AssetSafeguard

Figure 9: The metamodel of security requirements used by ModelSec (Sánchez et al.,
2009)

Security Concerns. ModelSec supports defining and managing security
requirements by building security requirements models for an application
from which operational security models can then be generated. The security
requirement models encompass multiple security concerns in an integrated
fashion, including privacy, integrity, access control, authentication, availabil-
ity, non-repudiation and auditing.

Fig. 9 depicts the metamodel of the security requirement language for
ModelSec. This metamodel is used to build a Dsl in which concrete re-
quirement models can be designed. According to the metamodel, a complete
security requirements cluster consists of:

• Asset: A physical or logical object which may be exposed to threats;

• Threat: Assets can be damaged by a threat ;

• Safeguard: An impediment to a risk, which can be a measure or an
action against the risk;

• Contingency Plan: A set of safeguards recommended for reducing risks;

• Security Requirement: The security concerns which the system should
implement or guarantee.

30



System 
Requirements

Security 
Requirements

Non-Security 
Requirements

Security 
Requirement

Model

Conceptual
Model

Security 
Design Model

Business
Design Model

Security 
Implementation 

Model

Security 
Infrastructure

Application
Code

SecML

Security
Metamodel

defines

instance of

instance of instance of

instance of

synchronizes

synchronizes

SoC SoC

MMT

MMT

MMT

MTT

MTT

Figure 10: Overview of the ModelSec approach

Note that in the security requirements metamodel in Fig. 9 the Securi-

tyRequirementsCluster class is used to attach a set of security requirements
to an asset.

Modeling Approach and Separation of Security from Business.
ModelSec follows an Mda process developed based firstly on a require-
ments metamodel which we do not present here but can be seen in (Sánchez
et al., 2009). The security requirement metamodel in Fig. 9 specializes the
requirement metamodel by integrating security concerns in it. ModelSec
provides a Dsl called SecML (Security Modeling Language) for modeling
security requirements and several languages such as use cases or class dia-

31



grams to represent the business logic of the system.
In figure 10 we graphically depict the ModelSec approach. ModelSec

follows the principle of separation of security concerns from application as
from the very beginning of the development lifecycle security requirements
and business requirements are already separated. The security models are
synchronized with the business model at several steps of the process.

From the top level requirement models security design models and busi-
ness design models are obtained via model transformations. These design
models are instances of the corresponding design metamodels, as detailed in
(Sánchez et al., 2009), which extend the security and function requirement
metamodels by adding the possibility to represent design decisions. Thus, re-
quirement models specify what restrictions the system must satisfy, whereas
the design models specify how these restrictions will be satisfied. Up until
the design models the process is platform independent.

A security implementation model including platform specific information
for a given platform is then produced from the security design model from
which the code for the security infrastructure can be generated. The appli-
cation code is directly generated from the business design model.

The ModelSec approach as described in (Sánchez et al., 2009) is how-
ever very sparse regarding details on how to integrate the business model
with the security model or on how the produced Xacmlsecurity policies can
be synchronized with the application code.

Model Transformations and Tool Support. ModelSec leverages model
transformations extensively to generate the necessary artifacts from models.

Model-To-Model Transformations (Mmt) plays a key role in ModelSec
as shown in our synthesis in Fig. 10. Mmts are used to transform the analysis
models (security requirement model and conceptual model) to design models
(security and business design models), as well as to transform the security
design model to the security implementation models. Mmt transformations
in ModelSec are written in RubyTL, a transformation language embedded
in the Ruby programming language.

Model-To-Text Transformations (Mtt) are used for transforming the im-
plementation and design models to security infrastructure and application
code respectively. The Eclipse MOFScript template language was chosen
to implement Mmts in ModelSec.

Verification. Verification has not been addressed in the ModelSec ap-
proach.

32



Traceability. The ModelSec approach does not mention about traceabil-
ity support.

Validation. ModelSec has been illustrated using only the academic case
study in (Sánchez et al., 2009).

4.5. SecureMDD

Application Domains. SecureMDD (Moebius et al., 2009a,b,c, 2010,
2012) is another Uml-based approach aiming at facilitating the development
of security-critical embedded applications based on, or built upon crypto-
graphic protocols. In this application domain, the cryptography is rarely the
target of attacks, but the protocol is often subject to attacks known as third-
party intruder, i.e. an attacker that can intercept messages to read them
(thus breaching confidentiality of data), delete or forge new fake messages
(thus compromising authenticity, privacy and so on between an user and a
third-party server).

Although the authors claim that their approach can easily be generalised
to other context, SecureMDD targets applications with the following com-
ponents. A Terminal is a device that has the ability to read and communicate
with Smart Cards, which are similar to credit cards, but can store private
data about its owner (e.g. medical data, or payment facilities for online
transactions). When accessing data on the Smart Card, or contacting third-
party institutions (like a health center to access data for a patient, or a bank
to check that an amount is actually available), the Terminal makes use of
identified protocols that need to be trusted to ensure the integrity of the
whole system.

The authors worked on applications of di↵erent sizes: starting from small,
simple ones, they improved their approach and proposed a development
methodology for handling industrial size applications, while ensuring formal
verification of the resulting code.

Security Concerns. SecureMDD handles general-purpose security prop-
erties, like secrecy, data integrity, confidentiality, among others, that are
common to all application in this domain. However, the authors promote
the specification of application-specific properties that are, in their opinion,
preferable to better guarantee the security of an application. For example,
Moebius et al. (2010) model how a copy card works, and ensure that “the
the provider of a copying service does not lose money”.

33



Strictly speaking, SecureMDD does not use a dedicated language for
specifying security properties. Instead, they are specified directly using a
logic (the Dynamic Logic) tailored to Asms, to which Uml diagrams are
generated for verification purposes.

Modeling Approach. SecureMDD combines Uml profiles for the static
part and Uml sequence and activity diagrams for capturing behaviour. Mel,
the Dsl created by the authors, allows to define fine-grained behaviours over
Uml diagrams and interact with cryptographic protocols. It has a textual
representation, probably more suitable for engineers for early experimenta-
tions when designing the application; but it also has a model representation,
aimed at being integrated with Uml diagrams for enabling full verification
over the whole system.

Since SecureMDD enables formal verification by means of theorem-
proving, all languages receive a formal semantics: a formal semantics for the
various Uml diagrams used for designing the application has been defined
in Kiv1, but also a semantics for Java, the target language chosen for gener-
ating code from Uml. These semantics are expressed in terms of Asms, the
approach the authors have chosen for performing the verification task.

Figure 11 depicts the general approach for SecureMDD. The design
process starts with the creation of an Uml model for the application, gener-
ally following functional requirements. Class diagrams describe the di↵erent
application entities (terminals and cards, as well as the users and attackers,
and the protocol communication infrastructure), whereas sequence and ac-
tivity diagrams model the system behaviour and the interactions between
those components. The authors provide concrete examples of such modelling
artefacts: Moebius et al. (2009b) shows such diagrams for the copy card ap-
plication: the interactions between a terminal and a smart card for securely
loading money on the card are fully explained; and Moebius et al. (2012)
provides several diagrams for another project, the german electronic health
card.

The language Mel allows engineers to express the processing of messages:
for example for the copy card application, how components state changes,
how encryption/decryption operations interact with predefined cryptographic
operations, etc.

1
Web page for the Kiv Theorem-Prover:

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/kiv/

34



Java Model

Formal ASM Model
(Abstract State Machine 
transformed from Activity 

Diagram)

refines

(conformance checking)

Axioms
(security properties)

theorem proof
Java 

sourcecode

Application 
Requirements

Model Extension 
Language (MEL)

(UML Profile)

specifies

Class 
Diagram

Sequence 
Diagram

Activity 
Diagram

UML platform-independent model

Static View Dynamic View

Smart Card
PSM

Terminal
PSM

Service
PSM

UML platform-specific model UML platform-specific model

Protocols
(Extended Activity 

Diagrams)

MMT

MTT

MMT

MMT
MTT

Iterative
Process

Figure 11: Overview of the SecureMDD approach (inspired from Moebius et al., 2009b,
2012).

Moebius et al. (2012) also proposes a methodology for designing appli-
cations in an interative way, which is more suitable for industrial sized ap-
plications. Since new functionalities are added progressively, after having
checked that the application resulting from an iteration works as expected,
the way Uml diagrams, but also security property specifications, are mod-
eled and handled can quickly become a challenge on itself. But an iterative
development also have an impact on the security properties, since new func-
tionalities can break previously established proofs. The authors describe how
they developed an important case study, the German electronic health card
system, after three iterations, while managing to minimally interfere with
the previous models and reusing the previous proofs.

35



Separation of Concerns. Separation of Concerns does not strictly apply
to SecureMDD, since security properties are defined on a platform-specific
model generated from Uml diagrams.

Model Transformations. SecureMDD makes extensive use of transfor-
mations to reach executable code from platform-independent models that
capture early requirements. Figure 11 illustrates the points where trans-
formation techniques are used. Mmt techniques are used to transform the
platform-indenpendent models representing the weaved model into two dif-
ferent models: on the left, a Java model aimed to be executed, while on
the right, an Abstract State Machine (Asms) model to be used for verifi-
cation purposes. The transformations integrate specific information to pro-
duce adequate code, in particular by following the target programming lan-
guages paradigms (object-orientation for JavaCard, algebraic specifications
for Asms): the specific built-in data types and values, the configuration
settings, the serialisation mechanism for protocol exchange messages, the
encryption/decryption specific algorithms (e.g., JavaCard requires that all
objects are allocated at the beginning of the execution, and does not provide
garbage collection: these critical algorithms cannot be identical on the card,
and on the server), etc.

From these models, Mmt techniques are used for generating the actual
code necessary for execution and verification, since it is the normal entry
format for Java and the Asm interpreter and verifier. These transformations
are implemented with XPand, a statically typed template language focusing
on the generation of textual artefacts. Note that only the security-critical
part of the application is generated; other components that are less critical,
and more subject to evolution and modification, need to be programmed
and integrated with the trusted code: for example, database accesses and
the user interfaces are left to programmers to reach the expected quality of
such components (Moebius et al., 2009c,a).

Verification. In SecureMDD, the verification is performed regarding two
aspects: verifying that security properties e↵ectively hold within the mod-
els, and verifying that the generated Java model is a correct refinement of
the Asm model. The refinement correctness proof is handled at the level
of the specific models for Java and Asm, instead of the original Uml dia-
grams. This way, all the information about the security concerns and the
functionalities of the application are available, and fully executable in each

36



respective tool. SecureMDD reuses an existing work by Stark et al. (2001)
that provides a formal semantics to Java and its Virtual Machine in terms of
Asm. Since Kiv is built on top of Asm and integrates Java constructions,
the proof is facilitated, although it remains interactive as theorem-proving
always is (Moebius et al. (2010) reports a delay of several weeks for the copy
card application, which can be considered, according to the authors, as a
small application). The authors are currently working on extending this ap-
proach: they plan to define a calculus for Qvt, the language they use for
Mmt, that will allow them to formally prove in Kiv the corrrectness of such
transformations.

The verification of security properties is handled by Kiv, a theorem-
prover based on Asms. Security properties are expressed using a dedicated
logic, the Dynamic Logic, tailored to the algebraic specifications constitut-
ing the mathematical background of Asms. They noticed an interesting fact:
application-specific security properties generally give better guarantees than
standard properties (like secrecy or integrity), but these general-purpose se-
curity properties still need to be proved, and are in fact often required as
a background for specific ones. For example for the German health card,
ensuring that only a qualified doctor can issue a prescription, implies that
the prescription becomes a secrecy for any intruder (except of course, the
patient itself). Moebius et al. (2012) also provides a methodology for facil-
itating iterative verification: by following simple guidelines (e.g., specifying
system invariants into several pieces to be able to re-prove most of them, or
modifying protocols’ behaviour only when necessary), they were capable of
re-running most of their proofs in further incremental steps. It remains to
see if this methodology is applicable beyond their application domain.

At a later stage, SecureMDD introduced the possibility to define test
cases directly on Uml (Moebius et al., 2012). Using Model-To-Test trans-
formations, these test cases can be executed on the generated Java code to
validate scenarios not handled by the verification process (in particular, use
case related to the parts, like using the user interface, whose code is not
automatically generated).

Traceability. SecureMDD uses a generative approach: once the com-
posed model is verified, i.e. security properties are checked to be enforced
within the system, the relevant part of the code corresponding to the core,
security-related part of the system is generated. Therefore, all security-
related flaws are catched earlier, and the approach does not require per se

37



traceability.

Tool Support. The authors do not specifically describe the tool support;
however, several papers provide insights on the modelling artefacts, the trans-
formation chains and the verification tasks (in particular, (Moebius et al.,
2009c, 2012).

Validation. SecureMDD seems to be a promising approach: when it was
first proposed in 2009, only small-sized proof-of-concept case studies were
addressed (e.g. the Mondex protocol for electronic payment (Moebius et al.,
2009a)). Then, it evolved towards a medium-sized case study, the copy card
application (Moebius et al., 2010), where more advanced security properties
(with a particular emphasis for application-specific security properties) were
handled. As a last step, the authors were capable of handling an industrial
scale project, the German electronic health card application (Moebius et al.,
2012), which gave a positive result on the applicability of the approach that
goes beyond the applicability range of other approaches. These results were
obtained in a relatively short time (from 2009 to 2012)2.

5. Discussion

5.1. Synthesis of the Evaluation Section

Table 2 provides a synthetic view of the evaluation section. The columns
list the Mds taxonomy entries defined in Section 3.2. Each row deals with
one selected Mds approaches. This comparison table allows us to draw the
following conclusions:

1) Regarding application domains, most of the evaluated Mds approaches
are designed to be “general purpose”, i.e., their objective is to address a large
range of application domains. One exception is SecureMDD which only
focuses on supporting the development of smart card and service applications.

2) For security concerns, only SecureUML concentrates on one specific
concern, i.e. access control. The SecureMDD approach mainly deals with
cryptographic protocols but also targets some application-specific security

2The webpage of the project provides details about other projects that were, to our
knowledge, not yet published:
https://www.informatik.uni-augsburg.de/de/lehrstuehle/swt/se/projects/secureMDD/.

38



properties. The others approaches, i.e. UMLsec, SECTET, and Mod-
elSec are open to deal with multiple security concerns.

3) Regarding modeling paradigm, all approaches combine the model-
driven architecture paradigm with domain-specific modeling paradigm. One
exception: UMLsec applies multi-paradigm modeling methodology (Mpm).
Di↵erent views of a system are modeled by di↵erent Uml diagrams and fi-
nally all these views are composed to form the complete specification of the
system.

4) Regarding modeling language, only ModelSec uses a Dsl based on a
non-Uml-based language. The other approaches used Dsls defined as Uml
profiles.

5) Regarding the principle of separation of security concerns from business
logic, only UMLsec does not fully follow it. Indeed, in UMLsec security-
related information is partially contained in system models. The other Mds
approaches we have analyzed either encapsulate security concerns in one spe-
cific kind of model artifact (e.g. SecureMDD), or clearly separate security
concerns from business logic in the metamodel (e.g. Sectet).

6) Regarding model transformations, ModelSec defines its own Mmt
tool by extending the Ruby programming language and applies Mof-Script
for Mtt. Sectet and SecureMDD leverage the well-known existing model
transformation tools in the Eclipse platform: Qvt for Mmt and Xpand for
Mtt. In contrast, UMLsec and SecureUML do not use Mmts in their
methodologies. For Mtt, each of them uses a specific tool as compiler: to
generate source code in the case of SecureUML; to generate first-order
logic formulas in the case of UMLsec.

7) Regarding security verification, Sectet and ModelSec do not pro-
vide explicit information about how to verify security properties either on
the models or on the system infrastructure. Other Mds approaches make
use of either theorem provers or model-checkers to verify security properties
on system models.

39



Ta
bl

e
2:

C
om

pa
ri

so
n

of
th

e
E

va
lu

at
ed

M
d
s

A
pp

ro
ac

he
s

A
p
p
li
ca

ti
o
n

S
ec

u
ri

ty
M

o
d
el

in
g

A
p
p
ro

a
ch

(*
)S

o
C

M
o
d
el

V
er

ifi
ca

ti
o
n

T
ra

ce
-

T
o
o
l

V
a
li
d
a
ti

o
n

D
o
m

a
in

s
C

o
n
ce

rn
s

T
ra

n
sf

o
rm

a
ti

o
n

a
b
il
it
y

S
u
p
p
o
rt

P
a
ra

d
ig

m
M

o
d
el

in
g

L
a
n
g
u
a
g
e

M
M

T
M

T
T

U
M

L
se

c
w

eb
a
p
p
li
ca

ti
o
n
s,

em
b
ed

d
ed

sy
s-

te
m

s,
d
is

tr
ib

u
te

d
sy

st
em

s

co
n
fi
d
en

ti
a
li
ty

,
in

te
g
ri

ty
,

a
u
th

en
ti
ci

ty
,

a
u
th

o
ri

za
ti
o
n
,

fr
es

h
n
es

s,
in

fo
rm

a
ti
o
n

fl
o
w

,
n
o
n
-r

ep
u
d
ia

ti
o
n
,

fa
ir

ex
ch

a
n
g
e

M
p
m

U
m
l

p
ro

fi
le

s
o

X
co

m
p
il
er

a
iC

a
l
l

th
eo

re
m

p
ro

v
er

A
tt

a
ck

se
q
u
en

-
ce

X
h
ig

h

S
e
c
u
r
e
U

M
L

w
eb

a
p
p
li
ca

ti
o
n
s

a
cc

es
s

co
n
tr

o
l

M
d
a

+ D
sm

U
m
l

p
ro

fi
le

s
X

X
co

m
p
il
er

S
ec

u
re

M
o
v
a

m
o
d
el

-
ch

ec
k
er

X
X

m
ed

iu
m

S
e
c
t
e
t

e-
g
o
v
er

n
m

en
t,

e-
h
ea

lt
h
,

e-
ed

u
ca

ti
o
n

in
te

g
ri

ty
,

co
n
fi
d
en

ti
a
li
ty

,
n
o
n
-r

ep
u
d
ia

ti
o
n
,

a
cc

es
s

co
n
tr

o
l

M
d
a

+ D
sm

U
m
l

p
ro

fi
le

s
X

Q
v
t

X
pa

n
d

X
X

X
h
ig

h

M
o
d
e
l
S
e
c

w
eb

a
p
p
li
ca

ti
o
n
s,

d
a
ta

b
a
se

s

p
ri

v
a
cy

,
in

te
g
ri

ty
,

a
u
th

en
ti
ca

ti
o
n
,

a
v
a
il
a
b
il
it
y,

n
o
n
-r

ep
u
d
ia

ti
o
n
,

a
u
d
it
in

g
,

a
cc

es
s

co
n
tr

o
l

M
d
a

+ D
sm

S
ec

M
L

(t
a
il
o
re

d
D

sl
)

X
R

u
b
y
T

L
M

O
F
-

S
cr

ip
t

X
X

X
lo

w

S
e
c
u
r
e
M

D
D

sm
a
rt

ca
rd

a
n
d

se
rv

ic
e

a
p
p
li
ca

ti
o
n
s

cr
y
p
to

g
ra

p
h
y

(s
ec

re
cy

,
in

te
g
ri

ty
,

co
n
fi
d
en

ti
a
li
ty

),
a
p
p
li
ca

ti
o
n
-

sp
ec

ifi
c

se
cu

ri
ty

p
ro

p
er

ti
es

M
d
a

+ D
sm

U
m
l

p
ro

fi
le

s
X

Q
v
t

X
P
a
n
d

K
iv

th
eo

re
m

p
ro

v
er

,
te

st
ca

se
s

fr
o
m

U
m
l

sp
ec

ifi
ca

-
ti
o
n
s

X
X

h
ig

h

N
o
te

:
S
u
p
p
o
rt

(X
);

P
a
rt

ia
ll
y

su
p
p
o
rt

(o
);

D
o
es

n
’t

su
p
p
o
rt

(X
);

(*
)S

o
C

:
S
ep

a
ra

ti
o
n

o
f
se

cu
ri

ty
co

n
ce

rn
s

fr
o
m

b
u
si

n
es

s
lo

g
ic

;
M

P
M

(M
u
lt

i-
P
a
ra

d
ig

m
M

o
d
el

in
g
);

M
D

A
(M

o
d
el

-D
ri

v
en

A
rc

h
it
ec

tu
re

);
D

S
M

(D
o
m

a
in

-S
p
ec

ifi
c

M
o
d
el

in
g
);

40



8) In what concerns traceability, it seems that current existing Mds ap-
proaches in the literature lack this important functionality. In the Mds ap-
proaches we have evaluated only UMLsec implements an incomplete error-
tracking mechanism using attack sequences generated by the theorem prover.
Human e↵ort is still necessary to interpret such an attack sequence at the
level of the abstract models.

9) Mds inherits from Mde, so it is not surprising that tool support is
provided by all the evaluated Mds approaches.

10) Finally, UMLsec, Sectet and SecureMDD are ranked at a high
level for validation because each of them was experimented using a series of
case studies, including large-size industrial experiments. SecureUML has
been validated using several case studies, but only one mid-size industrial
case study. We thus rank its validation at a medium level. ModelSec seems
immature at the moment because it has only been applied to an academic
case study.

5.2. Threats to the Validity of Mds

In this section we summarize a few of the disadvantages of current Mds
approaches, as mentioned in the literature.

Employing Uml profiles is the subject of debate within the community.
Sánchez et al. (2009) mention that the usability of Uml profiles for modeling
and analyzing security-critical systems is limited. They argue that adapting
a Uml profile to model new security concerns beyond its original capabili-
ties is di�cult, if not impossible. Second, Ma et al. (2013) show that using
general-purpose modeling languages, such as Uml profiles, hinders reusabil-
ity, although it does favor communication between models. Moreover, the
same authors mention that adapting Uml profiles to new systems requires a
large e↵ort when security is not already integrated in the modelling e↵ort.

Breu et al. (2008) emphasizes the importance of traceability in Mds ap-
proaches. However, traceability is rarely presented in the Mds methodologies
we have analyzed.

As a last and general remark, Ma et al. (2013) state that most Mds
approaches (some of which are beyond our selection) are still merely aca-
demic. Some of those Mds approaches are prototypes illustrating theoret-
ical concepts as part of a research project. Most of them are implemen-
tations designed for a specific business domain, and/or a specific security
concern. Moreover, the results of the systematic reviews on Mds, conducted

41



by Nguyen et al. (2013) and by Jensen and Jaatun (2011) both show that
there is a lack of empirical studies on Mds research.

5.3. Relevant Open Issues

Based on the evaluation result, the following issues seems to be open for
discussion.

5.3.1. Choice of Modeling Paradigms

Table 2 shows that the separation of security concerns from business
logic (SoC) is present in almost all Mds approaches. However, even if the
notion of Separation of Concerns is in the heart of Aom (Aspect-Oriented
Modeling), no evaluated Mds approach explicitly uses the Aom paradigm.
Indeed, in the literature we have analyzsed the term weaving is not used,
and no approach uses a model weaver. This result conforms to the survey
statistics in (Nguyen et al., 2013) that 87% of their selected primary studies
are not based on Aom paradigm.

It is di�cult to explain why no evaluated Mds approach explicitly applies
Aom paradigm, but we will attempt to propose some possible reasons. One
reason could be that the Aom tools were not mature enough at the time the
Mds approaches have been proposed. Another reason could be that the Aom
tools do not exactly o↵er what the Mds approaches require. This points to
the fact that the explicit use of Aom paradigm and related tools in Mds
context should be further investigated. Such an investigation could allow to
determine whether Aom paradigm could actually help, or not, Mds.

5.3.2. Security Concerns and Corresponding Metamodel

According to the security concern metamodels for the evaluated Mds
approaches in Section 4 (Fig. 5, Fig. 7 and Fig. 9), only access control is
metamodeled in detail, while other security concerns such as e.g. integrity
and confidentiality, are modeled as simple entities in those metamodels.

The reason for this is that security concerns such as confidentiality and in-
tegrity are dynamic security properties which involve the state of the business
part of the system. Such security concern entities in the metamodel can for
example be associated with elements of dynamic models of the system such
as Uml sequence or activity diagrams. Another possibility is to implement
such security concerns directly at the level of the infrastructure, therefore
bypassing additional modelling. For example, in Sectet confidentiality and
integrity are enforced by existing communication protocols at the level of

42



the web-services. Being that the treatment of dynamic security properties
either by models or by the system’s infrastructure is heavily dependent on
the application scenario, such requirements cannot easily be abstracted by a
metamodel.

This observation is matches the results of the systematic review (Nguyen
et al., 2013) which states that access control is dealt with in the majority
(around 42%) of the selected studies on Mds.

5.3.3. Choice of Modeling Languages

Four out of the five Mds approaches that we evaluate in this paper em-
ploy Uml profiles as modeling languages. Only the ModelSec approach
proposes using SecML, a tailored Dsl. It would thus seem like Uml profiles
are widely employed in Mds. This is understandable given the popularity of
the Uml. The results shown in the systematic review (Nguyen et al., 2013)
also reveal that Uml standard models and Uml profiles are used 79% of the
studies used for their review. In contrast, only 21% of the reviewed studies
use tailored Dsls. However, even though those Mds approaches do use Uml
profiles as their modeling languages, Uml profiles can be considered as Dsls.
In other words, Dsl seems to be a key concept of MDS.

6. Related Work

Despite more than a decade of existence, there is only one survey (Kasal
et al., 2011) and two systematic reviews (Jensen and Jaatun, 2011; Nguyen
et al., 2013) on the subject of Mds.

Kasal et al. (2011) share with our work a taxonomy for evaluating model-
based security engineering which directly inspires ours. Several taxonomy
entries are common, for example their paradigm, verification and security
mechanisms correspond respectively to our modeling approach, verification
and security concerns. Our taxonomy however clearly distinguishes char-
acteristics coming from the Mde orientation. For example, the fact that
we consider modeling approach with the possible use of Dsls already covers
some of their entries (namely, formality, granularity and executability). Their
work only reviews four approaches: UMLsec (Jan Jürjens, 2004), Secure
Software Architecture (Yu and Liu, 2005), a Model-Based Aspect-Oriented
Framework (Zhu and Zulkernine, 2009) and Avispa (Armando et al., 2005)
– a push-button tool for validating Internet security protocols. Surprisingly,
the authors also include, at the same level, tools aimed at general-purpose

43



analysis: Smv (Symbolic Model Verifier) (no reference given in their work
for this tool), – a Ltl/Ctl general-purpose model-checker, and Alloy – a
Sat-based solver for relational specifications (Jackson, 2011). Neither can
be considered as an Mds approach.

The systematic review conducted by Jensen and Jaatun (2011) is clearly
oriented towards code generation. We also cover three out of five of the ap-
proaches they consider. However, the authors have not provided the Mds
approach selection criteria. Furthermore, as an inherent limitation of a sys-
tematic review, their work does not use a systematic evaluation schema (such
as the taxonomy defined in our work) such that the evaluation result is less
detailed when compared with ours.

Another systematic review on Mds, conducted by Nguyen et al. (2013), is
closer to our work: it explicitly targets Mds approaches. The paper (Nguyen
et al., 2013) is a systematic literature review in which a review protocol is
clearly defined. In their review protocol, a “search” and “selection” strategy
is employed in order to select the most significant Mds papers from a large
set of candidates. Based on the review protocol, they conduct a rigorous
search-review-select process to select a final set of 80 primary Mds papers
from more than 10,000 candidate ones . According to their evaluation criteria
and data extraction strategy, they extract and synthesize the extracted data
from these 80 papers. In fact, their evaluation criteria is contained in our
taxonomy for Mds evaluation. Based on the synthesis result, the authors
present and discuss the obtained statistics against each evaluation criterion.
For example, w.r.t the security concern(s) criterion, their result shows that
most current Mds approaches focus on addressing authorization, especially
access control. The paper also briefly mentions and discusses five main Mds
approaches selected from their review process. However, due to the limitation
of a systematic review, their discussion on those five Mds approaches is very
short and narrow. In contrast, our paper deeply describes, evaluates, and
discusses a set of well-recognized Mds approaches, rather than presenting a
set of statistics on a large set of papers.

Basin et al. (2011) go through a decade of Mds with the work on Se-
cureUml. The authors concentrate on the following topics: the modeling
issues, both for business and security concerns; the transformations for ob-
taining composed models, both for generating executable code and for deriv-
ing test cases; the analysis capabilities of their approach; and finally, the tool
support for SecureUml. This survey, although very specific to the authors’
tool, provides an interesting vision of a viable approach in Mds.

44



7. Conclusion

In this paper we have presented the main advances in Mds for the past
decade. In order to propose a clear vision of what is Mds, we first introduced
the main concepts on which Mds is based on. In particular, we focused on the
notions of Mde, such as metamodels, model transformations, etc, but also
on the notion of separation of concerns or separation of views. We have then
proposed a detailed taxonomy consisting of the main concepts and elements
of Mds. Based on our taxonomy we have described, summarized, evaluated
and discussed five well-known Mds approaches. We finish the paper by a
general discussion about the current state of Mds, its limitations and open
issues.

This paper provides a broad view of the field and is intended as an intro-
duction to Mds for students, researchers or practitioners.

References

David A. Basin, Manuel Clavel, Marina Egea, Michael Schläpfer, 2010. Au-
tomatic Generation of Smart, Security-Aware GUI Models, in: ESSoS, pp.
201–217.

Agreiter, B., Breu, R., 2009. Model-Driven Configuration of SELinux Poli-
cies, in: On the Move to Meaningful Internet Systems: OTM 2009.
Springer Berlin Heidelberg. volume 5871 of Lecture Notes in Computer
Science, pp. 887–904.

Alam, M., Breu, R., Breu, M., 2004. Model driven security for Web services
(MDS4WS), in: Multitopic Conference, 2004. Proceedings of INMIC 2004.
8th International, pp. 498–505.

Alam, M., Breu, R., Hafner, M., 2007a. Model-Driven Security Engineering
for Trust Management in SECTET. Journal of Software 2, 47–59.

Alam, M., Hafner, M., Breu, R., 2006a. A constraint based role based access
control in the SECTET a model-driven approach, in: Proceedings of the
2006 International Conference on Privacy, Security and Trust: Bridge the
Gap Between PST Technologies and Business Services, ACM. pp. 1–13.

Alam, M., Hafner, M., Breu, R., 2006b. Constraint based role based access
control (CRBAC) for restricted administrative delegation constraints in

45



the SECTET, in: Proceedings of the 2006 International Conference on
Privacy, Security and Trust: Bridge the Gap Between PST Technologies
and Business Services, ACM. pp. 1–5.

Alam, M., Hafner, M., Breu, R., Unterthiner, S., 2006c. A framework for
modeling restricted delegation in service oriented architecture, in: Proceed-
ings of the Third international conference on Trust, Privacy, and Security
in Digital Business, Springer-Verlag, Berlin, Heidelberg. pp. 142–151.

Alam, M., Seifert, J.P., Zhang, X., 2007b. A Model-Driven Framework
for Trusted Computing Based Systems, in: Enterprise Distributed Ob-
ject Computing Conference, 2007. EDOC 2007. 11th IEEE International,
pp. 75–86.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuel-
lar, J., Drielsma, P.H., Heám, P.C., Kouchnarenko, O., Mantovani, J.,
Mödersheim, S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani,
M., Viganò, L., Vigneron, L., 2005. The Avispa Tool for the Automated
Validation of Internet Security Protocols and Applications, in: Etessami,
K., Rajamani, S.K. (Eds.), Proceedings of the 17th International Confer-
ence on Computer Aided Verification, Springer-Verlag. pp. 281–285.

Atkinson, C., Stoll, D., Tunjic, C., 2011. Orthographic Service
Modeling, in: Enterprise Distributed Object Computing Conference
Workshops (EDOCW), 2011 15th IEEE International, pp. 67–70.
doi:10.1109/EDOCW.2011.20.

ATLAS, 2008. ATLAS Transformation Language.
http://www.eclipse.org/m2m/atl/.

Basin, D., Clavel, M., Doser, J., Egea, M., 2009. Automated Analysis of
Security-Design Models. Information and Software Technology 51, 815–
831.

Basin, D., Clavel, M., Egea, M., 2011. A Decade of Model-Driven Security,
in: Proceedings of the 16th ACM Symposium on Access Control Models
and Technologies, ACM, Innsbruck, Austria. pp. 1–10.

Basin, D., Doser, J., Lodderstedt, T., 2003. Model Driven Security for
Process-Oriented Systems, in: Proceedings of the Eighth ACM Sympo-

46



sium on Access Control Models and Technologies, ACM, Como, Italy. pp.
100–109.

Basin, D., Doser, J., Lodderstedt, T., 2006. Model Driven Security: from
UML Models to Access Control Infrastructures. ACM Transactions on
Software Engineering and Methodology (TOSEM) 15, 39–91.

Best, B., Jürjens, J., Nuseibeh, B., 2007. Model-Based Security Engineering
of Distributed Information Systems Using UMLsec, in: Software Engineer-
ing, 2007. ICSE 2007. 29th International Conference on, pp. 581–590.

Bezivin, J., 2006. Model Driven Engineering: An Emerging Technical Space.
GTTSE, pp.36-64 .

Breu, R., Hafner, M., Innerhofer Oberperfler, F., Wozak, F., 2008. Model-
Driven Security Engineering of Service Oriented Systems, in: Information
Systems and e-Business Technologies. Springer-Verlag Berlin Heidelberg.
volume 5 of Lecture Notes in Business Information Processing, pp. 59–71.

Breu, R., Hafner, M., Weber, B., Novak, A., 2005. Model Driven Security
for Inter-organizational Workflows in e-Government, in: E-Government:
Towards Electronic Democracy. Springer Berlin Heidelberg. volume 3416
of Lecture Notes in Computer Science, pp. 122–133.

Breu, R., Popp, G., Alam, M., 2007. Model Based Development of Access
Policies. International Journal on Software Tools for Technology Transfer
9, 457–470.

Fabian Büttner, Marina Egea, Jordi Cabot, Martin Gogolla, 2012. Verifi-
cation of ATL Transformations Using Transformation Models and Model
Finders, in: Proceedings of the 14th International Conference on Formal
Engineering Methods (Icfem), Springer. pp. 198–213.

Clarke, S., 2001. Composition of Object-Oriented Software Design Models.
Ph.D. thesis. School of Computer Applications Dublin City University.

Clarke, S., Baniassad, E., 2005. Aspect-Oriented Analysis and Design: The
Theme Approach. ISBN: 0-321-24674-8, Addison Wesley.

Manuel Clavel, Viviane Torres da Silva, Christiano Braga, Marina Egea,
2008. Model-Driven Security in Practice: An Industrial Experience, in:
ECMDA-FA, pp. 326–337.

47



Cook, S., Jones, G., Kent, S., Wils, A.C., 2007. Domain-Specific Develop-
ment with Visual Studio DSL Tools. Addison-Wesley Professional.

Cottenier, T., Van Den Berg, A., Elrad, T., 2007. The Motoroal WEAVR:
Model Weaving in a Large Industrial Context, ACM, Bonn, Germany.

Cysneiros, L., Sampaio do Prado Leite, J., 2002. Non-functional require-
ments: from elicitation to modelling languages, in: Proceedings of the
24th International Conference on Software Engineering, 2002. ICSE 2002,
pp. 699–700.

Grégoire Dupe, Mariano Belaunde, Romain Perruchon, Héléna
Besnard, Florian Guillard, Vivian Oliveres, . SmartQVT.
http://smartqvt.elibel.tm.fr/.

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G., 2006. Fundamentals of Al-
gebraic Graph Transformation (Monographs in Theoretical Computer Sci-
ence. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.

Fleurey, F., Baudry, B., France, R., Ghosh, S., 2007. A Generic Approach For
Automatic Model Composition, in: 11th Workshop on Aspect-Oriented
Modeling, AOM at Models’07, pp. 7–15.

France, R., Ray, I., Georg, G., Ghosh, S., August 2004. Aspect-oriented
approach to early design modelling. IEE Proceedings Software , 173–185.

Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika
Kusel, Werner Retschitzegger, Johannes Schönböck, Wieland Schwinger,
2013. Automated verification of model transformations based on visual
contracts. Automated Software Engineering 20, 5–46.

Hafner, M., Alam, M., Breu, R., 2006. Towards a MOF/QVT-Based Domain
Architecture for Model Driven Security, in: Model Driven Engineering Lan-
guages and Systems. Springer Berlin Heidelberg. volume 4199 of Lecture
Notes in Computer Science, pp. 275–290.

Hafner, M., Breu, M., Breu, R., Nowak, A., 2005. Modelling inter-
organizational workflow security in a peer-to-peer environment, in: Web
Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Confer-
ence on, pp. 533–540.

48



Hafner, M., Breu, R., 2009. Security Engineering for Service-Oriented Ar-
chitectures. Springer-Verlag, Berlin Heidelberg.

Hafner, M., Memon, M., Alam, M., 2008. Modeling and Enforcing Advanced
Access Control Policies in Healthcare Systems with SECTET, in: Mod-
els in Software Engineering. Springer Berlin Heidelberg. volume 5002 of
Lecture Notes in Computer Science, pp. 132–144.

Hatebur, D., Heisel, M., Jürjens, J., Schmidt, H., 2011. Systematic Devel-
opment of UMLsec Design Models Based on Security Requirements, in:
Fundamental Approaches to Software Engineering. Springer Berlin Hei-
delberg. volume 6603 of Lecture Notes in Computer Science, pp. 232–246.

Houmb, S., Jürjens, J., 2003. Developing secure networked Web-based sys-
tems using model-based risk assessment and UMLsec, in: Software Engi-
neering Conference, 2003. Tenth Asia-Pacific, pp. 488–497.

Howard, M., Lipner, S., 2006. The Security Development Lifecycle. Microsoft
Press.

Huang, H., Kirchner, H., 2011. Formal Specification and Verification on
Modular Security Policy Based on Colored Petri Nets. Dependable and
Secure Computing, IEEE Transactions on 8, 852–865.

Jackson, D., 2011. Software Abstractions.

Jacobson, I., Ng, P.W., 2004. Aspect-Oriented Software Development with
Use Cases. Addison-Wesley.

Jensen, J., Jaatun, M.G., 2011. Security in Model Driven Development:
A Survey, in: Availability, Reliability and Security (ARES), 2011 Sixth
International Conference on, IEEE Computer Society, Vienna, Austria.
pp. 704–709.

Jan Jürjens, 2001. Towards Development of Secure Systems Using UMLsec,
in: Fundamental Approaches to Software Engineering. Springer-Verlag
Berlin Heidelberg. volume 2029 of Lecture Notes in Computer Science, pp.
187–200.

Jan Jürjens, 2004. Model-Based Security Engineering with UML, in:
FOSAD, pp. 42–77.

49



Jan Jürjens, 2005a. Code Security Analysis of a Biometric Authentication
System Using Automated Theorem Provers, in: ACSAC, pp. 138–149.

Jan Jürjens, 2005b. Secure Systems Development with UML. Springer-
Verlag.

Jan Jürjens, 2005c. Sound methods and e↵ective tools for model-based se-
curity engineering with UML, in: ICSE, pp. 322–331.

Jan Jürjens, 2007. Developing Secure Embedded Systems: Pitfalls and How
to Avoid Them, in: Software Engineering - Companion, 2007. ICSE 2007
Companion. 29th International Conference on, pp. 182–183.

Jürjens, J., 2002. UMLsec: Extending UML for Secure Systems Develop-
ment, in: UML 2002 - The Unified Modeling Language. Springer Berlin
Heidelberg. volume 2460 of Lecture Notes in Computer Science, pp. 412–
425.

Jürjens, J., Schreck, J., Bartmann, P., 2008. Model-based security analy-
sis for mobile communications, in: Software Engineering, 2008. ICSE’08.
ACM/IEEE 30th International Conference on, pp. 683–692.

Kasal, K., Heurix, J., Neubauer, T., 2011. Model-Driven Development
Meets Security: An Evaluation of Current Approaches, in: System Sci-
ences (HICSS), 2011 44th Hawaii International Conference on, pp. 1–9.
doi:10.1109/HICSS.2011.310.

Khwaja, A., Urban, J., 2002. A Synthesis of Evaluation Criteria for Soft-
ware Specifications and Specification Techniques. International Journal of
Software Engineering and Knowledge Engineering 12, 581–599.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.M., Irwin, J., 1997. Aspect-Oriented Programming,
in: Mehmet Akşit, Satoshi Matsuoka (Eds.), Proceedings Euro-
pean Conference on Object-Oriented Programming. Springer-Verlag,
Berlin, Heidelberg, and New York. volume 1241, pp. 220–242. URL:
citeseer.ist.psu.edu/kiczales97aspectoriented.html.

Kienzle, J., Al Abed, W., Fleurey, F., Jézéquel, J.M., Klein, J., 2010.
Aspect-Oriented Design with Reusable Aspect Models, in: Transactions on

50



Aspect-Oriented Software Development VII. Springer-Verlag Berlin Hei-
delberg. volume 6210 of Lecture Notes in Computer Science, pp. 272–320.

Jacques Klein, Jörg Kienzle, Brice Morin, Jean-Marc Jézéquel, 2009. Aspect
Model Unweaving, in: 5795, L. (Ed.), In 12th International Conference
on Model Driven Engineering Languages and Systems (MODELS 2009),
Denver, Colorado, USA. pp. p 514–530.

Klein, J., Fleurey, F., Jézéquel, J.M., 2007. Weaving Multiple Aspects in Se-
quence Diagrams. Transactions on Aspect-Oriented Software Development
(TAOSD). LNCS 4620, 167–199.

Klein, J., Hlouet, L., Jézéquel, J.M., 2006. Semantic-based Weaving of Sce-
narios, in: proceedings of the 5th International Conference on Aspect-
Oriented Software Development (AOSD’06), ACM, Bonn, Germany. pp.
27–38.

Kleppe, A.G., Warmer, J., Bast, W., 2003. MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Kramer, M.E., Klein, J., Steel, J.R.H., Morin, B., Kienzle, J., Barais, O.,
Jézéquel, J.M., 2013. Achieving Practical Genericity in Model Weaving
through Extensibility, in: ICMT, pp. 108–124.

Lang, U., Schreiner, R., 2008. Model Driven Security Management: Mak-
ing Security Management Manageable in Complex Distributed Systems,
in: Modeling Security Workshop in association with MODELS, Toulouse,
France.

de Lara, J., Vangheluwe, H., 2002. AToM3: A Tool for Multi-formalism and
Meta-Modelling, in: FASE ’02: Proceedings of the 5th International Con-
ference on Fundamental Approaches to Software Engineering, Springer-
Verlag. pp. 174–188.

Lloyd, J., Jürjens, J., 2009. Security Analysis of a Biometric Authentication
System Using UMLsec and JML, in: Model Driven Engineering Languages
and Systems. Springer Berlin Heidelberg. volume 5795 of Lecture Notes in
Computer Science, pp. 77–91.

51



Torsten Lodderstedt, David A. Basin, Jürgen Doser, 2002. SecureUML: A
UML-Based Modeling Language for Model-Driven Security, in: UML, pp.
426–441.

Lodderstedt, T., 2003. Model Driven Security, from UML Models to Access
Control Architectures. Ph.D. thesis. Unversity of Freiburg, Germany.

Levi Lúcio, Bruno Barroca, Vasco Amaral, 2010. A Technique for Automatic
Validation of Model Transformations, in: MoDELS (1), pp. 136–150.

Ma, Z., Wagner, C., Woitsch, R., Skopik, F., Bleier, T., 2013. Model-Driven
Security: from Theory to Application. International Journal of Computer
Information Systems and Industrial Management Applications 5, 151–158.

MacDonald, N., 2007. Model-Driven Security: Enabling a Real-Time,
Adaptive Security Infrastructure. Technical Report. Gartner, Inc. URL:
http://www.gartner.com/id=525109.

Eduardo Fernández Medina, Mario Piattini, 2005. Designing secure
databases. Information and Software Technology 47, 463 – 477. URL:
http://www.sciencedirect.com/science/article/pii/S0950584904001429,
doi:http://dx.doi.org/10.1016/j.infsof.2004.09.013.

Fernández Medina, E., Jurjens, J., Trujillo, J., Jajodia, S., 2006.
SECTET: An Extensible Framework for the Realization of Secure Inter-
Organizational Workflows. Internet Research 16, 491–506.

Metacase, 2009. Domain-Specific Modeling with MetaEdit+: 10 times faster
than UML. White Paper.

Gehan M.K. Selim, James R. Cordy, Juergen Dingel, 2012a. Analysis of
Model Transformations. Technical Report 2012-592. Queen’s University.

Gehan M.K. Selim, James R. Cordy, Juergen Dingel, 2012b. Model Trans-
formation Testing: The State of the Art, in: Proceedings of the 1st Inter-
national Workshop on the Analysis of Model Transformations (AMT), pp.
21–26.

Moebius, N., Stenzel, K., Borek, M., Reif, W., 2012. Incremental devel-
opment of large, secure smart card applications, in: Proceedings of the
Workshop on Model-Driven Security, Innsbruck, Austria. pp. 1–6.

52



Moebius, N., Stenzel, K., Grandy, H., Reif, W., 2009a. Model-Driven Code
Generation for Secure Smart Card Applications, in: Software Engineering
Conference 2009, ASWEC’09 Australian, IEEE Computer Society, Aus-
tralia. pp. 44–53.

Moebius, N., Stenzel, K., Grandy, H., Reif, W., 2009b. SecureMDD: A
Model-Driven Development Method for Secure Smart Card Applications,
in: Availability, Reliability and Security, 2009. ARES’09. International
Conference on, pp. 841–846.

Moebius, N., Stenzel, K., Reif, W., 2009c. Generating formal specifications
for security-critical applications - A model-driven approach, in: Proceed-
ings of the 2009 ICSE Workshop on Software Engineering for Secure Sys-
tems, IEEE Computer Society, Washington, DC, USA. pp. 68–74.

Moebius, N., Stenzel, K., Reif, W., 2010. Formal Verification of Application-
Specific Security Properties in a Model-Driven Approach, in: Engineering
Secure Software and Systems. Springer Berlin Heidelberg. volume 5965 of
Lecture Notes in Computer Science, pp. 166–181.

Moore, W., Dean, D., Gerber, A., Wagenknecht, G., Vanderheyden, P.,
2004. Eclipse Development using the Graphical Editing Framework and
the Eclipse Modeling Framework. IBM RedBooks.

Morin, B., Barais, O., Nain, G., Jzquel, J.M., 2009. Taming Dynamically
Adaptive Systems with Models and Aspects, in: 31st International Confer-
ence on Software Engineering (ICSE’09), Vancouver, Canada. pp. 122–132.

Morin, B., Klein, J., Barais, O., Jezequel, J.M., 2008. A Generic Weaver for
supporting Product Lines, in: Early Aspects Workshop at ICSE, ACM,
Leipzig, Germany. pp. 11–18.

Morin, B., Klein, J., Kienzle, J., Jézéquel, J.M., 2010. Flexible model element
introduction policies for aspect-oriented modeling, in: 6395, L. (Ed.), In
13th International Conference on Model Driven Engineering Languages
and Systems (MODELS 2010), Springer, Oslo, Norway. pp. 63–77.

Mosterman, P.J., Vangheluwe, H., 2004. Computer Automated Multi-
Paradigm Modeling: An Introduction. Simulation 80, 433–450.

53



Muller, P.A., Fleurey, F., Jézéquel, J.M., 2005. Weaving executability into
object-oriented meta-languages, in: Model Driven Engineering Languages
and Systems. Springer, pp. 264–278.

Muñoz, J., 2009. Information Security Industry: State of the Art, in: ISSE
2008 Security Electronic Business Processes. Vieweg+Teubner, pp. 84–89.

Nguyen, P.H., Klein, J., Kramer, M., Le Traon, Y., 2013. A Systematic
Review of Model Driven Security, in: Proceedings of the 20th Asia-Pacific
Software Engineering Conference (to appear).

Mike Papadakis, Nicos Malevris, 2012. Mutation based test case generation
via a path selection strategy. Information & Software Technology 54, 915–
932.

Raghu Reddy, Sudipto Ghosh, Robert B. France, Greg Straw, James M. Bie-
man, Eunjee Song, Geri Georg, 2006. Directives for Composing Aspect-
Oriented Design Class Models. Transactions on Aspect-Oriented Software
Development (TAOSD) LNCS 3880, 75–105.

Rodŕıguez, A., Fernández Medina, E., Piattini, M., 2006. Towards a UML
2.0 Extension for the Modeling of Security Requirements in Business Pro-
cesses, in: Fischer Hbner, S., Furnell, S., Lambrinoudakis, C. (Eds.), Trust
and Privacy in Digital Business, Springer Berlin Heidelberg. pp. 51–61.

Rodŕıguez, A., Fernández Medina, E., Piattini, M., 2007. Towards CIM to
PIM Transformation: From Secure Business Processes Defined in BPMN
to Use-Cases, in: Alonso, G., Dadam, P., Rosemann, M. (Eds.), Business
Process Management. Springer Berlin Heidelberg. volume 4714 of Lecture
Notes in Computer Science, pp. 408–415.

Rodŕıguez, A., Fernández Medina, E., Piattini, M., 2008. CIM to PIM Trans-
formation: A Reality, in: Xu, L., Tjoa, A., Chaudhry, S. (Eds.), Research
and Practical Issues of Enterprise Information Systems II. Springer US.
volume 255 of IFIP International Federation for Information Processing,
pp. 1239–1249.

Sánchez, O., Molina, F., Garćıa Molina, J., Toval, A., 2009. ModelSec: A
Generative Architecture for Model-Driven Security. Journal of Universal
Computer Science 15, 2957–2980.

54



Sandhu, R., Coyne, E., Feinstein, H., Youman, C., 1996. Role-based access
control models. Computer 29, 38–47.

Sendall, S., Kozaczynski, W., 2003. Model Transformation: The Heart and
Soul of Model-Driven Software Development. IEEE Software 20, 42–45.

Shafiq, B., Masood, A., Joshi, J., Ghafoor, A., 2005. A Role-Based Access
Control Policy Verification Framework for Real-Time Systems. Object-
Oriented Real-Time Dependable Systems, IEEE International Workshop
on , 13–20.

Shin, M., Gomaa, H., 2009. Separating Application and Security Concerns in
Modeling Software Product Lines, in: Kang, K.C., Sugumaran, V., Park,
S. (Eds.), Applied Software Product Line Engineering. 1st ed.. Auerbach
Publications Boston, MA, USA. chapter 14, pp. 337–366.

Stark, R.F., Borger, E., Schmid, J., 2001. Java and the Java Virtual Ma-
chine: Definition, Verification, Validation. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Syriani, E., 2011. A Multi-Paradigm Foundation for Model Transformation
Language Engineering. Ph.D. thesis. McGill University.

Antonio Vallecillo, Martin Gogolla, 2012. Typing Model Transformations
Using Tracts, in: Proceedings of the 5th International Conference on the
Theory and Practice of Model Transformations (ICMT), Springer. pp. 56–
71.

Whittle, J., Araújo, J., 2004. Scenario Modelling with Aspects. IEE Pro-
ceedings - Software 151, 157–172.

Whittle, J., Jayaraman, P.K., Elkhodary, A.M., Moreira, A., Araújo, J.,
2009. MATA: A Unified Approach for Composing UML Aspect Models
Based on Graph Transformation. T. Aspect-Oriented Software Develop-
ment VI 6, 191–237.

Yu, H., Liu, D., 2005. Secure Software Architectures Design by Aspect Ori-
entation, in: Proceedings, 10th IEEE International Conference on Engi-
neering of Complex Computer Systems (Iceccs), IEEE Computer Society.
pp. 47–55.

55



Zhu, Z.J., Zulkernine, M., 2009. A Model-Based Aspect-Oriented Framework
for Building Intrusion-Aware Software Systems. Information and Software
Technology 51, 865–875.

56


