
Adaptive Blurring of Sensor Data to balance Privacy and
Utility for Ubiquitous Services ∗

Assaad Moawad
University of Luxembourg

assaad.moawad@uni.lu

Thomas Hartmann
University of Luxembourg

thomas.hartmann@uni.lu

Francois Fouquet
University of Luxembourg

francois.fouquet@uni.lu
Jacques Klein

University of Luxembourg
jacques.klein@uni.lu

Yves Le Traon
University of Luxembourg
Yves.letraon@uni.lu

ABSTRACT
Given the trend towards mobile computing, the next gen-
eration of ubiquitous “smart” services will have to continu-
ously analyze surrounding sensor data. More than ever, such
services will rely on data potentially related to personal ac-
tivities to perform their tasks, e.g. to predict urban traffic
or local weather conditions. However, revealing personal
data inevitably entails privacy risks, especially when data is
shared with high precision and frequency. For example, by
analyzing the precise electric consumption data, it can be in-
ferred if a person is currently at home, however this can em-
power new services such as a smart heating system. Access
control (forbid or grant access) or anonymization techniques
are not able to deal with such trade-off because whether
they completely prohibit access to data or lose source trace-
ability. Blurring techniques, by tuning data quality, offer
a wide range of trade-offs between privacy and utility for
services. However, the amount of ubiquitous services and
their data quality requirements lead to an explosion of pos-
sible configurations of blurring algorithms. To manage this
complexity, in this paper we propose a platform that auto-
matically adapts (at runtime) blurring components between
data owners and data consumers (services). The platform
searches the optimal trade-off between service utility and
privacy risks using multi-objective evolutionary algorithms
to adapt the underlying communication platform. We eval-
uate our approach on a sensor network gateway and show its
suitability in terms of i) effectiveness to find an appropriate
solution, ii) efficiency and scalability.

Keywords
Privacy, Blurring, Component-based architecture, Software-
platform, Optimization, Sensors, Trade-off.

∗The present research is supported by the National
Research Fund, Luxembourg, CoPAInS project (code:
CO11/IS/1239572).

.

1. INTRODUCTION
Given the trend towards mobile computing, the next gen-

eration of intelligent ubiquitous services must be more and
more able to process sensor data of surrounding environment
to enable new services for end-users. More than ever, such
services will rely on data potentially related to personal ac-
tivities to perform their tasks, e.g. to predict local weather
using in-house weather station sensors, or urban traffic con-
ditions as nowadays trending applications like Waze 1. From
the perspective of service providers high quality data are
supposed to be: 1) accurate, 2) fresh enough for the service,
and 3) diverse to reveal potential correlations. However,
such data are sensitive and often related to personal activi-
ties and therefore can lead to privacy risks, e.g. profiling [15]
and inventorying [9], [11]. For example, sharing the precise
electric consumption of a house enables an analysis of the
energetic performance, for example in order to enhance the
heating system. However, recent results [15], [11] demon-
strate that sharing precise consumption data also leads to
privacy issues. For instance, the currently watched TV pro-
gram or inventory of a house can be inferred using physical
signatures (electrical consumption, frequency, ...). Similarly
an high precision position or in-house activity data gave a
lot of information of user habits. This privacy problem can
be generalized and applied to the forthcoming IoT domain,
where sensors will be accessible to various stakeholders.

Despite a user wants to preserve his privacy as much as
possible, he also needs to share enough data to allow services
to work properly. The challenge is how to provide added-
value services and preserve user privacy at the same time.
Moreover, a user might install new services at any time and
thus user’s privacy configuration might change over time.

Classical access control systems, which only forbid or grant
access (’all or nothing’ access), can protect the access to
personal data. Similarly, algorithms like K-anonymity can
ensure the protection of sensor platform privacy but require
that there is no relationship between sensor data and its
origin. Such string assumption can forbid numerous smart
services which will need at least a geographical zone origin to
perform their computation. Usually this leads to situations
where third-party services either can access all data or can-
not access the data at all. In contrary, blurring techniques,
by gradually decreasing data quality, offer a wide range of
trade-offs between ultimate privacy (sharing nothing) and
ultimate functionality for service providers (sharing every-

1http://waze.com



thing with best quality). Blurring mechanisms allow to tune
the quality of shared data for dedicated purposes, (e.g. by
reducing the sampling rate of electric consumption to avoid
foot-printing of plugged devices). Instead of having an ’all

or nothing’ access to data, we suggest to use blurring con-
trolled data flows between data producers and consumers
to allow proportional data access control. Composed as a
chain, blurring algorithms take raw data generated from
sensors as input and produce a blurred stream as output.
However, the amount of sensors and services can quickly
lead to an explosion of possible configurations of blurring
algorithms, which are hardly manageable for users. In order
to tackle this complexity, we propose a generic software plat-
fom that automatically reconfigures and adapts (at runtime)
the blurring chain between data owners and data consumers
(services). Thus, this platform searches the optimal trade-
off between service utility and privacy risks using multi-
objective evolutionary algorithms in order to drive an un-
derlying communication platform. This enhances user pri-
vacy by adapting blurring components according to a users
privacy configuration and service requirements.

We aim to enable an ubiquitous sensor mediation plat-
form in order to control data flows. In order to realize
this, we combine the idea of blurring with concepts from dy-
namic, component based platforms, the Models@Run.time
paradigm, and techniques from search-based software engi-
neering. More specifically:

• To control the “quality” of data to match a tolerated
risk level, we use a set of dynamically deployable blur-
ring components. By chaining these components be-
tween a data source (sensor) and a target (service) we
can ensure the required privacy properties.

• We apply Models@Run.time techniques to use a model
of the current running system as a reflection layer and
to drive an underlying communication platform. We
use the Kevoree [6] framework, which is an implemen-
tation of the Models@Run.time paradigm, in order to
dynamically adapt blurring components at runtime.

• We leverage search-based software engineering meth-
ods (MOEAs) to search the best trade-off between ser-
vice utility and privacy risks, in term of blurring com-
ponents configuration, according to the tolerated risk
level per service and context.

The rest of this paper is organized as follows. Section 2
discusses the background. In section 3 we present our con-
cept of proportional data access. Section 4 discusses our
blurring based platform in detail. We evaluate our approach
on a sensor network gateway in section 5. Finally, we end
on a discussion of the related work in 6 and conclude in 7.

2. BACKGROUND
In our platform, we combine the idea of blurring with con-

cepts of component based development, the Models@Run.time
paradigm, and techniques from search based software engi-
neering. These concepts are introduced in this chapter.

Composable software components are well-known meth-
ods to design and describe software architectures. Compo-
nents are reusable architectural elements, which only com-
municate with each other through well-defined interfaces.

Each component implements one or several well-defined func-
tionalities. The global software architecture of a system
can be built by composing individual software components.
These properties make components suitable to describe our
blurring solution as a chain of reusable elements.

The dynamic Models@Run.time platform follows
the idea to keep at runtime (during the execution of a sys-
tem) a model of the current running system as a reflection
layer. This reflexion model allows not only to introspect (an-
alyze) the current state, but also acts as an intercession layer
(ability to modify a system through model modifications).
In our privacy framework we use Kevoree [6], which is a con-
crete implementation of the Models@Run.time paradigm,
in order to dynamically adapt the blurring components at
runtime. It leverages Models@Run.time concepts to build,
adapt, and synchronize distributed systems using an archi-
tecture view, composed of Nodes (execution environments
like Java, Android, Phones, sensors, ...) and Components
(dynamic software modules deployed on top of nodes). In
addition to classical features, Kevoree components can use
Parameters to adapt the behaviour of a component at run-
time, like setting the blurring intensity.

Search based software engineering has been applied
to various software engineering problems in order to sup-
port software developers to optimize complex tasks. Search
based algorithms rely on a fitness function in order to com-
pare different solutions for a specific domain criterion, like
the evaluation of the privacy risk. Multi-objective evolu-
tionary algorithms (MOEAs) are a special class of search
algorithms, dedicated to deal with the fact that a solution
could be evaluated not only on one but on several axises. In
order to explore different solutions, MOEAs apply different
heuristics, among others the NSGAII [4] algorithms. We ap-
ply MOEAs to find a trade-off between service utility and
privacy risks according to the tolerated risk level per service
and context, which are two orthogonal optimization axises.

3. PROPORTIONAL DATA ACCESS
Our approach aims at allowing users to control and limit

privacy risks when sharing data collected from sensors. In
order to make this possible, we use blurring components to
dynamically adapt the quality of the shared data between
real sensors and dedicated service proxies exposed to data
consumers. In the scope of this paper, we do not consider
the security of the communication between the proxies and
data consumers, nor the problem of authentication. We sup-
pose that this communication channel is secured (e.g. via
SSL) and an authentication mechanism to identify data con-
sumers is implemented on the platform (e.g. HTTPS).

Instead, in this paper we focus on the communication flow
and the privacy risks, which occur when sharing high quality
data. Thus, our research question is how to find an optimal
chain of blurring components (and settings) between sensors
and connected data consumers (e.g. identified as HTTP ses-
sion) in order to balance user privacy and utility for ubiqui-
tous services. Figure 1 shows an example of a blurring chain
between a sensor x and a service proxy y.

Let’s denote by X the total number of sensors available on
a platform and by Y the total number of services (data con-
sumers) currently connected to this platform. Each service
wants to get data from a specific subset of sensors available
on the platform. The data flow from a sensor x ∈ X to a ser-
vice y ∈ Y introduces a privacy risk Rxy. To identify such



Sensor x Blurring 1 Blurring 2
Data consumer

y proxy

Figure 1: Chain of blurring components between a sensor
and a data consumer.

privacy risks we assume the availably of a risk knowledge
base, filled and maintained by security and privacy experts.
Moreover, a sensor platform user (or owner) might not trust
each data consumer to the same degree. Therefore, our ap-
proach foresees that a user can specify different privacy risk
tolerances for different data consumer groups (i.e. family,
friends, or strangers). This is inspired from the social net-
work model of managing privacy [14], which define groups
of different trust levels. The amount to which a data flow
between a sensor and a service should be blurred depends
on these risk and trust levels.

In order to counter the privacy risks we provide in our
platform different blurring algorithms. All counter strate-
gies are indexed in a knowledge base, which we call counter-
measure database. Every counter-measure (blurring strat-
egy) is implemented in a dynamically deployable software
component. A third criteria that we include in the opti-
mization is the performance of the dynamic communication
platform. This means, besides the privacy and utility re-
quirements we also take the resulting performance of the
blurring components into account.

Given the fact that we map blurring algorithms to com-
ponents, we reduce the problem to an architectural configu-
ration. In order to select and configure such components we
use an evolutionary algorithm to explore potential solutions.

Our framework is built around a reasoning engine, which
reads the current state of the platform using the reflexion
layer of Models@Run.time and optimizes it. In order to
find alternatives our reasoning engine is fed with data re-
quirements of currently connected services, privacy risks,
and counter-measures from our knowledge base (outside the
scope of this paper, for instance see the work of Neustaedter
et al. [17]). Figure 2 shows an overview of the proposed ar-
chitecture. Applying the Models@Run.time paradigm, this
alternative solution can be deployed without interrupting
the running system by updating only impacted elements.

To summarize, the proposed framework is build around a
continuous adaptation loop, which monitors and drives an
underlying component platform through architecture mod-
els. Our framework takes as input (i) privacy requirements
from users (data owners), (ii) utility requirements (qual-
ity of data) from services (data consumers), (iii) risks and
counter-measures provided by security experts.

Figure 3 shows an example of the state of the dynamic
communication platform after a first deployment. Each ser-
vice is in a different privacy group and had asked for different
data sources, resulting in independent blurring chains. Our
contribution is scoped between sensors and services in order
to dynamically balance user privacy and utility requirements
of connected ubiquitous services.

4. ADAPTIVE BLURRING PLATFORM
In this section, we describe the major elements of our

proposed adaptive blurring framework.

Risks and 
countermeasures 

database

Current 
Architecture 

Model

Evolutionary 
Algorithm 

Reasoning Engine

Privacy 
requirement

Proposed 
Architecture 

Model

Privacy 
experts

Data Owner

Deploy @ Runtime

Adaptable platform

Utility 
requirement

Data consumers

Figure 2: Adaptive blurring framework architecture.

Sensor 1

Sensor 2

Sensor 3

Sensor X

Mobile 
user 1

Mobile 
user 2

Mobile 
user y

...
...

Sensor x
Third party 
y gateway

Blurring 1 Blurring 2

Risks and 
countermeasures 

database

Fitness 
functions

Current 
Architecture 

Model

Evolutionary 
Algorithm 

Reasoning Engine

Privacy 
preferences per 

mobile group

Proposed 
Architecture 

Model

Privacy 
experts

System
designersOwner

Deploy @ Runtime

Adaptable platform

Data flow

Privacy risk

Performance 
and utility 
preference

Data consumers

Data Consumer 1

Data Consumer 2

HTTP 
+ SSL

Data Consumer 3

Architecture deployed by 
our middle-ware

 Proxy A

Proxy C

Sensors

Blurring chain 1

Blurring chain 2

Blurring chain 4

Sensor1

Sensor2

Sensor3

Blurring chain 3 Proxy B

Figure 3: Example of a deployed architecture

4.1 Blurring Components
We propose to use blurring components in order to control

the privacy risks that may occur when sharing high quality
sensor data with data consumers. Under the term “blurring
component” we understand a software component, which
takes raw data as input and produces a blurred stream as
output. The idea behind this approach is that, by gradually
decreasing the data quality, a blurring component is able to
hide some of the personal data delivered by sensors. How-
ever, at the same time, a blurring component still reveals
enough information to allow services to work properly. For
example, a service could automatically provide a user with
the current weather of his whereabout. This service would
need only the approximate location of the user to check the
current weather in this area (typically a city). However, it is
not necessary to share the exact location of the user with this
service. A blurring component could take the raw data from
a sensor (exact location of the user), blur these data (approx-
imate location), and provide the weather service only with
the blurred data. This would allow the weather service to
fulfill its task but, on the same time, increases the protection
of personal data. The blur intensity can be parametrized to
provide different blurring levels, ranging from directly shar-
ing sensors’ raw data without blurring to not sharing data at
all. In order to blur data, different concrete blurring strate-
gies can be applied on (raw) data. We provide two main
categories of blurring components. The first category di-
rectly operates on data values, whereas the second category



operates on the time dimension of data.
Time blurring components: We define three concrete

blurring components in this category. The first one is av-
eraging. This component takes the input data and calcu-
lates an average value (over a configurable time window).
The blurring effect achieved by this component smooths and
streamlines the output value. An example is the smart meter
domain, where it is recommended to average the measure-
ments over a window of 15-minutes [10]. The second blurring
component we provide in this category is frequency reduc-
ing. By limiting the number of output values (not all input
values are used as output) per time window. This decreases
the data quality by reducing the frequency. An use case
example is the location privacy preservation domain: if the
frequency of the data is high enough, an attacker can link
different locations together and trace a full route of a single
user [8]. Access control is the last blurring component we
provide in this category. The idea behind is to restrict the
access to the data during specific time periods. An exam-
ple is the public video surveillance domain, where the video
stream can be shared or not in certain periods of time [3].

Value blurring components: For this category we de-
fine three subcategories, noise, pass filters, and generalize.
Noise blurring effects add specific properties and variances
to the original data to make them less precise. These com-
ponents are usually used for real-time applications, due to
their fast performance. Gaussian blurring is a specific type
of noise blurring. It uses a Gaussian distribution model to
generate the noise [5]. Pass filters, be it above threshold or
below threshold filters, output the input data only if they
pass above or under a certain threshold level or just use the
boolean state when a value is above/under a defined thresh-
old. These filters are useful, for instance, in the health care
domain to share the data flow of sensors when data mea-
surements go above or under certain medical critical limits.
Generalizing blurring techniques reduce data accuracy, e.g.
trimming rounds floating point numbers to a specific preci-
sion. Other generalizing techniques can include sending an
interval or a range of answers instead of one value.

Blurring components can be domain independent (like a
Gaussian noise generator) or domain dependent (such as lo-
cation cloaking algorithms). We categorize these different
blurring components using a type hierarchy meta-model.
Figure 4 presents the different blurring components inte-
grated in our platform.

4.2 Risk and Counter-Measure Model
In order to quantify privacy risks and counter-measures

we use a knowledge base that has to be filled, maintained,
and updated by domain privacy experts. For each sensor in
the platform, these experts have to define a list of potential
privacy risks that are related to that particular sensor and
add a criticality weight for each of the risks. Then, different
counter-measures for each defined risk have to be added.

A counter-measure for a risk consists of defining the blur-
ring component and its risk reduction profile. For the sake
of convenience and simplicity, we define the risk reduction
profile by two mapping points and a mathematical profile.
A mapping point links the blurring intensity to a risk re-
duction factor. The mathematical profile dictates the shape
of the risk curve in between these two mapping points. In
our implementation it can be linear, exponential, or loga-
rithmic. In future work we plan to integrate more complex

mathematical profiles to the platform.
For example, for the Gaussian noise blurring an expert

can state that an intensity of 0 (variance of the noise=0)
will have no impact on the risk in question (risk reduction
factor=0) and an intensity of 3 (variance=3) is enough to
remove 95% of the risk, thus a risk reduction factor of 0.95.
Then, for example he can state that the risk reduction is
linear between these two mapping points.

Figure 5 shows an simplified excerpt of the risk and counter-
measure meta-model as implemented in our platform. The

Figure 5: Risks and Counter-measures meta-model

meta-model contains five main concepts: domain, sensor,
risk, counter-measure, and blurring.

Now, having this knowledge base the list of blurring com-
ponents, and their intensity parameters we can derive a
global privacy risk estimation. In order to do so, we calculate
the weighted average of the different existing privacy risks
multiplied by the maximum risk reduction factors induced
from the different blurring components and their settings.

More formally: let Y be the set of all the services y con-
nected to the platform. Xy denotes the set of the sensors
connected to a service y, let Rx denotes the set of privacy
risks present in the knowledge base related to a sensor x
in Xy, Bxy the set of blurring components available on the
chain between a sensor x and a service y. Let fij be the risk
reduction factor of the blurring component j on a particular
privacy risk i. With fij ∈ [0, 1]; 1 means that the blurring
component j in its current settings does not have any effects
on the risk i and 0 meaning it counter-effects the risk totally.
fij is calculated using the privacy counter measure knowl-
edge base and it depends on the current blurring configura-
tion. The risk reduction factor fi on the risk i is defined as
being the minimum risk reduction factor on this particular
risk i over all the blurring components in the chain. In other
words: fi = Min(fij), j ∈ Bxy. Let wi be the weight asso-
ciated to the risk i in the knowledge base. The privacy risk
Pxy between the sensor x and the data consumer y is calcu-
lated as following: Pxy = (

∑
i∈Rx

wi ∗ fi)/|Rx|. The privacy
risk induced by sharing data to service y is calculated by:
Py = (

∑
x∈Xy

Pxy)/|Xy|. Finally, the global privacy risk

of the platform is defined by: P =
√

(
∑

y∈Y (Py − Ty)2),
where Ty is the tolerated privacy risk for the service y de-
fined by the data owner. P will serve as the fitness function
representing the privacy risk to minimize by the evolution-
ary algorithm. This is presented in the next section.



Time

V
a
lu

e

Original

Noise Blurring

Time

V
a
lu

e

Original

Below Threshold

Time

V
a
lu

e

Original

Above Threshold

Time

V
a
lu

e

Original

Trim Blur

Time

V
a
lu

e

Original

Averaging Blur

Time

V
a
lu

e

Original

FreqReducing Blur

Time

V
a
lu

e

Original

Time Access Blur

Figure 4: Different blurring techniques

4.3 Reasoning Engine
The Evolutionary Algorithm Reasoning Engine (EARE)

is the core component of our platform. As depicted in the
framework architecture section (section 4), it continuously
monitors context changes, service requirements, and user
privacy preferences. EARE leverages the reflexion ability
of the Models@Run.time layer and performs adaptations
through the model. Whenever a new service connects to
our platform, the reasoning engine analyzes the following
information: Technical information of the service, e.g. IP
address, port, and user credentials. Performance require-
ments and communication preferences. This is inspired from
Android’s permission based applications [21]. User’s privacy
risk tolerance for this service or group the service belongs
to and for the current context. Different fitness functions
that represent requirements for privacy, data utility for the
service, and performance. In future work we plan to inte-
grate additional fitness functions, e.g. to optimize energy
consumption or network quotas. Therefore, we added an
extensibility feature to allow to provide additional fitness
function implementations.

Our reasoning engine can access the architecture model
representing the current running platform and modify it us-
ing Models@Run.time concepts. In order to setup a new
connection for a service, the EARE first deploys a proxy
and configures it with the technical configurations of the
service in question. Then, a search starts to find the best
path for each sensor to this proxy in terms of blurring com-
ponents. The initial population is seeded with empty paths
(aka all required sensors are connected directly to the proxy
without blurring in the middle). At each step of the opti-
mization a new generation of potential solutions is generated
by mutating the previous generation.

We define three possible mutation operations: 1) adding
a blurring component between a sensor and the proxy, 2)
removing an existing blurring component from the chain,
and 3) tuning the intensity parameter of an existing blur-
ring component. Using just these three mutations, we are

able to generate any possible architecture of blurring compo-
nents. The Java code in listing 1, shows the implementation
of the third mutation operator, which randomly selects a
sensor, then a blurring component attached to this sensor
and mutates the corresponding intensity parameter of the
blur between the range [min,max].

After the mutation step, we evaluate the generated solu-
tions of the new population against fitness functions. We
provide the following three fitness functions: First, a fitness
function that uses the risk and counter-measure knowledge
base to evaluate the privacy risks of a particular blurring
chain. Second, a fitness function that evaluates the data
consumer requirements and the utility of the data sent. And
finally, a fitness function that aims to optimize the perfor-
mance, thus minimize the time lag between sensors and gate-
ways. A blurring component with long processing time will
be penalized according to this fitness.

Listing 1: Example of Model-based genetic mutator

class ChangeBlurSettingMutator implements
MutationOperator<KevModel> {

void mutate(KevoreeModel model) {
List<ComponentInstance> ls = getSensors(model);
//Select sensor randomly and get all the blurring

components attached
ComponentInstance sensor=

ls.get(random.nextInt(ls.size()));
List<ComponentInstance> already=

getAttachedBlurComp(model, sensor);
if(already.size()>0){

//Select randomly a blurring comp. and change param
ComponentInstance cmp =

already.get(random.nextInt(already.size()));
double min =

cmp.getDictionary().find("min").getValue();
double max=

cmp.getDictionary().find("max").getValue();
double val = random.nextDouble()*(max-min)+min;
cmp.getDictionary().find("value").setValue(val);

}}}



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 200 400 600 800 1000 1200 1400 1600

N
o

rm
al

iz
e

d
 F

it
n

e
ss

Time in ms

Fitnesses of the best architecture

blurring Overhead

Privacy Risk

Utility

Hypervolume

Figure 6: Evolution of the different fitness functions and the
hyper-volume in time during the search

The evolution stops whenever there is a stable state of
fitnesses or a maximum number of generations have been
reached. At this point, several possible architectures of blur-
ring components between sensors and services are computed.
In the final surviving population each representing a differ-
ent possible trade-off. Our reasoning engine selects the one
with the biggest Hypervolume [23]. The last step consists
of actually deploying the blurring components and the first
flow of information is established from our platform to the
newly connected service.

In case a new service or user connects to the platform, any
user (owner) configuration changes, a knowledge base is up-
dated, or a service preference changes the reasoning engine
enters again the optimization search stages. This time, the
previously deployed architecture instead of an empty one is
used as initial population.

5. RESULTS AND EVALUATION
In this section we evaluate our platform on a smart home

domain case study. The validation is based on the following
key performance indicators: How much time does it require
to connect a data consumer for a first time to the platform?
How much time is needed for re-adaption in case of context
or input changes? How good is the solution found by the
evolutionary algorithm compared to a full search?

Setup: Our platform and implementation details are avail-
able as open source2. We used 4 sensors from the smart
home and health care domain: a temperature sensor, hu-
midity, heart rate, and power consumption. The privacy
risks and counter-measures knowledge base were filled from
known risks in literature [7] (12 counter-measures involving
different components were setup). We have implemented
three fitness functions: the privacy risk fitness, the utility
of the shared data fitness (a measure of the information in
the blurred stream compared to the original stream [2]), the
blurring overhead fitness (the time in ms required by the
blurring components to perform their tasks). In order to
evaluate our approach, we will rely on the following metrics:
The first indicator is the time required to connect a new
data consumer to our platform for the first time. The sec-
ond indicator is the time for re-adaptation. It is defined as

2https://github.com/securityandtrust/pla

Blurring
overhead

Utility

Privacy

Figure 7: Trade-off between fitnesses

Figure 8: Effectiveness of the genetic algorithm compared to
full search. On x axis, the fitnesses values (bigger is better).
On y, their densities.

the time needed from the moment an input is changed (be it
the context, the privacy risk knowledge base, the user’s pref-
erence, or data consumer’s settings) to the moment a new
architecture is deployed and fully functioning. The third
indicator is how well the evolutionary algorithm was able
to find good trade-offs compared to a full search based ap-
proach. We perform the simulations on an Intel Core i7
2620M CPU with 8Gb of RAM.

Results: To study the performance of the platform, we
consider a worst case scenario: the different consumers con-
nected to the platform have asked all for different sensor
connection requests and utility preferences. We consider as
well that they all have different privacy risk tolerances by
the owner. In real-life, consumers may be grouped in privacy
groups, thus may have the same privacy settings. More-
over, if they have the same hardware terminals, or want
to run the same service, they will require a similar utility
level from similar sensors, thus reducing the load on the
reasoning engine. After running 100 random tests simulat-
ing different user preferences, the average time to connect
a data consumer to the platform for the first time was 1.44
seconds (varying between 1 to 2 seconds per data consumer
per sensor requested). The density distribution of the opti-
mization time is plotted in figure 9a. The average time of
re-adaptation when an input changes was noticeably smaller
(1 second per sensor). The evolutionary search found 80%
of the time more than one solution that satisfies the privacy
risk requirement within a 5% margin and 90% at least a
solution within a 10% margin. By average, 4 architecture
solutions were found for each problem. Each architecture
represents a different trade-off between the three require-
ments. The solution with the highest hyper-volume is the



1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Kernel Density of Optimization time

Optimization time (in s)

D
en

si
ty

(a) Execution duration distribution for our reasonning engine

135 140 145 150 155

0.
00

0.
04

0.
08

0.
12

Kernel Density of Optimization time

Optimization time (in s)

D
en

si
ty

(b) Execution duration distribution for a full search

Figure 9: Execution duration comparison between our ap-
proach and a full search

one we actually deploy. However, the reasoning engine per-
formed 15% less than a full search in optimizing the utility
and privacy risk fitnesses (fig 8), but the full search took
much more time (150 seconds per consumer per sensor, fig.
9b). Figure 6 shows one run of the evolution in time of the
different fitness values of the best architecture model. For
this example, we set the tolerated privacy risk level of the
new user to 0.4 and the utility requested to 0.7. Initially,
the evolutionary search starts with an empty architecture
(with no blurring components). Thus, the initial risk fitness
is 1, as well as the initial utility of the data (no blurring),
and the initial blurring overhead is 0 (no performance de-
lays caused by the non-existence of blurring components).
After each generation, the risk fitness function is driven to
the requested value of 0.35, which means the addition of new
blurring components in the architecture. This reduces the
utility of data and increases the blurring overhead. In figure
7, we plot the normalized values (between 0 and 1, higher
is better, 1 means that the fitness has reached the desired
target) of the 3 fitnesses at the initial condition (in yellow)
and of the chosen architecture with the best hyper-volume
(in blue). We can notice that the blurring overhead fitness
has decreased from 1 (no blurring overhead, best perfor-
mance) but both utility and privacy fitnesses have improved
to reached their targets within 10%.

Discussion: The performance of our platform and its
real utility, usefulness, and value depends on the privacy
risks and counter-measures knowledge base and the fitness
functions provided to the evolutionary algorithm. At one
extreme, if this knowledge base is empty, the genetic algo-
rithm will not deploy any blurring between any sensor to
any data consumer. On the other hand, the more complex
the knowledge base, the more time the evolutionary search
engine will need to find a suitable architecture. This can be
problematic in case of an emergency situation, to take some
time before re-adapting. A simple solution is to pre-calculate
and store the architectures to deploy for emergency cases.
This dramatically drops the needed time for re-adaptation.
Besides, the current privacy risk and counter-measure model

treats each sensor independently: each sensor has its own set
of possible privacy risks independently of the other sensors.
We did not yet include privacy risks that occur when sharing
information with a data consumer from two or more sensors
at the same time. This will be included in a future work.

6. RELATED WORK
Blurring techniques, generalization, and obfuscation-based

privacy have been used in literature, mostly to protect the
anonymity of a user inside a group. K-anonymity [20], l-
diversity [13], and t-closeness [12] are the most famous and
widely known approaches in this area. These approaches
protect single user data by averaging or aggregating infor-
mation with other users in groups of a minimum size k. Our
platform has a different aim. Our target is not to preserve
the anonymity of the user towards services. Both can be
well identified to each other. Instead, we target to protect
against privacy risks such as: inventorying, profiling...

Many researches have developed blurring components and
proposed them as privacy preservation solutions. In location-
privacy domain, the Casper platform [16] contains a compo-
nent called “Location anonymizer”. This component blurs
the users’ exact location information into cloaked spatial
regions based on user-specified privacy requirements. In
the smart grid domain, Rajagopalan et al. [18] proposed
a framework that abstracts both the privacy and the utility
requirements of smart meters. They defined a power fre-
quency region where the trade-off between utility and pri-
vacy exists. In video surveillance, Wickramasuriya et al.
[22] presented a tool that processes video at realtime and
decides when to share the video stream with the surveillance
system and when to share at lower resolutions, in order to
preserve privacy. These previous works enforce our main
idea that privacy preservation tools in ubiquitous environ-
ments can be modelled as blurring components. Our work is
highly inspired by these techniques, and all of these blurring
components can be seamlessly integrated into our platform.
The main focus in this paper is the dynamic aspect of mobile
ubiquitous services and therefore how to propose a dynamic
software platform and combine blurring techniques to dy-
namically adapt the level of data privacy.

In pervasive environments and ambient assisted living do-
main, the CONNECT platform [1] presents a context-sensitive
privacy management middleware. This platform is the clos-
est to our work but it is based on defining a privacy policy.
Their approach is influenced by the scheme adopted in the
XACML architecture [19]. Although our platform also of-
fers a context-sensitive privacy management framework, it
is different in the core that it uses an evolutionary algo-
rithm based on a reasoning engine as a main privacy de-
cision point and not predefined privacy policies. We use a
multi-objective optimization solution where privacy is not
the only requirement to take into account. In addition we
leverage what we called a proportional access control, which
enables more security levels of sensors data by using various
blurring techniques to decrease the quality before sharing it.

7. CONCLUSION AND FUTURE WORK
In this paper, we presented a concept of proportional ac-

cess based on blurring techniques in order to dynamically
balance privacy and utility for ubiquitous platform services.
We showed that this generic concept can be used in var-



ious domains, such as ambient assisted living and demon-
strated its usefulness for sensor communication platforms.
Our platform applies Models@Run.time as a main paradigm
to enable a dynamic reconfiguration whenever the context,
configuration, or requirements changes. A new architecture
model is derived using an evolutionary multi-objective rea-
soning engine, which searches the most appropriate solution
of blurring components and parameters that best satisfies
the requirements regarding privacy, data utility, and perfor-
mance. This allows sensor platform owners to share their
data in a controlled manner with data consumers.

Any change in the requirements will trigger the evolu-
tionary search to dynamically re-adapt the platform and the
blurring components (at runtime) to match the new require-
ments. The privacy risk evaluation in our platform relies on
a privacy risk and counter-measure knowledge base. Many
previous research results in this domain can be integrated in
our knowledge base. For instance, privacy in video surveil-
lance [22], [17], smart metering [18], and location data [16].

The evaluation of our platform showed that the overhead
introduced by our approach is around 1.5 seconds per user
connected and per sensor. The data utility and the blur-
ring overhead were optimized to around 85% of a full search
algorithm but is 100 times faster.

In future work, we plan to extend our platform to evaluate
the potential privacy risk for combinations of several sensors
connected to a data consumer (mutual information). Addi-
tionally, we plan to integrate more complex risk reduction
profiles than the ones we currently provide (linear, expo-
nential, and logarithmic) and see how we can integrate addi-
tional fitness functions, e.g. to optimize energy consumption
or network quotas.

8. REFERENCES
[1] S. Alcalde Bagues, J. Mitic, and E.-A. Emberger. The

connect platform: An architecture for context-aware
privacy in pervasive environments. In Security and
Privacy in Communications Networks and the
Workshops. SecureComm 2007. Third International
Conference on, pages 117–126. IEEE, 2007.

[2] L. Bhuvanagiri and S. Ganguly. Estimating entropy
over data streams. In Algorithms–ESA 2006, pages
148–159. Springer, 2006.

[3] L. BROWN, Y.-L. TIAN, A. EKIN, C. F. SHU, and
M. LU. Enabling video privacy through computer
vision. 2005.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE
Transactions on, 6(2):182–197, 2002.

[5] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: Privacy via
distributed noise generation. In Advances in
Cryptology-EUROCRYPT 2006, pages 486–503.

[6] F. Fouquet, O. Barais, N. Plouzeau, J.-M. Jézéquel,
B. Morin, and F. Fleurey. A Dynamic Component
Model for Cyber Physical Systems. In 15th
International Symposium on Component Based
Software Engineering, Italy, July 2012.

[7] M. Friedewald, E. Vildjiounaite, Y. Punie, and
D. Wright. Privacy, identity and security in ambient
intelligence: A scenario analysis. Telematics and
Informatics, 24(1):15–29, 2007.

[8] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work,
J.-C. Herrera, A. M. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In Proceedings of
the 6th international conference on Mobile systems,
applications, and services, pages 15–28. ACM, 2008.

[9] A. Juels. Rfid security and privacy: A research survey.
Journal of Selected Areas in Communication, 2006.

[10] G. Kalogridis, Z. Fan, and S. Basutkar. Affordable
privacy for home smart meters. In Parallel and
Distributed Processing with Applications Workshops
(ISPAW), 2011 Ninth IEEE International Symposium
on, pages 77–84. IEEE, 2011.

[11] D. A. Kelly. Disaggregating smart meter readings
using device signatures. 2011.

[12] N. Li, T. Li, and S. Venkatasubramanian. t-closeness:
Privacy beyond k-anonymity and l-diversity. In ICDE,
volume 7, pages 106–115, 2007.

[13] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. l-diversity: Privacy beyond
k-anonymity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1(1):3, 2007.

[14] M. Madden. Privacy management on social media
sites. Pew Internet Report, pages 1–20, 2012.

[15] P. McDaniel and S. McLaughlin. Security and privacy
challenges in the smart grid. IEEE Security and
Privacy, 7(3):75–77, May 2009.

[16] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new
casper: query processing for location services without
compromising privacy. In Proceedings of the 32nd
international conference on Very large data bases,
pages 763–774. VLDB Endowment, 2006.

[17] C. Neustaedter, S. Greenberg, and M. Boyle.
Balancing privacy and awareness for telecommuters
using blur filtration. Technical report, Report
2003-719-22, Department of Computer Science,
University of Calgary, 2003.

[18] S. R. Rajagopalan, L. Sankar, S. Mohajer, and H. V.
Poor. Smart meter privacy: A utility-privacy
framework. In Smart Grid Communications
(SmartGridComm), 2011 IEEE International
Conference on, pages 190–195. IEEE, 2011.

[19] O. Standard. extensible access control markup
language (xacml) version 2.0, 2005.

[20] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 2002.

[21] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos.
Permission evolution in the android ecosystem. In
Proceedings of the 28th Annual Computer Security
Applications Conference, pages 31–40. ACM, 2012.

[22] J. Wickramasuriya, M. Alhazzazi, M. Datt,
S. Mehrotra, and N. Venkatasubramanian.
Privacy-protecting video surveillance. In Electronic
Imaging 2005, pages 64–75. International Society for
Optics and Photonics, 2005.

[23] E. Zitzler, D. Brockhoff, and L. Thiele. The
hypervolume indicator revisited: On the design of
pareto-compliant indicators via weighted integration.
In Evolutionary multi-criterion optimization, pages
862–876. Springer, 2007.


