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A B S T R A C T

Context: It is common belief that high impact research in software reuse requires assessment in non-trivial,
comparable, and reproducible settings. However, software artefacts and common representations are usually
unavailable. Also, establishing a representative ground truth is a challenging and debatable subject. Feature
location in the context of software families, which is key for software product line adoption, is a research field
that is becoming more mature with a high proliferation of techniques.

Objective: We present EFLBench, a benchmark and a framework to provide a common ground for the eva-
luation of feature location techniques in families of systems.

Method: EFLBench leverages the efforts made by the Eclipse Community which provides feature-based family
artefacts and their plugin-based implementations. Eclipse is an active and non-trivial project and thus, it es-
tablishes an unbiased ground truth which is realistic and challenging.

Results: EFLBench is publicly available and supports all tasks for feature location techniques integration,
benchmark construction and benchmark usage. We demonstrate its usage, simplicity and reproducibility by
comparing four techniques in Eclipse releases. As an extension of our previously published work, we consider a
decade of Eclipse releases and we also contribute an approach to automatically generate synthetic Eclipse
variants to benchmark feature location techniques in tailored settings. We present and discuss three strategies for
this automatic generation and we present the results using different settings.

Conclusion: EFLBench is a contribution to foster the research in feature location in families of systems pro-
viding a common framework and a set of baseline techniques and results.

1. Introduction

Feature location focuses on mapping features to their concrete im-
plementation elements in the software artefacts. This traceability re-
covery activity is important during software maintenance and evolution
of single systems [1,2]. For instance, information retrieval techniques
have been applied using bug reports (or enhancement requests) for
determining relevant elements for the modification task. Or, in archi-
tectural recovery [3], several automated techniques based on structural
analysis or information retrieval are proposed to locate and distinguish
components implementing features in a system.

Feature location represents also an essential activity of extractive
processes towards systematic reuse [4], notably in reengineering a set

of legacy variants for the adoption of a Software Product Line (SPL)
[5–7] which can efficiently manage the commonality and variability of
a family of systems. According to an industrial survey [8], around 50%
of the companies adopting SPLs start from a set of existing variants that
they implemented to respond to different customer needs. An SPL is
formally defined as “a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular
market segment or mission, and that are developed from a common set of
core assets in a prescribed way” [5]. In this context of reengineering a
family of variants to an SPL, feature location is a traceability recovery
task to identify the implementation elements associated to each feature
among the variants [9]. Then, the located features will be used in next
phases of extractive SPL adoption [10] such as the discovery of feature
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constraints, the creation of the reusable assets associated to each fea-
ture, or the definition of a variability model. This work focuses only in
the feature location activity and, instead of applying feature location in
a single system, we focus on the case of locating features in families of
systems. Concrete techniques used in traceability recovery for single
systems could be reused in the scenario of families of systems, however,
the existence of variants represents new challenges and opportunities
for feature location research to respond to the needs of extractive SPL
adoption.

Given the increasing interest by the research and industrial com-
munities on the feature location subject in families of systems [11,12],
the diversity of techniques [11,13] and the lack of a common case study
[12], feature location benchmarks are required to enable an intensive
experimentation of these techniques and a common foundation to
compare them. This paper is an extension of our benchmark framework
[14] which elaborates further on the need to empirically evaluate and
compare the strengths and weakness of the techniques in different
scenarios. Concretely, comparing and experimenting with feature
location techniques in families of systems is challenging because of
the following reasons:

• Most of the research prototypes are either unavailable or hard to con-
figure. There exists a lack of accessibility to the tools implementing
each technique with its variants abstraction and feature location
phases.

• Most of the tools are strongly dependent on specific artefact types that
they were designed for (e.g., a given type of model or programming
language).

• Performance comparison requires common settings and environments.
There exist difficulties to reproduce the experimental settings to
compare performance.

Given that common case study subjects and frameworks are in need
to foster the research activity [15], we identified two requirements for
such frameworks in feature location:

• A standard case study subject: Subjects that are non-trivial and easy to
use are needed. This includes: (1) A list of existing features, (2) for
each feature, a group of elements implementing it and (3) a set of
product variants accompanied by the information of the included
features.

• A benchmarking framework: In addition to the standard subjects, a
full implementation allowing a common, quick and intensive
evaluation is needed. This includes: (1) An available im-
plementation with a common abstraction for the product var-
iants to be considered by the case studies, (2) easy and ex-
tensible mechanisms to integrate feature location techniques to
support the experimentation, and 3) predefined evaluation me-
trics to draw comparable results.

The contributions of this paper are:

• We present the Eclipse Feature Location Benchmark (EFLBench)
and examples of its usage. We propose a standard case study for
feature location and a benchmark framework using Eclipse variants,
their features and their associated plugins. We implemented
EFLBench within the Bottom-Up Technologies for Reuse framework
(BUT4Reuse) [16] which allows a quick integration of feature lo-
cation techniques. By integrating a feature location technique in this
generic and extensible framework [10], the technique could be ap-
plied in other artefact types beyond the experimentation with
Eclipse variants within EFLBench.

• We present the automatic generation of Eclipse variants as a
capability of EFLBench to construct tailored benchmarks. This en-
ables the evaluation of techniques in different synthetic scenarios to
show their strengths and weaknesses. This is the significant

increment from our previous work [14]. The new contribution ex-
tends the use of the benchmark beyond the official Eclipse releases
providing three strategies to tailor the settings of the benchmark.
We further present and discuss examples of their usage.

• EFLBench, BUT4Reuse and the used feature location techniques are
available at http://github.com/but4reuse/but4reuse/wiki/
Benchmarks.

This paper is structured as follows: Section 2 introduces background
information on feature location. Section 3 presents Eclipse as a case
study subject and Section 4 motivates and presents the EFLBench fra-
mework. Section 5 introduces different feature location techniques and
the results of EFLBench usage in the official Eclipse releases. Section 6
presents the strategies for automatic generation of Eclipse variants and
examples of their usage. Section 8 presents related work and finally,
Section 9 concludes and outlines future work.

2. Background on feature location in feature-based variants

Features are the entities used to distinguish the variants of an SPL.
In this context, a feature is defined as “a prominent or distinctive user-
visible aspect, quality, or characteristic of a software system or systems”
[17]. This definition is very general and open to interpretation so one
recurrent challenge in implementing SPLs is deciding the granularity
that the features will have at the implementation level [18]. Coarse
granularity (e.g., components or plugins [19–24]) makes easier the
maintenance of the SPL while fine granularity (e.g., source code classes
or code fragments [25,26]) might complicate the development and
maintenance of the SPL. This way, there are very diverse scenarios
regarding the granularity of the reusable assets in the SPLs.

Depending on the granularity, feature location can focus on code
fragments in the case of source code [27–30], model fragments in the
context of models [31] or software components in software archi-
tectures [19–24]. Therefore, existing techniques are composed of two
phases: An abstraction phase, where the different artefact variants are
abstracted, and the location phase where algorithms analyze or compare
the different product variants to obtain the implementation elements
associated to each feature. Despite these two phases, the existing works
differ in:

• The way the product variants are abstracted and represented. Indeed,
each approach uses a specific formalism to represent product var-
iants. For example, AST nodes for source code [28], model elements
to represent model variants [13] or plugins in software architectures
[20]. Some use fine granularity using AST nodes that cover all
source code statements while others use purposely a bigger granu-
larity using object-oriented building elements [30], like Salman
et al. that only consider classes [32].

• The proposed algorithms. Each approach proposes its own algorithm
to analyse product variants and identify the groups of elements that
are related to features. Rubin and Chechik [13] and Assunção and
Vergilio [11] conducted surveys about the state-of-the-art in this
domain. They showed the variety of techniques and application
domains. For instance, Fischer et al. used a static analysis algorithm
[28]. Other approaches use techniques from the field of Information
Retrieval (IR). Xue et al. [33] and Salman et al. [34] proposed the
use of Formal Concept Analysis (FCA) [35] to group implementation
elements in blocks and then, in a second step, the IR technique
Latent Semantic Indexing (LSI) [36] to map between these blocks
and the features. Salman et al. used hierarchical clustering to per-
form this second step [32].

Fig. 1 illustrates the feature location task in feature-based variants.
In the upper half we illustrate the abstraction phase and in the lower
half we illustrate the location phase. We present a set of variants (four
circumferences in the figure) and their implementation elements
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(rhombuses). For each of the variants, we also have the information of
which features are implemented. In fact, feature location techniques in
software families use to assume that feature presence or absence in the
product variants is known upfront [28]. For example, Variant 1 im-
plements F1, F2 and F3 while Variant 2 implements F1 and F3 as well
but not F2. Despite that we know if a feature is implemented in a
variant, we do not know the implementation elements associated to it.
Therefore, the feature location algorithm takes the information of all
the variants (features and implementation elements) and decide, for
each feature, which are the associated implementation elements as
shown at the bottom of Fig. 1.

3. The Eclipse family of integrated development environments

The Eclipse community, with the support of the Eclipse Foundation,
provides integrated development environments (IDEs) targeting dif-
ferent developer profiles. The IDEs cover the development needs of
Java, C/C++, JavaEE, Scout, Domain-Specific Languages, Modeling, Rich
Client Platforms, Remote Applications Platforms, Testing, Reporting,
Parallel Applications or for Mobile Applications. Following Eclipse ter-
minology, each of the customized Eclipse IDEs is called an Eclipse
package. To avoid confusion with Java packages, we will refer to
Eclipse packages as variants in the rest of the paper.

As the Eclipse project evolves over time, new variants appear and
some other ones disappear depending on the interest and needs of the
community. For instance, in 2012, one variant for Automotive Software
developers appeared and, recently, in 2016, another variant appeared
for Android mobile applications development. The Eclipse Packaging
Project (EPP) is the technical responsible for creating entry level
downloads based on defined user profiles.

Continuing with Eclipse terminology, a simultaneous release (release
hereafter) is a set of variants which are public under the supervision of
the Eclipse Foundation. Until 2016, there was one main release in June,
which was followed by two service releases for maintenance purposes:
SR1 and SR2 usually around September and February. Since 2017 there
are three service releases around September, December and March. For
each main release, the platform version changes and traditionally ce-
lestial bodies are used to name the releases, for example Luna for ver-
sion 4.4 and Mars for version 4.5. Each release represents a family of
Eclipse variants.

The variants present variation depending on the included and not-
included features. A feature is defined in the Eclipse official doc-
umentation as a unit of separately installable functionality. For ex-
ample, Eclipse variant for Testers is the only one including the Jubula
Functional Testing features. On the contrary, other features like the
Java Development tools are shared by most of the variants. There are
also common features for all the variants, like the Equinox features that
implement the core functionality of the Eclipse architecture. The online

documentation of each release provides high-level information on the
features that each variant provides.2

It is important to mention that in this work we are not interested in
the variation among the releases (e.g., version 4.4 and 4.5, or version
4.4 SR1 and 4.4 SR2), known as variation in time. We focus on the
variation of the different variants of a given release, known as variation
in space, which is expressed in terms of included and not-included
features. Each variant is different in order to support the needs of the
targeted developer profile by including only the appropriate features.

Eclipse is feature-oriented and based on plugins. Each feature
consists of a set of plugins that are the actual implementation of the
feature. Table 1 shows an example of feature with four plugins as im-
plementation elements that, if included in an Eclipse variant, adds
support for the Concurrent Versioning System (CVS). At technical level,
the actual features of a variant can be found within a folder called
features containing meta-information regarding the included features
and the list of plugins associated to each. A feature has an id, a name
and a description as defined by the feature providers of the Eclipse
community. A plugin has an id and a name defined by the plugin
providers, but it does not have a description.

Table 2 presents data regarding the evolution of the Eclipse releases
over one decade. In particular, it presents the total number of variants,
features and plugins per release. To illustrate the distribution of var-
iants and features, Fig. 2 depicts a matrix of the different Eclipse Kepler
SR2 variants where a black box denotes the presence of a feature
(horizontal axis) in a variant (vertical axis). We observe that some
features are present in all the variants while others are specific to only
few variants. The 437 features are alphabetically ordered by their id.
For instance, the feature Eclipse CVS Client, tagged in the figure, is
present in all variants except in the Automotive Software variant.

Fig. 1. Feature location in feature-based variants. The feature location tech-
nique takes as input the implementation elements of each variant and the list of
features present in each variant, and outputs the mapping between features and
implementation elements.

Table 1
Eclipse feature example. The Eclipse CVS Client feature and its associated
plugins.

Feature

id: org.eclipse.cvs

name: Eclipse CVS Client

description: Eclipse CVS Client (binary runtime and user documentation).

Plugin id Plugin name
org.eclipse.cvs Eclipse CVS Client
org.eclipse.team.cvs.core CVS Team Provider Core
org.eclipse.team.cvs.ssh2 CVS SSH2
org.eclipse.team.cvs.ui CVS Team Provider UI

Table 2
Eclipse releases and their number of variants, features and plugins.

Year Release Variants Features Plugins

2008 Europa Winter 4 91 484
2009 Ganymede SR2 7 291 1290
2010 Galileo SR2 10 341 1658
2011 Helios SR2 12 320 1508
2012 Indigo SR2 12 347 1725
2013 Juno SR2 13 406 2008
2014 Kepler SR2 12 437 2043
2015 Luna SR2 13 548 2399
2016 Mars SR2 12 549 2545
2017 Neon SR3 14 564 2614

2 High-level comparison of Eclipse variants of the latest release: https://
eclipse.org/downloads/compare.php .
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Features have dependencies among them: Includes is the Eclipse
terminology to define subfeatures, and Requires means that there is a
functional dependency between the features. Fig. 3 shows the de-
pendencies between all the features of all variants in Eclipse Kepler SR2
(nodes in the graph correspond to Eclipse features and edges represent
dependencies). On the right side of Fig. 3, we tagged some features and
subfeatures of the Eclipse Modeling Framework to show cases of fea-
tures that are strongly related. In the Eclipse IDE family there is no
excludes constraint between the features.

Functional dependencies are mainly motivated by the existence of
dependencies between plugins of different features. Plugins de-
pendencies are explicitly declared in each plugin meta-data. Fig. 4
shows a small excerpt of the dependency connections of the 2043
plugins of Eclipse Kepler SR2. Concretely, the excerpt shows the de-
pendencies of the four CVS plugins presented in Table 1.

4. EFLBench: Eclipse Feature Location Benchmarking framework

In this section, we justify why Eclipse variants represent an inter-
esting and challenging ground for benchmarking feature location
techniques. We then provide the details on the realization of the
EFLBench benchmarking framework.

4.1. Reasons to consider Eclipse for benchmarking

We present characteristics of Eclipse variants that make the case
study interesting for a feature location benchmark:

Ground truth available: The Eclipse case study fulfils the re-
quirement, mentioned in Section 1, of providing the needed data to be
used as ground truth. This ground truth can be extracted from features
meta-information. Despite that the granularity of the implementation
elements (plugins) is coarse if we compare it with source code AST

nodes, the number of plugins is still reasonably high. In Eclipse Kepler
SR2, the total amount of unique plugins is 2043 with an average of 609
plugins per Eclipse variant and a standard deviation of 192.

Challenging: The relation between the number of available var-
iants in the different Eclipse releases (around 12) and the number of
different features (more than 550 in the latest release) is not balanced.
This makes the Eclipse case study challenging for techniques based only
in static comparison (e.g., intersection-based approaches like inter-
dependent elements [37] or FCA [30]) because they will probably
identify few “big” blocks containing implementation elements be-
longing to a lot of features. The number of available product variants
has been shown to be an important factor for feature location techni-
ques [28].

Friendly for information retrieval and dependency analysis:
Eclipse feature and plugin providers have created their own natural
language vocabulary. The feature and plugin names (and the descrip-
tion in the case of the features) can be categorized as meaningful names
[13] enabling the use of several IR techniques. Also, the dependencies
between features and dependencies between implementation elements
have been used in feature location techniques. For example, in source
code, program dependence analysis has been used by exploiting pro-
gram dependence graphs [38]. Acher et al. also leveraged architecture
and plugin dependencies [20]. As presented in previous section, Eclipse
also has dependencies between features and dependencies between
plugins enabling their exploitation during feature location.

Noisy: There are properties that can be considered as “noise” that
are common in real scenarios. Some of them can be considered as non-
conformities in feature specification [39]. A case study without “noise”
should be considered as an optimistic case study. In Eclipse Kepler SR2,
8 plugins do not have a name, and different plugins from the same
feature are named exactly the same. There are also 177 plugins asso-
ciated to more than one feature. Thereby the features’ plugin sets are
not completely disjoint. These plugins are mostly related to libraries for
common functionalities which were not included as required plugins
but as a part of the feature itself. In addition, 40 plugins present in some
of the variants are not declared in any feature. Also, in few cases, fea-
ture versions are different among variants of the same release.

Friendly for customizable benchmark generation: The fact that
Eclipse releases contain few variants can be seen as a limitation for
benchmarking in other desired scenarios with larger amount of var-
iants. For example, it will be desired to show the relation between the

Fig. 2. Eclipse Kepler SR2 variants and a mapping to their 437 features. For example, Eclipse CVS Client is present in all variants except in the automotive variant.

Fig. 3. Feature dependencies in the Eclipse Kepler SR2 variants. Each node is a
feature and the edges correspond to feature dependencies.

Fig. 4. Plugin dependencies of the four plugins of the Eclipse CVS Client fea-
ture. Each node is a plugin and the edges correspond to plugin dependencies.
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results of the technique and the number of considered variants. Apart
from the official releases, software engineering practitioners have cre-
ated their own Eclipse variants. Therefore, researchers can use their
own variants or create variants with specific characteristics. In addi-
tion, the plugin-based architecture of Eclipse allows to implement au-
tomatic generators of Eclipse variants as we present later in Section 6.

Similar experiences exist: Analyzing plugin-based or component-
based software system families to leverage their variability has been
shown in previous works [19–24]. For instance, experiences in an in-
dustrial case study were reported by Dhungana et al. and Grünbacher
et al. where they performed manual feature location in Eclipse variants
to extract an SPL for the Siemens VAI MSS (Maintenance and Setup
Systems) involving more than 20 Eclipse customizations per year
[19,22].

4.2. EFLBench

EFLBench is aimed to be used with any set of Eclipse variants in-
cluding variants with features that are not part of any official release.
Fig. 5 illustrates, at the top, the phase for constructing the benchmark
and, at the bottom part, the phase for using it. The following subsec-
tions provide more details on the two phases. In Section 2 we presented
the principles for feature location in feature-based systems. EFLBench
follows these assumptions for a feature location task and provide the
following inputs for the feature location technique:

• The feature names, descriptions and dependencies among features.

• The plugin names and the dependencies among plugins.

• For each feature, the list of variants where it was included.

4.2.1. Benchmark construction
The benchmark construction phase takes as input the Eclipse var-

iants and automatically produce two outputs, (1) a Feature list with
information about each feature name, description and the list of var-
iants where it was present, and (2) a ground truth with the mapping
between the features and the implementation elements which are the
plugins.

We implemented an automatic extractor of features information.
The information is available in the file feature.xml of each feature so it
was easy to automatically get the metadata (name, description, de-
pendencies etc.) corresponding to all features. The implementation
elements of a feature are those plugins that are directly associated to
this feature. From the 437 features of the Eclipse Kepler SR2, each one
has an average of 5.23 plugins associated with, and a standard devia-
tion of 9.67 plugins. There is one outlier with 119 plugins which is the
feature BIRT Framework included in the Reporting variant. From the
437 features, there are 19 features that do not contain any plugin, so
they are considered abstract features which are created just for grouping
other features. For example, the abstract feature UML2 Extender SDK
(Software Development Kit) includes the features UML2 End User

Features, Source for UML2 End User Features, UML2 Documentation and
UML2 Examples.

Reproducibility can become easier by using benchmarks and
common frameworks that launch and compare different techniques
[15]. This practice, allows a valid performance comparison with all the
implemented and future techniques. We integrated EFLBench and its
automatic extractor in BUT4Reuse.

4.2.2. Benchmark usage
Feature Location Technique integration using BUT4Reuse. Once the
benchmark is constructed, at the bottom of Fig. 5 we illustrate how it
can be used through BUT4Reuse where feature location techniques can
be integrated. The Eclipse adapter [10] is responsible for the variant
abstraction phase. During the product abstraction phase, the
implemented Eclipse adapter decomposes any Eclipse variant in a set
of plugins by visiting and analysing the Eclipse variant file structure.
The plugin elements contain information about their id, name as well as
their dependency to other plugin elements. This will be followed by the
launch of the targeted feature location techniques which takes as input
the feature list and the Eclipse variants (excluding the features folder).

The integration of feature location techniques through BUT4Reuse
is based on what is referred to as the block identification step which is the
previous step to locate features. To distinguish features and their as-
sociated elements, the idea is to analyse and compare artefact variants
for the identification of their common and variable parts. We refer to
each of such distinguishable parts as a block. A block is a set of im-
plementation elements of the artefact variants that are relevant for the
targeted mining task. Examples of existing techniques to identify blocks
are based on static analysis, dynamic analysis or information retrieval
techniques [11]. Independently of the technique or artefact type, a
block is an intermediary abstraction representing a candidate set of
elements that might implement a feature. Feature location techniques
use the concept of blocks to create a mapping between features and the
implemented elements.

Evaluation metrics. The feature location technique in EFLBench
produces a mapping between features and plugins that can be
evaluated against the ground truth obtained in the benchmark
construction phase. Concretely, EFLBench calculates the precision,
recall and F-measure which are classical evaluation metrics in IR
studies (e.g., [32]).

We explain precision and recall, two metrics that complement each
other, in the context of EFLBench. A feature location technique assigns
a set of plugins to each feature. In this set, there can be some plugins
that are actually correct according to the ground truth. Those are true
positives (TP). TPs are also referred to as hit. On the set of plugins re-
trieved by the feature location technique for each feature, there can be
other plugins which do not belong to the feature. Those are false posi-
tives (FP) which are also referred to as false alarms. Precision is the
percentage of correctly retrieved plugins relative to the total of re-
trieved plugins by the feature location technique. A precision of 100%
means that all retrieved plugins are contained in the ground truth set
and that no false alarm plugins were included. The formula of precision
is shown in Eq. (1).

=
+

=
+

precision TP
TP FP

plugins hit
plugins hit plugins false alarm (1)

According to the ground truth there can be some plugins that are not
included in the retrieved set, meaning that they are miss. Those plugins
are false negatives (FN). Recall is the percentage of correctly retrieved
plugins from the set of the ground truth. A recall of 100% means that all
the plugins of the ground truth were assigned to the feature. The for-
mula of recall is shown in Eq. (2).

=
+

=
+

recall TP
TP FN

plugins hit
plugins hit plugins miss (2)

Fig. 5. EFLBench: Eclipse variants as benchmark for feature location.
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Precision and recall are calculated for each feature. We also provide
the F-measure (F1), calculated through the harmonic mean of precision
and recall as shown in Eq. (3).

=
+

F
precision recall

precision recall
1 2*

*
(3)

In this context of feature location in families of systems, high recall
is important for not having to manually add missing plugins. However,
high recall without high precision means that the domain experts will
need to manually remove many unnecessary plugins. F1 is a measure
that provides a meaningful balance between these two aspects. In order
to have a global result of the precision, recall and F1 we use the mean of
all the features. Finally, BUT4Reuse reports the time spent for the fea-
ture location technique. With this information, the time performance of
different techniques can be compared.

5. Examples of EFLBench usage in Eclipse releases

This section aims at presenting the possibilities of EFLBench by
benchmarking four feature location techniques in official Eclipse re-
leases. For the four techniques we use Formal Concept Analysis (FCA)
[35] as a first step for block identification and the four feature location
techniques are Strict Feature Specific (SFS), SFS+ST, SFS+TF, SFS
+TFIDF which we detail in next subsection before presenting the re-
sults.

5.1. Background on techniques used in the examples

FCA is an intersection-based technique used during feature location.
FCA [35] uses a formal context as input and groups elements that share
common attributes. The entities of the formal context are the variants,
and the attributes (binary attributes) are the presence or absence of
each of the elements in each variant. With this input, FCA discovers a
set of concepts, and the concepts containing at least one element are
considered as a block for the feature location task. Fig. 6 illustrates FCA.
The identified blocks correspond to the different intersections from the
input artefact variants. A detailed explanation about FCA formalism in
the same context of extractive SPL adoption can be found in Al-
Msie’deen et al. [30] and Shatnawi et al. [21]. At technical level, we
implemented FCA for block identification using Galatea.3

SFS is a feature location technique that follows two assumptions: A
feature is located in a block when (1) the block always appears in the
artefacts that implements this feature and (2) the block never appears in
any artefact that does not implement this feature. The principles of this
feature location technique are similar to locating distinguishing fea-
tures using diff sets [27].

5.1.1. Natural Language Processing (NLP) techniques
In SFS+ST, SFS+TF, SFS+TFIDF, where we use IR and NLP, we do

not make use of the feature or plugin ids. In order to extract the
meaningful words from both features (name and description) and

elements (plugin names), we used two well established techniques in
the IR field.

• Parts-of-speech tags remover: These techniques analyse and tag
words depending on their role in the text. The objective is to filter
and keep only the potentially relevant words. For example, con-
junctions (e.g., “and”), articles (e.g., “the”) or prepositions (e.g.,
“in”) are frequent and may not add relevant information. As an
example, we consider the following feature name and description:
“Eclipse Scout Project. Eclipse Scout is business application framework
supports desktop, web mobile frontends. feature contains Scout core
runtime components.”. We apply Part-of-Speech Tagger techniques
using OpenNLP [40].

• Stemming: This technique reduces the words to their root. The ob-
jective is to unify words not to consider them as unrelated. For in-
stance, “playing” will be considered as stemming from “play” and
“tools” from “tool”. Instead of keeping the root, we keep the word
with greater number of occurrences to replace the involved words.
As example, in the Graphiti feature name and description we find
“[... ]Graphiti supports the fast and easy creation of unified graphi-
caltools, which can graphicallydisplay[... ]” so graphical and gra-
phically is considered the same word as their shared stem is graphic.
Regarding the implementation, we used the Snowball stemmer [41].

5.1.2. SFS and Shared term
The intuition behind this technique is first to group features and

blocks with SFS and then apply a “search” of the feature’s words within
the elements of the block to discard elements that may be completely
unrelated to the feature. For each association between feature and
block, we keep, for this feature, only the elements of the block that have
at least one meaningful word shared with the feature. That means that
we keep the elements whose term frequency (tf) between feature and
element (featureElementTF) is greater than zero. For clarification,
featureElementTF is defined in Eq. (4) being f the feature, e the element
and tf a method that just counts the number of times a given term
appears in a given list of terms.

∑=
∈

featureElementTF f e tf term f terms( , ) ( , . )
term e terms i.i (4)

Fig. 7 illustrates, on the left side, how for a given feature, we have
associated words and how, from a block obtained with SFS, we discard
elements that do not share any word with the feature.

5.1.3. SFS and Term frequency
After employing SFS, this technique is based on the idea that all the

features assigned to a block compete for the block elements. The feature
(or features in case of drawback) with higher featureElementTF will keep
the elements while the other features will not consider this element as
part of it. Fig. 7 illustrates this technique in the center of the figure.
Three features compete for the elements of a block obtained with SFS,
and the assignation is made by calculating the tf between each ele-
ment and the features. That means that, for each element, the feature
with higher tf with respect to the element will be the only feature that
is mapped to this element.

5.1.4. SFS and tf-idf
Fig. 7, on the right side, illustrates this technique. SFS is applied and

then the features also compete, in this case, for the elements of the
block but a different weight is used for each word of the feature. This
weight (or score) is calculated through the term frequency - inverse
document frequency (tf-idf) value of the set of features that are
competing. tf-idf is a wellknown technique in IR [42]. tf is a metric
consisting in giving more relevance to the terms appearing with more
frequency in a document d. When dealing with a set D of documents

…d d, , ,n1 term frequency-inverse document frequency (tf-idf) is another
metric used in IR [42]. For a document d, tf-idf penalizes common

Fig. 6. Illustration of block identification with Formal Concept Analysis.

3 Galatea Formal Concept Analysis library: https://github.com/jrfaller/
galatea.
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terms that appear across most of the documents in D and emphasizes
those terms that are more specific to d. There are different formulas to
calculate them. In this work, we used the formulas presented in Eq. (5),
where we use raw term frequency (tf) which is calculated counting the
occurrences of a given term in a document, inverse document frequency
(idf) which measures how much rare or common a term is across all
the documents using a logarithmic scale and, finally, tf-idf uses tf
multiplied by idf to penalize or encourage a term depending on its
occurrence across D. In our context, the idea is that words appearing
more frequently through the features may not be as important as less
frequent words.

⎜ ⎟

=

= ⎛
⎝ ∈ ∈

⎞
⎠

= ×

tf term d f

idf term D D
d D term d

tf−idf term d D tf term d terms idf term D
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( , ) log
{ : }
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i term d

i
i

i i i

,i

(5)

Given that tf-idf is used in SFS+TFIDF, we illustrate it in the
context of Eclipse features. For example “Core”, “Client” or
“Documentation” are more frequent words across features but “CVS” or
“BIRT”, being less frequent, are probably more relevant, informative or
discriminating.

5.2. Results in Eclipse releases

We used the benchmark created with each of the Eclipse releases
presented in Table 2. The experiments were launched using BUT4Reuse
(commit f81dd54) which contains the presented feature location tech-
niques. Detailed instructions for reproducibility are available.4 We used
a laptop Dell Latitude 5480 with a processor Intel(R) Core(TM) i5-
7300U CPU@2.6 GHz with 8GB RAM and Windows 10 Pro-64-bit.

After using the benchmark, we obtained the results shown in
Table 3. Precision, Recall and F1 are the mean of all the features as
discussed at the end of Section 4.2.2. The results in terms of precision
are not satisfactory in the presented feature location techniques. This
suggests that the case study is challenging. Also, we noticed that there
are no relevant differences in the results of these techniques among the
different Eclipse releases. As discussed before, given the small number
of Eclipse variants under consideration, FCA is able to distinguish
blocks which may actually correspond to a high number of features. For
example, all the plugins corresponding specifically to the Eclipse
Modeling variant, will be grouped in one block while many features are
involved. Despite that these techniques are used in feature location of
feature-based variants we provide these results to be used as baselines
to motivate the search of more accurate feature location techniques and
to show that the benchmark is appropriate to advance the research in
this field.

Another example, in Eclipse Kepler SR2, FCA-based block identifi-
cation identifies 60 blocks with an average of 34 plugins per block and a
standard deviation of 54 plugins. In Eclipse Europa Winter, with only 4
variants, only 6 blocks are identified with an average of 80 plugins each
and a standard deviation of 81. Given the low number of Eclipse var-
iants, FCA identifies a low number of blocks. The number of blocks is

specially low if we compare it with the actual number of features that
we aim to locate (e.g., 60 blocks in Kepler SR2 against its 437 features).
The higher the number of Eclipse variants, the more likely FCA will be
able to distinguish different blocks.

The first location technique (FCA+SFS) does not assume mean-
ingful names given that no IR technique is used. The features are lo-
cated in the elements of a whole block obtaining a high recall (few
plugins missing). Eclipse feature names and descriptions are probably
written by the same community of developers that create the plugins
and decide their names. In the approaches using IR techniques, it was
expected a higher increment of precision without a loss of recall but the
results suggest that a certain divergence exists between the vocabulary
used at feature level and at implementation level.

Regarding the time performance, Table 4 shows, in milliseconds, the
time spent for the different releases. The Adapt column corresponds to
the time to decompose the Eclipse variants into a set of plugin elements
and get their information. This adaptation step heavily rely to access
the file system and we obtain better time results after the second
adaptation of the same Eclipse variant. The FCA time corresponds to the
time for block identification. We consider Adapt and FCA as the pre-
paration time. Then, the following columns show the time of the dif-
ferent feature location techniques. We can observe that the time per-
formance is not a limitation of these techniques as they take a
maximum of around one minute.

It is out of the scope of the EFLBench contribution to propose fea-
ture location techniques that could obtain better results in the

Fig. 7. Three different feature location techniques using SFS and term fre-
quency.

Table 3
Precision (Prec), recall and F1 of the different feature location techniques.

SFS SFS+ST

Release Prec Recall F1 Prec Recall F1

Europa Winter 6.51 99.33 9.70 11.11 85.71 15.14
Ganymede SR2 5.13 97.33 7.85 10.36 87.72 14.02
Galileo SR2 7.13 93.39 9.57 10.92 82.01 14.57
Helios SR2 9.70 91.63 14.15 16.04 80.98 21.62
Indigo SR2 9.58 92.80 13.55 15.72 82.63 20.76
Juno SR2 10.83 91.41 15.90 19.08 81.75 25.41
Kepler SR2 9.53 91.14 14.20 16.51 83.82 22.17
Luna SR2 7.58 93.36 11.39 13.52 86.52 18.50
Mars SR2 7.54 93.90 11.14 12.71 86.71 17.55
Neon SR3 8.86 92.99 12.47 15.22 85.69 19.82

Mean 8.23 93.72 11.99 14.11 84.35 18.95

SFS+TF SFS+TFIDF

Release Prec Recall F1 Prec Recall F1
Europa Winter 12.43 58.69 14.28 13.07 53.72 22.26
Ganymede SR2 11.65 64.31 19.70 12.80 52.70 22.59
Galileo SR2 11.82 60.50 20.27 12.45 53.51 21.50
Helios SR2 25.97 63.70 37.23 29.46 58.39 43.82
Indigo SR2 19.79 59.72 30.19 22.86 57.57 34.80
Juno SR2 25.97 61.92 37.62 24.89 60.82 38.43
Kepler SR2 26.38 62.66 38.12 26.86 57.15 42.03
Luna SR2 23.96 58.00 36.89 24.62 52.36 40.55
Mars SR2 21.13 57.88 32.71 21.69 50.22 37.55
Neon SR3 21.25 58.23 32.80 21.05 50.71 36.69

Mean 20.03 60.56 29.98 20.97 54.71 34.02

4 https://github.com/but4reuse/but4reuse/wiki/Benchmarks .
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presented cases. The objective is to present the benchmark usage
showing that quick feedback from feature location techniques can be
obtained in the Eclipse releases case studies. In addition, we provide
empirical results of four feature location techniques that can be used as
baseline.

6. Automatic and parametrizable generator of Eclipse variants

The main motivation for the generation of synthetic variants is that
it enables to evaluate the feature location techniques in controlled
settings. As shown in Table 2, the number of official variants of an
Eclipse release amounts to around 12 Eclipse variants. In order to
provide a framework for intensive evaluation of feature location tech-
niques, cases with larger number of Eclipse variants are desired. In
addition, a parametrizable number of variants could serve to analyse
the results of the same feature location technique under different cir-
cumstances. For instance, it is interesting to evaluate the same tech-
nique in cases with variants which are similar, or dissimilar, among
them. Using the Jaccard similarity measure between pairs of variants
[43,44] (calculated as the size of the intersection of the selected fea-
tures divided by the size of the union) and considering the official re-
leases, we observe that the average similarity ranges from the 22.56%
of Ganymede SR2 to the 33.55% of Neon SR3, with an average of
26.97% for the ten presented releases. Therefore, these families are
homogeneous in terms of the average similarity between variants.
However, it is desired to experiment in other settings to evaluate this
factor in the different techniques.

It is not evident where to find real Eclipse configurations and how to
group them to satisfy certain desired characteristics, therefore we ex-
tended our framework with the generation of variants enabling the
possibility to create several settings regarding the number of variants
and the similarity among them. We extended the benchmark con-
struction phase of EFLBench with an automatic and parametrizable
generator of Eclipse variants to construct benchmarks with tailored
characteristics. The approach consists in automatically creating var-
iants taking as input a user-specified Eclipse variant.

We agree that generated variants are synthetic variants which can
be seen as non-representative variants of realistic cases (i.e., we cannot
validate if the set of features makes sense for a real development sce-
nario). For using EFLBench with realistic variants we should rely on the
official Eclipse releases as we presented in Section 5. The synthetic
families of variants should be used to discover properties of the feature
location techniques when presented to hypothetical cases beyond the
publicly available realistic families from the official Eclipse releases. At
the end of Section 4.1, we presented similar experiences reported in the
literature about feature location in plugin-based systems and in Eclipse
variants. That means that other realistic families exist in specific ap-
plication domains with their own number of variants and specific
characteristics. For the generated variants we can only guarantee the

following two characteristics.

• Feature constraints are respected (i.e., dependencies of the features).

• The Eclipse variant can be executed.

Fig. 8 illustrates the benchmark construction phase using the au-
tomatic generation of Eclipse variants. First, as shown on the upper left
side of the figure, we take as input an Eclipse variant to extract its
features and feature constraints. These features and constraints define a
configuration space in the sense that, by deselecting features, we can
still have valid Eclipse configurations (i.e., all the feature constraints
are satisfied). Then, we leverage this configuration space to select a set
of configurations. The automatic selection of configurations is para-
metrized by a given strategy, thus, this step is extensible to different
implementations. Below, we present three different strategies that we
have implemented. Finally, once the set of configurations are selected,
we implemented an automatic method to construct the variants through
the input Eclipse and the feature configurations. The constructed var-
iants are created for preparing the benchmark construction but, if de-
sired, given that constraints are respected, they can be executed in the
same way as the variants in Eclipse releases.

6.1. Strategies for the automatic selection of configurations

We implemented three strategies to select configurations from a set
of features and constraints with the final objective to construct
benchmarks presenting different characteristics. Apart from the input
Eclipse, the three take as input a user-specified number of variants (n)
that want to be generated. We present the three strategies and then
discuss their properties:

• Random selection strategy: In this strategy, we randomly select n
configurations from the configuration space. The configuration
space is the set of all possible valid configurations (those that satisfy
all the constraints among features). Therefore, this strategy can be
illustrated as repeating n times the selection of a random number
from one to the size of the configuration space, and then taking the
feature configuration associated to this number. The selection of
random valid configurations, taking as input features and their
constraints, is implemented through a functionality offered by the
PLEDGE library (Product Line Editor and tests Generation tool)
[45]. We used the PLEDGE tool as a black box library as it fitted our
needs and that had already proven useful in other cases of randomly
selecting configurations in the way we have described. PLEDGE
internally relies on a boolean satisfiability problem solver (SAT
solver) [46,47].

• Random selection strategy trying to maximize dissimilarity: This
strategy aims to obtain a set of n configurations that maximize their

Table 4
Time performance in milliseconds for feature location.

Preparation Concrete techniques

Release Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

Europa Winter 2009 2 4 2206 2359 4,093
Ganymede SR2 6649 9 73 9851 9846 22,521
Galileo SR2 11,572 27 78 15,871 16,085 36,189
Helios SR2 13,225 47 136 5888 5336 14,058
Indigo SR2 13,969 39 104 8020 7825 18,562
Juno SR2 17,148 67 204 6882 6895 13,871
Kepler SR2 22,310 105 227 8267 8258 16,687
Luna SR2 18,940 69 240 14,340 14,838 34,189
Mars SR2 19,238 126 278 19,681 19,502 44,538
Neon SR3 23,349 113 307 21,255 21,039 55,164
Mean 11,128 60 165 9213 11,198 25,987

Fig. 8. Automatic and parametrizable generation of Eclipse variants to con-
struct a feature location benchmark. The use of different strategies in the step to
select configurations enables to construct benchmarks exhibiting different
characteristics.
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global dissimilarity. That means that an optimization algorithm
explores the configuration space trying to find the set of n config-
urations from the configuration space that are more different among
them. For this we use again the available PLEDGE functionality.
First, PLEDGE selects n random configurations and then, they evolve
over time by performing mutations. Concretely, it applies a search-
based approach guided by a fitness function that tries to identify the
most dissimilar configurations based on the Jaccard distance
[43,44]. The best solution found (the set of n configurations) at time
t is returned as result. This strategy demands also to select a user-
specified time (t) allocated to the search-based algorithm. Once the
allowed time is over, the set of configurations are obtained.

• Percentage-based random selection strategy: This strategy consists of
two steps. First, we ignore the constraints and we go through the
feature list deciding if we select or not each feature. This is auto-
mated by a user-specified percentage (p) defining the chances of the
features of being selected. Second, once some features are randomly
selected, we need to guarantee that the feature constraints are sa-
tisfied. We may have included a feature that requires another one
that was not included. Therefore, we repair the configuration in-
cluding the missing features until obtaining a valid configuration.
This strategy does not use PLEDGE. Since Eclipse features only
provide dependency constraints, satisfying those constraints using
the mentioned repair approach is trivial and no SAT solver is
needed.

The three algorithms for the strategies that we have presented have
stochastic components. In the following paragraphs we show the
characteristics that we can be expected from each of them based on
empirical data of their usage.

Using as input the Modeling variant of Eclipse Kepler SR2, Figs. 9
and 10 show, in the vertical axis, the number of features in 1000 au-
tomatically selected configurations using the presented strategies. The
total number of features of the input Eclipse variant is 173 corre-
sponding to the maximum value. Considering the feature constraints,
the configuration space exceeds one million configurations. In the case
of the random and dissimilarity strategies, as shown in Fig. 9a and b, we
can observe that only some outlier configurations reach a large number
of selected features. Given that the dissimilarity strategy depends on the
number of desired variants to generate, we repeated the process with
different number of configurations (not only 1000) obtaining analogous
results. We also observed that the time allowed for the search-based

algorithm did not affect the number of selected features, at least from
10 min to 1 h as shown in Fig. 9b. On the contrary, in Fig. 10, we can
observe how the user-specified percentage has an impact in the median
of selected features. For example, using the random strategy, we expect
variants with around 50% of the features selected from the input
Eclipse. On the contrary, if we select percentage-based random selec-
tion with 90% of user-specified percentage, we expect variants with
almost all the features selected from the input Eclipse.

Larger percentages using the percentage-based random selection
allow to obtain configurations with a larger number of selected features
and, therefore, there will be fewer chances to obtain dissimilar variants
using this strategy compared to the ones using random selection.
Empirical studies of Henard et al. showed that dissimilar configurations
exhibit interesting properties in terms of pairwise coverage [44]. Pair-
wise coverage measures the coverage of all possible discrete combina-
tions of features. The first and second strategy can be used to evaluate
how a feature location technique behaves with dissimilar variants with
high pairwise coverage. They also showed that the strategy of selecting
random configurations from the configuration space, without the
search-based step, already obtained a median of more than 90% of
pairwise coverage in 120 FMs of moderate size (i.e., less than one
thousand features). The third strategy, compared to the first two, allows
to have more control over the total number of selected features per
configuration.

6.2. Results using automatic generation of variants

We show examples of using the EFLBench strategies for automatic
generation of Eclipse variants and we focus on discussing the results of
evaluating the four presented techniques which use FCA as presented in
Section 5.1. As input for the random generation strategies, we use the
Modeling variant of Eclipse Kepler SR2 which is the same used to il-
lustrate the strategies for selecting configurations in Figs. 9 and 10.

Using percentage-based random selection of features, we aim to
empirically analyze whether the number of available variants has an
impact on the FCA+SFS technique. First, we generated 100 variants
using 40% as percentage for feature selection. By setting this percen-
tage, the first 10 variants cover the 173 features which is the total
number of features of the input Eclipse. This allows the construction of
different benchmarking settings adding 10 variants each time while
keeping the total number of possible features constant.

Table 5 shows the precision, recall and F1 obtained for the four
techniques when considering different number of variants. We can
observe how precision improves with the number of variants. From 10
to 20 variants, we have a precision improvement of around 15%. Be-
yond 30 variants, it seems that the included variants, with their feature

Fig. 9. Different settings of the first two strategies for selecting configurations
taking as input the features and constraints extracted from the Modeling variant
of the Eclipse Kepler SR2. Each boxplot shows the number of features in the
selection of 1000 configurations.

Fig. 10. Different settings of the Percentage-based random selection strategy
for selecting configurations taking as input the features and constraints ex-
tracted from the Modeling variant of the Eclipse Kepler SR2. Each boxplot
shows the number of features in the selection of 1000 configurations.
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combinations, are not adding much more information that can be
exploited by the different techniques. The increase in precision is re-
duced to around 2% per each increase of 10 variants. As an extreme
case, we can observe how we obtain almost the same precision with 90
and 100 variants even if we are including 10 more different variants.
This non-linearity of the precision when we add more variants might
seem counter-intuitive. However, it is related to the fact that adding
more variants do not necessarily means that we are including new
feature combinations that did not exist in the previous variants.

Regarding recall, independently of the number of variants we obtain
very high levels of recall (specially in SFS and SFS+ST). It slightly
decreases 9% from 10 to 100 variants, while precision increases, mainly
because of the “noise” introduced by non-conformities in feature spe-
cification discussed in Section 4.1. Table 6 also presents time measures
of one execution showing that the four techniques scale correctly for
100 variants in this benchmark. Concretely, it took only around 6 s in
total for FCA and SFS. If we include, as part of the feature location
process, the time for adapting the variants using the Eclipse adapter
(the Adapt time mentioned in Section 5), in the case of SFS+TF with

100 variants, it took only 6 min which is acceptable.
We used the same Modeling variant as input to generate 100 var-

iants with the random selection strategy. As in the previous experiment,
we keep the number of features constant given that 10 variants already
cover the 173 features. Then, we calculate the results by incrementally
adding another 10 variants. Table 7 shows the results of four techniques
in this new setting where we can observe that, with only 10 variants, we
have a precision of around 70%. The result with 10 variants generated
with this random selection strategy is better compared with the same
number of variants generated through the percentage-based random
selection which was around 40% as shown in Table 5 (i.e., around 30%
of difference in precision). Also, using 10 variants with the random
strategy, the technique performs better than 40 variants with the per-
centage-based random selection. Then, starting with 20 variants we
reach 90% precision and then from 30 to 100 variants it stays almost
constant. This fact suggests again that including variants is not enough
to increase the precision. Table 7 presents the time measures showing
that there are no scalability issues with 100 variants regarding time
performance.

This result empirically suggests that the four feature location tech-
nique perform better when the variants are more dissimilar. We cal-
culated the average Jaccard similarity between the variants using the
two strategies: The random strategy creates groups of 10 variants with
an average similarity of 41% while the percentage-based random se-
lection (using p 40%) has an average similarity of 73%. It seems that
dissimilar configurations cover many more distinct pairs of features and
thus make easier to locate the features.

It is worth to mention that the dissimilarity strategy obtained si-
milar results as the ones presented in Table 7 which used the random
strategy. In several runs, for 10 variants we obtain around 70% of
precision while for 20 variants we already reach 90%. The average
Jaccard similarity using the dissimilarity strategy (with 10 min for the
search-based step) is 37% which indicates that they are more dissimilar
than the random strategy (41%). In this case, the marginal difference in
terms of similarity (i.e., 4%) explains the small difference on the feature
location results.

If we compare the results with synthetic families of 10 variants and
the realistic families of Eclipse released presented in Table 3 (which

Table 5
Precision (Prec), recall and F1 of the different feature location techniques in sets
of randomly generated Eclipse variants using the percentage-based random
strategy with 40%.

SFS SFS+ST

Perc. 40% Prec Recall F1 Prec Recall F1

10 variants 38.26 97.06 41.84 41.00 90.00 43.93
20 variants 55.19 95.68 55.82 56.07 88.63 56.68
30 variants 60.10 92.28 61.76 60.61 85.22 61.76
40 variants 63.14 91.96 65.16 63.78 84.91 65.15
50 variants 65.96 91.68 68.30 65.95 84.62 67.67
60 variants 67.19 91.62 69.23 67.13 84.56 68.35
70 variants 71.37 89.60 71.82 71.84 82.54 71.24
80 variants 73.82 88.99 74.04 73.85 81.94 73.07
90 variants 75.90 88.79 76.10 76.00 81.73 75.20
100 variants 76.38 88.58 76.13 76.66 81.73 75.38

SFS+TF SFS+TFIDF

Perc. 40% Prec Recall F1 Prec Recall F1
10 variants 49.89 77.61 59.25 49.01 67.59 66.17
20 variants 62.20 79.71 68.35 57.88 77.67 68.03
30 variants 70.40 79.28 73.78 67.95 77.27 75.22
40 variants 73.71 80.88 76.70 71.66 78.76 77.95
50 variants 76.40 82.65 77.90 74.68 81.42 79.29
60 variants 76.95 82.76 78.38 75.20 81.56 79.74
70 variants 78.71 81.68 79.70 76.50 79.73 81.63
80 variants 80.33 81.32 81.32 79.00 79.32 83.80
90 variants 81.10 81.83 81.94 80.70 79.02 85.29
100 variants 81.34 82.48 81.75 81.02 79.17 85.49

Table 6
Time performance in milliseconds for feature location in sets of randomly
generated Eclipse variants using the percentage-based random strategy with
40%.

Preparation Concrete techniques

Perc. 40% Adapt FCA SFS SFS+ST SFS+TF SFS+TFIDF

10 variants 23,037 172 126 4174 4443 8174
20 variants 48,920 380 227 2855 3053 5317
30 variants 76,397 734 873 2542 2295 4064
40 variants 141,565 973 677 2482 2238 3210
50 variants 180,122 1398 817 2086 1978 2680
60 variants 224,429 1880 1000 2327 2604 2882
70 variants 269,947 2845 1184 2194 2105 2760
80 variants 303,672 3787 1795 2645 2407 3187
90 variants 357,965 4159 1689 2386 2475 5927
100 variants 392,447 5158 1760 2914 8381 5534

Table 7
Precision (Prec), recall and F1 of the different feature location techniques in sets
of randomly generated Eclipse variants using the random strategy.

SFS SFS+ST

Random Prec Recall F1 Prec Recall F1

10 variants 63.58 86.89 68.43 71.05 80.71 73.80
20 variants 90.24 85.09 87.03 91.14 78.95 85.93
30 variants 93.10 85.09 88.89 93.38 78.95 86.73
40 variants 93.79 85.09 89.56 94.01 78.95 87.29
50 variants 93.79 85.09 89.56 94.01 78.95 87.29
60 variants 93.79 85.09 89.56 94.01 78.95 87.29
70 variants 93.79 85.09 89.56 94.01 78.95 87.29
80 variants 93.79 84.97 89.49 94.01 78.83 87.21
90 variants 93.79 84.97 89.49 94.01 78.83 87.21
100 variants 93.79 84.97 89.49 94.01 78.83 87.21

SFS+TF SFS+TFIDF

Random Prec Recall F1 Prec Recall F1
10 variants 76.81 81.94 78.29 77.10 78.81 80.29
20 variants 91.68 81.35 89.77 91.54 81.22 90.35
30 variants 93.54 82.16 91.08 93.63 81.42 91.78
40 variants 93.90 82.16 91.33 93.99 81.42 92.03
50 variants 93.90 82.16 91.33 93.99 81.42 92.03
60 variants 93.90 82.16 91.33 93.99 81.42 92.03
70 variants 93.90 82.16 91.33 93.99 81.42 92.03
80 variants 93.90 82.04 91.26 93.99 81.30 91.96
90 variants 93.90 82.04 91.26 93.99 81.30 91.96
100 variants 93.90 82.04 91.26 93.99 81.30 91.96
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also have around 10 variants), we observe that precision is much more
higher in the synthetic families. One factor is that realistic families since
Ganymede SR2 already count more features than the specific input
Eclipse that we used for the synthetic generation (the 173 features of
the Modeling variant of Eclipse Kepler SR2). However, the main factor
is again related to the similarity among variants. As presented in the
beginning of Section 6, the realistic variants have an average Jaccard
similarity of 26.97%, while the synthetic ones almost double or tripli-
cate this metric.

The presented examples are intended to show the capabilities of
EFLBench in creating scenarios to compare the results of feature loca-
tion techniques. Concretely, we have shown how to analyse the result
(1) with different number of variants and (2) with the same number of
variants but with different degrees of similarity. In the presented case of
the four feature location techniques, we provided empirical evidences
that having more available variants do not necessarily means better
results in precision. However, dissimilar variants is an important factor
for obtaining higher levels of precision.

7. Limitations and threats to validity

The input for the feature location task presented in Section 4 might
be considered few input information if we compare it with concern
location in maintenance tasks where it is a common practice to trace
bug reports with the names and comments in the source code. How-
ever, in similar cases to our context of feature-based variants (e.g., the
Linux-Kernel benchmark for feature location [26]), we can see that,
similarly to EFLBench, only feature names and descriptions are used as
input. In this benchmark the feature location task is at a granularity of
classes or code fragments, however in our case, it is at the coarse
granularity of plugins where we only provide the plugin names as
input. The description of features in Eclipse might be shorter than
other kind of documents like bug reports, enhancement requests or
other documentation such as requirements, however, this can be also
seen as a challenging scenario to information retrieval techniques that
will need to exploit other information (e.g., dependence graphs) to
refine their results. In addition, EFLBench, being open-source, can be
easily extended to integrate other sources of information to be used as
input.

Regarding the granularity of Eclipse features, depending on the
Eclipse community projects we can identify different levels of granu-
larity (from coarse-grained to less coarse-grained ones). This is related
to how they have decided to group the functionalities. Their separation
enables us to create a ground truth that comes from the Eclipse com-
munity instead of manually defining a ground truth which will be dif-
ficult to validate. Also, it is worthy to mention that sub-functionalities
are not part of the ground truth. For example, the feature of the editor
to support C++ development can be separated in several functional-
ities such as editor syntax highlighting, code-completion etc. which are
not part of the EFLBench ground truth. The editor support for C++,
even if we can consider it a coarse-grained feature, there are still many
features related to C++ in the Eclipse variants (e.g., in Eclipse Kepler
variants we have “C/C++ Development Tools”,“Autotools support”,
“GCC Cross Compiler”, “Berkeley UPC (Unified Parallel C) Toolchain
Support”, “C99 LR Parser”, “UPC (Unified Parallel C) Support”,
“Memory View Enhancements” and more than ten optional features
related to C++). We agree that each of them could be internally se-
parated in more features but the number of optional features, as it is, it
is already large. In industrial cases dealing with Eclipse variants [19,22]
they discuss that more fine-grained variability might be desired. For
example, they also consider different setting values inside a plugin as a
feature. However, in their case study with the Siemens VAI MSS tool
[19,22] their analysis is only at the level of plugins as we propose in
EFLBench.

In Eclipse variants we can find features that are not “conventional”
functional features. For example, one feature is “Graphical Modeling

Framework (GMF) Runtime” and another feature is “Graphical
Modeling Framework (GMF) Runtime Source” which contains the
source code documentation of the GMF Runtime. The latter can be
certainly seen as a non-conventional feature. However, in Eclipse
Kepler, “GMF Runtime” is available in the Automotive and Modeling
variants while “GMF Runtime Source” is only available in Modeling and
not in Automotive. As another example, “Equinox p2 Core Function” is
a feature that exists in all Eclipse variants, however, “Equinox p2 Core
Function Source” is only available in DSL, Modeling, RCP, Scout and
Standard, and not in Automotive, Cpp, Java, JEE, Parallel, Reporting
and Testing variants. This indicates that the inclusion of this non-con-
ventional features in an Eclipse variant is performed in the same way as
they do for conventional ones. If a feature is a distinguishable char-
acteristic of a system that is relevant to some stakeholder then it seems
that they differentiate between the users of the runtime and the plugin
developers.

The use of automatically generated variants can be seen as a lim-
itation to the validity of evaluating feature location techniques using
these inputs. However, in the feature location literature we find sev-
eral cases where the variants are generated from an existing SPL [11].
For example, ArgoUML [25], the most used case study in feature lo-
cation [11,12] was a single product which was re-engineered as an
SPL by decomposing its features [25]. The ArgoUML SPL is able to
derive 256 variants but only around ten are selected for evaluating
feature location techniques. Our random generation is based on the
same principles used in ArgoUML. In our case, we take as input an
Eclipse variant and we decompose it also in its features. Then, we
select features using a given strategy to create the variants. Deriving
variants from an existing SPL is a common practice in our research
community as it is a way to have a ground truth to compare the results
of the techniques (i.e., the mapping between features and im-
plementation elements are known). This comes at the price of using
“synthetic” variants which are valid regarding feature constraints but
that can represent non-realistic variants (i.e., we cannot validate if
they can respond to real customer requirements). Apart from using
realistic variants of the official Eclipse releases, several executions of
the random generation approaches can provide complementary in-
sights about the feature location techniques.

8. Related work

8.1. Benchmarks

In SPL Engineering (SPLE), several benchmarks and common test
subjects have been proposed. Lopez-Herrejon et al. proposed evaluating
SPL technologies on a common SPL, a Graph Product Line [48], whose
variability features are familiar to any computer engineer. The same
authors proposed a benchmark for combinatorial interaction testing
techniques for SPLs [49]. Also, automated FM analysis has a long his-
tory in SPLE research [50]. FAMA is a tool for feature model analysis
that allows to include new reasoners and new reasoning operators [51].
Taking as input these reasoners, the BeTTy framework [52], built on
top of FAMA, is able to benchmark the reasoners to highlight the ad-
vantages and shortcomings of different analysis approaches.

Feature location on software families is also becoming more mature
with a relevant proliferation of techniques [11,13]. Therefore, bench-
marking frameworks to support the evolution of this field are in need.
In the field of traces recovery for a single system, there are publicly
available datasets (e.g., coest.org datasets used by Lohar et al. [53]) but
they do not take into account the peculiarities of trace recovery in le-
gacy systems re-engineering where we have a set of variants and not
just a single system [9]. Tracelab [54] is a framework to define work-
flows for traceability recovery. It includes components to compare the
results with a ground truth and obtain precision, recall and f-measure
metrics. However, TraceLab is for single-systems and its format does
not allow to define or work with families of systems. Therefore,
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intersection-based approaches such as FCA cannot be introduced as part
of the recovery technique. Also, examples of use cases with ground
truth are related to recover traces from requirements with sub-re-
quirements, or from system use case descriptions to requirements. It
does not include ground truths dealing with feature descriptions and
families of plugin-based systems as the ones presented in this work.
Other benchmarks exist for information retrieval techniques, for ex-
ample, queries are also used in the architectural recovery field [3].
Again, these benchmarks do not consider the peculiarities of dealing
with variant families.

Different case studies have been used for evaluating feature location
in software families [11,12]. For instance, ArgoUML variants have been
extensively used [25]. However, none of the presented case studies
have been proposed as a benchmark except the variants of the Linux
kernel by Xing et al. [26]. This benchmark considers twelve variants of
the Linux kernel from which a ground truth is extracted with the tra-
ceability of more than two thousands features to code parts. The Linux
kernel benchmark can be considered as complementary to advance
feature location research because EFLBench (a) maps to a project that is
plugin-based, while Linux considers C code, and (b) the characteristics
of the natural language terminology differ from the Linux kernel ter-
minology. This last point is important because techniques based on
information retrieval techniques should be evaluated in different case
studies. EFLBench is integrated with BUT4Reuse which is extensible for
feature location techniques making easier to control and reproduce the
settings of the studied techniques.

8.2. Feature location

Liu et al. and Kästner et al. among others proposed to identify
feature information from a single product [55,56]. There are SPL
adoption scenarios where the SPL wants to be extracted from a single
product by separating its features. However, in this paper we con-
centrate on the case of several artefact variants.

Feature location has been investigated in other software engineering
fields such as in maintenance (e.g., determining relevant elements for a
modification task [1,2]). These techniques have been also used in extractive
SPL adoption. Alves et al., in a case study of commercial mobile game
variants [57], instead of using static comparison techniques, located the
implementation elements of the known features through concern graphs
[2]. Kästner et al. proposed a semi-automatic approach for feature location
in single systems where, as input, the domain expert manually needs to
point the system to relevant fragments of an artefact with respect to a
feature [56]. Then, the approach automatically expands this user selection
using information about element dependencies.

As presented in Section 4.2.2, the block identification step is pro-
posed as a previous step to locate features. In the literature on feature
location from artefact variants, we can find the same concept of blocks
with different names. Rubin et al. call them parts, regions, or diff-sets
alluding to the technique used to retrieve them [58]. Other example of
generic names are modules by Méndez-Acuña et al. [59] or clusters by
Yang et al. [60] and Araar and Seridi [61]. Other employed terminology
is less generic and they specifically refers to the concrete artefact types
that they are dealing with. Linsbauer et al. [62] and Salman et al. [34]
refer to blocks as potential feature-to-code mappings or traces. AL-
msie’deen et al. call them object-oriented building elements sets [63] and
atomic blocks [64]. Each calculated block cannot be directly considered
the implementation of a feature. In these approaches they propose
heuristics or they consider that the final mapping is a manual process
based on domain expertise (Table 8).

9. Conclusions

We have presented EFLBench, a framework and a benchmark for
supporting research on feature location in artefact variants. Existing
and future techniques dealing with this activity in extractive SPL

adoption can find a challenging playground which is directly re-
producible. The benchmark can be constructed from any set of Eclipse
variants from which the ground truth is extracted. We have shown
examples of its usage with the Eclipse variants of the official releases for
analyzing four different feature location techniques. We also provide
automatic generation of Eclipse variants using three strategies to sup-
port the creation of different benchmarking scenarios. We discussed the
evaluation of four feature location techniques using randomly gener-
ated sets of Eclipse variants. We provided evidences that the number of
variants and the similarity among them are important factors for fea-
ture location techniques.

We plan to use the benchmark in order to evaluate existing and
innovative feature location techniques while also encouraging the re-
search community on using it as part of their evaluation. In order to
extend our framework, there is interest in mining software repositories,
forums and issue trackers to identify real configurations of Eclipse from
practitioners beyond the official releases. Also, given the high pro-
liferation of feature location techniques in families of systems, meta-
techniques can be proposed such as voting systems where the results of
several techniques could provide better results than using each of them
independently. Another interesting open research question is related to
the impact in extractive SPL adoption of the results obtained with
feature location techniques. We need more empirical analysis of what is
the actual meaning of precision and recall by measuring the time and
effort required by domain experts to fully locate the features after ap-
plying these techniques (i.e., manually removing false positives and
adding false negatives).
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