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ABSTRACT
Micro-generations and future grid usages, such as charging
of electric cars, raises major challenges to monitor the elec-
tric load in low-voltage cables. Due to the highly inter-
connected nature, real-time measurements are problematic,
both economically and technically. This entails an over-
load risk in electricity networks when cables must be dis-
connected for maintenance reasons or are accidentally dam-
aged. Therefore, it is of great interest for electricity grid
providers to anticipate the load in networks and quicker de-
tect failures. However, computing the electric load in cables
requires computational intensive power flow calculations and
live consumption measurements. Today’s view of the grid is
usually based on on-field documentation of cables, fuses, and
measurements by technicians and therefore often outdated.
Thus, the electric load is usually only simulated in case of
major topology variations. However, live measurements of
smart meters provide new opportunities. In this paper we
present a novel approach for a near-time electric load ap-
proximation by deriving in live the current electric topology
and cable loads from smart meter data. We leverage the
models@run.time paradigm to combine live measurements
with topology characteristics of the grid. Our approach en-
ables to approximate the load in cables, not only for the
current grid topology, but also to simulate topology changes
for maintenance purposes. We showed that this allows a
near real-time approximation while remaining very accurate
(average deviation of 1.89% compared to offline power-flow
calculation tools). Developed with a grid operator, this ap-
proach will be integrated in a monitoring and warning sys-
tem and as an embeddable solution for on-field simulation.

CCS Concepts
•Computer systems organization → Embedded and
cyber-physical systems; •Software and its engineer-
ing → Model-driven software engineering; Real-time
systems software; Abstraction, modeling and modularity;
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1. INTRODUCTION
To keep pace with the ever-increasing demand for energy a
modernization of today’s electricity grid is inevitable. The
vision of such a modernized electricity grid is referred to as
the smart grid vision [1]. The smart grid will enable ad-
vanced new features like an automated control of devices,
remotely collecting consumption data, or demand time pric-
ing [19] to increase the efficiency and reliability of today’s
electricity grid.

To transform this vision into reality, two major challenges
must be addressed: first the seamless integration of renew-
able energies and distributed micro generations and sec-
ondly, the convergence of modern information and communi-
cation technology (ICT) with power system engineering [7].
Leveraging this intelligent communication network, smart
grids can help to balance the electric load to avoid peaks.
For example, in future scenarios, electric vehicles could be
forced to delay their charge cycles or even to transfer elec-
tricity back to the grid in peak times [10]. However, this
leads to a more and more interconnected and complicated
electricity grid, which strongly increases its complexity. This
motivates the interest of electricity grid operators to predict
the electric load in the network —especially when the topol-
ogy changes— to anticipate overload risks. However, com-
puting the electric load in cables is challenging and requires
complex and computational intensive power flow calcula-
tions and up-to-date measurements of electric consumption.
These are usually based on a static and therefore often out-
dated view of the physical grid topology. Thus, the electric
load in cables is usually only calculated in case of major
topology changes. For this reason, such tools are ill-suited
for near real-time calculations, as needed e.g., to suggest
counter reactions in advance of a potential overload, e.g., re-



stricting the maximum load for customers, scheduling charge
cycles of electric vehicles, or for technicians to decide if it is
safe to disconnect a cable.

In this paper we present a novel approach for an
electric load approximation method, which leverages
a dynamic, continuously updated model abstraction
of the grid by combining the physical topology and
digital live measurements.

By leveraging the digital live measurements available in emerg-
ing smart grids, combined with simplified mathematical for-
mulas and modern model-driven software engineering tech-
niques, this enables to approximate the load in cables in
near real-time and can therefore be continuously updated,
e.g., for every newly measured consumption value or topol-
ogy change. The model contains the topological entities over
time (e.g., smart meters, data concentrators) as well as the
physical network topology (electricity cables) and its prop-
erties and is continuously updated at runtime to reflect the
current state of the grid. In particular, we take advantage of
information from power line communication (PLC) medias
to infer and enrich in live the electric topology from the com-
munication logs. By using a model of state and behaviour of
physical smart grid elements, we can simulate actions, e.g.,
what happens if we disconnect or connect cables. Due to
automated meter reading [7], one of the probably most vis-
ible smart grid features, customers’ consumption data can
be automatically collected and stored in regular intervals.
We use this data together with the smart grid topology to
approximate the electric load in every cable over time. By
additionally taking the size of cables into account, we can
approximate the maximum capacity of each cable and cre-
ate alarms if the load reaches a threshold value, e.g., 75%
of its capacity. The idea has been developed together with
our industrial partner Creos Luxembourg S.A., the main
grid operator in Luxembourg, for an electric load monitor-
ing and warning system and for technicians to decide wether
it is safe to disconnect a cable for maintenance reasons. We
evaluate our system together with Creos, based on real data
from the smart grid testbed deployment in Luxembourg. We
demonstrate that the performance of our system is compat-
ible with near real-time requirements, while the accuracy
of our results remain in average 1.89% compared to the re-
sults of the power flow calculation tool1 currently used by
Creos. The advantage of our approach is its near real-time
capability.

This paper is structured as follows. Section 2 gives the back-
ground of this work, context modeling, models@run.time,
and a description of the smart grid topology in Luxembourg.
Section 3 presents our approach for electric load prediction
in low-voltage cables, which we evaluate in 4. Section 5
discusses related work before this paper concludes in 6.

2. BACKGROUND
In this section we describe the background for this work:
the electrical foundations behind our approach, modeling
techniques in general and models@run.time in specific, and
a description of the smart grid topology in Luxembourg.

1http://www.digsilent.de/

2.1 Electrical Foundations
The fundamental physical law on which the approximation
of our approach is based on is Kirchhoffs current law [16]. It
says that “the sum of all currents around one node is equal
to 0”. We leverage this law to build an equation system for
all cables in the topology and to finally derive the electric
load in each cable. The precise rules and ideas behind this
approach are detailed in section 3.

2.2 Modeling and Models@run.time
In order to approximate the electric load in cables and to
simulate the impacts in case of topology changes (e.g., dis-
connected cables for maintenance, accidentally damaged ca-
bles) we use a model of the smart grid topology. Over
time different formalisms to model and reason about sys-
tems have been developed and used for different purposes,
e.g., [18], [2], [20]. Over the past few years, an emerg-
ing paradigm called models@run.time [15] proposes to use
models both at design and runtime to support intelligent
systems. At design time, following the model-driven engi-
neering (MDE) paradigm [14], models support the design
and implementation of the system by simplifying the de-
sign process, promoting communication between stakehold-
ers, and maximizing compatibility between systems. The
same (or similar) models are then embedded at runtime in
order to support the reasoning processes of intelligent sys-
tems. These models are continuously updated at runtime to
represent the current state of a system. Most of these ap-
proaches have in common that they describe a system using
a set of concepts (classes, types, elements), attributes (or
properties), and the relations between them. We refer to
the abstraction of a system (set of described elements) as a
model and to a single element (concept) as model element.
The concepts of our approach are, in principle, indepen-
dent of a concrete model representation strategy. However,
the implementation of our approach is built with an open
source models@run.time framework, the Kevoree Modeling
Framework [8] (KMF2). KMF is an alternative to EMF [3]
and specifically designed to support the models@run.time
paradigm in terms of memory usage, runtime performance
and especially to mix measured data and extrapolation func-
tions. We decided to leverage a models@run.time based ap-
proach for several reasons: First, models provide a seman-
tically rich way to model a system. Second, models can be
used to define reasoning activities like electric load approx-
imation. Third, the models@run.time paradigm has been
proven to be suitable to model complex cyber-physical sys-
tems (like smart grids) during runtime [15].

2.3 The Smart Grid Topology in Luxembourg
This work has been done in collaboration with our indus-
trial partner Creos Luxembourg S.A., the main electricity
grid operator in Luxembourg. Therefore, we describe in the
following the main characteristics of the smart grid test de-
ployment there. A more detailed description and analysis
of the smart grid topology in Luxembourg can be found
in [11]. Based on this, we later build an abstract model of
this topology and fill it with real data in order to approxi-
mate the load.
2http://kevoree.org/kmf



The smart grid topology in Luxembourg is built upon a
power line communication [9] (PLC) network. A major ad-
vantage of PLC is that the same media that is used for elec-
tric power transmission can be used for establishing the com-
munication network and transmitting data. On the other
hand, a major concern with PLC is the amount of electric
noise and disturbances that may be encountered, which re-
quires advanced error detection techniques. The main de-
vices in the topology, for the context of this work, are:

Smart meters are the cornerstones of the smart grid infras-
tructure. Installed at customers houses they continuously
measure electric consumption and quality of power supply
and regularly report these values to utilities for monitoring
and billing purposes. Another major task of smart meters
is load management, as they are able to trigger relays to
connect/disconnect specific loads. Smart meters are either
directly, or via other smart meters (repeaters), connected
to a data concentrator. In regular intervals, in Luxembourg
every 15 minutes, smart meters report their consumption
data to their associated data concentrators.

Data concentrators collect and store consumption data from
a number of associated meters. In regular intervals (several
times a day, immediately) they send this data, usually via IP
connections, to a central control system. Concentrators have
the ability to send commands, like requesting consumption
data or to shut down electricity. Physically, data concen-
trators are located at power substations. In case of bigger
housing complexes a concentrator can also be located di-
rectly in the housing complex itself.

Central system all data concentrators send their data to a
central system where all data are stored, aggregated and
analyzed. Because of legal regulations these data must be
deleted in regular intervals (e.g., cannot be stored longer
than x month).

Cabinets and cables: cabinets are electric enclosures which
connect cables. With the help of fuses it can be controlled,
which of the cables should be connected. Cables, cabinets,
and the state of fuses (open/closed) are an important part
of our model to approximate the electric load in cables.

The grid in Luxembourg is organized in multiple graphs.
This means, that fuses in cabinets are configured in a way
that cables starting at a transformer substation, are con-
nected to several other cables in cabinets but usually never
end in another transformer substation (no cycles)3. Instead,
cables always end in a dead end (not connected to another
cable). Figure 1 shows an example of how such a topol-
ogy looks like. In our approach we leverage this topology
characteristic to analyse every transformer subgraph inde-
pendently from others. This makes it possible to easily par-
allelize the electric load approximation and simulation for
the whole grid.

3There exist some cases where two transformers are op-
erated in parallel mode and then they are interconnected
(mostly not by purpose but when technicians forget to open
the fuse after an intervention)
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Figure 1: Example based on the smart grid topology
structure in Luxembourg

3. ELECTRIC LOAD APPROXIMATION
In this section we describe how we approximate the electric
load in cables and how we simulate the impacts on the load
in case of topology changes (e.g., cable disconnection). The
goal is an electric load monitoring and warning system as
well as a decision support system for technicians.

3.1 General Considerations
To solve the problem of a dynamic anticipation of the electri-
cal load in the grid under certain planned/unplanned events
we combine a topology abstraction (model) and active data
(continuously updated at runtime). Based on this abstrac-
tion we analyze the state of the grid and apply electrical
formulas, based on a simplified electrical model, in relation
with reactive/active aspects that are beyond the scope of
common simulation tools. This enables to consider dynamic
changes, (e.g., in the physical grid topology but also in the
measured values like consumption data. Figure 2 shows an
overview of our approach. In a first step, we derive the
current topology from our model-based abstraction of the
grid. The model is continuously updated from the live mea-
surements of the smart grid. Then, based on the derived
topology we apply the electrical formulas for the load ap-
proximation. In a final step we solve the formulas and cal-
culate the electric load. In the following we describe these
steps in more detail.

The fundamental physical law on which the following calcu-
lations are based on is Kirchhoff’s current law [16]. It says
that “the sum of all currents flowing into a node is equal to
the sum of the currents flowing out of this node”, or more
formal:∑n

k=1 Ik = 0, where n is the total number of currents
flowing towards or away from the node.

If we apply this on our topology model we can derive four
basic rules for the electric load approximation:

1) For every cable we need one current calculation for the
ends of the cable, i1 and i2. Since we only have the con-
sumption values of all smart meters and our topology model,
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Figure 2: From the current smart grid communica-
tion topology (1) we first derive the electrical topol-
ogy scenario (2), then combine it with live measure-
ments and apply the appropriate electrical formulas
(3) to finally derive the load approximation (4)

which specifies —among other things— which smart meter
is connected to which physical cable, all loads of a cable can
be summed up as: IL =

∑
j

iloadj (neglecting the active
and reactive impact form the cable, e.g., losses, generation).
These loads can be considered as a current flow out of the
cable (to the consumer) and according to Kirchhoffs current
law we can derive following equation: i1 + i2 = IL. i1 and
i2 are the dominating values for the electric load considera-
tions since they determine the cable loads.

2) We can apply Kirchhoff’s current law for all cabinets,
meaning that all currents of cables j connected to a cabinet
will sum up:

∑
j

icabinetj = 0.

3) For a dead end cable the current at one end is 0.

4) For each circle (cables are directly or indirectly connected
in a circular way) the point that is from a physical point of
view the nearest to the transformer substation has to be de-
termined. On this point the two cables that are part of the
circle must carry the same current: i1 = i2.

Those rules allow us to calculate the currents at both ends
of every cable independently of the grid structure. In any
topology with n cables we implicitly have 2 ∗ n unknowns
(current at the start and end of each cable) and we therefore
need 2 ∗ n equations to solve the system. Since we have as
many equations as unknowns the system to solve will be a
square matrix and have always one solution. For example,
if we consider the three cables in Figure 5a, the equation
system to solve would look like the following example:

Each row corresponds to one equation. The columns of the
matrix represent for each cable the loads i1 and i2 for the
ends of the cable. This means that the first two columns
belong to cable 1, the next two to cable 2 and so forth.

In order to approximate the electric load of all cables we
have to traverse the topology model, detect the different sce-
narios regarding the above described four rules, and build
and solve the equation system. In the following subsections
we describe the different scenarios in more detail and show
how we derive the necessary equations. We assume that the
smart grid topology in Luxembourg consists of multiple sub-
graphs and transformer substations are not interconnected.
In special cases, where this is not true, our load approxi-
mation will yield wrong results. This will be investigated
in future work. We can reduce the complexity of the equa-
tion system by deriving one equation system per transformer
substation. This can be parallelized so that all equation sys-
tems can be independently calculated at the same time. By
changing the state of fuses and/or cables in our topology
model we can simulate how the electric load in all cables
will be effected.

3.2 Topology Scenarios

3.2.1 Single Cable
The first topology scenario we look at is a single cable on a
cabinet or transformer substation. Figure 3 shows the corre-
sponding topology excerpt. The arrows on cable 1 indicate
the conceptual flow of the loads i1 and i2. The Figure shows
an arbitrary number of smart meters connected to cable 1.
The sum of all loads of the smart meters are indicated by
load IL1 . We are only interested in the load of the low-
voltage cable (cable 1), not in cables connecting meters to
the low-voltage cables. We can derive following equations:

3.2.2 Cabinet Connecting Several Cables
The next scenario is a cabinet connecting several cables.
Figure 4 illustrates an excerpt of a corresponding topology
to clarify this scenario. We assume that all fuses in cabinet
1 are closed, so that cables 1, 2, and 3 are connected. For
each cable we have again two loads for both cable ends. On



Transformer 
Substation

Arbitrary Number 
of smart meters

C
a

b
le

 1

i2

i1

iL1

Figure 3: Single cable on a substation

Transformer 
Substation

Arbitrary Number 
of smart meters

C
a

b
le

 1

i2

i1

iL1

Cabinet 1

i3 i4 Arbitrary Number 
of smart meters

iL3

i6C
a

b
le

 3

i5

Arbitrary Number 
of smart meters

iL2

C
a

b
le

 2

Figure 4: A cabinet connecting several cables

each cable an arbitrary number of smart meters is connected,
which individual loads are summed up in one load value for
each cable. Cable 2 and 3 have dead ends (no other cable is
connected to this cable end). Therefore, we can derive the
equations below:

Cable 1: i1 + i2 = iL
1 

Cable 2: i3 + i5 = iL
2 

Cable 3: i4 + i6 = iL
3 

Cabinet 1: i2 + i3 + i4 = 0 

DE cable 2: i5 = 0 

DE cable 3: i6 = 0 

 

DE: dead end 

 

3.2.3 Parallel Cables
The most complicated scenario are parallel cables, which can
appear in different types. First, several cables can start at
the same transformer and end at the same cabinet. Second,
parallel cables can appear between two cabinets. This means
that several cables start at the same cabinet and all of them
end at the same cabinet. Last but not least, we have to
consider “indirect parallel cables”. These start at the same
substation but not necessarily end immediately at the same
cabinet. If a cable ends at a cabinet and is there connected
to another cable, which ends at the cabinet where other
cables starting at the substation ends, they indirectly form a
circle. These three scenarios are sown in Figure 5. Figure 5a
shows parallel cables at a transformer, 5b parallel cables at
a cabinet, and 5c indirect parallel cables. For 5c we can
derive following equations:
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Figure 5: Parallel cables: a) at a transformer sub-
station, b) at cabinets, c) indirect parallel cables
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3.3 Considering Active and Reactive Energy
The calculations so far are only valid for purely resistive
loads (only active power). However, in a real grid the current
always has a reactive component. To take this fact into ac-
count we apply complex numbers: i1 = i1active +j ∗i1reactive

where j is the complex number. To simplify the approxima-
tions we assume that the voltage at each point is equal to
230 V. Since we have the active and reactive energy from the
smart meter measurements (customers’ consumption data),
we can simplify the calculation by taking the active power
P and reactive power Q into account, instead of calculating
first the current and divide it into an active and reactive
part: S1 = P1active + j ∗ Q1reactive where j is the complex
number. The principal to establish the equations stays the
same. On the first topology example (see Figure 3) this
looks like below:



3.4 Electric Load Approximation
To approximate the load in cables, we first create all neces-
sary equations. After this step, we solve the matrix equa-
tions and calculate for every cable the components P1, Q1,
P2, and Q2 (the two ends of a cable). With this it is possible
to calculate the electric load i1 and i2 for every cable:

i1 =
√

P 2
1 +Q2

1√
3∗230 , i2 =

√
P 2

2 +Q2
2√

3∗230

In order to simulate the impacts on the electric load if, for
example, a cable would be disconnected we can simply up-
date the topology model with the disconnected cable and
trigger the load approximation. Therefore, the concerned
equations are recreated and the load in the cables is up-
dated accordingly.

4. EVALUATION
In order to evaluate our approach we built a model of the
smart grid testbed in Luxembourg. It contains three trans-
former substations, around 250 smart meters, 30 cables, 27
cabinets, and consumption data of smart meters over a time
window of six weeks (one value per meter every 15 minutes).
The number of 10 cables and 100 smart meters per substa-
tion is representative for three phase grids like the ones in
Germany, Switzerland, Austria, or Luxembourg. Further-
more, cables of different substations are usually not inter-
connected. Therefore, the electric load in cables can be inde-
pendently approximated for the cables of each transformer
and can be parallelized. We used this model to evaluate our
approach in terms of performance and accuracy to validate
its suitability to be used in a near real-time simulation sys-
tem for electric load prediction in low-voltage cables.

4.1 Performance of Electric Load Prediction
In order to evaluate the performance of our approach we
changed the topology several times and recalculated the elec-
tric load in all cables. We divided the calculation in two
steps: i) traversing the smart grid graph, finding the topol-
ogy scenarios and building the equations, and ii) solving the
matrix equation system. For the latter we use the efficient-
java-matrix library (EJML)4. For each of the three scenar-
ios (every transformer substation) we randomly changed the
topology (cable connections) 100 times and measured the
average times for the recalculation. We performed the ex-
periments on an Intel Core i7 2620M CPU with 16 GB of
RAM. We neglected I/O operations as far as possible by
caching all data instead of reading it from a database. The
results of this evaluation are shown in Table 1. As can be
seen, the costly part is the creation of the equations. This
is not a surprise, since our algorithms have to traverse the

4https://code.google.com/p/efficient-java-matrix-library/

Scenario Overall Creating Solving

Transformer Substation 1
(103 meters, 12 cables) 191 ms 190 ms (99.95%) ≤ 1 ms (0.05%)

Transformer Substation 2
(71 meters, 10 cables) 157 ms 156 ms (99.94%) ≤ 1 ms (0.06%)

Transformer Substation 3
(56 meters, 8 cables) 143 ms 142 ms (99.93%) ≤ 1 ms (0.07%)

Table 1: Performance evaluation

topology graph, detect the scenarios, resolve the appropri-
ate consumption data (right time and customers), and de-
rive the equations. In order to optimize this process we built
on the work of [13], [12], [11] for building topology models
and reason about them. We then gradually increased the
complexity of the grid topology (number of cables) in order
to evaluate the scalability of our approach and found that
the time to approximate the electric load is about linear.
This is shown in Figure 6. Since our approach allows to
independently build and solve the equation systems for ev-
ery transformer substation, the overall time is determined
by the number of cores (to parallelize) and the most com-
plex subgraph. The recalculation time of less than 2 ms,
in average, is what we call near real-time. This shows that
our approach is fast enough to be used in a near real-time
what-if simulation system for electric load approximation.
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Figure 6: Scalability of electric load approximation

4.2 Accuracy of Electric Load Prediction
In order to evaluate the accuracy of our model-based ap-
proach we compared our results with the results of the power
flow calculation tool (DIgSILENT), which is currently used
by Creos. Therefore, the power flow calculation department
of Creos took a snapshot of the smart grid topology and con-
sumption data, created a static configuration for the power
flow calculation tool, and calculated the exact loadings. We
analyzed the results for several different scenarios and cables
and compared it to our approximation approach. For each
cable we compared the calculated values for the active as
well as reactive energy at the beginning and ending of the
cables and the cable loading. We found that our approxi-
mation approach is very accurate with deviations below 5%.
The biggest discrepancy we found is 5.77% and the smallest
0.07%. In average, we got an deviation of only 1.89%. This
shows that our approach is able to dynamically recalculate
the electric load in cables in near real-time while still is very
accurate.



5. RELATED WORK
Electric load forecasting is an important field for electricity
providers to decide early wether extra generation must be
provided. Most of recent approaches are based on load pro-
filing, possible through automated meter reading. Park et
al., present in [17] an approach for load forecasting based
on an artificial neural network (ANN). The ANN is used
to learn the relationship among past, current, and future
temperatures and loads. Espinoza et al., [6] present an ad-
vanced short-term load forecasting approach using kernel-
based modeling for nonlinear system identification. They
create consumption profiles of customers by applying ma-
chine learning techniques to predict hourly loads as well as
daily peak loads. An interesting aspect of this work is that
they discuss the need to take different context parameters,
like weather conditions or the date into account. The work of
Espinoza [4] et al., aims at providing a unified framework for
electrical consumption forecasting and clustering by creating
daily profiles of customers. They first generate short-term
models that can produce accurate forecasts, extract temper-
ature and seasonal effects and identify the type of customer
under scrutiny. Then, they partition the set of time series,
using clustering algorithms, based on the customer profiles.
In [5] Espinoza et al., present results from a project in coop-
eration with the Belgian national grid operator ELIA. They
analyze a set of 245 time series, each one corresponding to
four years of measurements from a HV-LV substation and
apply individual modeling using periodic time series to fore-
cast the electrical load. They use the stationarity properties
of the estimated models to identify typical daily customer
profiles.

These approaches have in common that they use machine
learning techniques to cluster customers based on their con-
sumption and predict the electrical load based on this. Since
they ignore the underlying smart grid topology these ap-
proaches don’t target the approximation of the electrical
load in cables. In contrary, we focus on the approxima-
tion of the electric load in cables to simulate the impacts of
topology changes to create a load monitoring and warning
system and for technicians to decide wether it is safe or not
to disconnect a cable for maintenance. To the best of our
knowledge, there is no other approach combining a continu-
ously updated model of smart grid topology characteristics
together with customers’ consumption data to approximate
the electric load in cables in near real-time and to simulate
the impacts of topology changes. However, we can combine
electric load forecasting with our approach to extend our sys-
tem to an early-warning system. If we forecast the load for
all customers connected to a cable, we can feed our system
with the forecasted values, instead of using the measured
ones to check if we expect critical loads in cables.

6. CONCLUSION AND FUTURE WORK
To cover the ever-increasing energy demand the electricity
grid becomes more and more complex, e.g., due to the inte-
gration of renewable energies. This entails a high overload
risk in the electricity network, which becomes even more
challenging when cables must be disconnected for mainte-
nance reasons or are accidentally damaged. Therefore, it
is of great interest for grid providers to anticipate the load

in the network when the topology changes. Computing the
electric load in cables requires complex and computational
intensive power flow calculations and up-to-date measure-
ments, which are usually based on a static and therefore
often outdated view of the grid topology. In this paper we
presented a novel approach for an electric load approxima-
tion method, which leverages a dynamic, continuously up-
dated model abstraction of the grid by combining the phys-
ical topology and digital live measurements. We showed
that this approach is able to approximate the load in cables
with a high accuracy and is able to simulate the impacts of
topology changes in near real-time.

The novelty of this approach lies in the combination of a
model-based grid abstraction, leveraging live measurements
such as consumption data available in smart grids, and the
usage of simplified electrical formulas. The presented idea,
which has been developed in cooperation with our industrial
partner Creos, has been implemented as a prototype moni-
toring system to detect potential overloads in cables as well
as for technicians to decide wether it is safe to disconnect
a cable for maintenance. In our evaluation we showed that
our approach is able to recalculate the electric load in ca-
bles after topology or data changes in near real-time, while
the accuracy is close to the results from power flow calcu-
lation tools (average deviation 1.89%). The near real-time
capability is the main advantage of our approach.

In future work, we plan to apply electric load forecasting
to extend our approach to an early-warning system. For
example, if we forecast the electric load for all customers
connected to a cable, we could feed our system with the fore-
casted values, instead of using the measured ones to check if
we expect critical loads in cables. This would open the door
to enable a dynamic system, able to suggest counter reac-
tions in advance of a potential overload situation, such as
automatically restricting the maximum load for customers,
or delaying charge cycles of electric vehicles.
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