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Abstract. The abundance of time series data in various domains and their high
dimensionality characteristic are challenging for harvesting useful information
from them. To tackle storage and processing challenges, compression-based tech-
niques have been proposed. Our previous work, Domain Series Corpus (DSCo),
compresses time series into symbolic strings and takes advantage of language mod-
eling techniques to extract from the training set knowledge about different classes.
However, this approach was flawed in practice due to its excessive memory usage
and the need for a priori knowledge about the dataset. In this paper we propose
DSCo-NG, which reduces DSCo’s complexity and offers an efficient (linear time
complexity and low memory footprint), accurate (performance comparable to
approaches working on uncompressed data) and generic (so that it can be applied
to various domains) approach for time series classification. Our confidence is
backed with extensive experimental evaluation against publicly accessible datasets,
which also offers insights on when DSCo-NG can be a better choice than others.

1 Introduction

Time series data usually refer to temporally or spatially ordered data, which are abundant
in numerous domains including health-care, finance, energy and industry applications.
Besides their abundance, time series data are becoming increasingly challenging to
efficiently store, process and mine useful information due to their high dimension-
ality characteristics. In order to tackle these challenges, researchers have proposed
many approaches to model time series more efficiently. Compression-based techniques
are especially promising and have been adopted in many recent studies, including di-
mensionality reduction [9, 21, 11] and numerosity reduction [24]. Symbolic Aggregate
approXimation (SAX) [15] is an approach that is capable of both dimensionality and
numerosity reduction. Among all time series data mining tasks, time series classification
(TSC) has received great interests from researchers and practitioners thanks to its wide
application scenarios including speech recognition, medical diagnosis, etc.

Our previous work, Domain Series Corpus (DSCo) [13] for TSC, takes advantage
of SAX to compress real-valued time series data into text strings and builds per-class
language models as a means of extracting representative patterns in the training phase.
To classify unlabeled samples, we compute the fitness of each symbolized sample against
all per-class models by finding the best way to segment this sample and choose the class
represented by the model with the best fitness score. We also prove that although DSCo



works with approximated data, it can perform similarly to approaches that work with
original uncompressed numeric data. One issue with DSCo, however, lies in its excessive
memory usage when calculating the fitness score of one sample against language models,
which makes it impractical for real-world applications.

In this paper, we set to improve DSCo’s time and space complexity and propose a
next generation of DSCo: DSCo-NG . We follow our initial intuition that time series data
are similar to sentences from different languages or dialects, but apply a more efficient
approach to find nuances of difference from these languages. Specifically, unlike in
DSCo where we try to find the best way to recursively segment time series, DSCo-
NG breaks time series into smaller segments of the same size, and this simplification
of the classification process also leads to simplified language model inference in the
training phase. Overall, the contributions of this paper are summarized as follows:

– We propose a new practical language modeling-based approach for time series
classification, which has a linear time complexity and small memory footprint. Pre-
viously DSCo works optimally on a High Performance Computing (HPC) platform,
e.g. ULHPC [20], while DSCo-NG can virtually run efficiently on any personal
computers thanks to its low complexity.

– We have tested our approach extensively on an open archive which contains datasets
from various domains, demonstrating by comparison with state-of-the-art approaches
and first generation DSCo that DSCo-NG is both performant and efficient.

– We investigate the performance of DSCo-NG by scrutinizing the characteristics of
datasets and provide insights in application scenarios when DSCo-NG could be a
better choice than other approaches.

– We offer a new perspective for TSC: traditional TSC approaches compare instances
against instances, which can be computationally inefficient when the training dataset
is large, while our approach aggregates training sets into models and compares the
fitness of instances to such models, making comparisons more efficient.

The remainder of this paper is organized as follows. Section 2 provides the necessary
background information on time series classification as well as our first trial of using
language modeling for TSC. Section 3 briefly surveys related research work to ours.
Section 4 presents the details of our new improvements, while experiments and evaluation
results are described in Section 5. Section 6 concludes the paper with directions for
future work.

2 Background

In this section, we briefly introduce time series, TSC, SAX and DSCo. For a more
detailed information on DSCo, the readers are encouraged to refer to [13]. Traditionally,
time series data refers to temporally ordered data, e.g., data sequences that are related to
time. However, data mining community [7] embraces a broader definition, relaxing the
time aspect and incorporating any ordered sequences. For instance, images may also be
transformed into time series representation [25]. In this paper, we define a time series
T = t0, t1, ..., tn−1, where ti (0 ≤ i ≤ n− 1) is a real-valued number and that T has a
length of n, i.e., |T | = n.



TSC is a common category of tasks that involves learning from a training dataset
and applying the learned knowledge to classify instances from a testing dataset, where
instance classes or labels are often unknown or purposefully hidden. TSC tasks are
commonly found in various application domains such as image and speech recognition,
medical analysis, industrial automation, etc. Many techniques have been proposed for
TSC, including k-Nearest Neighbors, shapelets [25], and bag-of-features [2]. In practice,
the Nearest Neighbor (1NN) approach has been proven to work very well [1], especially
when combined with a good time series distance metrics such as Dynamic Time Warping
(DTW) [4] and Time Warp Edit Distance (TWED) [16, 19].

In the literature of time series data mining, real-valued data are sometimes trans-
formed into symbolic representations, so as to potentially benefit from the enormous
wealth of data structures and algorithms made available by the text processing and bio-
informatics communities. Besides, symbolic representation approaches make it easier to
solve problems in a streamed manner [15]. Finally, many algorithms target discrete data
represented by strings over floating point numbers. Symbolic Aggregate approXimation
(SAX) [15] is one such technique that is popular among the community [14, 17]. It can
perform both dimensionality reduction and numeriosity reduction on time series and
transforms real valued time series data into a string of alphabets.
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Fig. 1: Flow chart illustration of DSCo’s training (in yellow) and testing process.

Once time series data are compressed into strings, DSCo [13] builds per-class
unigram and bigram language models which contains artificial words and phrases that
have been extracted from the training dataset. Fig. 1 illustrates how DSCo works. When
classifying unlabeled instances, DSCo calculates the fitness scores of one instance against
all per-class language models, and the fittest model’s class label will be assigned to this
instance. DSCo builds on the simply intuition that time series signals are comparable to
sentences and phrases from natural languages and dialects in the real-world: each dialect
have their unique words and patterns, which is similar to distinguishable features in time
series. In DSCo, we try to recursively segment an instance using a Viterbi algorithm
until we find the best way to divide such instance with a given language model. Due to
this intensive process, DSCo has an almost linear time complexity and space complexity
of O(m2n2), where m is the number of instances in the training set and n is the length
of time series.



3 Related Work

Due to TSC’s wide application scenarios, there are a plethora of algorithms made
available by the research community. An extensive review of time series mining has
been done by Fu [7]. Here we only survey the works that are closely related to ours due
to space limitation. Since DSCo-NG is a compression-based approach, we introduce
related approaches that also takes advantage of time series compression techniques.

There are basically two methods for compressing time series, i.e., dimensionality
reduction that works on the time axis and numerosity reduction that works on the value
axis. Dimensionality reduction mechanisms include Piecewise Linear Representation
(PLR) [8], Piecewise Aggregate Approximation (PAA) [9], and methods that keeps
only perceptually important points (PIP) [6]. Our previous work [11] takes advantage
of Discrete Wavelet Transform for dimensionality reduction. On the value axis, Xi et
al [24] have proposed using numerosity reduction to speed up TSC, and Lin et al have
proposed SAX [15], which converts real-valued data into a symbolic form. Note that it
is possible to apply both dimensionality reduction and numerosity reduction using SAX.

Symbolic representation of time series has opened a new avenue for TSC since it
makes it possible to borrow paradigms from the text mining community. For instance,
the bag-of-words approach has inspired the bag-of-features [2, 22] and SAX-VSM [18]
approach for TSC. Furthermore, Representative Pattern Mining (RPM) [23] compresses
time series to strings using SAX and then tries to identify the most representative patterns
in the training set. These patterns are then used to match against testing instances during
classification. Unlike RPM, DSCo does not try to find which patterns are representative or
not. Instead, we evaluate testing instances’ fitness to each class in an overall perspective.

Note that our compression-based approach is not to be confused with compression-
based time series similarity measures [10], which compares the compression ratios of
time series under the assumption that compressing similar series would produce higher
compression rates than compressing dissimilar ones.

Finally, as a part of our smart building project, a language modeling approach, which
inspired the idea of DSCo, was applied for household electric appliance profiling [12],
where language models are used to classify and maintain profiles of different appliances.

4 Next Generation Domain Series Corpus for TSC

Since our approach is based on a simple intuition that if we abstract time series classes to
languages, these languages will be descriptive so that it is able to differentiate instances
or sentences. In practice, we firstly harvest descriptive language models of different
patterns from a training corpus. Later in the classification phase, these language models
are used to find out which instances are likely to be written in a corresponding language.

The main complexity of original DSCo lies in the classification process, where
testing instances are recursively segmented in order to produce the best segmentation
result using a language model, in DSCo-NG we try to break the testing instances into
sub-sequences of the same length. Then we calculate the product of bigram probability
of these sub-sequences. This scheme is inspired by the intuition that when using a sliding
widow of size w to iterate over the training set, all possible unigrams and bigrams are



already captured within the language model of a specific class. As a result, there is no
need to use a sliding window of variable length during the classification process, thus
reducing the classification complexity. To better illustrate how DSCo-NG works, we
detail it in three steps in the subsections below.

4.1 Compressing Time Series into Texts

There are potentially many approaches that can compress time series data into texts.
For instance, one may think of creating a mapping from range of values to alphabets.
However, for the benefit of reusing existing mature techniques, we have leveraged SAX
for this task. Recall that SAX is capable of both dimensionality and numerosity reduction,
as long as the required length and cardinality parameters are specified. Previously with
DSCo we arbitrarily reduced the dimensionality of all long (of size larger than 100)
time series to 100, for the sake of computational efficiency. Here for DSCo-NG we do
not conduct dimensionality reduction since DSCo-NG is efficient enough, allowing us
to remove one parameter (or heuristics-based decision) from our processing pipeline.
However, as our previous study [11] suggests, conducting dimensionality reduction can
potentially increase overall classification accuracy.

4.2 Extracting Language Models

Once time series are compressed to texts, a language model can be extracted to summa-
rize each time series class. Since the text representation does not have word boundaries,
we need to create artificial words. To that end, we employ a sliding window mechanism
that generates such words. In order to facilitate reader understanding, we reproduce the
procedure from [13] in Algorithm 1. This algorithm collects all possible sub-strings of
length w within a string, so that no descriptive segment is left uncaptured from the origi-
nal time series. For example, we can break string abcde into the following 2-alphabet
words: ExtractWords(abcde, 2) produces an output of [ab, bc, cd, de].

Algorithm 1 Extract words from a string (S) using a sliding window (of length w).
1: procedure EXTRACTWORDS(S,w)
2: words← ∅
3: for i← 0, GetLength(S)− w + 1 do
4: word← SubString(S, i, w) . Sub-string of size w
5: words← words ∪ {word}
6: return words

Next, we build ngram language models for each time series class in our training set,
which is illustrated in Algorithm 2. Unlike DSCo that requires a minimum word length
and a maximum word length to capture words, here we use a single length w. Note that
the probability of ngrams are calculated independently, since different classes may have
different number of training instances.



Algorithm 2 Build language models (LMs) from a list (SL) of (string, label) pairs.
1: procedure BUILDLM(SL,w)
2: LMs← ∅
3: for all (string, label) ∈ SL do
4: if NGramslabel /∈ LMs then
5: NGramslabel ← ∅
6: words← ExtractWords(string, w))
7: for all ngram ∈ GetNGrams(words) do
8: InsertOrIncreaseFreq(NGramslabel, ngram)
9: LMs← LMs ∪NGramslabel

10: ConvertFreqToProbability(LMs)
11: return LMs

4.3 Classifying Unlabeled Instances

As mentioned earlier, classification in DSCo-NG is performed by checking which
language model is the best fit for the tested sample. Specifically, we compare the
sample’s fitness scores to each model, which is calculated following the ngram statistical
language model probability as shown in Equation 1.

P (w1, ..., wm) =

m∏
i=1

P (wi|w1, ..., wi−1) ≈
m∏
i=1

P (wi|wi−(n−1), ..., wi−1) (1)

In practice, bigrams (n = 2) and trigrams (n = 3) are most prominent [3]. We have
opted for the bigram model due to its simplicity for both the language model extrac-
tion process and fitness score calculation, which is approximated as P (w1, ..., wm) ≈∏m

i=1 P (wi|wi−1). During the classification process, we need to break time series strings
into words. Unlike original DSCo which breaks sentences into variable sized words, here
we adopt the same sliding window size w as the uniform word length. As we shall show
later, this simplified process yields similar classification accuracy but greatly reduces the
complexity compared with DSCo.

4.4 Time and Space Complexity

During the preprocessing phase, SAX has a linear time and space complexity when
transforming real-valued time series into text representation. When extracting language
models in the training phase, each training sample is went through once and models
are stored to external storage, resulting an O(n) time and space complexity. Finally, the
classification process go through testing samples constant times with language models
loaded from external storage, yielding linear time complexity. Language models loaded
to memory has a theoretic complexity of O(αw) where α is the alphabet size used when
using SAX to compress real-valued data, and w is the length of artificial words. In
practice, language models seldom exceed a few megabytes, due to the fact that time
series in a domain have a very limited number of words.

DSCo-NG’s real advantage comes when the training set is large. Given a training set
of m1 time series of length n, when classifying a testing set of m2 instances, traditional



kNN approaches have to conduct m1 ×m2 pairwise comparisons. Even when using a
linear similarity measure such as Euclidean distance, the overall time complexity goes
up to O(m1m2n). On the other hand, DSCo-NG would only have a computational
complexity of O(cm2n) where c is the number of classes and c� m1, making DSCo-
NG a magnitude faster than kNN. And this is indeed great improvement even compared
with DSCo which has a time complexity of O(cm2nw

2) and space complexity of
O(m2

1n
2).

5 Experimental Evaluation

In order to evaluate performance of our new approach, we have implemented DSCo-
NG and tested it on an open dataset archive. To facilitate reproducibility, we have open
sourced our implementation with full documentation and tutorials on GitHub1. We opt
for testing with the UCR Time Series Classification Archive [5] for three reasons: 1) this
archive has a large number of publicly accessible datasets; 2) these datasets are from
a wide range of domains, from environmental monitoring to medical diagnosis; 3) it
comes with precomputed classification accuracy rates for DTW-based 1NN, which is
the most widely used similarity measure in the research community and has become the
de facto state-of-the-art benchmark for TSC. In the experiments below we consider 39
datasets from the Newly Added Datasets sub-archive because of its uniform file format
and structure.

5.1 Implementation and Setup

In theory, when calculating ngram probabilities, the larger n is, the more accurate these
probabilities will be. However, in practice it is seldom the case, due to the lack of training
data and the rise of complexity when n becomes larger. As a result, our implementation
considers the bigram model with unigram fallback as a trade-off between efficiency
and accuracy. Note that falling back to unigrams may not always work, when specific
unigrams are missing from the training set. In this case it is necessary to employ a
penalty mechanism to offset the influence of such unigrams. From our experience, these
missing unigrams’ probability could be set as a constant of low probability value, so
that the missing probabilities do not overwhelm the existing ones and lead to inaccurate
classification.

5.2 Parameter Optimization

Ideally, time series mining approaches should have as few parameters as possible, even
parameter-free, so as to avoid presumption on data [10]. In reality it is extremely difficult
to achieve. For instance, even the popular DTW distance requires a warping window
size to be set in order to produce optimal results. In DSCo-NG , we essentially have two
parameters: the cardinality of SAX alphabet when compressing real-valued data to text
strings and the sliding window size or length of artificial words. Normally, approaches

1 Repository is available at https://github.com/serval-snt-uni-lu/dsco



based on SAX have to specify both the cardinality and a PAA size to which time series
are reduced. Since DSCo-NG does not necessarily need dimensionality reduction, we
only need to fix for a suitable cardinality, i.e., a good alphabet size that keeps sufficient
information during time series compression. To that end, we try to reduce time series
using different cardinality values from 3 to 20, which is range supported by major SAX
implementations. For length of artificial words, we also fix a range to 2 to 20 in order to
avoid extremely long words, in order to limit the size of language models.

Fig. 2 presents the classification accuracy from four datasets across different domains.
As shown, although these four datasets have different characteristics in terms of training
dataset size, time series length and number of classes, there is a clear trend when high
classification accuracy is achieved. That is, generally good accuracy is achieved with
small to medium SAX alphabet size and the alphabet size has more impact than the
word length (imagine projecting the 3D plots to the 2D plane defined by the alphabet
size and accuracy axis). This is extremely useful to narrow down the parameter space,
even though in fact our parameter space is already small (18 ∗ 19 = 342 combinations
in total). Note that there are other methods available for finding the optimal parameters.
For instance, in [23] the authors have adopted an algorithm named DIRECT. Thanks
to the small parameter space and efficiency of DSCo-NG we employ a brute force
approach for finding the best parameters for different datasets. Naturally, there is not
a single parameter setting that guarantees good performance, since different datasets
can be totally different in number of classes, size, time series lengths and variation
amplitude. However, it is indeed possible to set the same parameters for datasets with
similar characteristics.

5.3 Comparison of Classification Performance

Now that we have fixed the parameters for DSCo-NG , here we set to compare its perfor-
mance with its predecessor DSCo and the state-of-the-art approach DTW-based 1NN
classifier. Fig. 3 presents the classification results. It clearly demonstrates that DSCo-
NG outperforms its predecessor. In fact, in 90% (35/39) of the datasets, DSCo-NG is
more or equally accurate compared with DSCo, indeed suggesting performance improve-
ment in accuracy. This is probably due to the fact that DSCo tries to find the best way to
segment time series; however, with insufficient training data this segmentation process
will result in suboptimal segmentation and thus not as high accuracy. Furthermore, we
note that in 72% (28/39) of the datasets, DSCo-NG also outperforms the state-of-the-art
DTW-based 1NN, indicating its superiority in specific datasets. Besides, we would like to
remind the readers that DSCo-NG is potentially more scale than 1NN based approaches,
especially for datasets with a large training set, e.g., the ElectricDevices dataset.

We have demonstrated the performance of DSCo-NG through complexity analysis
and extensive experiments. Although DSCo-NG outperforms our previous work in vast
majority of tested datasets, it remains unclear why DSCo-NG outperforms DTW-based
1NN in certain datasets while underperforms in other ones. To this end, we investigate
in which scenarios DSCo-NG performs better. Obviously the size of training set can be
an important factor, because our model-based approach has to capture from different
and a large number of instances the representative patterns, while for instance-based
approaches – e.g. kNN – one representative instance could potentially help accurately
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Fig. 2: 3D surface plots of classification accuracy with different parameters, darker blue indicates
higher accuracy.
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Fig. 3: Overall accuracy comparison between 1NN with DTW distance, DSCo and DSCo-NG.

classifying all similar instances. This is a major reason why DSCo-NG greatly underper-
forms 1NN for the WordSynonyms dataset, which has many (25) classes but very few



(267) training instances. Besides, some classes in this dataset has as few as two instances,
making the language model extraction highly inaccurate for DSCo-NG .
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Fig. 4: All instances of two classes (1 and 5) from InsectWingbeatSound’s training set.

Besides training set size, in this study we found another important factor that lies
in how small segments constitute a time series. Fig. 4 shows why DSCo-NG does not
perform well for InsectWingbeatSound: these two classes consist of similar segments in-
stalled in different positions of time series. Thus DSCo-NG will consider these segments
as the same word unless we set an extremely long word length. Similarly, DSCo-NG un-
derperforms for UWaveGestureLibraryAll because instances in this dataset are composed
of three different segments.

Finally, we demonstrate with one example why DSCo-NG outperforms DTW-based
1NN. Consider the two classes from the FordA dataset as shown in Fig. 5. It is obvious
that visually it is impossible for a human being to distinguish these two classes, because
there are two many samples that are not properly aligned like in Fig. 4. As a result, for
1NN classifier, these samples could be distracting so that it fails to find similar samples
given a testing instance. However, DSCo-NG is able to aggregate samples within a class
so that it finds the overall descriptive way to differentiate different classes.
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Fig. 5: All instances of two classes (-1 and 1) from FordA’s training set.

6 Conclusions and Future Work

In this study we have improved our previous work DSCo and propose a new approach
for TSC. Through complexity analysis and extensive experiments, we show that DSCo-
NG is both efficient and performant when comparing with DSCo and the state-of-the-art



DTW-based 1NN. Besides, DSCo-NG does not require datasets to be properly aligned,
as a result it can save time and efforts preparing for time series data, and result in better
classification accuracy with not properly aligned data. Finally, unlike DTW-based 1NN
and similar approaches, DSCo-NG can work with data of variable length, which make it
suitable for streaming applications.

Since DSCo-NG uses SAX to discretize real-valued time series to text representa-
tions, there can be other symbolization techniques to replace SAX and make DSCo-
NG parameter-free. In the future, we plan to investigate such opportunities and study the
impact of different symbolization techniques on the performance of DSCo-NG.
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