
Bottom-Up Adoption of Software Product Lines -
A Generic and Extensible Approach

Jabier Martinez
SnT, University of Luxembourg
& LIP6, Sorbonne Universités,
UPMC Univ Paris 06, CNRS

Luxembourg
jabier.martinez@uni.lu

Tewfik Ziadi
Sorbonne Universités, UPMC

Univ Paris 06, CNRS,
LIP6 UMR 7606

Paris, France
tewfik.ziadi@lip6.fr

Tegawendé F. Bissyandé,
Jacques Klein,
Yves Le Traon

SnT, University of Luxembourg
firstName.lastName@uni.lu

ABSTRACT
Although Software Product Lines are recurrently praised as
an efficient paradigm for systematic reuse, practical adop-
tion remains challenging. For bottom-up Software Product
Line adoption, where a set of artefact variants already exists,
practitioners lack end-to-end support for chaining (1) feature
identification, (2) feature location, (3) feature constraints
discovery, as well as (4) reengineering approaches. This chal-
lenge can be overcome if there exists a set of principles for
building a framework to integrate various algorithms and to
support different artefact types. In this paper, we propose
the principles of such a framework and we provide insights
on how it can be extended with adapters, algorithms and
visualisations enabling their use in different scenarios. We
describe its realization in BUT4Reuse (Bottom–Up Tech-
nologies for Reuse) and we assess its generic and extensi-
ble properties by implementing a variety of extensions. We
further empirically assess the complexity of integration by
reproducing case studies from the literature. Finally, we
present an experiment where users realize a bottom-up Soft-
ware Product Line adoption building on the case study of
Eclipse variants.

CCS Concepts
•Software and its engineering → Software reverse en-
gineering; Software product lines;

Keywords
Software Product Line Engineering; Reverse Engineering;
Mining existing assets

1. INTRODUCTION
Software reuse is the process of creating new software by

reusing pieces of existing software rather than from scratch [28].
It may be performed simply for convenience, as in the cases
of the opportunistic copy-paste-modify approach and the project
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clone-and-own technique, or it may represent more thought-
ful solutions to complex engineering problems, as in the case
of Software Product Line Engineering (SPLE). SPLE de-
creases time-to-market and increases product quality among
other benefits, but it requires a high up-front investment
[40]. In practice, the adoption of the latter, higher-level,
reuse paradigm, is only considered when developers can jus-
tify opportunities of productivity and economical gains [12,
25]. In the case of SPLE, it has been reported that more
than 50% of industrial practitioners formally implement a
Software Product Line (SPL) only after the instantiation
of several similar product variants using ad-hoc reuse tech-
niques [6]: this is known as a bottom-up approach to imple-
menting systematic software reuse.

A typical bottom-up process requires a thorough analysis
of existing software artefacts. The literature proposes vari-
ous methods related to various aspects of this process, also
called rehabilitation process [40], and interest on providing
solutions for bottom-up SPL adoption has been growing re-
cently [3,17,33]. As we will detail in the related work section
(Section 2), bottom-up SPL adoption approaches have tar-
geted three main objectives:

• Feature Identification and Analysis. In SPLE, a Fea-
ture is defined as a prominent or distinctive character-
istic, quality or user-visible aspect of a software system
or systems [26]. In Feature identification, the bottom-
up approach takes as input a set of artefact variants and
analyses them to identify features. These features will
represent optional functionalities throughout the artefact
variants. Other Feature analysis approaches allow discov-
ering constraints that specify the different relationships
between the features. Finally, the analysis of the features
and their constraints allows to synthesize a feature model
with an appropriate feature model structure.

• Feature Location. In this context, the objective is to map
features to their concrete implementation in the artefact
variants. Therefore, compared to the Feature identifica-
tion objective, the assumption is that the features are
previously known and their presence or absence in the
artefact variants is also known.

• Reengineering. This objective is the transformation phase
where the artefact variants are actually refactored to con-
form to an SPLE approach. This includes extracting
reusable assets from the artefact variants and establishing
their mapping to a feature model.

Unfortunately, there are still research challenges in bottom-
up SPL adoption that go beyond specific approaches or tech-
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niques. Without detracting from the importance of specific
techniques, this work focuses on the following concerns to
reduce the high up-front investment for SPL adoption:

• The proposed approaches are often related to a specific
kind of software artefacts. There is a large body of algo-
rithms and techniques for achieving the different objec-
tives in SPL adoption. Unfortunately, because the imple-
mentation of such algorithms are often specific to a given
artefact type, it is often a barrier to re-adapt it for an-
other kind of artefacts. There is however an opportunity
to reuse the principles guiding these existing techniques
for other artefacts. When such algorithms are underly-
ing in a framework, they could be transparently used in
different scenarios.

• The absence of a unified process: From feature identifica-
tion and location until actually reengineering the artefact
variants, there is the challenge of addressing, within the
same environment, the three different objectives. Each
approach requires inputs and provide outputs at different
granularity levels and with different formats. These con-
straints complicate the integration of different approaches
in a unified process.

• The need for benchmarking: The existing approaches and
techniques for bottom-up SPL adoption differ on their
artefact variants’ analysis and manipulation. Thus, they
also differ in their performance and results’ quality and
their assessment and comparison become a real challenge.
The realization of a framework can provide a common
ground for assessing and comparing different algorithms
as well as comparing different ways to chain them during
the different steps of bottom-up SPL adoption.

In this paper, we propose the principles for building a
generic and extensible framework for SPL adoption. Thanks
to the abstraction layer provided to integrate various algo-
rithms and artefact adapters, we enable to overcome these
three concerns. The contributions of this work are:

• A unifying framework to support bottom-up SPL adop-
tion. The process promoted in the framework is built
upon an analysis of the steps from the state-of-the-art on
bottom-up SPL adoption.

• An intermediate model which allows to easily reuse and
integrate existing specific solutions for feature identifica-
tion, location, constraints discovery, feature model syn-
thesis and reusable assets construction.

• A framework that allows domain experts to combine and
compare existing approaches for each of the steps of the
process.

• A framework that includes extensibility for visualisations
allowing to test and share visualisation paradigms which
can be reused in different SPL adoption processes.

• A realization of the framework: BUT4Reuse (Bottom-Up
Technologies for Reuse) being a tool-supported bottom-
up SPL adoption framework specially designed for gener-
icity and extensibility.

The paper is structured as follows: Related work is pre-
sented early in Section 2 in order to show their influence in
the proposed process as well as to differentiate our frame-
work from previous work. Section 3 presents the framework
principles and the promoted process. Section 4 presents the
realization of the framework. Section 5 presents an empiri-
cal evaluation. Finally, Section 6 summarizes our work and
outlines future directions.

2. RELATED WORK
SPLE is a maturing field that has witness a number of con-

tributions, in particular in the form of frameworks for deal-
ing with different aspects of variability management. Un-
fortunately, general approaches for mining existing artefacts
is still not mature enough, delaying real-world SPL adop-
tion. Through the overview of the related work from the
literature, we highlight the differences with our framework.

Feature identification and location: Given several
variants of a product, in order to build the feature model
for SPLE, one must identify the existing features. The liter-
ature contains many approaches of feature identification and
location that deal with specific artefact types. For instance,
[1, 18, 27, 52, 53, 54] consider source code artefacts using dif-
ferent techniques, [36,44] identify features from models, and
[22] analyses function block diagrams. E.g. ECCO [18] per-
forms feature location on artefact variants and was evaluated
using Java source code artefact variants.

Clone detection techniques have been used as generic ap-
proaches to identify features in a set of artefact variants. The
clone analysis workflow of ConQAT [24] supports several
languages and provides extensibility for adding new types
of artefacts while reusing visualisations and other analysis
workflow elements. MoDisco [8] is another example of ex-
tensible framework to develop model-driven tools to support
software modernization. However, these tools do not specif-
ically target artefact variants. Instead they work for single
systems and thus cannot realize the objectives of our frame-
work. In previous work, we introduced the cross-product
clone detection approach to deal with source code artefact
variants using ConQAT [35]. However, the finalized tool was
still not adapted to SPL adoption since feature identification
is only a part of the process.

Constraints discovery: After identifying features from
a set of variants, one must also infer the constraints to build
a feature model that accurately capture the domain configu-
ration space. The literature proposes approaches for mining
feature constraints from existing artefacts, although they
focus on specific artefact types, such as C source code [38].
Other approaches does not rely on the internal elements of
the artefact variants. For example, some approaches use
the existing feature combinations from the artefact vari-
ants [10, 20, 32, 34, 37] and other approaches use existing
documentation [11]. Our framework, that proposes a generic
and extensible approach for constraints discovery can lever-
age these specific techniques. Thus, these techniques can
be generalized to other artefact types and they can be used
simultaneously.

Feature model synthesis: Once the features and the
constraints are identified, creating comprehensive feature di-
agrams is an NP-hard problem [46]. A feature diagram con-
tains a hierarchy of features, enriched by cross-tree feature
constraints and its structure should be heuristically defined.
Some approaches rely on the constraints defined in propo-
sitional formulas [46] while others embed also ontological
information of the domain [4]. WebFML [5] is a framework
specialized in feature model synthesis. Our framework can
integrate these approaches.

Reusable assets construction: Once the features are
identified from the artefact variants, the final step towards
SPL adoption is to construct the reusable assets that are
associated to the features. This construction should enable
the creation of new artefacts by composing or manipulating
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the associated reusable assets of the features. Approaches
for identifying and extracting features from single software
systems has been proposed [27]. In the case of artefact vari-
ants, other approaches constructed reusable assets based on
source code abstract syntax trees [18,55]. Finally, other ap-
proaches focused on defining a framework of n-way merging
of models to create SPL representations [43]. An extensible
framework offers the possibility for leveraging and integrat-
ing all the aforementioned approaches.

Visualisation: Some existing work in the context of SPL
also consider visualisation. Tools that introduce visualisa-
tion techniques to address product configuration have been
proposed [39]. Other authors propose the use of visual-
isation techniques to display features for pairwise testing
[31]. However, our framework integrates visualisation com-
ponents that help analysing the artefact variants during the
SPL adoption process. In this direction, we proposed in
previous work a paradigm that provides a visualisation for
constraints discovery [37].

SPL generic and extensible frameworks: Other generic
and extensible frameworks have been proposed tackling dif-
ferent aspects of SPLE. Pure::Variants [7] and Gears [29]
provide variability management functionalities for specific
artefacts including DOORS requirements, Microsoft Ratio-
nal or Microsoft Excel spreadsheets. For each artefact type,
they provide adapters. Extensions in Pure::Variants, and
bridges in Gears, permit to add new adapters for new arte-
fact types. The Common Variability Language [21] defines
the variability on models and the composition of model el-
ements in a meta-model-independent way. These tools do
not tackle the reengineering process by themselves. The
feature model and the reusable assets are designed and de-
veloped directly for reuse. Our framework instead is aimed
at helping domain experts in the bottom-up process. How-
ever, these tools are used to leverage and manage the mined
variability [23,45].

FAMA [50] is a feature model analysis framework. It is ex-
tensible to new variability modeling languages and new rea-
soning operators. It also performs benchmarking for high-
lighting the advantages and shortcomings of different anal-
ysis approaches. FAMA’s assumption is that the feature
model already exists while the objective of our framework
is to create it by analysing the artefact variants. It relies
on an intermediate representation of feature models, while
our framework’s intermediate representation is related to
artefact variants. FeatureHouse [2] is a generic composi-
tion framework for source code artefacts. The objectives
of all these SPL frameworks are different compared to the
objectives of bottom-up SPL adoption.

3. APPROACH
This section presents our framework principles and its dif-

ferent layers.

3.1 Principles
In order to be generic in the support of various artefact

types, the principles of our approach is built upon the fol-
lowing three principles:
(1) A typical software artefact can be decomposed into

distinct elements, hereafter referred to as Elements.
(2) Given a pair of Elements in a specific artefact type,

a similarity metric can be computed for comparison
purposes.

Figure 1: Artefact types examples and Elements
representation creation through the adapters

(3) Given a set of Elements recovered from existing arte-
facts, a new artefact, or at least a part of it (which
would be a reusable asset), can be constructed.

Principles (1) and (2) make it possible to reason on a set
of software artefacts for identifying commonalities and vari-
abilities, which in turn will be exploited in feature identifica-
tion and location processes. Principle (3) on the other hand
promises to enable the construction of the reusable assets
based on the Elements found in existing artefacts.

Because our approach aims at supporting different types
of artefacts, and to allow extensibility, we propose to rely on
Adapters for the different artefact types. These Adapters
are implemented as the main components of the framework.
An Adapter is responsible for decomposing each artefact
type into the Elements that constitute it, and for defining
how a set of Elements should be constructed to create a
reusable asset.

Figure 1 shows examples of Adapters dealing with differ-
ent artefact types. We can see how an Adapter allows two
operations, (1) to adapt the artefact to Elements and (2)
to take Elements as input to construct a reusable asset for
this artefact type. Source Code can be adapted to Abstract
Syntax Tree Elements which capture the modular structure
of source code, Text file can be adapted to Line Elements,
and EMF Models can be adapted to Meta-Object Facility
Elements [41] such as Class, Attribute and References. More
information about Adapters are presented in section 4.1.

Designing an Adapter for a given Artefact type requires
the following activities:

Activity 1: Element identification: Identifying the Elements
that compose an Artefact. This will define the granu-
larity of the Elements in a given artefact type.

Activity 2: Similarity metric definition: Defining a Simi-
larity metric between any pair of Elements.

Activity 3: Structural constraints definition: Identifying
Structural Dependencies for the Elements.

Activity 4: Reusable assets construction: Defining how to
use Blocks (set of Elements) for Reusable Assets con-
struction.

As a running example to illustrate the design of an Adapter,
we will consider the following scenario: A graphic artist
wants to adopt an SPL from image variants that were ini-
tially created following the copy-paste-modify reuse paradigm.
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Figure 2: Example of image variants and the result
of applying the Images Adapter

On the left side of Figure 2 we present the set of existing
image variants.1 In Activity 1, it was decided that the Im-
ages Adapter will adapt these variants in an intermediate
representation based on Pixel Elements. The adaptation of
an image into Pixel Elements will consist in loading the pix-
els matrix and adding the non-transparent pixels as Pixel
Elements. In Activity 2, the similarity metric will consist in
comparing Pixel Elements’ position (cartesian coordinates),
color and alpha channel. In Activity 3, each Pixel Element,
will have a structural dependency with its position. This will
allow to automatically discover structural constraints (e.g.,
it was decided that pixels overlapping is not allowed so two
shirts cannot be used in the same image). In Activity 4,
the construction for a set of Pixel Elements will be based in
creating a transparent image with the corresponding pixels.

3.2 Bottom-Up SPL adoption Framework
Figure 3 presents the framework that we propose. We

can see the bottom-up process where we have the artefact
variants at the bottom of the figure and the reengineered
SPL at the top. The framework builds on an architecture
composed of various layers. Next paragraph will describe
them and how they are related to the other layers.

Adapters: The first layer, at the bottom of Figure 3, is
the Adapters layer. As discussed before, this layer is exten-
sible by providing support for different artefact types. This
layer enables the necessary step for creating theAdaptedArte-
facts Representation which provides a common internal rep-
resentation of the artefact variants by conforming each of
them to Elements.

Blocks identification: For introducing the second layer,
we present the concept of Block. A Block is a set of Ele-
ments that is obtained by comparing the artefact variants.
Blocks permit to increase the granularity of the analysis by
the domain experts for not to reason at Element level. This
is specially relevant when trying to identify or locate fea-
tures, and also during constraints discovery. In the context
of Feature identification, Blocks identification represents an
initial step before reasoning at feature level.

Different Block identification algorithms can be defined.
In our running example, the identified Blocks shown in Fig-
ure 2, corresponded to the sets of Pixel Elements of the

1Images obtained from: http://deco-kun.deviantart.com/art/
Hikari-Yagami-all-outfits-in-Pixel-304142452

Figure 3: Layers of the framework for bottom-up
SPL adoption

different “parts” of the images. The used generic algorithm
was Interdependent elements as described in Section 4.2.

Feature identification and location: This layer corre-
sponds to two different objectives as presented in Section 1.
For feature identification, Blocks can be operated after the
analysis. Block names can be modified by domain experts
to have representative names. Also, a Block that has been
identified as feature-specific can be converted into a Feature
of the Feature Model. In our running example, the graphic
artist decided that the Blocks will be directly assigned to
Features and a meaningful name of each feature was given.

In addition, a Block can be merged with another Block
or we can split the Elements of one Block in two Blocks in
order to adjust it to identified features. To illustrate the
usefulness of this, we present a recurrent issue when dealing
with copy-paste-modified source code artefacts. This issue
is the situation where a bug fix was released in a set of
these artefacts but not in all of them. In this case, the
Block identification algorithm could identify three different
Blocks: One containing the modified statements for the bug
fix, one containing the “buggy” statements, and, finally, the
one that contains the shared statements that were not part
of the modified statements. In this case, we would like to
remove the “buggy”Block and merge the bug fix Block with
the shared Block. For feature location, the reasoning on
the list of known features and the identified Blocks aims to
locate the features.

Constraints Discovery: The identification of constraints
by mining existing assets has been identified as an important
challenge for research on the SPL domain [3]. For this pur-
pose, our framework is extensible to contribute constraints
discovery approaches. In our running example, as discussed
before, the Pixel Elements cannot overlap, so mutual exclu-
sion constraints can be found as presented in Figure 2.

Feature model synthesis: Feature model creation or
refinement demands a feature model synthesis approach to
obtain comprehensible feature diagrams. In our running ex-
ample, the identified features and constraints can be used
to automatically create the feature diagram of Figure 2 by
including the alternative features notation. Different ap-
proaches can be integrated in this layer.

Reusable assets construction: The framework sup-
ports the step of actually creating the reusable assets from
a set of Elements. Depending on the needs, these Elements
could correspond to a Block, a identified Feature, or the
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Elements that corresponded to a located Feature. In the
running example, the reusable assets were constructed and
they correspond to the images of the identified Blocks as
shown in Figure 2. On the right side of this figure we can
see how the framework realizes a complete SPL adoption by
creating a new artefact through the reuse of these assets.

Visualisation: Visualisation and interactive techniques
reduce the complexity of comprehension tasks and helps to
have in-sights and make decisions on the tackled problem
[9]. The Visualisation layer, is orthogonal to all others as
it is intended to present to the domain expert any relevant
information yielded by any other layer. Visualisations can
be used not only to show, but also to interact with the results
of the different layers.

4. BUT4REUSE
Bottom-Up Technologies for Reuse (BUT4Reuse) is our

realization of the presented framework. Significant efforts
have been dedicated to engineering a complete tool-supported
approach.2 The assessment of the realization of the frame-
work consists of two parts: first we assess its genericity by
presenting the available Adapters, and secondly we asses
its extensibility by presenting the different algorithms inte-
grated in each of the framework’s layers.

4.1 Genericity
Currently, BUT4Reuse features 10 adapters dealing with

different artefact types that can be directly used or which
one can build on to develop tailored or improved adapters.
Table 1 presents the characteristics of each of these adapters.
Despite of the different nature of the artefacts, the differ-
ent similarity metrics and their construction mechanisms,
they can all take benefit of the unified framework to per-
form bottom-up SPL adoptions.

4.2 Extensibility
Blocks identification algorithms: The algorithm for

realizing Blocks identification in BUT4Reuse consists in com-
puting Interdependent Elements using an approach proposed
in previous work [54]. This approach is based on a formal
definition of a Block that uses the notion of interdependent
Elements, which is defined as follows: Given a set A of arte-
facts that we want to compare, two Elements (of artefacts
of A) e1 and e2 are interdependent if and only if they belong
to exactly the same artefacts of A. Therefore, e1 and e2 are
interdependent if the two following conditions are fulfilled:

1. ∃a∈A e1∈a ∧ e2 ∈ a
2. ∀a∈A e1∈a ⇔ e2∈a

Since interdependence is an equivalence relation on the
set of Elements of A, when using this algorithm, the follow-
ing definition can be provided for a Block: Given A a set of
artefacts, a Block of A is an equivalence class of the interde-
pendence relation of the Elements of A. Figure 4 illustrates
this Blocks identification algorithm: Each of the n artefacts
is represented as an ellipse and the rhombuses are the Ele-
ments within these artefacts. The similarity metric between
Elements establishes when Elements from different artefacts
are equal and therefore we can compute the intersections
among them. Each of these separated intersections will be
the Blocks. For example, Block 0 groups the Elements that
are shared in all the artefacts, Block 4 groups those that are
2Download, source code and documentation:
http://but4reuse.github.io/web/

Table 1: List of available Adapters for framework
genericity assessment

Text Lines Adapter: Any file that is not a folder.
Elements: Line Element. The file is read line by line.
Similarity: Levenshtein distance between strings [30]
Dependencies: None
Construct: Append the line strings to an empty file

File Structure Adapter: Any folder.
Elements: File Element and Folder Element. Pre-Order tree
traversal of its structure.
Similarity: Name and relative path to the initial folder. Op-
tionally file contents based on MD5 hashing
Dependencies: Containment dependency
Construct: Copy the resources in a given destination

Java Source Code Adapter [55]: A folder containing source
code in java.
Elements: FSTNonTerminalNode and FSTTerminalNode. Fea-
tureHouse [2] Java source code visitor.
Similarity: Feature Structure Tree (FST) [2] positions and
names comparison
Dependencies: Source code dependencies (on-going work)
Construct: FeatureHouse extraction creating code fragments

C Source Code Adapter [55]: A folder containing source
code in C. Same as Java Source Code Adapter but for C

EMF Models Adapter [36]: MOF compliant model [41].
Pre-Order model traversal of containment relations.
Elements: EMFResourceElement, EMFClassElement, EMFAt-
tributeElement and EMFRefrenceElement
Similarity: EMF DiffMerge [14] operations
Dependencies: Container dependency of Classes, Attributes
and References. Referenced elements dependencies.
Construct: Fragments or CVL realization layers [21] (on-going
work)

CSV Adapter: Comma-separated values file.
Elements: CellElement. Cells’ matrix visitor.
Similarity: String comparison
Dependencies: A cell depends on its row and column
Construct: A csv file the corresponding cells and empty cells in
the non existing cells

Requirements Adapter: Requirements Interchange Format
(ReqIF) file [42]
Elements: RequirementElement. ReqIF model visitor ProR [15]
Similarity: WUP natural Language comparison technique [51]
Dependencies: None defined, (on-going work)
Construct: Append the requirements to an empty file

Graphs Adapter: A GraphML or GML file.
Elements: VertexElement, EdgeElement. Blueprints Tinkerpop
graph visitor [49]
Similarity: Label similarity
Dependencies: Vertex dependency based on the edges
Construct: Subgraphs creation in GraphML format

Images Adapter: An image file in jpg, bmp, png, gif or ico
format. See Section 1

Eclipse Adapter: The folder of an Eclipse installation.
See Section 5.2

specific to Artefact n and Block 2 groups the Elements that
are shared between Artefact 3, 4 and n.

BUT4Reuse also has integrated another Blocks identifi-
cation algorithm called Similar Elements. Following with
Figure 4, in this algorithm each rhombus will be one Block.
This algorithm provides the most fine-grained granularity
where one Element corresponds to one Block.

Feature identification and location: For feature iden-
tification, the domain experts will analyse the elements of
each of the identified Blocks. That means that currently
it is a manual process only supported by the visualisations.
However, the Interdependent Elements Block identification
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Figure 4: Illustrative example of the Interdependent
Elements Blocks identification algorithm

algorithm ends up with some Blocks that can be directly as-
sociated to features. Other identified Blocks could be related
to Feature intersections or noise introduced by independent
evolutions of the artefact variants (e.g. bug fixes).

For feature location, the current implementation consists
in trying to map the Blocks to the Features. In concrete,
we provide a feature location heuristic called the Feature-
Specific heuristic based on the idea that, for a given feature,
the relevant Blocks are those that are always present when
the feature is present. We calculate, for each feature and
Block, the percentage of artefact variants that implementing
this feature, it contains also a given Block. A percentage
of 100% for a given pair of Block and Feature means that
the Block always appear when the Feature is present in the
artefacts. Figure 5 presents a matrix that relates known
Features on Vending Machines artefacts to identified Blocks
on this set of artefacts. For example, for feature Coffee,
the location will be defined on Block 0 and Block 4 as we
have 100% on them. This heuristic for feature location is
highly conservative. We also provide the Non-conservative
Feature-Specific heuristic. In this heuristic, from the set of
Blocks that are always present for a feature and according
to the discovered constraints, we remove the Blocks that are
required from other Blocks of this set. For example, if it was
discovered the structural constraint Block 4 requires Block
0, the feature Coffee will be located only on Block 4.

Constraints discovery: BUT4Reuse provides two strate-
gies for discovering constraints among Blocks or Features.
The first strategy, called Binary Structural Constraints Dis-
covery, consists in analysing the structural dependencies be-
tween pairs of Blocks or Features. Specifically, we identify
requires (A ⇒ B) and mutual exclusion (¬ (A ∧B)) struc-
tural constraints by analysing the structural dependencies
defined in the Elements. The requires constraint is defined,
at Block and at Feature levels, when at least one Element
from one side has a structural dependency to an Element of
the other side. Formally, and being the same for Features
(replacing B by F), this is the definition for the requires
constraint:

B1 requires B2 ⇐⇒ ∃ e∈B1 : ∃ do∈e.dependencies :

do∈B2 ∧ do /∈B1

Figure 5: Relation of Blocks and Features regard-
ing their presence in the artefact variants displayed
using a Heat Map visualisation

The mutual exclusion constraint discovery is also defined
at Block and feature levels. The rationale of this discovery is
that in some cases, a dependency object can only tolerate a
maximum number of Elements depending on it. In our run-
ning example, the pixel position dependency object can only
tolerate one Pixel Element depending on it. Another exam-
ple are containment references in Classes of EMF Models
where an upper bound can be defined. If the upper bound
is 1 means that it is structurally invalid to try to reference
2 different containments at the same time. It can only be
one or the other. Given DOs the set of dependency objects
where do ∈ DO, and dependencyIDs the different types of
structural dependencies where id ∈ dependencyIDs , the
function nRef (number of references) represents the set car-
dinality of the subgroup of Elements in the Block that has
a structural dependency with a given dependency object:

nRef(Bi, do, id) = |{e : e ∈Bi ∧ do ∈ e.getDependencies(id)}|
With this definitions we find below the formula for mutual

exclusion at Block level as defined by the Binary Structural
Constraints Discovery approach when the set of Elements
of the Blocks are disjoint:
B1 excludes B2 ⇐⇒ ∃ do∈DO, ∃ id ∈ dependencyIDs :

nRef(B1, do, id) + nRef(B2, do, id) > do.getMaxDependencies(id)

BUT4Reuse currently features another constraints discov-
ery approach using association rule learning. Concretely we
integrated the A-Priory algorithm as previously evaluated
for this purpose in the SPLE literature [34]. In compari-
son to the structural constraints, that are suggested after
internally analysing the variants, this approach mines the
relationships of the presence or absence of the Blocks in the
artefact variants.

Feature model synthesis: Currently, this step is cov-
ered by BUT4Reuse with two simple implementations. The
first one just creates a Flat feature diagram with all the con-
straints included as cross-tree constraints. The second one is
a heuristic called Alternatives before Hierarchy that is based
on calculating first the Alternative constructions from the
mutual exclusion constraints, and then create the hierarchy
using the requires constraints. The constraints that were
not included in the hierarchy are added as cross-tree con-
straints. Figure 2 showed the result of this heuristic in the
case of only mutual exclusions. Currently, both synthesized
feature models are exported to FeatureIDE [48].

Visualisations: BUT4Reuse provides a set of visualisa-
tions. The Bars visualisation is used for understanding how
the Elements are distributed on the artefacts, how Blocks
are distributed on the artefacts, how features span in the
Blocks and how Blocks map the features. We have im-
plemented these visualisations using a tool that was orig-
inally intended for visualising cross-cutting concerns in as-
pect oriented software development [16]. It has also been
used for visualising source code clones [47] and in previous
work on MoVaC (Model Variants Comparison) [36]. Figure
6 presents the visualisation that shows how Blocks are dis-
tributed across the mined artefacts. On the right side, we
can see the list of identified Blocks, and on the left side we
can see a bar for each of the variants. In this case, they are
vending machines EMF Models. The height of each bar is
proportional to the number of Elements in the artefact, and
each stripe is colored accordingly to the associated Block.
The order of the stripes represents the sequence of Elements
returned by the adapter. In the case of EMF Models it was
the result of the model tree-traversal.
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Figure 6: Visualisation showing the Blocks (colors)
on the artefacts (bars)

Other currently available visualisations rely on Heat Maps
where larger values in a matrix are represented by dark
squares and smaller values by lighter squares. Figure 5,
which was already introduced regarding the Feature-Specific
feature location heuristic, visualises the relations between
features and Blocks to help in feature location.

BUT4Reuse also provides four kinds of Graph visualisa-
tions. First of them is a graph where the nodes are all the
Elements of the analysis and the edges are the dependency
relations between them. An example of this graph is pre-
sented in Section 5.2.1 at Figure 7. The second one is a graph
where the nodes are the identified Blocks and the edges are
the identified constraints between them. The third one is
a graph where the nodes are the features that want to be
located and the edges are the identified constraints between
them. In all these graphs, nodes and edges are labelled with
different attributes for easy graph manipulation. Finally, the
fourth graph corresponds to the Feature Relations Graphs
(FRoGs) visualisation paradigm [37].

5. EMPIRICAL EVALUATION
In this section we discuss the usage in practice of the real-

ization of the framework in BUT4Reuse. First, we quantita-
tively evaluate the effort for integrating new algorithms and
adapters. Then, we detail an SPL adoption scenario building
on the case study of Eclipse variants. We perform a qual-
itative evaluation in a controlled experiment scenario with
Master students that designed and developed the Eclipse
Adapter. We present also the results of the usage of this
Adapter to discuss the benefits of an extensible framework.

5.1 Development and Integration Complexity
Based on our experience, we present the development time

and lines of code (LOC) metrics concerning the development
or integration of adapters and algorithms.

The Text Lines, File Structure, CSV, Graphs, and Im-
ages adapters are respectively made of 177, 207, 210, 274
and 230 LOC. Besides, each of them has been implemented
in less than one day by an experienced developer. The C
and Java Source Code adapter has been realized by inte-
grating ExtractorPL [55]. The integration of this adapter
took about one work-day and consists of 930 LOC. The in-
tegration of the EMF Models adapter was borrowed from
MoVaC approach [36]. MoVaC implementation, before the
integration, took seven days. Its integration took one day
and consists of 499 LOC. The short time to integrate Ex-
tratorPL and MoVaC can be justified because we were the
developers of these previous works and both are also based
on the principle of decomposing the artefacts in elements.

The Interdependent Elements Blocks identification algo-
rithm was borrowed from [54] and integrated in one day.
From MoVaC, the Bars Visualisation was integrated in one
day. After these integrations we reproduced the same case

studies presented in previous work [36, 54, 55]. The Binary
Relations constraints discovery consists of 157 LOC and the
A-Priori 154 LOC using the Weka data mining library [19].

As presented before, the development burden for a typ-
ical adapter is small in terms of LOC. This is because 1)
BUT4Reuse Core implementation provides the dedicated ex-
tension points to ease the work of the Adapter developer
and 2) the Adapters can rely on off-the-shelf libraries for
the manipulation of the targeted artefact types including its
decomposition, similarity calculation or construction.

5.2 SPL adoption scenario with BUT4Reuse
We consider the SPL adoption scenario of Eclipse vari-

ants.3 Eclipse [13] is an integrated development environ-
ment that provides tool-sets for a wide range of software
development needs. Different predefined tool-sets for tar-
geting specific needs are distributed. The Kepler version of
Eclipse has 12 default official distributions: Standard, Java
EE, Java, C/C++, Scout, Java and DSL, Modeling Tools,
RCP and RAP, Testing, Java and Reporting, Parallel Ap-
plications and Automotive Software.4 In the context of this
evaluation, we will refer to them as variants. We targeted
the adoption of an SPL approach for initializing a personal-
ized Eclipse. Currently, the initialization of an Eclipse con-
sists in selecting one of these default distributions and then
manually installing the desired extra functionalities. For
example, if we want a java development environment with
development utilities for functional testing, we will probably
select the Java distribution and then install the Jubula fea-
ture using the Kepler update site. In addition, Eclipse is a
plugin-based architecture and its customization sometimes
requires dealing with complex dependency checks.

The nature of the Eclipse artefact is based on a root folder
that contains the executable and a set of folders and configu-
rations files. Two relevant folders are the plugins folder that
contains the installed plugins, and the features folder that
contains information about the features present in the vari-
ant. We ignored, on purpose, the information that the fea-
tures could provide and we used it only for discussing feature
location results. The case study of Eclipse is specially suit-
able for evaluating feature location approaches given that
we can compare the results of BUT4Reuse with the actual
features defined for Eclipse. However, evaluating specific
techniques is out of the scope of the paper.

5.2.1 Eclipse adapter design and implementation
A BUT4Reuse adapter for Eclipse was designed and im-

plemented in 3 weeks of development by a group of 8 mas-
ter students that received a formation of 6 hours on the
BUT4Reuse principles. They followed the activities pre-
sented in Section 3.1.

Elements identification: The Elements that compose
an Eclipse artefact are the Plugin Elements (the plugins) and
the File Elements (all the files of an Eclipse installation). In
this case, Plugin Element is an extension of File Element.
In order to decompose an artefact, the Adapter will perform
a tree traversal of the Eclipse root folder.

Similarity metric definition: The similarity between
Plugin Elements was implemented by comparing the plugin
ids while the similarity between File Elements was imple-

3Reproducibility of the Eclipse scenario using BUT4Reuse:
http://github.com/but4reuse/but4reuse/wiki/SPLC2015
4
http://eclipse.org/downloads/packages/release/Kepler/SR2
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mented by comparing their relative URI resolved with re-
spect to the Eclipse root folder.

Structural dependencies identification: Each plugin
depends on the required plugins defined in its bundle man-
ifest declaration. Concretely, we considered the static non-
optional dependencies defined in the Require-Bundle set.
Therefore the Plugin Element will structurally depend on
the Plugin Elements of these plugins. The id assigned to
this dependency type is requiredBundle. The File Elements
depend on their corresponding parent File Element and the
defined dependency type’s id is container. None of these
dependency types need to establish an upper bound given
that, in practice, a plugin can be imported from any number
of plugins and a folder can contain any number of files.

Reusable assets construction: The construction was
implemented by copying the plugins and files associated to
each Block. As part of this construction, the bundles.info
configuration file was adjusted if an Eclipse installation is
being constructed. This final adjustment leads to completely
functional Eclipses created through systematic reuse.

The Eclipse adapter consists of 471 LOC and it is publicly
available and integrated in BUT4Reuse. The limitations of
the design decisions presented before are 1) we only iden-
tify Plugin Elements that are in the Eclipse plugins folder.
Other mechanisms in Eclipse exist like dropins folder or bun-
dle pooling mechanism. However, these mechanisms are not
used in the Eclipse official distributions so it was not rele-
vant. 2) The similarity metric between Plugin Elements does
not consider plugin versions. That means that two plugins
with the same ids but different versions will be considered
the same Plugin Element. This situation happened only in
the case of 23 plugins, and only in 2 of them there were
major version changes. Finally, 3) other methods to define
structural dependencies such as Import-Package or x-friends
are not considered.

Lessons learned: We consider that the learning curve in
the framework principles and the basic usage of BUT4Reuse
(6 hours) is acceptable. The students started to discuss in
terms of Elements and Blocks quickly. We have experienced
also that the effort is considerably bigger in the design of the
Adapter than in the implementation itself. In fact, before
starting the implementation, the students needed to obtain
an in-depth knowledge of many aspects of Eclipse that is
not common in the average user of Eclipse. This corrobo-
rated our experience in other Adapters where defining the
granularity of the Elements, defining the similarity metric
or identifying how to get the information of the dependen-
cies were also a difficult decision-making process with many
trade-offs.

5.2.2 Results
This section reports the results of the different layers de-

fined in Section 3.2 and discusses the implications of the
layers’ extensibility. The reported performance in execution
time are the average of 10 executions calculated using a lap-
top Dell Latitute E6330 with a processor Intel(R) Core(TM)
i7-3540M CPU @3.00GHz 3.00GHz, 8GB RAM, with Win-
dows 7 64-bit. We used the 12 Eclipse Kepler SR2 Windows
64-bits distributions as artefacts. The average number of El-
ements per artefact is 1483. The Eclipse Adapter developed
by the students takes 11 seconds to decompose the 12 Eclipse
variants into Plugin and File Elements that correspond to
the Adapted Artefacts representation.

Block identification: We used the Interdependent El-
ements algorithm for Block identification. 61 Blocks were
identified. The average of Elements per Block was 68. The
Blocks identification algorithm took only 62 milliseconds.

Feature identification: For this step, we requested the
expertise of 3 domain experts with more than ten years of
experience on Eclipse development, who analysed, indepen-
dently from each other, the Elements’ textual representa-
tions of the 61 Blocks. They were able to manually identify
Features by guessing the functionality that the Blocks can
provide. Further, they were able to select a name for this
functionality. The Feature identification process was pos-
sible with an average of 87% of the Blocks assigned to a
named Feature. This manual task took an average of 51
minutes. We manually analysed the reported names of all
the Blocks and their comments. Regarding the coincidences
in the names: 56% of the Blocks were equally named by the
3 domain experts. In 33% of the Blocks there were coinci-
dences in two of them. That ends up with an 11% where
there was no coincidence. Also, not all the Blocks were easy
to name: In 18% of them, at least one domain expert was
not able to put a name. According to their comments, the
reasons were 1) completely ignoring the plugins or 2) the
plugins inside a Block had no evident relations among them.
Regarding this second point, where the Block presents a mix
of functionalities without evident relation, this is a known
and discussed limitation of the Interdependent elements al-
gorithm [54]. Also, 8% of the Blocks corresponded to plu-
gins that are libraries. The 3 domain experts commented
that these Blocks cannot be considered as features but as
support for features. Another 5% of the Blocks were consid-
ered irrelevant from a functional perspective given that they
completely consist of source code plugins that were found in
some distributions but not in others.

Feature location: In this context, feature location con-
sists in locating the plugins associated to each Eclipse fea-
ture. For assessment purposes, we programatically mined
the Eclipse features of all the Eclipse distributions by get-
ting the information from their features folder. 437 Eclipse
different features are present in the distributions which rep-
resent a significantly bigger number than the 61 identified
Blocks from the 12 variants. We included the information of
which Eclipse features are present in each variant and we run
the two available Feature location approaches to map Eclipse
features to Blocks. We compared the plugins of the Eclipse
features with the plugins from the Blocks of the located fea-
tures. In order to calculate the plugins of the Eclipse fea-
tures we mined each feature declaration (feature.xml) con-
sidering its declared plugins. We calculated the precision
and recall of the conservative and non-conservative Feature-
Specific heuristic. We evidenced a trade-off. We loss recall
in the non-conservative compared to the conservative but
we gain precision. This showed the advantages and disad-
vantages of selecting the Feature location algorithm. The
proposed framework allows users to make decisions regard-
ing the trade-offs of the different algorithms.

Constraints discovery: We used the Binary Structural
constraints discovery algorithm on the 61 Blocks and 74790
structural constraints were discovered. That demonstrated
how highly interconnected the Eclipse plugins are. The anal-
ysis took 88 seconds. We also used the A-Priory association
rules (with a limit of 30000 rules to prevent current stack
overflow issues in the algorithm). The analysis took 0.5 sec-

108



Figure 7: An Eclipse distribution decomposed in
Plugin Elements (white) and FileElements (grey)
with the structural dependencies between them

onds. This algorithm discovered also excludes constraints
that are not expected to be true in the context of the anal-
ysis of Eclipse features. This algorithm is conservative in
the sense that it prevents Block combinations that are not
part of the existing variants. Again, there are trade-offs of
using one algorithm or other. The A-Priory algorithm, that
does not reason on the Elements’ structural dependencies,
is a more conservative approach against possible semantic
constraints among the features. A user of our proposed
framework may decide that selecting this algorithm is not
appropriate for the Eclipse variants scenario.

Reusable assets construction: Each of the 61 Blocks
were constructed separately. The reusable asset consists
of a set of files that, if integrated in an Eclipse, can pro-
vide some functionality. We evaluated the validity of the
reusable assets by re-constructing the 12 Eclipse variants.
We compared the file structure from the original and the
re-constructed and they were the same excluding few cases
because of the mentioned limitation of not considering differ-
ent plugin versions. After manually solving these versioning
problems, we manually checked that the Eclipse artefacts
were functional and the plugins can be started without de-
pendency issues. We further generated non-existent variants
from structurally valid configurations according to our dis-
covered constraints. For example, we generated an Eclipse
with only the core Block and another one with all the pos-
sible Blocks. We created other Eclipse with the core and
CVS versioning system support. We created another with
the union of the Blocks corresponding to the Java and the
Testing Eclipse variants.

Feature model synthesis: The Blocks were renamed
during feature identification. After that, using the two avail-
able feature model synthesis approaches, the Flat feature
diagram and the Alternatives before Hierarchy heuristic, we
created two different feature diagrams. In the case of the
second one, the hierarchy was very limited because of the
highly interconnected Blocks. The presence of the cross-tree
constraints were more prominent given that classical feature
diagrams only support one parent feature.

Visualisation: Figure 7 shows an example of the visu-
alisation. Concretely it presents the result of the Graph vi-
sualisation of the Elements of one Eclipse distribution (con-
cretely the Modeling distribution). The white nodes are
Plugin Elements and the grey nodes are File Elements. The
edges correspond to the structural dependencies. The size
of the nodes are related to the number of Elements that de-

pends on this node (in-degree). This visualisation helped to
understand Eclipse structure and peculiarities in terms of
Elements. The biggest grey File Element node corresponds
to the mentioned plugins folder that contains all the plu-
gins. The biggest white Plugin Element node corresponds
to the org.eclipse.core.runtime plugin which is the founda-
tion of the Eclipse platform. On the left side of the plugins
File Element we can see a set of highly interconnected plu-
gins while on the right side we can see a set of plugins with
small or no dependencies to other Plugin Elements. This
phenomena corresponds to the requiredBundle dependency
type. We can see also the tree structures of the File Ele-
ments dependencies of the container dependency type.

6. CONCLUSIONS
We have introduced a generic and extensible framework

for a bottom-up approach to SPLE. We presented its prin-
ciples with the objective to reduce the current high up-front
investment required for a systematic reuse end-to-end adop-
tion. The framework (1) can be easily adapted to differ-
ent artefact types and it (2) can integrate state-of-the-art
algorithms and visualisation paradigms to help in this pro-
cess. We have presented Bottom-Up Technologies for Reuse
(BUT4Reuse) that is our realization of the framework. We
demonstrated the generic and extensible characteristics of
this realization by presenting a variety of ten adapters to
deal with diverse artefact types. We also demonstrated the
extensibility with algorithms and visualisation paradigms
that have already been integrated to provide a complete so-
lution. We empirically evaluated the framework integration
and development complexity, and its usage, in the scenario
of adopting an SPL approach from existing Eclipse variants.

As further work, apart from the improvement or proposi-
tion of concrete algorithms, there are still many challenges
on generecity and extensibility. Nowadays software does not
rely on only one type of artefact. For example, a software
project uses to contain, simultaneously, requirements, de-
sign models, source code or test suites. We aim to assess
the framework in covering, in combination, different types of
artefacts. Also, extensibility in the layers of the framework
creates the need of defining guidelines for different scenarios
to select the most appropriate extensions.

7. ACKNOWLEDGMENTS
The present work is supported by the National Research

Fund Luxembourg (FNR), under AFR 7898764 and MODEL
C12/IS/3977071. The work of Tewfik Ziadi was supported
by the University of Luxembourg as a visiting researcher.

8. REFERENCES
[1] M. H. Alalfi, E. J. Rapos, A. Stevenson, M. Stephan, T. R.

Dean, and J. R. Cordy. Semi-automatic identification and
representation of subsystem variability in simulink models.
In ICSME, 2014.
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[48] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake,
and T. Leich. FeatureIDE: An extensible framework for
feature-oriented software development. Science of
Computer Programming, 79(0), 2014.

[49] Tinkerpop. TinkerPop3: A Graph Computing Framework.
http://blueprints.tinkerpop.com, 2015.

[50] P. Trinidad, D. Benavides, A. R. Cortés, S. Segura, and
A. Jimenez. FAMA framework. In SPLC, 2008.

[51] Z. Wu and M. Palmer. Verbs semantics and lexical
selection. Proceedings Association for Computational
Linguistics, 1994.

[52] Y. Xue, Z. Xing, and S. Jarzabek. Feature location in a
collection of product variants. In WCRE, 2012.

[53] K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno.
Fave: factor analysis based approach for detecting product
line variability from change history. In MSR, 2008.

[54] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane. Feature
identification from the source code of product variants. In
CSMR, 2012.

[55] T. Ziadi, C. Henard, M. Papadakis, M. Ziane, and Y. L.
Traon. Towards a language-independent approach for
reverse-engineering of software product lines. In SAC, 2014.

110




