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Abstract. Many tasks in Model-Driven Engineering (MDE) involve cross-
cutting model modifications that are bound to certain conditions. These
transformation tasks may affect numerous model elements and appear in
different forms, such as refactoring, model completions or aspect-oriented
model weaving. Although the operations at the heart of these tasks are
domain-independent, generic solutions that can easily be used and cus-
tomized are rare. General-purpose model transformation languages as well
as existing model weavers exhibit metamodel-specific restrictions and in-
troduce accidental complexity. In this paper, we present a model weaver
that addresses these problems using an extensible approach that is defined
for metamodelling languages and therefore generic. Through examples of
different formalisms we illustrate how our weaver manages homogeneous
in-place model transformations that may involve the duplication, merge,
and removal of model elements in a generic way. Possibilities to extend
and customize our weaver are exemplified for the non-software domain of
Building Information Modelling (BIM).

1 Introduction and Motivation

In Model-Driven Engineering (MDE), various activities require the modification
of several areas of a model that satisfy specific properties. Such activities may take
the shape of refactoring tasks or search-and-replace tasks similar to those sup-
ported in textual editors of Integrated Development Environments (IDEs). Others
appear as model-completion transformations or aspect-oriented model weaving.
These activities are composed of atomic add, change, and remove operations
similar to Create, Read, Update, Delete (CRUD) operations of databases. Al-
though these operations are problem-independent, generic solutions that can be
easily reused and customized for arbitrary domains are rare. Existing solutions
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are restricted to certain types of models, do not support conditional application
of changes, ignore domain-specific properties, or introduce accidental complexity.
General-purpose model-to-model transformation languages, for example, have
not been designed specifically for homogeneous in-place refinement transforma-
tions, but support a multitude of scenarios. As a result, domain experts wanting
to add or change model details have to make efforts to master these powerful, yet
general-purpose, transformation languages. They have to reason about languge
technicalities that are not central to their task, such as copying elements.
Model weaving approaches provide specific constructs for model changes that
cross-cut the system’s main decomposition. Currently available model weavers,
however, tend to complicate these simple tasks just as general-purpose transfor-
mation languages do. The complexity results from the need for detailed weaving
instructions, preparatory transformations of input models to weaving-supporting
formalisms, or incomplete automation. Nevertheless, industrial domain-specific
applications of model weaving, e.g. for communication infrastructure [4] or
robustness modelling [1], suggest that these shortcomings can be overcome.
This paper presents a generic, extensible, and practical model weaver, called
GeKo [5], together with a demonstration of its use in different domains. Our
approach is generic because it is defined on top of a metamodelling language. It
can be applied to all instances of arbitrary metamodels that were defined using
this metamodelling language. Our approach is extensible because domain-specific
solutions can be used without modifications of the generic core weaving logic.
Finally, it is practical because it can be used together with existing MDE tools. It
is not necessary to learn new notations or to understand new frameworks in order
to apply the weaver. The presented approach evolved from earlier work on generic
model weaving [22]. We added extension support, automated customization steps
and improved the join point detection mechanism, the weaving implementation
and the formalization. Our weaver was used to integrate building specification
information into models of buildings. It is currently being integrated into the
Palladio [3] IDE for model-driven development of component-based systems.
The contributions of this paper are:

— The presentation of a generic model weaver proving that practical generic
model weaving can be defined on the level of metamodelling languages.

— The illustration of an extension mechanism for this weaver, showing that
little work is needed to customize the generic approach to specific domains.

— The detailed description of challenging weaving scenarios for examples of two
formalisms that illustrate the atomic metamodel-independent operations.

The remainder of this paper is structured as follows. Section Pl provides the
background for our work. In Section[3] we present the key characteristics and the
individual weaving phases. Section [] explains how we ensure that our concepts
and implementations are generic and extensible. The customization capabilities
are illustrated in Section [B] through an application of our approach to Building
Information Modelling (BIM). Section [l details the generic realisation of atomic
duplication, merge, and removal operations during model composition. Section [l
presents related work and Section [§] draws some final conclusions.
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2 Foundations

2.1 Model Weaving and Aspect-Oriented Modelling

Aspect-Oriented Modelling (AOM) provides explicit language constructs for
cross-cutting concerns. Many AOM techniques use constructs similar to those
of Aspect-Oriented Programming (AOP). A pointcut describes at which points
of a model an aspect should be applied. An advice defines what should be done
whenever a part of a model matches the description of a pointcut. Together,
pointcut and advice form an aspect. The points in a base model that match a
pointcut are called join points. After identification of these points, the changes
described in an advice can be executed at these points. This process of incor-
porating advice information into a base model is called model weaving. Other
approaches to model composition, e.g. [6], do not provide new constructs such as
pointcuts as they merge models expressed using the same notation.

2.2 Building Information Modelling

The term Building Information Modelling (BIM) [7] refers to models of buildings
that contain semantic information in addition to three-dimensional geometric
information. BIM started to replace two-dimensional models in the last decade,
but is still not completely widespread [10]. Most BIM design tools use proprietary
formats to represent and render models. For interoperability these tools usually
provide import and export functionalities for a standard format called Industry
Foundation Classes (IFC) [II]. The weaver presented in this paper was used
together with a framework that bridges the technological spaces of BIM and
MDE [27] in order to apply MDE techniques to models of buildings. Such an
application of MDE presents challenges in terms of scalability and integration
as many stakeholders use partial models of significant size and complexity.

A common technique to avoid adding the same details at several places in a
model of a building is to define them in a document called a building specification.
As building specifications, like all natural-language texts, can be ambiguous and
open to different interpretations, it is hard to use them in automated processes.
Nevertheless, building specifications and models are used as the main inputs for
analysis tasks like cost estimation. These analyses would be easier if cross-cutting
specification concerns were directly woven into models of buildings [17].

3 Overview

In this section we introduce our approach to model weaving. First, we describe
five key features that characterise our approach in addition to the genericity and
extensibility explained in Section @l Then, we outline the main weaving phases.

3.1 Key Characteristics

Asymmetric Weaving of Ordinary Models. In our approach, aspects that
are defined by a pointcut model and an advice model are woven into a base model.
This kind of approach is called asymmetric as the arguments have different roles
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(base, pointcut and advice), in contrast to symmetric approaches, such as [6],
which weave entities that are not distinguished using roles or types.

Implicit Join Points allow Direct Use. Our approach uses implicit join
points that are identified using a join point detection mechanism. This means
that points at which a model should be changed can be defined using an ordinary
model snippet, which serves as a detection pattern. No preparatory steps, such as
manually annotating a model or executing transformations that mark elements
to be changed, are needed as is the case for other approaches [13126].

Aspect Definition using Familiar Syntax. In our approach, pointcut and
advice models are defined using relaxed versions of the original metamodel. In
these metamodels, constraints, such as lower bounds and abstract metaclasses,
are relaxed in order to allow the definition of incomplete model snippets. Such
a relaxed metamodel is a supertype of the original metamodel as every model
conforming to the original metamodel also conforms to the relaxed metamodel.
Therefore, aspects can be defined with existing tools that only have to be slightly
modified in order to support instantiations of abstract metaclasses and allow
violations of lower bounds. Relaxed metamodels were previously presented [24],
but they have not been realised in an automated, metamodel-independent way.

Declarative Mapping from Pointcut to Advice. In our approach, users
declaratively define which elements of the pointcut correspond to which elements
of the advice. This indirect weaving specification relieves the user from the need
to explicitly specify weaving steps as they are inferred from the mapping. In
most cases the mapping can even be determined automatically. In contrast to
declarative transformation languages like QVT-R, this mapping is metamodel-
independent. The foundations of such declarative weaving instructions have been
presented previously [22], and continue to be a unique feature of GeKo.

Metamodel-independent Operations. Our generic model weaver is able to
process instances of arbitrary metamodels. This is possible because weaving
operations are based on the properties of the metamodel to which the model
conforms. These metamodel properties are automatically retrieved for every
metamodel and not hard-coded for a specific metamodel. They can be attributes,
which store primitive types, or references to complex types. Attributes and
references are part of various metamodelling languages, such as the standard
EMOF 2.0 or KM3 [12]. Therefore, our approach can even be used for different
metamodelling languages. Metamodel-independent operations have already been
proposed [22], but have never been realised in a completely generic way. Our cur-
rent implementation [5] is based on the metamodelling language Ecore, which is
a variant of EMOF 2.0.

3.2 Weaving Phases

Our approach consists of five different phases, shown in Fig. Il Six out of the
seven extension points discussed in Section [ are also displayed.

0) Loading Makes the relevant base, pointcut, and advice models available.
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Fig. 1. The models, phases, and major extension points of the weaving process

1) Join Point Detection. The first phase of weaving identifies all locations
of the base model that match the model snippets defined in the pointcut model.
As an intermediate result, we obtain for each matched location a one-to-one
mapping from pointcut elements to base elements, which we call join points.
Depending on the structure and size of base and pointcut models, this prepara-
tory step can dominate the overall time required for weaving. For this reason,
we decouple it completely from the other phases of weaving. This allows for
different matching algorithms as well as for domain-specific pointcut matching
optimisations that are independent of the remaining weaving steps.

In our current implementation, join point detection is fully automated by
generating rules targeting the business logic integration platform Drools, which
implements the Rete algorithm [8]. This is similar to the SmartAdapters ap-
proach [23]. The main difference, however, is that we do not generate advice
instantiation rules but decoupled this from the advice-independent join point de-
tection in order to separate steps that are subject to different evolution
pressure.

2) Inferring a Pointcut to Advice Mapping. In order to know how elements
before weaving correspond to elements after the weaving we need a mapping from
pointcut to advice elements. This mapping is a model consisting of entries that
list references to pointcut and advice elements. It can be defined independent
of the way the pointcut and advice model itself are defined. To relieve the user
from as much complexity as possible, the weaver automatically infers the map-
ping and skips ambiguous cases. Unambiguity is given, if every pointcut element
matches at most one advice element of the same type having the same primitive
attributes. Fortunately, this happens to be the case for many weaving scenarios
such as the one presented in Fig. Pl The mapping inference algorithm matches
pointcut elements to advice elements that exhibit all attributes of the pointcut
element. Therefore, it rather produces false negatives than false positives. If an
automatically inferred mapping is incomplete, only the remaining unmapped el-
ements have to be mapped manually. As the m-to-n mapping may relate multiple
pointcut elements with multiple advice elements, it may induce duplication and
merge operations, which are discussed in detail in Section and Section
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Fig.2. An example of a pointcut and advice model with an unambiguous mapping
(dotted arrows) from pointcut to advice elements that can be automatically inferred.

3) Model Composition. The central weaving phase composes the base and
advice models by merging the property values of their elements. Property values
of the advice are used to replace or complete base property values, but removal
operations are deferred to the last phase. At the end of the composition phase,
newly introduced elements are added to containers using the involved contain-
ment references. A detailed description of the composition phase is given in
Section

4) Removal and Clean-up. In the last phase of weaving, base elements that
correspond to pointcut elements, but that do not correspond to any advice ele-
ments, are removed. In order to keep the model consistent, references to these el-
ements need to be removed as well. If model elements violate the lower bounds
of reference properties as a result of these removals, then they are removed as
well. This is necessary to guarantee that woven models still conform to their meta-
model. An example for this removal of inconsistencies is presented in Section [G.41

4 Genericity and Extensibility

In this section we explain the techniques used in order to provide a generic and
extensible approach, which can be customized for arbitrary metamodels.

4.1 Genericity

The key design decision that makes our approach generic is to transform models
solely by operations formulated on the meta-metamodel level. These operations
allow us to add, change, and remove elements of a metamodel instance using the
properties of the metamodel that in turn conforms to a meta-metamodel. Let us
illustrate this using a small example. Suppose a single join point element j in a
base model matches a pointcut element p that corresponds to an advice element
v. Such a match leads to a woven model in which j exhibits the properties of
v. In order to perform this weaving it is irrelevant whether the model elements
j and v are entities of a UML diagram or elements of a construction plan of a
building. It is sufficient to inspect and update the values of the properties that
are defined in the metamodel for the metaclasses of j and v.

To make this metamodel-independent approach work, we give users the ability
to formulate pointcut and advice model snippets as instances of automatically
derived metamodel variants with relaxed constraints. We already described the
derivation and use of these relaxed metamodels in Section Bl A convenient
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consequence is that users can express weaving instructions using the familiar
syntax for ordinary models. No domain-specific aspect languages are needed.

4.2 Extensibility

Our generic approach may not handle all weaving circumstances for all meta-
models in the way desired by its users. Therefore, we give users the ability to
reuse parts of our generic weaver and to customize them to obtain a domain-
specific weaver. In this section, we briefly present the customization capabilities
and in Section [Bl we show an exemplary customization for the domain of BIM.

Some of the extension points that we provide can be used to change the
default weaving behaviour of GeKo. Others can be used to perform additional
work before or after general weaving operations. In some cases we provide two
extension points for the same task in order to give users the ability to provide
simple as well as more elaborate extensions. In the current implementation of
our approach the customization possibilities are realised as Eclipse extension
points that can be extended without directly modifying the original plug-ins.

We will now briefly describe the customization facilities in their order of use:

EP 1: During the preparatory derivation of relaxed metamodels for pointcut
and advice models the default generator model can be modified. It specifies how
Java classes that realise the metaclasses of the metamodel are generated.

EP 2: The process of loading and storing models before and after the actual
weaving can be customized using a simple and a detailed extension point.

EP 3: Join point detection can be completely customized as its result is an
ordinary one-to-one mapping from pointcut to base elements for every join point.

EP 4: It is possible to ignore specific properties of metaclasses during join
point detection and model comparison using another extension point.

EP 5: For the automatic inference of a mapping from pointcut elements to
advice elements the calculation of unique identifiers can be customized. These
identifiers are used to match pointcut elements to advice elements.

EP 6: The introduction of new base elements corresponding to advice model
elements that do not have associated pointcut elements can be customized.

EP 7: The determination of containment references can be customized for
advice elements that are not unambiguously contained in another element.

All of these extension points, except EP [3] and EP [ are used for the BIM
customization of our weaver, which we present in the next section. EP [ is
required, for example, when model semantics have to be considered during join
point detection. For behavioural models, such as sequence diagrams, it is possible
that join points do not appear explicitly with the same syntax in the base model.
In the presence of loops, for example, the first part of the join point can appear
in a first iteration of the loop, whereas the second part of the join point occurs
on a second iteration of the loop [I4]. In such a case, the join point detection
mechanism has to be extended to account for the semantics of such elements.
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5 Customizing GeKo to Support BIM Weaving

To give the reader a better idea of the extension capabilities of our generic
approach we present a set of weaver extensions for IFC models of buildings.

The first two extensions to our model weaver are necessary because we can-
not use default XMI serialisation for IFC models. We load IFC models serialised
in ASCII text files as instances of an Ecore metamodel using a technological
bridge [27]. In our first extension (EP [I]) we propagate the IFC-specific changes
in the bridge’s code generator into the code generator for the relaxed pointcut
and advice metamodels. The second extension (EP [2)) customizes the resource
loader to retrieve content model elements from wrapping elements that model
the serialisation format. Because the serialisation and the domain metamodel
are defined using Ecore, we do not have to provide all loading and storing in-
frastructure but can reuse most of the generic facilities of GeKo and EMF.

The third extension (EP M) ensures that the weaver ignores specific values
of properties of metaclasses during join point detection and model comparison.
Specifically, when creating a pointcut model and specifying that a property’s
value is irrelevant, it is important to avoid that the default value specified by
IFC is applied. During join point detection, there are certain properties, such
as globally unique identifiers, which cannot be omitted from the pointcut (for
reasons specific to the IFC metamodel) but which we do not wish to detect in
join points. The third extension allows us to ignore values for these properties.

The fourth extension (EP []) ensures that model elements that are not con-
venient to express in the aspect are included in the woven model. For example,
every IFC element is required to include an “owner history”, which details the
person responsible for making changes to the model. It is inconvenient to repeat
this information for every pointcut and advice element, so this extension makes
it possible to have this information propagated implicitly.

The last extension (EP [0) for IFC models applies at the very end of the
weaving process. It ensures that all elements added to the base model during
the weaving that are not yet contained in any building element are added to
the main container using the correct containment reference. This extension il-
lustrates an advantage of our approach resulting from the decision to support
pointcut and advice definition using incomplete model snippets. IFC models
may exhibit deeply nested hierarchies. A window, for example, may be part of a
hierarchy that starts with a storey and includes a building container, building,
site container, site, project container, and project. If pointcut and advice models
were complete models, the whole hierarchy beginning with the building project
would have to be specified. In our approach, however, it is possible to refer to
arbitrarily nested elements at the first level of pointcut and advice models. If
new elements are added during the weaving, we can use information available at
the join points to hook these new elements into the containment hierarchy.

Given the practical experience of providing a set of domain-specific exten-
sions to our own generic approach, we are convinced that this strategy is gen-
erally suitable for modifying domain-specific models. The fact that less than
10% additional code (0.5 KLOC customization code, 5.1 KLOC generic code)
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was needed to customize the weaver for IFC models suggests that applying our
generic approach requires less effort than the development of domain-specific
model weavers. This, however, needs to be confirmed by future experiments that
involve new extensions for other DSMLs.

6 Composition: Duplication, Merge and Removal

This section illustrates some model composition operations executed during the
application of our generic weaving approach. First, we provide a short description
of the formalisation upon which all composition operations are built. Second, we
exemplify duplication, merge and removal operations using examples for Labelled
Transition Systems (LTS) and Building Information Modelling (BIM). We chose
a well-known formalism to ease the understanding and provide examples from the
construction domain to illustrate the metamodel-independence of the operations.

6.1 Weaving Formalisation

We present the essential concepts of a set-theoretic formalisation of our approach.
The input to our weaving algorithm is a set of base-model elements B, a set of
pointcut-model elements P, and a set of advice-model elements A. From these,
a join point mapping from pointcut to base elements j : P — B, and a mapping
from pointcut to advice elements m : 2F — 24 are calculated as intermediate
results in steps 1) and 2) of our weaving process (see Section B.2)). Finally, the
woven model is obtained using three sets and a bidirectional m-to-n mapping
that we present in this section. A visualisation of the presented formalisation
is displayed in Fig. Bl The interested reader is referred to an initial [22] and
complete [I5] description of our formalisation.

The first set contains all base-model elements that have to be removed dur-
ing the weaving. These are all elements of the base model that correspond to
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an element of the pointcut model with no corresponding element in the ad-
vice model. More formally, given B, P, A,j and m as defined above, we define
Bremove = {b €B | dpeP: ](p) =b /\m({p}) = 0}

We define a second set that contains all base-model elements to be updated
during the weaving. These are all base elements that correspond to at least one
pointcut element with a corresponding advice element. In the same context as
Byemove We define Bypgate :={b€ B | 3p € P:j(p) =bAm({p}) # 0}.

The third set contains all advice-model elements that have to be added to the
base model during the weaving. It is independent of a join point and contains all
advice elements that correspond to no pointcut model element. More formally,
given the input as above, we define Ayqq:={a € A|fp € P:acm({p})}.

The bidirectional m-to-n mapping relates base-model elements with the cor-
responding advice-model elements using the detected join-point mapping from
pointcut to base elements and the mapping from pointcut to advice elements.
In the same context as for Byemove and Bypdate We define the mapping nygse—adwvice
asb—{a€ A|Ipe P:jlp)=bAacm({p})} and the mapping nadvice—base
asa—{beB|3IpeP:jlp)=bAacm({p})} as compositions of j and m.

Our approach is inspired by graph transformations but different: In contrast
to other approaches [28/20] our formalisation and implementation [5] uses sets
that directly contain model elements. No translation to nodes, edges and their
types and attributes is performed. Relations between set members are only han-
dled different than other attributes after removal operations. The mapping from
pointcut to advice elements can also be non-injective and not right-unique.

6.2 Duplication

The first weaving scenario that we present involves the duplication of a base
model element. Such a duplication is needed if a pointcut element corresponds to
more than one advice element (m is non-injective). The consequence for each join
point is as follows: All the base elements representing the advice elements that are
involved in the duplication have to be updated. After the duplication, these base
elements have to exhibit all properties of the base element that corresponds to the
pointcut element of the duplication. This is achieved by introducing the attribute
and reference values of the base element that corresponds to the pointcut element
into the base elements that correspond to the advice elements.

Fig.@illustrates such a duplication with example models of a LTS. The pointcut
element b corresponds to the two advice elements b1, b2 (Fig. . The only pos-
sible join point maps this pointcut element b to the base element b. More formally,
Npase—advice (D) = {b1, ba}. As a result, all incoming transitions ¢1 and all outgoing
transitions t3, t4 of bare duplicated for b1 and b2 during the weaving (Fig.. The
transition tnew from b1 to b2 is newly introduced independent of this duplication
operation as tnew € Agqq.

Fig.Blillustrates a duplication scenario for models of buildings. The purpose of
the aspect is to duplicate cable ports. In IFC (see Section[Z2]) a cable port is rep-
resented as an IfcPort that is related via an IfcRelConnectsPortToElement
to an IfcFlowSegment that is typed using IfcCableSegmentType (Fig.[Hla). To
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Fig. 4. Weaving an aspect into a LTS while duplicating the base element b

achieve a duplication of such ports, the advice model (Fig. Elb) contains the
same elements as the pointcut model and an additional IfcPort together with
an additional relation. The mapping from pointcut to advice elements relates
the single IfcPort of the pointcut to both IfcPorts of the advice and the sin-
gle IfcRelConnectsPortToElement to both instances of the advice. All other
pointcut and advice elements have a one-to-one correspondence. We do not vi-
sualise this mapping or a woven example as this would require too much space.

6.3 Merge

A scenario that can be seen as the dual to duplication occurs if more than
one pointcut element corresponds to an advice element (m is not right-unique).
The resulting merge has to ensure that the relevant advice elements exhibit all
properties of all corresponding pointcut elements. This is realised by introducing
all attribute and reference values of the base elements corresponding to the
pointcut elements into the base element corresponding to the advice element.

: IfcPort
- RelatingPort sHelon RelatingPort

‘ : IfcRelConnectsPortToElement ‘ ‘ : IfcRelConnectsPort ToElement ‘

: TfcFlowSegment RelatedElement

RelatedObjects
 IfcRelDefinesBy Type ‘

RelatedElement

: IfcFlowSegment

RelatedObjects
: IfcRelDefinesBy Type ‘

RelatingType RelatingType

‘ : IfcCableSegment Type ‘ ‘ p2 : IfcPort ‘ : IfcCableSegment Type ‘
RelatingPort | RelatedElement

r2 : IfcRelConnectsPortToElement ‘
(a) pointcut model (b) advice model

Fig. 5. An example aspect for IFC models which duplicates cable ports
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The merge weaving scenario is illustrated for LTS in Fig. [0l The two pointcut
elements b and ¢ correspond to the advice element be (Fig. . The only
possible join point maps these pointcut elements b and ¢ to the elements with
the same names in the base model. More formally npase—advice(b) = {bc} =
Nbase—advice(€). During the weaving of this example b’s incoming transition ¢1
and ¢’s incoming transition ¢2 are merged into the resulting element of the woven
model be (Fig. . The same applies for b’s outgoing transition ¢4 and c¢’s
outgoing transition t5. Independent of this merge operation the transition ¢3
from b to ¢ is removed as it is bound to the transition ¢3 of the pointcut model
but has no correspondence in the advice model (t3 € Biemove)-

A similar merge scenario for IFC models is shown in Fig.[[l The aspect ensures
that every door with an unspecified fire rating obtains the properties of a fire
resistant door. To achieve this, the property set that contains the unspecified fire
rating value (and other property values which should be preserved) is merged

: IfcDoor : IfcDoor
- RelatedObjects - RelatedObjects

‘ : IfcRelDeﬁnesByP‘roperties ‘ ‘ : IfcRelDeﬁnesByP‘ropertieS ‘
RelatingPropertyDefinition RelatingPropertyDefinition
: IfcPropertySet J : IfcPropertySet J
Name = ‘PSet_DoorCommon’ Name = ‘PSet_DoorCommon’
: IfcPropertySingleValue : IfcPropertySingleValue
HasProperties| Name = ‘FireRating’ HasProperties| Name = ‘FireRating’
Value = ¢
: IfcPropertySet

Name = ‘PSet_FireResistantDoor’

(a) pointcut model (b) advice model

Fig. 7. An example aspect for IFC models which merges properties
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Fig. 8. Weaving an aspect for a small LTS while removing the base element b

with a property set of fire resistance properties. Instead of listing all these prop-
erties (e.g. fire rating = “AS 1905.1”, smoke stop = true), the corresponding
property sets are listed in the pointcut and mapped to a single property set in
the advice.

6.4 Removal

The last scenario that we discuss in detail involves the removal of base elements
and illustrates the final clean-up phase. As explained in Section [6] a base ele-
ment has to be removed during the weaving at a join point if this join point binds
the base element to a pointcut element without a correspondence in the advice.
After removing these unmatched elements it may be that other base elements
that referred to a removed element violate lower bound constraints of the meta-
model. Therefore, we have to detect these inconsistent elements and remove them
too. Because this removal of inconsistencies can produce new inconsistencies, we
have to continue the clean-up until all constraints are satisfied.

We illustrate a removal scenario using LTS example models in Fig. B The
pointcut model element b corresponds to no advice-model element (Fig. [8(b)).
Thus b € Byemove and therefore b is removed from the woven model (Fig. .
As a result, the transition ¢3 that originally went from ¢ to b violates the lower-
bound constraint for its mandatory target attribute as it refers to no element.
The same applies for the source attribute of the transition ¢4 that originally
went from b to d. During the clean-up phase of the weaving both ¢3 and t4 are
removed. Note, however, that although no element refers to it, the state d is
not removed during the clean-up as it does not violate any constraint of the
metamodel. Because the transition from a to b in the pointcut is mapped to the
transition corresponding to t1, the target of ¢1 is changed. Without this mapping
t1 would have been deleted and inserted with a possible loss of further attributes.
This target change and the addition of the final attribute to ¢ are independent
of the removal and clean-up operations. We do not provide another example for
IFC models as building specifications do not specify removals.

7 Related Work

In this section we discuss approaches to homogeneous in-place transformations
that are generic in the sense that they can be applied to different metamodels.
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SmartAdapters is a model weaving technique for which join points had to
be specified manually in the initial version. First, it had to be tailored to spe-
cific metamodels, such as Java Programs [19] and Class Diagrams [I8]. Then,
it has been generalised to support arbitrary metamodels [21]. Later efforts fo-
cused on its use for adapting component models at runtime so that initially
generic weaving functionality can no longer be separated from advanced concepts
for component-based systems. Despite this specialisation, Smart Adapters shares
various concepts with GeKo. A major difference, however, is the representation
of weaving instructions. In addition to a declarative pointcut and advice model,
SmartAdapters needs a composition protocol with imperative weaving instruc-
tions. It supports sophisticated weaving operations that cannot be expressed
with GeKo, but it also requires explicit definitions for very basic weaving tasks.

MATA [28] is a concept for generic model weaving based on graph transforma-
tions. It converts a base model into an attributed type graph, applies graph rules
obtained from composition rules, and converts the resulting graph back to the
original model type. Composition rules are defined as left-hand-side (pointcut)
and right-hand side (advice), but can also be expressed in a single diagram. Al-
though the approach is conceptually generic, we are only aware of an application
in which composition rules are defined using the concrete syntax of the UML. An
aspect is defined using a UML profile with stereotypes to mark elements that
have to be created, matched, or deleted. In contrast to our approach, MATA
does not directly operate on the input models but requires conversions and does
not provide extension possibilities for domain-specific weaving.

Almazara [25] is a model weaver that generates graph-based model transfor-
mations from Join Point Designation Diagrams (JPDDs) using transformation
templates. These diagrams are defined using a UML Profile and support various
selection criteria, such as indirect relationships. The generated transformations
collect runtime information, evaluate dynamic selection constraints and realise the
weaving. This is very different from snippet-replacing approaches as it heavily in-
tegrates matching and weaving. Although JPDDs provide specialised constructs
for behavioural weaving, the authors state that Almazara can be used with any
modelling language. We are, however, not aware of such non-UML applications.

The Atlas Model Weaver (AMW) was developed to establish links between
models that can be stored as so called weaving models. The links are created
semi-automatically and can be used for comparing, tracing, or matching related
elements. Published applications of AMW [6] use the links for heterogeneous
model transformations and model comparison, but they can also be used to weave
elements into a model instance. An unpublished example [2], in which attributes
are woven into metaclasses, shows that join points have to be specified manually
as no means are provided for pointcut definition or join point detection.

The Reuseware Composition Framework [9] provides a generic mechanism for
composing modelling languages. In order to compose languages they either have
to be manually extended so that they represent a component description lan-
guage or a non-invasive extension has to be provided using OCL-expressions. The
authors state that it is possible to reuse much composition logic once a language
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was made composable. Nevertheless, they do not describe an automated way to
retrieve such language extensions. Furthermore, the focus of Reuseware is rather
permanent language modularity than transitional composition of instances.

The Epsilon Merging Language (EML) [I6] can be used to merge heteroge-
neous models using a syntax that is similar to declarative model transformation
languages like QVT-R. These general-purpose languages support various trans-
formation scenarios and are not specialized for in-place asymmetric homogeneous
weaving according to property-based conditions. As a result, basic weaving oper-
ations, such as merging two instances of the same metaclass, have to be redefined
for every application domain. This disadvantage can be mitigated using advanced
transformation approaches. Higher-Order Transformations (HOTs) [13], for ex-
ample, adapt transformation patterns to a domain and to individual model parts.
Similarly, Generic Model Transformations [26] provide transformation templates
that can be bound to specific metamodels. These approaches only support re-
stricted pattern matching and need to be explicitly instantiated. Furthermore,
users have to express transformations using constructs of the approaches and
cannot describe their tasks solely with concepts of their domain.

We summarize our discussion of related work in three points. First, only our
approach offers a declarative and domain-specific notation for homogeneous in-
place transformations that is automatically derived in a generic way. Second, no
other approach reduces the verbosity and complexity of weaving instructions and
sophisticated weaving scenarios such as duplication or merge like we do it with
pointcut to advice mappings. Last, related work neither separates matching from
modifying logic to allow for combinations of different approaches nor provides it
explicit extension points to support domain-specific customizations.

8 Conclusions and Future Work

In this paper we have presented GeKo, a generic model weaver working purely on
metamodelling language constructs. We have shown that GeKo is both practical
and generic because it uses declarative aspects formulated in existing notations
and because it can be applied on instances of any kind of well-defined metamodel.
With a selection of extension points for the refinement of weaving behaviour we
have also shown that GeKo is easily extensible. This feature is crucial for a
generic approach, in that it allows for customizations for domain-specific needs
while reusing generic core operations. Finally, we have shown how the formali-
sation of GeKo allows the management of challenging weaving scenarios such as
duplication, merge, and removal. With examples based on BIM and LTS we have
illustrated that the operations induced by related pointcut and advice snippets
can solve the problems of these scenarios in a generic way.

Further application of GeKo to weaving problems in other domains will as-
sist in evaluating the sufficiency and usefulness of currently available extension
points, and, if necessary, the identification of new ones. Also, it will be interesting
to investigate alternative engines and concepts for the detection of join points,
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e.g. to ensure scalability in the presence of large base models and numerous join
points or to allow for join point detection based on pointcut semantics.
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