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Abstract—The transition from today’s electricity grid to the
so-called smart grid relies heavily on the usage of modern
information and communication technology to enable advanced
features like two-way communication, an automated control of
devices, and automated meter reading. The digital backbone of
the smart grid opens the door for advanced collecting, monitoring,
and processing of customers’ energy consumption data. One
promising approach is the automatic detection of suspicious con-
sumption values, e.g., due to physically or digitally manipulated
data or damaged devices. However, detecting suspicious values
in the amount of meter data is challenging, especially because
electric consumption heavily depends on the context. For instance,
a customers energy consumption profile may change during
vacation or weekends compared to normal working days. In this
paper we present an advanced software monitoring and alerting
system for suspicious consumption value detection based on live
machine learning techniques. Our proposed system continuously
learns context-dependent consumption profiles of customers, e.g.,
daily, weekly, and monthly profiles, classifies them and selects
the most appropriate one according to the context, like date and
weather. By learning not just one but several profiles per customer
and in addition taking context parameters into account, our
approach can minimize false alerts (low false positive rate). We
evaluate our approach in terms of performance (live detection)
and accuracy based on a data set from our partner, Creos
Luxembourg S.A., the electricity grid operator in Luxembourg.

I. INTRODUCTION

The vision of the smart grid aims to increase the efficiency
and reliability of today’s electricity grid [1]. Renewable en-
ergies and distributed micro-generations will be seamlessly
integrated into the electricity grid, increasing eco-efficiency
and sustainability. To tackle the introduced management com-
plexity, advanced new features like two-way communication,
an automated control of devices, remotely collecting consump-
tion data from smart meters, and demand time pricing [2] will
gradually become the norm. The backbone to realize these new
features is the convergence of modern information and commu-
nication technology (ICT) with power system engineering [3].
The digital nature of the smart grid also opens the door for
advanced collecting, monitoring, and processing of customers’
consumption data. One promising possibility coming with this,
is the automatic detection of suspicious consumption values.
Suspicious consumption values can be due to technical or
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non-technical losses in the power distribution network, such
as electricity theft, cyber-attacks on customers’ smart meters
or accounting system [4]. Suspicious consumption values are
values which are untypical for a certain customer (or group
of customers) for a given context, like a typical Monday
morning. Non-technical losses are a major concern of any
utility company. As an example, in the United States non-
technical losses were estimated as between 0.5% and 3.5% of
the gross annual revenue [5].

Many approaches based on statistical profiling and machine
learning techniques have been suggested in various domains
(e.g., [6], [7], [8], [9]) to detect suspicious values. Due to
the availability of automated meter reading [3] in smart grids,
customers’ consumption data can now be regularly collected,
stored, and processed. By applying statistical profiling and
machine learning techniques for monitoring the electrical con-
sumption of customers, the normal consumption per customer
or group of customers can be learned based on profiling. In
case a consumption value is too far from the learned profile, an
alarm can be created in order to prevent non-technical losses.
However, detecting suspicious values in the amount of meter
data is challenging, especially because electric consumption
highly depends on the context [10], e.g., geographical area,
number of residents, temperature, date (vacation, weekday,
weekend), type of the heating system, habits of inhabitants, etc.
Given the high number of context parameters, it is very difficult
to build reliable profiles. For example, a private customer can
have a very different consumption profile depending on the
weather conditions or during vacation compared to working
days. Moreover, context parameters can depend on each other,
e.g., the temperature on a winter Sunday afternoon may have
different influence on the load profile than the temperature on
a summer Monday afternoon. Due to this variability, a single
consumption profile per customer, which simply computes
an average consumption (similarly to methods for electrical
load forecasting), can lead to a significant amount of false
positive alarms. Thus, a consumption monitoring system has
to take this context variability into account, by always verifying
customers’ consumption data with respect to a certain context,
to avoid a high number of false positive alerts.

In this paper we present a novel software monitoring
system for suspicious consumption detection. Unlike most
other approaches we use live machine learning techniques
to create multiple profiles (e.g., daily, weekly and monthly
profiles), specialized per context, instead of a global profile.



The great advantage of this technique is, that customer
profiles can be continuously updated instead of being created
only once in a while. Most importantly, our profiles are
context-dependent, i.e., we take context parameters like date,
weather conditions, etc. into account. Whenever a value has to
be checked, our system selects a set of most relevant profiles
based on the context and performs a distance computation.
Our monitoring system creates alarms based on the deviation
of the analyzed consumption value compared to the selected
profile set. To sum up, our monitoring system builds (by
learning) multiple customer profiles over time, classifies them
and selects the most appropriate ones to decide if a value
is suspicious or not. We evaluate our approach in terms of
performance (live detection) and accuracy based on a data set
from our partner, Creos Luxembourg S.A., the main electricity
grid operator in Luxembourg.

The remainder of this paper is structured as follows.
Section II describes the context of our work, the main char-
acteristics of a smart grid topology, based on the example of
Luxembourg. In Section III we present our live learning based
smart grid consumption monitoring system, which we evaluate
in Section IV. The related work of this paper is discussed in
Section V before the paper concludes in Section VI.

II. CONTEXT: SMART GRID TOPOLOGY AND ENTITIES

To present the context of our work, we describe in this sec-
tion the main characteristics of a typical smart grid topology,
based on the smart grid test deployment in Luxembourg. This
test deployment contains three different regions, around 300
smart meters, three data concentrators, and a central system.
The grid topology in Luxembourg is based on a power line
communication [11] (PLC) network and is representative for
such smart grid topologies. A more detailed description and
analysis of the smart grid topology in Luxembourg can be
found in [12]. A major advantage of PLC is that the same me-
dia that is used for electric power transmission can be used for
establishing the communication network and transmitting data.
On the other hand, a major concern with PLC is the amount
of electric noise and disturbances that may be encountered,
which requires advanced error detection techniques. The main
topology devices in the context of this work are:

• Smart meters are the cornerstones of the smart grid
infrastructure. Installed at customers houses they con-
tinuously measure electric consumption and quality
of power supply and regularly report these values to
utilities for monitoring and billing purposes. In Lux-
embourg, smart meters send the consumption values
every 15 minutes for electricity, respectively every
60 minutes for gas. Another important task of smart
meters is load management, as they are able to trigger
relays to connect/disconnect specific loads.

• Data concentrators collect and store consumption
data from a number of associated meters. In regular
intervals (several times a day) they send this data,
usually via IP connections, to a central control system.

• Central system concentrators send their data to a
central system where all data are stored, aggregated
and analyzed. Because of legal regulations these data
must be deleted in regular intervals.

Given the topology structure, our proposed software mon-
itoring and alerting system for suspicious consumption data
could be deployed either on a data concentrator level (one
instance per data concentrator) or at the central system (one
global instance).

III. SUSPICIOUS CONSUMPTION VALUE DETECTION

In this section we describe our approach for suspicious
consumption value detection. First, we present an overview of
the approach and the involved components. Next, we detail
the live or online aspects of our machine learning approach,
followed by an explanation of the Gaussian mixture model.
Finally, we detail how we learn multiple, context-dependent
customer profiles, and how we select and use them for suspi-
cious consumption value detection.

A. Overview: Towards Contextual Learning and Detection

Figure 1 shows a basic overview of our approach. Smart
meters continuously report their consumption values, in regular
intervals, to utilities for monitoring and billing purposes. In
Luxembourg, these intervals are 15 minutes for electricity and
60 minutes for gas. In order to detect suspicious consumption
values, this continuous stream of smart meter measurements
is first analyzed by a context solver. For every new value,
the context solver selects the most appropriate profile for this
customer in order to decide what is the normal range of the
current measured electricity consumption. For example, for a
measurement value on a sunny Monday afternoon (working
day) in summer, the context solver will select a profile with
comparable context parameters for this customer. The context,
for example, can include features like: user type (individual,
family, industry, commercial), temporal context (season of the
year, month, weekday, holidays), and so forth. The context
resolution yields a list of positive and negative profiles. Positive
profiles contain information to judge if the measured value
is known to be in the normal range, while negative profiles
are known to be suspicious values. From these profiles, a
decision making step is executed, based on a confidence rate
and the probability distribution provided by the profiles. If the
measured value is accepted, it is used to train the positive
profiles. If it is not accepted, an alert is created. In addition,
an interactive validation request is raised to manually validate
if the value is indeed suspicious or not. Finally, the negative
rated values (suspicious values) are used to train the negative
profiles. An initial training period is required to bootstrap the
profiles. The update of profiles is a very incremental step and
can therefore be performed for every value (as we will show
in Section IV). However, it would be also feasible to combine
several values instead of checking every value.

B. Live Machine Learning

From observing large sequences of data, machine learning
and pattern recognition algorithms can build models that reflect
or represent, to a certain degree of accuracy, the domain or
the environment on which they are trying to learn from. In
real-world environments large sequences of data may not be
available in advance, may take too much time to gather, or
they can be very expensive in terms of computation power to
process in a batch mode. For a reactive system operating in
real-time or near real-time is a crucial requirement. In order
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Fig. 1. Suspicious consumption value detection overview

to address this, we use live machine learning algorithms [13]
with the following characteristics:

• The algorithms should be able to create or update the
models whenever new data arrives (on the fly).

• The computational effort needed for a single update
should be minimal and should not depend on the
amount of data observed so far.

• The update should only depend on the latest observed
value and should not explicitly require access to old
data.

• The generated models should be compact and should
not grow significantly with the number of observed
instances.

C. Gaussian Mixture Model

In this paper we explore modeling power consumption
usage by probability density functions (pdf) based on kernel
density estimates (KDE). Particularly, we use Gaussian mixture
models (GMM), which are known to be a powerful tool
in approximating distributions even when their form is not
close to Gaussian [14]. A GMM is a probabilistic model
that assumes that all data points are derived from a mixture
of Gaussian distributions with unknown parameters. Mixture
models are basically generalizing k-means clustering.

Definition 1: In a nutshell, A Gaussian mixture model of
M components, provides the following probability distribution
function of an event x happening:
p(x) =
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M
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. These parameters must be learned from the data on the fly.
Kristan et al.,[15] provides an online learning algorithm called
oKDE that is able to update the gaussian mixture model in
real-time. The implementation of our software monitoring and
alerting system is based on this algorithm, which is suitable
and fulfils the requirements we presented earlier.

D. Profiling Power Consumption

In order to build consumption profiles in real-time, we feed
the measured consumption values from smart meters to our

Fig. 2. Power consumption measures (in blue) and average values (in red)

Fig. 3. Probability distribution function (pdf) of the consumption values from
Figure 2 built with live machine learning

profiler and process them online. In Luxembourg, each smart
meter reports its consumption values every 15 minutes for
electricity (and 60 minutes for gas). Figure 2 shows an example
of measurements from one customer (one smart meter) over
a period of 24 hours. The measurements were taken on
31 weekdays (Monday to Friday). The x-axis in the figure
represents the time of the day and the y-axis the consumption
(active energy consumed) in Wh. Every blue point in the
figure corresponds to one measurement value. For example,
if we take the time 6.00 am, every point along the y-axis
belongs to one measurement for one day at 6.00 am. In red, the
figure shows the average for every time, i.e., the average value
over all days at every measured time (15 minute intervals).
Based on these measurements we can create our consumption
profiles for this customer by feeding these measures to our
profiler (in real-time) and processing them online. For every
new value the consumption profile of the customer will be
refined (recalculated). Figure 3 shows the profile (the Gaussian
mixture model), constructed for the example of Figure 2.

As an example, the power usage of this user is quite
predictable at midnight (varying between 0 and 200 Wh).
This is reflected in the profile by a Gaussian Kernel with low
variance and we are quite confident (with high probability)
that the next midnight measure will be also between 0-200
Wh. However, if we compare this with the consumption at
noon, where the user consumes between 0 and 1000 Wh, the
profiling has a higher variance, the probability is distributed
over a wider range, and thus the prediction is less accurate.
In such situations, having a contextual profiling can help
to significantly increase the accuracy of the prediction. For
instance, during weekends at noon, the consumption may be
varying in a less wider range than during weekdays at noon.



IV. EVALUATION

In this section we present the evaluation of our proposed
consumption monitoring system. We first describe the setup
of our evaluation. Next, we validate the efficiency of our
approach, followed by a validation of its performance, i.e.,
accuracy, precision, recall, and F1 score. We compare these
results with a traditional, single profile per user approach.

A. Experimental Setup

We evaluated our consumption monitoring system based on
real data from the Luxembourg smart grid test deployment. The
data are provided by our industrial partner Creos Luxembourg
S.A. We analyzed consumption data values from a total of
218 smart meters from three different regions in Luxembourg.
For our evaluation we considered the consumption data for a
time frame of six weeks for each meter. In Luxembourg, each
meter reports its consumption data every 15 minutes, via a
data concentrator, to the central system. This results in 804345
consumption values in total.

In order to build multiple profiles we considered three
different context parameters in our experiments:

• Customer types: since the electricity consumption for
residential and industrial customers differs to a signif-
icant extent, we clustered customers in two different
groups: residential and industrial customers.

• Business day context: we separated working days from
weekends and holidays. The idea behind this is that
electricity consumption should highly depend on this
context parameter. We further divided a day into 96
time slots (=24x4, corresponding to each of the 15
minute reading intervals).

• Weather condition: we collected the historical temper-
ature readings (with an hourly resolution) from mete-
olux1, the official meteorological service provider in
Luxembourg, and use it as our third context parameter.

We then evaluated our approach in terms of performance to
validate if our system is able to be used in a live monitoring
system (live detection) and in terms of accuracy. We run the
experiments on a 2.6 GHz Intel Core i7 with 8 GB of RAM.

B. Efficiency: Can We Meet Near Real-Time Expectations?

The core live learning algorithm oKDE to update the
profiles of the whole dataset for 218 customers and 803645
consumption values takes 0.22 seconds. This is around 274
nanoseconds per consumption value. It is important to notice,
that this step only includes the learning itself, it doesn’t con-
tain classification, training, nor decision-making. The whole
processing including classification, training, selecting the cor-
rect profile, and decision-making takes 1.11 seconds for the
complete dataset. This results in an average processing time of
1.37 milliseconds per consumption value. Considering that the
interval of consumption reading in Luxembourg is 15 minutes,
we are able to process around 656934 consumption readings
during one cycle. Assessing the fact that the computation is
conducted in a single thread on a classical computer processor

1http://www.meteolux.lu/

(single core on intel i7 processor), we can consider that our
approach is fast enough to be used in a live monitoring system.
For example, in the case of Luxembourg with approximately
550.0002 inhabitants, a standard laptop is sufficient to monitor
the consumption values of the whole country in live. However,
as a threat to validity, our performance and therefore the
associated near real-time suspicious value detection can be
significantly impacted by network access. To overcome this
risk, the proposed computation can be split into geographical
specialized nodes, e.g., one monitoring system per region
(on a data concentrator level). Then, dedicated databases can
distribute data based on their usage probability on each node.
Another threat to validity is that the profile selection also can
considerably impact the performance. We plan to evaluate this
in detail in future work.

C. Effectiveness: Can We Better Detect Suspicious Values?

In order to measure the performance of our multi-context
profiling, we compare our approach to a non contextual one,
leveraging a single profile per customer approach. We first
divide our dataset in two subsets: a training subset of 700.000
and a testing subset of 103.645 consumption values. The latter
contains correct, meaning not suspicious consumption values.
This is verified by domain experts from Creos.

We then generated two additional sets containing suspi-
cious (false) consumption readings:

• Randomly generated in the interval [max � 3 ⇤max],
where max is the maximum electricity consumption
value for each customer. We select this interval empir-
ically because it is discriminative, due to the fact that
both approaches have 100% accuracy to detect very
high deviations. The set evaluates the ability of both
approaches (our proposed multi-context profiling and
a traditional single profiling per customer approach)
to detect suspicious (wrong) consumption values.

• Randomly generated false data between [max/2 �
max]. This set should test the discriminative power
of context-dependent profiling, compared to a single
profile per customer. The false data will be seen very
real and acceptable if it is not taken within its context.

For our evaluation we use classical metrics, based on:

• True positives (tp): true readings classified as normal.

• True negatives (tn): true readings classified as alert.

• False positives (fp): false readings classified as normal.

• False negatives (fn): false readings classified as alert.

We then calculate from these values, the accuracy, preci-
sion, recall, and F1 score [16] for both approaches.

Profiler True positives (tp) False Negatives (fn) Accuracy %
Single 102675 970 99.06%

Multi-Context 102695 950 99.08%

TABLE I. TESTING SET RESULTS FROM CREOS

2http://www.luxembourg.public.lu/fr/societe/population/



Profiler True negatives (tn) False Positives (fp) Accuracy %
Single 92386 11259 89.13 %

Multi-Context 96458 7187 93.06%

TABLE II. TESTING SET RESULTS FROM RANDOMLY GENERATED IN
THE INTERVAL [MAX - 3X MAX]

Profiler True negatives (tn) False Positives (fp) Accuracy %
Single 47297 56348 45.63 %

Multi-Context 86582 17063 83.55%

TABLE III. TESTING SET RESULTS FROM RANDOMLY GENERATED IN
THE INTERVAL [MAX/2-MAX]

Table I shows the different results of the 3 test sets. Both
profiling techniques performed very well on detecting true
positives from Creos (more than 99% as shown in table I).
However, the single profiler performed worse when it comes
to false positives. For the randomly generated sets, the multi-
context profiler was able to detect much more accurately that
the values do not correspond to the current user, especially
when it comes to values that are in the range of [Max/2-Max].
This validates the fact that taking the context into account, a
value that might look fine for a single profile because it falls
in the acceptable range, it might look suspicious for the multi-
context profiler. The only draw back is that the multi-context
profilers need much more time and data to bootstrap. In fact,
the more contexts and profiles we create per user, the more data
are required to reach a stable phase from the learning. Finally,
table IV summarizes all tests and provide a single metric (F1
score) to compare both approaches overall. Our multi-context
profiler was able to score 18% better than a single profiler.

V. RELATED WORK

Non-technical losses in power grid systems, regardless if
they occur due to physically or digitally tampered consumption
data or damaged devices, are a major concern of electricity
providers. Therefore, it is of no surprise that several different
approaches to detect suspicious consumption data have been
suggested over the years. Most recent approaches are based
on load profiling, becoming possible through automated meter
reading. Monedero [17] et al., propose to apply data mining
techniques for detection of non-technical losses and present
two methodologies, one based on neural networks and one on
statistical techniques. They classify customers in two groups,
i) likely to be affected and ii) not affected by non-technical
losses. Markoč [18] et al., also suggest to use neural networks
to detect suspicious data and show that these can be trained
by generated samples instead of real data. In [19] Nagi et
al., present an approach for non-technical loss detection based
on support vector machines (SVM). Their approach preselects
suspicious customers (irregular consumption patterns) to be
inspected onsite based on irregularities in their consumption
behaviour. In [20] Nizar, Dong, and Wang present a novel
method for non-technical loss detection, which also uses data
mining techniques for classification. Their approach is built
on a novel computational method, called extreme learning
machine (ELM). They compare their approach with other
classification techniques, such as the support vector machine

Attribute Single Profiler Multi-context profiler
True positives (tp) 102675 102695

True negatives (tn) 139683 183040

False positives (fp) 67607 24250

False negatives (fn) 970 950

Precision 0.602 0.808

Recall 0.99 0.99

Accuracy 0.779 0.918

F1 score 0.749 0.890

TABLE IV. A GLOBAL OVERVEW OF RESULTS

(SVM) algorithm. The work of Cabral [21] et al., goes in a
similarly direction but uses a non-supervised artificial neural
network called self-organizing maps (SOM). The work of
Espinoza [22] et al., aims at providing a unified framework
for electric consumption forecasting and clustering by creating
daily profiles of customers. They first generate short-term
models that can produce accurate forecasts, extract temperature
and seasonal effects and identify the type of customer under
scrutiny. Then, they partition the set of time series, using
clustering algorithms, based on the customer profiles.

All of these approaches provide good results in terms of
accuracy (low false positive rate) and they have in common
that they use data mining or machine learning techniques
to cluster customers based on their consumption profiles.
Whereas these clusters are built off-line and only once in
a while our approach applies live machine learning tech-
niques enabling the continuous update and refinement of the
customer profiles. This enables our approach to be used in
a live monitoring and alarming system instead of using a
computational intensive batch process to look for suspicious
data. Moreover, our method foresees to build not just one but
multiple profiles per customer. In addition learning multiple
profiles per customer our method takes context parameters, like
temperature and date (e.g., weekday, weekend, vacation) into
account. This can help to avoid a high number of false positive
alerts. In [6] Espinoza et al., present a very advanced short-
term load forecasting approach using kernel-based modeling
for nonlinear system identification. Even though their goal
is electric load forecasting rather than an alarm system for
suspicious consumption values, they also create consumption
profiles of customers and most notably, discuss the need to
take different context parameters into account.

Since non-technical losses are a major threat for the elec-
trical grid, there are also approaches on the level of smart
meters to detect suspicious data. Some intrusion detection
systems (IDS) for smart meters apply similar methods to
learn the normal behaviour (e.g., sent data) and to check any
deviation from it (e.g., Berthier et al., [23] and Tabrizi et
al. [24]). The objective is to be able to detect any attempts
to hack into the smart meter, tamper data stored in its memory
or manipulate consumption data sent to the central system.
However, they are technology dependent and only applicable
to a very specific protocol or smart meter OS. Our approach
is technology agnostic and is applicable to any protocol or
metering system.



VI. CONCLUSION AND FUTURE WORK

The transition from today‘s electricity grid to the so-called
smart grid relies heavily on the usage of modern information
and communication technology, which also opens the door
for advanced collecting, monitoring, and processing of cus-
tomers’ energy consumption data. One promising possibility
coming with this, is the automatic detection of suspicious
consumption values. Suspicious consumption values can be
due to technical losses or non-technical losses in the power
distribution network, such as electricity theft, non-payment
by customers, and errors in accounting and record-keeping.
In this paper we presented an advanced software monitoring
and alerting system for suspicious consumption value detection
based on live machine learning techniques. Our proposed
system continuously learns context-dependent consumption
profiles of customers, e.g., daily, weekly, and monthly profiles,
classifies them and selects the most appropriate one according
to the context, like date and weather. We showed that, by
learning not just one but several profiles per customer and in
addition taking context parameters into account, our approach
can minimize false alerts (low false positive rate). We evaluated
our proposed consumption monitoring system based on real
data from the smart grid test deployment in Luxembourg
in terms of performance and accuracy. We showed that our
suspicious value detection is fast enough to be used in a live
monitoring system (live detection) and that it is, in many
cases, superior in terms of accuracy to other approaches, which
mostly use only one profile per customer and do not take
context parameters into account. We also showed that even for
randomly generated values, where our approach can hardly
profit from its multiple, context-dependent profiles, we are
comparable (or even slightly better) to other approaches. On
the drawback side, our approach comes with an overhead in
storage and computation time, due to the usage of multiple
context-dependent profiles. The idea behind this approach has
been developed in cooperation with Creos Luxembourg S.A.
(the main electricity grid operator in Luxembourg) and has
been implemented as a prototype monitoring system to detect
suspicious consumption values.

In future work we plan to extend the context parameters
our system takes into account and integrate more complex
ones, like cloud-effects, hours of sunshine, perception, etc. In
addition, in our current implementation all context parameters
are fixed, meaning that our system is not able to automatically
derive or learn new context parameters. In future work we
want to explore if it is possible and if it could be helpful to
automatically derive new context parameters.
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