
FaCoY – A Code-to-Code Search Engine
Kisub Kim1, Dongsun Kim1∗, Tegawendé F. Bissyandé1∗,
Eunjong Choi2, Li Li3∗, Jacques Klein1, Yves Le Traon1

1SnT, University of Luxembourg - Luxembourg
2Nara Institute of Science and Technology (NAIST) - Japan

3Faculty of Information Technology, Monash University - Australia

ABSTRACT
Code search is an unavoidable activity in software development.
Various approaches and techniques have been explored in the liter-
ature to support code search tasks. Most of these approaches focus
on serving user queries provided as natural language free-form
input. However, there exists a wide range of use-case scenarios
where a code-to-code approach would be most beneficial. For ex-
ample, research directions in code transplantation, code diversity,
patch recommendation can leverage a code-to-code search engine
to find essential ingredients for their techniques. In this paper, we
propose FaCoY, a novel approach for statically finding code frag-
ments which may be semantically similar to user input code. FaCoY
implements a query alternation strategy: instead of directly match-
ing code query tokens with code in the search space, FaCoY first
attempts to identify other tokens which may also be relevant in im-
plementing the functional behavior of the input code. With various
experiments, we show that (1) FaCoY is more effective than online
code-to-code search engines; (2) FaCoY can detect more semantic
code clones (i.e., Type-4) in BigCloneBench than the state-of-the-
art; (3) FaCoY, while static, can detect code fragments which are
indeed similar with respect to runtime execution behavior; and (4)
FaCoY can be useful in code/patch recommendation.

1 INTRODUCTION
In software development activities, source code examples are critical
for understanding concepts, applying fixes, improving performance,
and extending software functionalities [6, 46, 63, 87, 88]. Previous
studies have even revealed that more than 60% of developers search
for source code every day [30, 80]. With the existence of super-
repositories such as GitHub hostingmillions of open source projects,
there are opportunities to satisfy the search need of developers for
resolving a large variety of programming issues.

Oftentimes, developers are looking for code fragments that offer
similar functionality than some other code fragments. For example,
a developer may need to find Java implementations of all sorting
algorithms that could be more efficient than the one she/he has.
We refer to such code fragments which have similar functional
behavior even if their code is dissimilar as semantic clones. The

∗Corresponding authors.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180187

literature also refers to them as Type-4 clones for consistency with
the taxonomy of code clones [13, 73]. Besides the potential of help-
ing developers collect relevant examples to improve their code,
finding similar code fragments is an important endeavor, at they
can provide essential ingredients for addressing challenges in vari-
ous software engineering techniques. Among such challenges, we
can enumerate automated software transplantation [9], software
diversification [11], and even software repair [41].

Finding semantically similar code fragments is, however, chal-
lenging to perform statically, an essential trait to ensure scalability.
A few studies [21, 35] have investigated program inputs and outputs
to find equivalent code fragments. More recently, Su et al. [81] have
proposed an approach to find code relatives relying on instruction-
level execution traces (i.e., code with similar execution behaviors).
Unfortunately, all such dynamic approaches cannot scale to large
repositories because of their requirement of runtime information.

Our key insight to statically find code fragments which are se-
mantically similar is first to undertake a description of the function-
ality implemented by any code fragment. Then, such descriptions
can be used to match other code fragments that could be described
similarly. This insight is closely related to the work by Marcus
and Maletic on high-level concept clones [62] whose detection is
based on source code text (comments and identifiers) providing an
abstract view of code. Unfortunately, their approach can only help
to identify high-level concepts (e.g., abstract data types), but is not
targeted at describing functionalities per se.

Because of the vocabulary mismatch problem [24, 29, 89, 90] be-
tween code terms and human description words, it is challenging to
identify the most accurate terms to summarize, in natural language,
the functionality implemented by a code fragment.

To work around the issue of translating a code fragment into
natural language description terms, one can look2 up to a devel-
oper community. Actually, developers often resort to web-based re-
sources such as blogs, tutorial pages, andQ&A sites. StackOverflow
is one of such leading discussion platforms, which has gained pop-
ularity among software developers. In StackOverflow, an answer
to a question is typically short texts accompanied by code snip-
pets that demonstrate a solution to a given development task or
the usage of a particular functionality in a library or framework.
StackOverflow provides social mechanisms to assess and improve
the quality of posts that leads implicitly to high-quality source code
snippets on the one hand as well as concise and comprehensive
questions on the other hand. Our intuition is that information in
Q&A sites can be leveraged as a collective knowledge to build an

2Because software projects can be more or less poorly documented, we do not consider
source code comments as a reliable and consistent database for extracting descriptions.
Instead, we rely on developer community Q&A sites to collect descriptions.

https://doi.org/10.1145/3180155.3180187

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Kim et al.

intermediate translation step before the exploration of large code
bases.

This paper. We propose FaCoY (Find a Code other than Yours)
as a novel, static, scalable and effective code-to-code search engine
for finding semantically similar code fragments in large code bases.

Overall, we make the following contributions:
• The FaCoY approach for code-to-code search: We propose a
solution to discover code fragments implementing similar function-
alities. Our approach radically shifts from mere syntactic patterns
detection. It is further fully static (i.e., relies solely on source code)
with no constraint of having runtime information. FaCoY is based
on query alternation: after extracting structural code elements from
a code fragment to build a query, we build alternate queries us-
ing code fragments that present similar descriptions to the initial
code fragment. We instantiate the FaCoY approach based on in-
dices on Java files collected from GitHub and Q&A posts from
StackOverflow to find the best descriptions of functionalities im-
plemented in a large and diversified set of code snippets.
• A comprehensive empirical evaluation. We present evalua-
tion results demonstrating that FaCoY can accurately help search
for (syntactically and semantically) similar code fragments, outper-
forming popular online code-to-code search engines. We further
show, with the BigCloneBench benchmark [83], that we perform
better than the state-of-the-art on static code clone detectors iden-
tifying semantic clones; our approach identifies over 635,000 se-
mantic clones, while others detect few to no semantic clones. We
also break down the performance of FaCoY to highlight the added-
value of our query alternation scheme. Using the DyCLINK dynamic
tool [81], we validate that, in 68% of the cases, our approach indeed
finds code fragments that exhibit similar runtime behavior. Finally,
we investigate the capability of FaCoY to be leveraged for repair
patch recommendation.

2 MOTIVATION AND INSIGHT
Finding similar code fragments beyond syntactic similarities has
several uses in the field of software engineering. For example, de-
velopers can leverage a code-to-code search tool to find alternative
implementations of some functionalities. Recent automated soft-
ware engineering research directions for software transplantation
or repair constitute further illustrations of how a code-to-code
search engine can be leveraged.

Despite years of active research in the field of code search and
code clones detection, few techniques have explicitly targeted se-
mantically similar code fragments. Instead, most approaches focus
on textually, structurally or syntactically code fragments. The state-
of-the-art techniques on static detection of code clones leverage
various intermediate representations to compute code similarity.
Token-based [8, 39, 56] representations are used in approaches that
target syntactic similarity. AST-based [12, 34] representations are
employed in approaches that detect similar but potentially struc-
turally different code fragments. Finally, (program dependency)
graph-based [49, 57] representations are used in detecting clones
where statements are not ordered or parts of the clone code are
intertwined with each other. Although similar code fragments iden-
tified by all these approaches usually have similar behavior, the
contemporary static approaches still miss finding such fragments
which have similar behavior even if their code is dissimilar [36].

To find similarly behaving code fragments, researchers have
relied upon dynamic code similarity detection which consists in
identifying programs that yield similar outputs for the same inputs.
State-of-the-art dynamic approaches generate random inputs [35],
rely on symbolic [55] or concolic execution [50] and check abstract
memory states [45] to compute function similarity based on exe-
cution outputs. The most recent state-of-the-art on dynamic clone
detection focuses on the computations performed by the different
programs and compares instruction-level execution traces to iden-
tify equivalent behavior [81]. Although these approaches can be
very effective in finding semantic code clones, dynamic execution
of code is not scalable and implies several limitations for practical
usage (e.g., the need of exhaustive test cases to ensure confidence
in behavioral equivalence).

To search for relevant code fragments, users turn to online code-
to-code search engines, such as Krugle [1], which statically scan
open source projects. Unfortunately, such Internet-scale search
engines still perform syntactic matching, leading to low-quality
output in terms of semantic clones.

On the key ideaConsider the code fragments shown in Figure 1.
They constitute variant implementations for computing the hash of
a string. These examples are reported in BigCloneBench [83] as type-
4 clones (i.e., semantic clones). Indeed, their syntactic similarity is
limited to a few library function calls. Textually, only about half of
the terms are similar in both code fragments. Structurally, the first
implementation presents only one execution path while the second
includes two paths with the try/catch mechanism.
public String getHash(final String password)

throws NoSuchAlgorithmException, UnsupportedEncodingException {
final MessageDigest digest = MessageDigest.getInstance("MD5");
byte[] md5hash;
digest.update(password.getBytes("utf-8"), 0, password.length());
md5hash = digest.digest();
return convertToHex(md5hash);

}

(a) Excerpt from MD5HashHelperImpl.java in the yes-cart project.

public static String encrypt(String message) {
try {

MessageDigest digest = MessageDigest.getInstance("MD5");
digest.update(message.getBytes());
BASE64Encoder encoder = new BASE64Encoder();
return encoder.encode(digest.digest());

} catch (NoSuchAlgorithmException ex) {
...

(b) Excerpt from Crypt.java in the BettaServer project.
Figure 1: Implementation variants for hashing.

To statically identify the code fragments above as semantically
similar, a code-to-code search engine would require extra hint that
(i) getHash and encrypt deal with related concepts and that (ii)
BASE64Encoder API is offering similar functionality as convertTo-
Hex. Such hints can be derived automatically if one can build a
comprehensive collection of code fragments with associated de-
scriptions allowing for high-level groupings of fragments (based on
natural language descriptions) to infer relationships among code
tokens. The inference of such relationships will then enable the
generation of alternate queries displaying related, but potentially
syntactically different, tokens borrowed from other code fragments
having similar descriptions than the input fragment. Thus, given
the code example of Figure 1(a), the system will detect similar code

FaCoY – A Code-to-Code Search Engine ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

fragments by matching not only tokens that are syntactically3 simi-
lar to the ones in this code fragment (i.e., gethash, messagedigest,
and converttohex), but also others similar to known related tokens
(e.g., base64encoder, encrypt, etc.). Such a system would then be
able to identify the code fragment of Figure 1(b) as a semantically
similar code fragment (i.e., a semantic clone).

We postulate that Q&A posts and their associated answers con-
stitute a comprehensive dataset with a wealth of information on
how different code tokens (found in code snippets displayed as ex-
ample answers) can be matched together based on natural language
descriptions (found in questions). Figure 2 illustrates the steps that
could be unfolded for exploiting Q&A data to find semantic clones
in software repositories such as Github.

What functionality
is implemented?

What are related
implementations?

What are other representative
tokens for the functionality?

Which code fragments best match
these tokens?

Q&A Posts (questions + code snippets)

Target code base

Code fragment

Similar Code
fragments

Figure 2: Conceptual steps for our search engine.

Given a code fragment, the first step would consist to infer natu-
ral language terms that best describe the functionality implemented.
To that end, we must match the code fragment with the closest
code example provided in a Q&A post. Then, we search in the Q&A
dataset all posts with similar descriptions to collect their associated
code examples. By mixing all such code examples, we can build a
more diverse set of code tokens that could be involved in the imple-
mentation of the relevant functionality. Using this set of tokens, we
can then search real-world projects for fragments which may be
syntactically dissimilar while implementing similar functionality.
Basic definitions
We use the following definitions for our approach in Section 3.
• Code Fragment: A contiguous set of code lines that is fed as
input to the search engine. The output of the engine is also a list
of code fragments. We formalize it as a finite sequence of tokens
representing (full or partial) program source code at different gran-
ularities: e.g., a function, or an arbitrary sequence of statements.
• Code Snippet: A code fragment found in Q&A sites. We propose
this terminology to differentiate code fragments that are leveraged
during the search process from those that are used as input or that
are finally yielded by our approach.
• Q&A Post: A pair p = (q,A) also noted pqA, where q is a question
andA is a list of answers. For instance, for a given post pqA, question
q is a document describing what the questioner is trying to ask
about and a ∈ A is a document that answers the question in q. Each
answer a can include one or several code snippets: S = snippets (a),
where S is a set of code snippets.

We also recall for the reader the following well-accepted defini-
tions of clone types [13, 73, 81]:
•Type-1: Identical code fragments, except for differences in white-
space, layout, and comments.

3Naive syntactic matching may lead to false positives. Instead, there is a need to
maintain qualification information about the tokens (e.g., the token represents a
method call, a literal, etc.) cf. Section 3.

•Type-2: Identical code fragments, except for differences in identi-
fier names and literal values, in addition to Type-1 clone differences.
•Type-3: Syntactically similar code fragments that differ at the
statement level. The fragments have statements added, modified
and/or removed with respect to each other, in addition to Type-1
and Type-2 clone differences.
•Type-4: Syntactically dissimilar code fragments that implement
the same functionality. They are also known as semantic clones.
Disclaimer. In this work, we refer to a pair of code fragments which
are semantically similar as semantic clones, although they might
have been implemented independently (i.e., no cloning, e.g., copy/-
paste, was involved). Such pairs are primary targets of FaCoY.

3 APPROACH
FaCoY takes a code fragment from a user and searches in a software
projects’ code base to identify code fragments that are similar to
the user’s input. Although the design of FaCoY is targeted at taking
into account functionally similar code with syntactically different
implementations, the search often returns fragments that are also
syntactically similar to the input query.

Figure 3 illustrates the steps that are unfolded in the working
process of the search:

User Input

Snippet
Index

Code
Index

Code
Query

Generating
Expanded

Code Query

Code
Queries

Code Fragment

Search Results

(2)

(3)

(4)(5)

Question
Index

Generating
Code Query

(1)
Question

Answer

Snippet

Question

Answer

Snippet

Searching for
Similar Code

Snippets

Searching for
Similar

Questions

Searching for
Code

Examples

Figure 3: Overview of FaCoY.

(1) When FaCoY receives a code fragment, it generates a structured
query called Code Query based on the code elements present in
the fragment (Section 3.2.1).

(2) Given a code query, FaCoY searches for Q&A posts that in-
clude the most syntactically similar code snippets. To that end,
the query is matched against the Snippet Index of Q&A posts
(Section 3.2.2).

(3) Once the relevant posts are identified, FaCoY collects natural
language descriptive terms from the associated questions and
matches them with the Question index of Q&A posts to find
other relevant posts. The objective is to find additional code
snippets that could implement similar functionalities with a
diversified set of syntactic tokens (Section 3.2.3).

(4) Using code snippets in answers of Q&A posts collected by pre-
vious steps, FaCoY generates code queries that each constitutes
an alternative to the first code query obtained from user input
in Step (1) (Section 3.2.4).

(5) As the final step, FaCoY searches for similar code fragments
by matching the code queries yielded in Step (4) against the
Code Index built from the source code of software projects (Sec-
tion 3.2.5).

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Kim et al.

3.1 Indexing
Our approach constructs three indices, snippet, question, and code,
in advance to facilitate the search process as well as ensuring a
reasonable search speed [61]. To create these indices, we use Apache
Lucene, one of the most popular information retrieval libraries [64].
Lucene indices map tokens into instances which in our cases can
be natural language text, code fragments or source code files.

3.1.1 Snippet Index. The Snippet Index in FaCoY maintains
the mapping information between answer document IDs of Q&A
posts and their code snippets. It is defined as a function:
InxS : S → 2P , where S is a set of code snippets, and P is a set of
Q&A posts. 2P denotes the power set of P (i.e., the set of all possible
subsets of P). This index function maps a code snippet into a subset
of P , in which the answer in a post has a similar snippet to the
input. Our approach leverages the Snippet Index to retrieve the
Q&A post answers that include the most similar code snippets to a
given query.

To create this index, wemust first collect code examples provided
as part of a Q&A post answer. Since code snippets are mixed in
the middle of answer documents, it is necessary to identify such
regions containing the code snippets. Fortunately, most Q&A sites,
including StackOverflow, make posts available in a structured
document (e.g., HTML or XML) and explicitly indicate source code
elements with ad-hoc tags such as <code> · · · <code> allowing
FaCoY to readily parse answer documents and locate code snippets.

After collecting a code snippet from an answer, FaCoY creates
its corresponding index information as a list of index terms. An
index term is a pair of the form ‘token_type:actual_token” (e.g.,
used_class:ActionBar). Table 1 enumerates examples of token types
considered by FaCoY. The complete list is available in [23].
Table 1: Examples of token types for snippet index creation.

Type Description
typed_method_call (Partially) qualified name of called method

unresolved_method_call Non-qualified name of called method
str_literal String literal used in code

Figure 4 shows an example of code fragment with the corre-
sponding index terms.

public class BaseActivity extends AppCompatActivity{
public static final int IMAGE_PICK_REQUEST_CODE = 5828;
public static final int MUSIC_PICK_REQUEST_CODE = 58228;
protected ActionBar actionBar;
@Override
protected void onCreate(Bundle savedInstanceState){

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_based);

} }

(a) Example code fragment.

extends:AppCompatActivity
used_class:BaseActivity
used_class:R
used_class:R.layout
used_class:ActionBar
used_class:Bundle
methods_declaration:onCreate
typed_method_call:AppCompatActivity.onCreate
typed_method_call:AppCompatActivity.setContentView

(b) Corresponding index terms.
Figure 4: Extraction of index terms from a code fragment.

To generate index terms, FaCoY must produce the abstract syn-
tax tree (AST) of a code snippet. Each AST node that corresponds

to a token type in Table 14 is then retained to form an index term.
Finally, FaCoY preserves, for each entry in the index, the answer
document identifier to enable reverse lookup.

The main challenge in this step is due to the difficulty of parsing
incomplete code, a common trait of code snippets in Q&A posts [79].
Indeed, it is common for such code snippets to include partial
statements or excerpts of a program, with the purpose to give only
some key ideas in a concise manner. Often, snippets include ellipses
(i.e., “. . . ”) before and after the main code blocks. To allow parsing
by standard Java parsers, FaCoY resolves the problem by removing
the ellipses and wrapping code snippets with a custom dummy
class and method templates.

Besides incompleteness, code snippets present another limitation
due to unqualified names. Indeed, in code snippets, enclosing class
names of method calls are often ambiguous [20]. A recent study [82]
even reported that unqualified method names are pervasive in
code snippets. Recovering unqualified names is, however, necessary
for ensuring accuracy when building the Snippet Index. To that
end, FaCoY transforms unqualified names to (partially) qualified
names by using structural information collected during the AST
traversal of a given code snippet. This process converts variable
names on which methods are invoked through their corresponding
classes. Figure 5 showcases the recovering of name qualification
information. Although this process cannot recover all qualified
names, it does improve the value of the Snippet Index.
SAXParserFactory ft;
InputSource is ;
URL ul = new URL(feed)
ft = SAXParserFactory.newInstance();
SAXParser pr = factory.newSAXParser();
XMLReader rd = pr.getXMLReader();
RssHandler hd = new RssHandler();
rd.setContentHandler(hd);
is = new InputSource(url.openStream());
xmlreader.parse(is);
return hd.getFeed();

(a) Fragment before recovering
name qualification.

SAXParserFactory ft;
InputSource is;
URL ul = new URL(feed)
ft = SAXParserFactory.newInstance();
SAXParser pr = _SAXParserFactory_.newSA...
XMLReader rd = _SAXParser_.getXMLReader();
RssHandler hd = new RssHandler();
XMLReader.setContentHandler(hd);
is = new InputSource(_URL_.openStream());
XMLReader.parse(is);
return _RssHandler_.getFeed();

(b) Fragment after recovering name
qualification.

Figure 5: Recovery of qualification information [79]. Recov-
ered name qualifications are highlighted by red color.

Disclaimer. FaCoY is compliantwith the Creative CommonsAttribute-
ShareAlike license [4, 19] of StackOverflow: we do not redistribute
any code from Q&A posts. We only mine developer code examples
in StackOverflow to learn relationships among tokens.

3.1.2 Question Index. The Question Index maps a set of word
tokens into Q&A posts. The mapping information serves to iden-
tify Q&A posts where the questions are similar to the questions
retrieved in Step (2) (cf. Figure 3) whose answers contain code snip-
pets that are similar to the user input. FaCoY leverages this index
to construct alternate queries to the one derived from user input.
These alternate queries are necessary to increase the opportunities
for finding semantically similar code fragments rather than only
syntactically similar fragments. The following equation defines
the Question Index function: InxQ : Q → 2P , where Q is a set of
questions, and P is a set of Q&A posts. This function maps a set
of words from the input into a subset of posts (PE ∈ P) that are
similar to the input.
4Our approach focuses on the types in the table since they represent most of the
characteristics in a code snippet.

FaCoY – A Code-to-Code Search Engine ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

To build the Question Index, FaCoY takes the question part (q)
of each Q&A post and generates index terms. To that end a pre-
processing of the question text is necessary. This pre-processing
includes tokenization (e.g., splitting camel case), stop word re-
moval5 [61], and stemming. From the pre-processing output, FaCoY
builds index terms in the form of “term:token”. Each index term
is further mapped with the question where its token is originated
from, to keep an inverse link. Figure 6 illustrates how, given a
question text, index terms are generated.

(a) Description text in a question.
term:simpl, term:java, term:algorithm, term:generat, term:pseudo, term:random, term:alpha,
term:numer, term:string, term:situat, term:uniq, term:session, term:key, term:identifi, term:uniq,
term:500k, term:requir, term:sophist, term:ideal, term:length, term:depend, term:string,
term:length, term:12, term:aeygf7k0dm1x

(b) Resulting index terms generated from (a).
Figure 6: Example of question index creation.

3.1.3 Code Index. The Code Index maintains mapping infor-
mation between tokens and source code files. FaCoY leverages this
index to search for code examples corresponding to a code query
yielded at the end of Step (4) (cf. Figure 3). This index actually
defines the search space of our approach (e.g., F-droid repository
of Android apps, or Java projects in Github, or a subset of Mozilla
projects). The Code Index function is defined as: InxC : S → 2F ,
where S is a set of code snippets and F is a set of code fragments. F
actually defines the space of FaCoY.

The creation process of the Code Index is similar to the process
for building the Snippet Index that is described in Section 3.1.1.
FaCoY first scans all available source code files in the considered
code base. Then, each file is parsed6 to generate an AST from which
FaCoY collects the set of AST nodes corresponding to the token
types listed in Table 1. The AST nodes and their actual tokens are
used for creating index terms in the same format as in the case of
the Snippet Index. Finally, each index term is mapped to the source
code file where the token of the term has been retrieved.

3.2 Search
Once the search indices are built, FaCoY is ready to take a user
query and search for relevant code fragments. Algorithm 1 for-
mulates the search process for a given user query. Its input also
considers the three indices described in Section 3.1 and stretch
parameters used in the algorithm. The following sections detail the
whole process.

3.2.1 Generating a Code Query from a User Input. As the
first step of code search, FaCoY takes a user input and generates a
code query from the input to search the snippet index (Line 2 in
Algorithm 1). The code query is in the same form of index terms
illustrated in Figure 4 so that it can be readily used to match the
index terms in the Snippet Index.
5Using Lucene’s (version 4) English default stop word set.
6This step also recovers qualified names by applying, whenever necessary, the same
procedure described in Section 3.1.1.

Algorithm 1: Similar code search in FaCoY.
Input :c : code fragment (i.e., user query).
Input : InxS (qs): a function of a code snippet, s , to a sorted list of posts, Ps .
Input : InxQ (qq): a function of a question, q , to a sorted lis of questions, Qq .
Input : InxC (qs): a function of a code snippet, s , to a sorted list of code

fragments, Fs .
Input :ns , nq , nc : stretch parameters for snippet, question, and code search,

respectively (e.g., consider Top n similar snippets).
Output :F : a set of code fragments that are similar to c .

1 Function SearchSimilarCodeExamples(c , InxS , InxQ , InxC , ns , nq , nc)
2 qin ⇐ genCodeQuery(c);
3 Ps ⇐ InxS (qin).top(ns);
4 Qs ⇐ Ps .foreach(pi => takeQuestion (pi));
5 Pe ⇐ Qs .foreach(qi => InxQ (qi).top(nq));
6 let F ⇐ ∅;
7 foreach pi ∈ Pe do
8 s ⇐ takeSnippet (дetAnswer (pi));
9 qex ⇐ genCodeQuery(s);

10 F ⇐ F ∪ InxC (qex).top(nc));
11 end
12 return F ;
13 end

To generate a code query, our approach follows the process
described in Section 3.1.1 for generating the index terms of any
given code snippet. If the user input is also an incomplete code
fragment (i.e., impossible to parse), FaCoY seamlessly wraps the
fragment using a dummy class and some method templates after
removing ellipses. It then parses the code fragment to obtain an
AST and collect the necessary AST nodes to generate index terms
in the form of token_type:actual_token.

3.2.2 Searching for Similar Code Snippets. After generat-
ing a code query from a user input, our approach tries to search for
similar snippets in answers of Q&A posts (Line 3 in Algorithm 1).
Since the code query and index terms in the snippet index are in
the same format, our approach uses full-text search (i.e., examining
all index terms for a code snippet to compare with those in a code
query). The full-text function implemented by Lucene is utilized.

Our approach computes rankings of the search results based
on a scoring function that measures the similarity between the
code query and matched code snippets. FaCoY integrates two scor-
ing functions, Boolean Model (BM) [51] and Vector Space Model
(VSM) [76], which are already implemented in Lucene. First, BM
reduces the amount of code snippets to be ranked. Our approach
transforms the code query of the previous step, qin, into a nor-
mal form and matches code snippets indexed in the snippet index.
We adopt best match retrieval to find as many similar snippets as
possible. Then, for the retained snippets, VSM computes similarity
scores. After computing TF-IDF (Term Frequency - Inverse Doc-
ument Frequency) [75] of terms in each snippet as a weighting
scheme, it calculates Cosine similarity values between the code
query and indexed snippets.

From the sorted list of similar snippets, FaCoY takes top ns
snippets (i.e., those that will allow to consider only most relevant
natural language descriptions to associate with the user input).
By default, in all our experiments in this paper, unless otherwise
indicated, we set the value of ns (stretch parameter) to 3.

3.2.3 Searching for Similar Questions. In this step (Line 4
in Algorithm 1), our approach searches for questions similar to

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Kim et al.

the questions of Q&A posts retrieved in the previous step (cf. Sec-
tion 3.2.2). The result of this step is an additional set of Q&A posts
containing questions that are similar to the given questions identi-
fied as describing best the functionality implemented in the user
input. Thanks to this search space enrichment approach, FaCoY
can include more diverse code snippets for enumerating more code
tokens which are semantically relevant.

To search for similar questions, we use the Question Index de-
scribed in Section 3.1.2. Since all questions are indexed beforehand,
the approach simply computes similarity values between questions
as the previous step does (cf. Section 3.2.2), i.e., filtering questions
based on BM and calculating cosine similarity based on VSM.

Once similarity scores are computed, we select the top nq posts
based on the scores of their questions, as the goal is to recommend
most relevant questions rather than listing up all similar questions.
Since it takes ns posts for each of nq questions retrieved in Line
3 of Algorithm 1, the result of this step consists of ns × nq posts
when using the same stretch parameter for both steps. FaCoY can
be tuned to consider different stretch values for each step.

3.2.4 Generating Alternate Code Queries. This step (Line 5
in Algorithm 1) generates code queries from code snippets present
in newly retrieved Q&A posts at the end of the previous step (cf.
Section 3.2.3). Our approach in this step first takes Q&A posts
identified in Line 4 and extracts code snippets from their answer
parts. It then follows the same process described in Section 3.2.1 to
generate code queries. Since the result of the previous step (Line 4)
is ns ×nq posts (when using the same value for stretch parameters),
this step generates at most ns × nq code queries, referred to as
alternate queries.

3.2.5 Searching for Similar Code fragments. As the last
step, FaCoY searches the Code Index for similar code fragments
to output (Lines 6–12 in Algorithm 1). Based on the alternate code
queries generated in the previous step (cf. Section 3.2.4), and since
code queries and index terms are represented in the same format,
FaCoY can leverage the same process of Step (2) illustrated in Sec-
tion 3.2.2 to match code fragments. While the step described in
Section 3.2.2 returns answers containing code snippets similar to a
user query, the result of this step is a set of source code files contain-
ing code fragments corresponding to the alternate code query from
the previous step. Note that FaCoY provides at most ns × nq × nc
code fragments as Line 10 in Algorithm 1 uses nc to take top results.

Delimitating code fragments: Since displaying the entire con-
tent of a source code file will be ineffective for users to readily
locate the identified similar code fragment, FaCoY specifies a code
range after summarizing the content [61]. To summarize search
results into a specific range, FaCoY uses a query-dependent ap-
proach that displays segments of code based on the query terms
occurring in the source file. Concretely, the code fragment starts
from k lines preceding the first matched token and spreads until k
lines following the last matched token.

4 EVALUATION
In this section, we describe the design of different assessment sce-
narios for FaCoY and report on the evaluation results. Specifically,
our experiments aim to address the following research questions:

• RQ1: How relevant are code examples found by FaCoY com-
pared to other code-to-code search engines?
• RQ2: What is the effectiveness of FaCoY in finding semantic
clones based on a code clone benchmark?
• RQ3: Do the semantically similar code fragments yielded by
FaCoY exhibit similar runtime behavior?
• RQ4: Could FaCoY recommend correct code as alternative
of buggy code?

To answer these research questions, we build a prototype version
of FaCoY where search indices are interchangeable to serve the
purpose of each assessment scenario. We provide in Section 4.1
some details on the implementation before describing the design
and results for the different evaluations.

4.1 Implementation details
Accuracy and speed performance of a search engine are gener-
ally impacted by the quantity of data and the quality of the in-
dices [70]. We collect a comprehensive dataset from GitHub, a
popular and very large open source project repository, as well from
StackOverflow, a popular Q&A site with a large community to
curate and propose accurate information on code examples. We
further leverage the Apache Lucene library, whose algorithms have
been tested and validated by researchers and practitioners alike for
indexing and searching tasks.

For building the Code Index representing the search space of
the code base where to code fragments, we consider the GitHub
repository. We focus on Java projects since Java remains popular in
the development community and is associated with a large number
of projects in GitHub [14]. Overall, we have enumerated 2,993,513
projects where Java is set as the main language. Since there are
many toy projects on GitHub [38], we focused on projects that
have been forked at least once by other developers and dropped
out projects where the source code include non-ascii characters.
Table 2 summarizes the collected data.

Table 2: Statistics on the collected GitHub data.
Feature Value Feature Value
Number of projects 10,449 Number of duplicate files 382,512
Number of files 2,163,944 LOCs >384M

For building the Snippet and Question indices, we downloaded
a dump file from the StackOverflow website containing all posts
between July 2008 and September 2016 in XML format. In total, we
have collected and indexed 1,856,592 posts tagged as about Java or
Android coding. We have used a standard XML parser to extract
natural language elements (tagged with <p>. . . </p> markers)
and code snippets (tagged with <code>. . . </code>). It should
be noted that we first filter in code snippets from answers that
have been accepted by the questioner. Then we only retained those
accepted answers that have been up-voted at least once. These
precautions aim at ensuring that we leverage code snippets that are
of high quality and are really matching the questions. As a result,
we eventually used 268,264 Q&A posts to build the snippet and
question indices. By default, we set all three stretch parameters
to ns = nq = nc = 3. The stretch for delimitating output code
fragments is also set to k = 3.

FaCoY – A Code-to-Code Search Engine ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

4.2 RQ1: Comparison with code search engines
Design: In this experiment, we compare the search results of

FaCoY with those from online code search engines. We focus on
Krugle [1] and searchcode [2] since these engines support code-to-
code search. As input code fragments, we consider code examples
implementing popular functionalities that developers ask about.
To that end, we select snippets from posts in StackOverflow. The
snippets are selected following two requirements: (1) the associated
post is related to “Java” and (2) the answer include code snippets.We
select code snippets in the top 10 posts with the highest view counts
(for their questions). Table 3 lists the titles of StackOverflow posts
whose code snippets are used in our experiment. Note that, for a fair
comparison and to avoid any bias towards FaCoY, the actual posts
(including the code snippets in their answers) shown in the table
are removed from the snippet and question indices; this prevents
our tool from leveraging answer data in advance, which would be
unfair.
Table 3: Top 10 StackOverflow Java posts with code snippets.

Query # Question title
Q1 How to add an image to a JPanel?
Q2 How to generate a random alpha-numeric string?
Q3 How to save the activity state in Android?
Q4 How do I invoke a Java method when given the method name as a string?
Q5 Remove HTML tags from a String
Q6 How to get the path of a running JAR file?
Q7 Getting a File’s MD5 Checksum in Java
Q8 Loading a properties file from Java package
Q9 How can I play sound in Java?
Q10 What is the best way to SFTP a file from a server?

Figure 7 shows an example of input code fragments collected
from StackOverflow that is used in our evaluation. 10 code snip-
pets7 are then used to query FaCoY, Krugle, and searchcode.

import java.security.SecureRandom;
import java.math.BigInteger;
public final class SessionIdentifierGenerator {
private SecureRandom random = new SecureRandom();
public String nextSessionId() {
return new BigInteger(130, random).toString(32);

}
}

Figure 7: Code snippet associated to Q2 in Table 3.

On each search engine, we consider at most the top 20 search
results for each query and manually classify them into one of the
four clone types defined in Section 2.
Table 4: Statistics based on manual checks of search results.

FaCoY Searchcode Krugle
Query # outputs Type-2 Type-3 Type-4 # outputs Type-1 Type-3 # outputs Type-1
Q1 18 5(27.7%) 4(22.2%) 0 0
Q2 21 6(28.5%) 2(9.5%) 0 0
Q3 18 9(50%) 0 0
Q4 0 20 20(100%) 1 1(100%)
Q5 19 1(5.2%) 2(10.5%) 6(31.5%) 3 2(66.6%) 1(33.3%) 0
Q6 9 1(11.1%) 3(30%) 1(11.1%) 20 20(100%) 0
Q7 17 0 0
Q8 17 7(41.1%) 7(41.1%) 0 0
Q9 0 2 2(100%) 0
Q10 9 1(11.1%) 7(77.7%) 0 0

Result: Table 4 details statistics on the search results for the
different search engines. FaCoY, Krugle, and searchcode produce
search results for eight, four and one queries respectively. Search
results can also be false positives. We evaluate the efficiency of
FaCoY using the Precision@k metric defined as follows:
7Code snippets available on project web page [23].

Precision@k =
1
|Q |

|Q |∑
i=1

|relevanti,k |

k
(1)

where relevanti,k represents the relevant search results for query
i in the top k returned results, and Q is a set of queries.

FaCoY achieves 57.69% and 48.82% scores for Precision@10 and
Precision@20 respectively.

We further categorize the true positive code fragments based on
the clone type. Krugle appears to be able to identify only Type-1
clones. searchcode on the other hand also yields some Type-3 code
clones for 2 queries. Finally, FaCoY mostly successfully retrieves
Type-3 and Type-4 clones.
Unlike online code-to-code search engines, FaCoY can identify (1) similar
code fragments for a more diverse set of functionality implementations.
Those code fragments can be syntactically dissimilar to the query while
implementing similar functionalities.

4.3 RQ2: Finding similar code in IJaDataset
Design: This experiment aims at evaluating FaCoY against an

existing benchmark. Since our code-to-code search engine is similar
to a code clone detector in many respects, we focus on assessing
which clones FaCoY can effectively identify in a code clone bench-
mark. A clone benchmark contains pairs of code fragments which
are similar to each other.

We leverage BigCloneBench [83], one of the biggest (8 mil-
lion clone pairs) code clone benchmarks publicly available. This
benchmark is built by labeling of pairs of code fragments from the
IJaDataset-2.0 [3]. IJaDataset includes approximately 25,000 open-
source Java projects consisting of 3 million source code files and
250 millions of lines of code (MLOC). BigCloneBench maintainers
have mined this dataset focusing on a specific set of functionalities.
They then record metadata information about the identified code
clone pairs for the different functionalities. In this paper, we use a
recent snapshot of BigCloneBench including clone pairs clustered
in 43 functionality groups made available for the evaluation of
SourcererCC [74].

We consider 8,345,104 clone pairs in BigCloneBench based on
the same criteria used in [74]: both code fragments in a clone pair
have at least 6 lines and 50 tokens in length, a standard minimum
clone size for benchmarking [13, 84].

Clone pairs are further assigned a type based on the criteria
in [74]: Type-1 and Type-2 clone pairs are classified according to
the classical definitions recalled in Section 2. Type-3 and Type-4
clones are further divided into four sub-categories based on their
syntactical similarity: Very Strongly Type 3 (VST3), Strongly Type 3
(ST3), Moderately Type 3 (MT3), andWeakly Type 3/Type 4 (WT3/4).
Each clone pair (unless it is Type 1 or 2) is identified as one of four
if its similarity score falls into a specific range; VST3: [90%, 100%),
ST3: [70%, 90%), MT3: [50%, 70%), and WT3/4: [0%, 50%).

For this experiment, we adapt the implementation described
in Section 4.1. Since the experiment conducted in [74] detected
clones only from IJaDataset, the GitHub-based code index in our
tool is replaced by a custom index generated from IJaDataset for
a fair comparison. This makes FaCoY search only code fragments
in IJaDataset. In addition, the stretch parameters (see Algorithm 1)

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Kim et al.

are set to ns = nq = 3,nc = 100, making FaCoY yield as many
snippets, posts and fragments as possible in each step.

We feed FaCoYwith each code fragment referenced in the bench-
mark in order to search for their clones in the IJaDataset. We com-
pare each pair, formed by an input fragment and a search result,
against the clone pairs of BigCloneBench. We then compute the
recall of FaCoY following the definition proposed in the bench-
mark [83]:

Recall =
D ∩ Btc
Btc

(2)

where Btc is the set of all true clone pairs in BigCloneBench, and
D is the set of clone pairs found by FaCoY.

To quantify the improvement brought by the two main strate-
gies proposed in this work, namely query alternation and query
structuring, we define four different search engine configurations:
• Baseline SE: The baseline search engine does not implement
any query structuring or query alternation. Input code query, as
well as the search corpus, are treated as natural language text
documents. Search is then directly performed bymatching tokens
with no type information.
• FaCoYnoQA: In this version, only query structuring is applied.
No query alternation is performed, and thus only input code
query is used to match the search corpus.
• FaCoYnoUQ : In this version, query alternation is performed
along with query structuring, but initial input query is left out.
• FaCoY: This version represents the full-feature version of the
code-to-code search engine: queries are alternated and structured,
and initial input code query also contributes in the matching
process.

Result: Table 5 details the recall8 scores for the baseline SE,
FaCOYnoQA, FaCOYnoUQ and FaCoY. Recall scores are summa-
rized per clone type with the categories introduced above. Since we
are reproducing for FaCoY the experiments performed in [74], we
directly report in this table all results that the authors have obtained
on the benchmark for state-of-the-art Nicad [18], iClones [28],
SourcererCC [74], CCFinderX [39], Deckard [34] clone detectors.

Table 5: Recall scores on BigCloneBench [83].
Clone Types

T1 T2 VST3 ST3 MT3 WT3/T4
(# of Clone Pairs) (39,304) (4,829) (6,171) (18,582) (90,591) (6,045,600)

FaCoY 65 90 67 69 41 10 (635,844)⋆
FaCoY noUQ 35 74 45 55 37 10
FaCoY noQA 66 26 56 54 20 2
Baseline SE 66 26 54 50 20 2
SourcererCC 100 98 93 61 5 0
CCFinderX† 100 93 62 15 1 0
Deckard† 60 58 62 31 12 1
iClones† 100 82 82 24 0 0
NiCad† 100 100 100 95 1 0

⋆ Cumulative number of WT3/4 clones that FaCoY found.
† The tools could not scale to the entire files of IJaDataset [3].

We recall that FaCoY is a code-to-code search engine and thus
the objective is to find semantic clones (i.e., towards Type-4 clones).
Nevertheless, for a comprehensive evaluation of the added value
of the strategies implemented in the FaCoY approach, we provide
comparison results of recall values across all clone types.
8It should be noted that Recall is actually Recall@MAX.

Overall, FaCoY produces the highest recall values for moderately
Type-3 as well as Weakly Type-3 and Type-4 clones. The recall
performance of FaCoY for MT3 clones is an order of magnitude
higher than that of 4 out the 5 detection tools. While most tools
detect little to no WT3/T4 code clone pairs, FaCoY is able to find
over 635,000 clones in the IJADataset. Furthermore, apart from
SourcererCC, the other tools could not cover the entire IJaDataset
as reported in [74].
Benefit of query structuring. The difference of performance be-
tween Baseline SE and FaCOYnoQA indicates that query struc-
turing helps to match more code fragments which are not strictly,
syntactically, identical to the query (cf. VST3 & ST3).
Benefit of query alternation. The difference of performance be-
tween FaCoY and FaCOYnoQA definitively confirms that query
alternation is the strategy that allows collecting semantic clones:
recall for WT3/T4 goes from 2% to 10% and recall for MT3 goes
from 20 to 41.
Benefit of keeping input query. The difference of performance
between FaCoY and FaCOYnoUQ finally indicates that initial input
code query is essential for retrieving some code fragments that are
more syntactically similar, in addition to semantically similar code
fragments matched by alternate queries.

With 10% recall for semantic clones (WT3/T4), FaCoY achieves
the best performance score in the literature. Although this score
may appear to be small, it should be noted that this corresponds
to the identification of 635,844 clones, a larger set than the accu-
mulated set of all clones of other types in the benchmark. Finally,
it should also be noted that, while the dataset includes over 7.7
million WT3/T4 code clones, state-of-the-art detection tools can
detect only 1% or less of these clones.

We further investigate the recall of FaCoY with regards to the
functionalities implemented by clone pairs. In BigCloneBench, ev-
ery clone pair is classified into one of 43 functionalities, including
“Download From Web” and “Decompress zip archive”. For each
clone type, we count the number of clones that FaCoY can find, per
functionality. Functionalities with higher recall tend to have imple-
mentations based on APIs and libraries while those with low recall
are more computation intensive without APIs. This confirms that
FaCoY performs better for programs implemented by descriptive
API names since it leverages keywords in snippets and questions.
This issue is discussed in Section 5 in detail. Because of space con-
straints, we refer the reader to the FaCoY project page for more
statistics and information details on its performance.
Double-checking FaCoY’s false positives: Although it is one of
the largest benchmarks available to the research community, Big-
CloneBench clone information may not be complete. Indeed, as de-
scribed in [83], BigCloneBench is built via an incremental additive
process (i.e., gradually relaxing search queries) based on keyword
and source pattern matching. Thus, it may miss some clones despite
the manual verification. In any case, computing precision of a code
search engine remains an open problem [74]. Instead, we chose to
focus on manually analysing sampled false positives.

We manually verify the clone pairs that are not associated in
BigCloneBench, but FaCoY recommended as code clones, i.e., false
positives. Our objective is then to verify to what extent they are
indeed false positives and not misses by BigCloneBench. We sample
10 false positives per clone type category for a manual check. For 32

FaCoY – A Code-to-Code Search Engine ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

out of 60 cases, it turns out that BigCloneBench actually missed to
include them. Specifically, it missed 25 Type-4, 2 Type-3, 1 Type-2,
and even 4 Type-1 clones. Among the 28 cases, for 26 cases, FaCoY
points to the correct file but another location than actual clones.
In only two cases FaCoY completely fails. We provide this data
in the project web page [23] as a first step towards initiating a cu-
rated benchmark of semantic code clones, which can be eventually
integrated into BigCloneBench.

FaCoY can find more Type-3, Weakly Type-3 and Type-4 clones than the
state-of-the-art, thus fulfilling the objective for which it was designed.

4.4 RQ3: Validating semantic similarity
Design: Since FaCoY focuses on identifying semantically simi-

lar code snippets rather than syntactic/structural clones, it is neces-
sary to verify whether the search results of the approach indeed
exhibit similar functional behavior (beyond keywordmatching with
high syntactic differences implied in BigCloneBench). The datasets
used in Sections 4.2 and 4.3 are however not appropriate for dy-
namic analysis: the code must compile as well as execute, and there
must be test cases for exercising the programs.

To overcome these challenges, we build on DyCLINK [81], a
dynamic approach that computes the similarity of execution traces
to detect that two code fragments are relatives (i.e., that they behave
(functionally) similarly). The tool has been applied to programs
written for Google Code Jam [26] to identify code relatives at the
granularity of methods. We carefully reproduced their results with
the publicly available version of DyCLINK. Among the 642 methods
in the code base, DyCLINK matches 411 pairs as code relatives9.
We consider all methods for which DyCLINK finds a relative and
use FaCoY to search for its clones in codejam, and we check that
the found clones are relatives of the input.

Since FaCoY provides a ranked list of code examples for a given
query, we measure the hit10 ratio of the top N search results. Here,
we use the default stretch parameters specified in Section 4.1 and
thus N = 27. In addition to hit ratio, we compute the Mean Recip-
rocal Rank (MRR) of the hit cases. To calculate MRR for each clone
pair, we use the following formula:

MRR =
1
|Q |

|Q |∑
i=1

1
ranki

(3)

where ranki is the rank position of the corresponding code fragment
for the given peer in a clone pair. Q is the number of all queries.

Result: As a result, FaCoY can identify 278 out of 411 code rela-
tives and the hit ratio is 68%. As for efficiency, FaCoY achieves 45%
and 88% scores respectively for Precision@10 and Precision@20,
and exhibits an MRR of 0.18, which means FaCoY recommends the
code relatives into lower rankings.

On the one hand, since many programs in Google Code Jam
often use variables with no meaning (such as void s(int a){}),
FaCoY cannot find related code in StackOverflow and thus cannot
build alternate queries, limiting the hit ratio. On the other hand,
9We did our best to reproduce the results of DyCLINK. We checked with the authors
that the found 411 relatives are consistent with the released tool version.
10A “hit” indicates that the corresponding code fragment is in the top N results for a
given query.

since DyCLINK also uses a similarity metric to decide on code
relativeness, the MRR score of FaCoY could be higher with a more
relaxed threshold (currently set at 82%) in DyCLINK.

FaCoY can indeed find alternative fragments that exhibit similar runtime
behavior with input code fragment.

4.5 RQ4: Recommending patches with FaCoY
Design: This experiment attempts to use FaCoY to search for

correct code that can help fix buggy code. Code search has indeed
been proposed recently as a potential step for patch recommenda-
tion [25], and even automated repair [40]. Since FaCoY can find
code snippets that are semantically similar to a given query code,
we conjecture that it can be used for helping find alternative im-
plementations which may turn out to be more correct than the
user’s code. We assess such a potential application by leveraging
the Defects4J benchmark [37].

Defects4J include 395 real bugs: for each bug, the buggy code
and the associated fixed version are made available, along with test
suites for execution. For each bug, we take buggy code fragment
(generally a function) and query FaCoY. By going through the
search results from the top, we manually compare each result with
the actual paired fixed code. Our objective is to check whether
FaCoY’s output code fragments can help build a patch that would
have been correct w.r.t. to the benchmark fix. We perform the same
experiments using Krugle [1] and searchcode [2].
public static boolean equals(CharSequence cs1, CharSequence cs2)

{ return cs1 == null ? cs2 == null : cs1.equals(cs2); }

(a) Defects4J buggy code fragment from Commons-LANG†.

public static boolean equals(CharSequence a, CharSequence b) {
if (a == b) return true;
int length;
if (a != null && b != null && (length = a.length()) == b.length()) {

if (a instanceof String && b instanceof String) {
return a.equals(b);

}
for (int i = 0; i < length; i++) {

if (a.charAt(i) != b.charAt(i)) return false;
}
return true;

}
return false;

}

(b) Code fragment found in GitHub by FaCoY as similar to fragment in (a)∗.

public static boolean equals(CharSequence cs1, CharSequence cs2) {
- return cs1 == null ? cs2 == null : cs1.equals(cs2);
+ if (cs1 == cs2) {
+ return true;
+ }
+ if (cs1 == null || cs2 == null) {
+ return false;
+ }
+ if (cs1 instanceof String && cs2 instanceof String) {
+ return cs1.equals(cs2);
+ }
+ return CharSequenceUtils.regionMatches(...);
}

(c) Actual patch‡ that was proposed to fix the buggy code in (a).
† https://goo.gl/5kn6Zr ∗ https://goo.gl/URdriN ‡ https://goo.gl/PD6KL5

Figure 8: Successful patch recommendation by FaCoY.
For each bug, one of the authors of this paper examined at most

top 15 search results from each search engine. When the author
marks a result as a good candidate for patch recommendation,
two other authors double check, and the final decision is made

https://goo.gl/5kn6Zr
https://goo.gl/URdriN
https://goo.gl/PD6KL5

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Kim et al.

by majority voting. Note that, since Defects4J projects are also
available in GitHub, the fixed code may be in FaCoY corpus. Thus,
we have filtered out from the search results any code fragment that
is collected from the same project file as the buggy code used as
query. Figure 8a shows an example buggy function that we used as
query to FaCoY. Fig. 8b shows one of the similar code fragments
returned by FaCoY andwhichwe found that it was a good candidate
for recommending the patch that was actually applied (cf. Fig. 8c).

Result: Out of 395 bugs in Defects4J, our preliminary results
show that FaCoY found similar fixed code examples for 21 bugs. In
contrast, searchcode located a single code example, while Krugle
provided no relevant results at all. Specifically, project-specific
results are as follows. Lang: 6/65, Mockito: 3/38, Chart: 3/26, Closure:
2/133, Time: 2/27, and Math: 5/106. searchcode was successful only
for 1/38 Mokito bug. All details are available in [23].

FaCoY-based search of semantically similar code fragments can support
patch/code recommendation, software diversification or transplantation.

5 DISCUSSIONS
Exhaustivity of Q&A data: The main limitation of FaCoY comes
from the use of code snippets and natural language descriptions in
Q&A posts to enable the generation of alternate queries towards
identifying semantically similar code fragments. This data may
simply be insufficient with regards to a given user input fragment
(e.g., uncommon functionality implementation).

Threats to Validity: As threat to External validity, we note
that we only used Java subjects for the search. However, the same
process can be developed with other programming languages by
changing the language parser, the indices for related Q&A posts and
project code. Another threat stems from the use of StackOverflow
and GitHub which may be limited. We note however that their data
can be substituted or augmented with data from other repositories.

Internal validity:We use subjects from BigCloneBench and Dy-
CLINK datasets to validate our work. Those subjects may be biased
for clone detection. Nevertheless, these subjects are commonly used
and allow for a fair comparison as well as for reproducibility.

6 RELATEDWORK
Code search engines. Code search literature is abundant [5, 22,
33, 42, 59, 66, 69, 72, 77, 79]. CodeHow [59] finds code snippets
relevant to a user query written in natural language. It explores API
documents to identify relationships between query terms and APIs.
Sourcerer [5] leverages structural code information from a complete
compilation unit to perform fine-grained code search. Portfolio [66]
is a code search and visualization approach where a chain of func-
tion calls are highlighted as usage scenario. CodeGenie [53, 54]
expands queries for interface-driven code search (IDCS). It takes
test cases rather than free-form queries as inputs and leverages
WordNet and a code-related thesaurus for query expansion. Sirres
et al. [79], also use StackOverflow data to implement a free-form
code search engine.
Clone detection and search. Clone detection has various applica-
tions [16, 52, 78] such as plagiarism detection. However, most tech-
niques detect syntactically similar code fragments in source code

using tokens [8, 39, 56], AST trees [12, 34], or (program dependency)
graphs [49, 57]. Only a few techniques target semantically similar
source code clones [35, 45, 47]. Komondoor and Horwitz search for
isomorphic sub-graphs of program dependence graphs using pro-
gram slicing [47]. Jiang and Su compare program execution traces
using automated random testing to find functionally equivalent
code fragments [35]. MeCC detects semantically-similar C func-
tions based on the similarity of their abstract memory states [45].
White et al. [86] propose to use deep learning to find code clones.
Their approach is more effective for Type-1/2/3 clones than Type-4.
Code recommendation systems [31, 32, 65, 71] support developers
with reusable code fragments from other programs, or with pointers
to blogs and Q&A sites. Strathcona [31] generates queries from user
code and matches them against repository examples, Prompter [71]
directly matches the current code context with relevant Q&A posts.
Although several studies have explored StackOverflow posts [10,
25, 60, 68, 79, 85], none, to the best of our knowledge, leveraged
StackOverflow data to improve clone detection.
Program repair [15, 27, 44] can also benefit from code search. Gao
et al. [25] proposed an approach to fix recurring crash bugs by
searching for similar code snippets in StackOverflow. SearchRe-
pair [40] infers potential patch ingredients by looking up code
fragments encoded as SMT constraints. Koyuncu et al. [48] showed
that patching tools yield recurrent fix actions that can be explored
to fix similar code. Liu et al. [58] explore the potential of fix patterns
for similar code fragments that may be buggy w.r.t. FindBugs rules.
API recommendation is a natural application of code search. The
Baker approach connects existing source code snippets to API doc-
umentation [82]. MUSE [67] builds an index of real source code
fragments by using static slicing and code clone detection, and
then recommends API usage examples. Keivanloo et al. [43] pre-
sented an Internet-scale code search engine that locates working
code examples. Buse and Weimer [17] proposed an approach to
recommend API usage examples by synthesizing code snippets
based on dataflow analysis and pattern abstraction. Bajracharya [7]
proposed Structural Semantic Indexing which examines the API
calls extracted in source code to determine code similarity.

7 CONCLUSION
We have presented FaCoY, a code-to-code search engine that ac-
cepts code fragments from users and recommends semantically
similar code fragments found in a target code base. FaCoY is based
on query alternation: after generating a structured code query
summarizing structural code elements in the input fragment, we
search in Q&A posts other code snippets having similar descriptions
but which may present implementation variabilities. These variant
implementations are then used to generate alternate code queries.
We have implemented a prototype of FaCoY using StackOverflow
and GitHub data on Java. FaCoY achieves better accuracy than
online code-to-code search engines and finds more semantic code
clones in BigCloneBench than state-of-the-art clone detectors. Dy-
namic analysis shows that FaCoY’s similar code fragments are
indeed related execution-wise. Finally, we have investigated a po-
tential application of FaCoY for code/patch recommendation on
buggy code in the Defects4J benchmark.

FaCoY – A Code-to-Code Search Engine ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

ACKNOWLEDGEMENTS
We extend our thanks to Seungdeok Han, Minsuk Kim, Jaekwon Lee,
and Woosung Jung from Chungbuk National University for their
insightful comments on earlier versions of this manuscript. This
work was supported by the Fonds National de la Recherche (FNR),
Luxembourg, under projects RECOMMEND C15/IS/10449467, FIX-
PATTERN C15/IS/9964569, and FNR-AFR PhD/11623818, and by
the Japan Society for the Promotion of Science (JSPS) KAKENHI
Grant Number JP15H06344. It is also supported by the National
Research Foundation of Korea (NRF) grant funded by the Korea
government (Ministry of Science, ICT & Future Planning) (No.
2015R1C1A1A01054994).

REFERENCES
[1] 2017. http://krugle.com/. (July. 2017).
[2] 2017. https://searchcode.com/. (July. 2017).
[3] Ambient Software Evoluton Group. 2013. IJaDataset 2.0, http://secold.org/

projects/seclone. (Jan. 2013).
[4] Le An, Ons Mlouki, Foutse Khomh, and Giuliano Antoniol. 2017. Stack Overflow:

A Code Laundering Platform?. In Proceedings of the 24th Conference on Software
Analysis, Evolution and Reengineering. IEEE, 283–293.

[5] Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor, Pierre
Baldi, and Cristina Lopes. 2006. Sourcerer: a search engine for open source
code supporting structure-based search. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications.
ACM, 681–682.

[6] Sushil Krishna Bajracharya and Cristina Videira Lopes. 2012. Analyzing and
mining a code search engine usage log. Empirical Software Engineering 17, 4-5
(Aug. 2012), 424–466.

[7] Sushil K. Bajracharya, Joel Ossher, and Cristina V. Lopes. 2010. Leveraging Usage
Similarity for Effective Retrieval of Examples in Code Repositories. In Proceed-
ings of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE ’10). ACM, New York, NY, USA, 157–166.

[8] B.S. Baker. 1992. A Program for Identifying Duplicated Code. In Computing
Science and Statistics: Proceedings of the 24th Symposium on the Interface, Vol. 24.
49–57. Issue Mar.

[9] Earl T Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis. ACM, 257–269.

[10] Ohad Barzilay, Christoph Treude, and Alexey Zagalsky. 2013. Facilitating crowd
sourced software engineering via stack overflow. In Finding Source Code on the
Web for Remix and Reuse. Springer, 289–308.

[11] Benoit Baudry, Simon Allier, and Martin Monperrus. 2014. Tailored source
code transformations to synthesize computationally diverse program variants. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis.
ACM, 149–159.

[12] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Proceedings of the
International Conference onSoftware Maintenance. IEEE, 368–377.

[13] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering 33, 9 (2007), 577–591.

[14] Tegawendé F Bissyandé, Ferdian Thung, David Lo, Lingxiao Jiang, and Lau-
rent Réveillere. 2013. Popularity, interoperability, and impact of programming
languages in 100,000 open source projects. In Proceedings of the 37th Annual
Computer Software and Applications Conference. IEEE, 303–312.

[15] TegawendÃľ F. BissyandÃľ. 2015. Harvesting Fix Hints in the History of Bugs.
arXiv:1507.05742 [cs] (July 2015). arXiv: 1507.05742.

[16] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and R. Robbes. 2010. Language-
Independent Clone Detection Applied to Plagiarism Detection. In 2010 10th IEEE
Working Conference on Source Code Analysis and Manipulation. 77–86.

[17] Raymond P. L. Buse andWestleyWeimer. 2012. Synthesizing API Usage Examples.
In Proceedings of the 34th International Conference on Software Engineering. IEEE
Press, Piscataway, NJ, USA, 782–792.

[18] J. R. Cordy and C. K. Roy. 2011. The NiCad Clone Detector. In Proceedings of the
19th International Conference on Program Comprehension. IEEE, 219–220.

[19] Creative Commons Attribution-ShareAlike 3.0 Unported License. 2016. https:
//creativecommons.org/licenses/by-sa/3.0/legalcode. (2016). last accessed
25.02.2017.

[20] Barthélémy Dagenais and Martin P Robillard. 2012. Recovering traceability links
between an API and its learning resources. In Proceedings of the 34th International

Conference on Software Engineering. IEEE, 47–57.
[21] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket

Execution: Dynamic Similarity Testing for Program Binaries and Components..
In Usenix Security. 303–317.

[22] T. Eisenbarth, R. Koschke, and D. Simon. 2003. Locating features in source code.
IEEE Transactions on Software Engineering 29, 3 (March 2003), 210–224.

[23] FaCoY. 2017. https://github.com/facoy/facoy. (2017).
[24] G.W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The Vocabulary

Problem in Human-system Communication. Commun. ACM 30, 11 (Nov. 1987),
964–971.

[25] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei. 2015. Fixing Recurring
Crash Bugs via Analyzing Q&A Sites (T). In 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 307–318.

[26] Google Code Jam. 2017. https://code.google.com/codejam/. (Jan. 2017).
[27] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic

Method for Automatic Software Repair. IEEE Transactions on Software Engineering
38, 1 (Jan. 2012), 54–72.

[28] N. GÃűde and R. Koschke. 2009. Incremental Clone Detection. In 2009 13th
European Conference on Software Maintenance and Reengineering. 219–228.

[29] Sonia Haiduc, Gabriele Bavota, Andrian Marcus, Rocco Oliveto, Andrea De Lucia,
and Tim Menzies. 2013. Automatic Query Reformulations for Text Retrieval
in Software Engineering. In Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, Piscataway, NJ, USA, 842–851.

[30] Raphael Hoffmann, James Fogarty, and Daniel S Weld. 2007. Assieme: finding
and leveraging implicit references in a web search interface for programmers. In
Proceedings of the 20th annual ACM symposium on User interface software and
technology. ACM, 13–22.

[31] Reid Holmes and Gail C. Murphy. 2005. Using Structural Context to Recommend
Source Code Examples. In Proceedings of the 27th International Conference on
Software Engineering. ACM, New York, NY, USA, 117–125.

[32] R. Holmes, R. J. Walker, and G. C. Murphy. 2006. Approximate Structural Context
Matching: An Approach to Recommend Relevant Examples. IEEE Transactions
on Software Engineering 32, 12 (Dec. 2006), 952–970.

[33] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe. 2012. Where Does
This Code Come from and Where Does It Go? - Integrated Code History Tracker
for Open Source Systems. In Proceedings of the 34th International Conference on
Software Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 331–341.

[34] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th international conference on Software Engineering. IEEE Computer
Society, 96–105.

[35] Lingxiao Jiang and Zhendong Su. 2009. Automatic mining of functionally equiv-
alent code fragments via random testing. In Proceedings of the eighteenth interna-
tional symposium on Software testing and analysis. ACM, 81–92.

[36] Elmar Juergens, Florian Deissenboeck, and Benjamin Hummel. 2010. Code
similarities beyond copy & paste. In Software Maintenance and Reengineering
(CSMR), 2010 14th European Conference on. IEEE, 78–87.

[37] RenÃľ Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis.
ACM, New York, NY, USA, 437–440.

[38] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th working conference on mining software repositories. ACM,
92–101.

[39] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[40] Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun. 2015. Repairing Programs with
Semantic Code Search (T). In 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 295–306.

[41] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
programs with semantic code search (t). In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on. IEEE, 295–306.

[42] I. Keivanloo, J. Rilling, and P. Charland. 2011. SeClone - A Hybrid Approach to
Internet-Scale Real-Time Code Clone Search. In Proceedings of the 19th Interna-
tional Conference on Program Comprehension. 223–224.

[43] Iman Keivanloo, Juergen Rilling, and Ying Zou. 2014. Spotting Working Code Ex-
amples. In Proceedings of the 36th International Conference on Software Engineering.
ACM, New York, NY, USA, 664–675.

[44] D. Kim, J. Nam, J. Song, and S. Kim. 2013. Automatic patch generation learned
from human-written patches. In 2013 35th International Conference on Software
Engineering (ICSE). 802–811. DOI:http://dx.doi.org/10.1109/ICSE.2013.6606626

[45] H. Kim, Y. Jung, S. Kim, and K. Yi. 2011. MeCC: Memory comparison-based
clone detector. In Proceedings of the 33rd International Conference on Software
Engineering. IEEE, 301–310.

https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode
http://dx.doi.org/10.1109/ICSE.2013.6606626

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden K. Kim et al.

[46] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. 2006. An Exploratory
Study of How Developers Seek, Relate, and Collect Relevant Information during
Software Maintenance Tasks. IEEE Transactions on Software Engineering 32, 12
(Dec. 2006), 971–987.

[47] Raghavan Komondoor and Susan Horwitz. 2001. Using Slicing to Identify Du-
plication in Source Code. In Proceedings of the 8th International Symposium on
Static Analysis. Springer-Verlag, London, UK, UK, 40–56.

[48] Anil Koyuncu, TegawendÃľ F. BissyandÃľ, Dongsun Kim, Jacques Klein, Martin
Monperrus, and Yves Le Traon. 2017. Impact of Tool Support in Patch Con-
struction. In Proceedings of the 26th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2017). ACM, New York, NY, USA, 237–248.

[49] J. Krinke. 2001. Identifying similar code with program dependence graphs. In
Proceedings Eighth Working Conference on Reverse Engineering. 301–309.

[50] D. E. Krutz and E. Shihab. 2013. CCCD: Concolic code clone detection. In 2013
20th Working Conference on Reverse Engineering (WCRE). 489–490.

[51] Frederick Wilfrid Lancaster and Emily Gallup Fayen. 1973. Information Retrieval:
On-line. Melville Publishing Company.

[52] Mu-Woong Lee, Jong-Won Roh, Seung-won Hwang, and Sunghun Kim. 2010.
Instant Code Clone Search. In Proceedings of the 18th International Symposium on
Foundations of Software Engineering (FSE ’10). ACM, 167–176.

[53] OtÃąvio A. L. Lemos, Adriano C. de Paula, Felipe C. Zanichelli, and Cristina V.
Lopes. 2014. Thesaurus-based Automatic Query Expansion for Interface-driven
Code Search. In Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, New York, NY, USA, 212–221.

[54] O. A. L. Lemos, A. C. de Paula, H. Sajnani, and C. V. Lopes. 2015. Can the use of
types and query expansion help improve large-scale code search?. In 2015 IEEE
15th International Working Conference on Source Code Analysis and Manipulation
(SCAM). 41–50.

[55] Sihan Li, Xusheng Xiao, Blake Bassett, Tao Xie, and Nikolai Tillmann. 2016.
Measuring Code Behavioral Similarity for Programming and Software Engineer-
ing Education. In Proceedings of the 38th International Conference on Software
Engineering Companion. ACM, New York, NY, USA, 501–510.

[56] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-Miner:
a tool for finding copy-paste and related bugs in operating system code. In
Proceedings of the 6th conference on Symposium on Opearting Systems Design &
Implementation - Volume 6. USENIX Association, Berkeley, CA, USA, 20–20.

[57] Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. 2006. GPLAG: Detection of
Software Plagiarism by Program Dependence Graph Analysis. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, New York, NY, USA, 872–881.

[58] Kui Liu, Dongsun Kim, TegawendâĹŽÂľ F. BissyandâĹŽÂľ, Shin Yoo, and Yves Le
Traon. 2017. Mining Fix Patterns for FindBugs Violations. arXiv:1712.03201 [cs]
(Dec. 2017).

[59] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and
Jianjun Zhao. 2015. CodeHow: Effective Code Search based on API Understanding
and Extended Boolean Model. In Proceedings of the 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE ’15). IEEE Computer
Society, Lincoln, Nebraska, USA, 260–270.

[60] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-
mann. 2011. Design lessons from the fastest q&a site in the west. In Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM, 2857–2866.

[61] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. In-
troduction to Information Retrieval. Cambridge University Press, New York, NY,
USA.

[62] A. Marcus and J. I. Maletic. 2001. Identification of high-level concept clones in
source code. In Proceedings 16th Annual International Conference on Automated
Software Engineering (ASE 2001). 107–114.

[63] Lee Martie, AndrÃľ van der Hoek, and Thomas Kwak. 2017. Understanding the
Impact of Support for Iteration on Code Search. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, New York, NY, USA,
774–785.

[64] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Action,
Second Edition: Covers Apache Lucene 3.0. Manning Publications Co., Greenwich,
CT, USA.

[65] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie. 2012. Exemplar:
A Source Code Search Engine for Finding Highly Relevant Applications. IEEE
Transactions on Software Engineering 38, 5 (Sept. 2012), 1069–1087.

[66] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and Chen Fu.
2011. Portfolio: finding relevant functions and their usage. In Proceeding of the
33rd international conference on Software engineering. ACM, Waikiki, Honolulu,
HI, USA, 111–120. ACM ID: 1985809.

[67] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Andrian Marcus. 2015. How Can I Use This Method?. In Proceedings of the
37th International Conference on Software Engineering - Volume 1. IEEE Press,
Piscataway, NJ, USA, 880–890.

[68] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012. What
makes a good code example?: A study of programming Q&A in StackOverflow.
In Software Maintenance (ICSM), 2012 28th IEEE International Conference on. IEEE,
25–34.

[69] Haoran Niu, Iman Keivanloo, and Ying Zou. 2016. Learning to rank code examples
for code search engines. Empirical Software Engineering (Jan. 2016), 1–33.

[70] Praveen Pathak, Michael Gordon, and Weiguo Fan. 2000. Effective information
retrieval using genetic algorithms basedmatching functions adaptation. In System
Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on.
IEEE, 8–pp.

[71] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining stackoverflow to turn the IDE into a self-confident
programming prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 102–111.

[72] D. Poshyvanyk, Y. G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich. 2007.
Feature Location Using Probabilistic Ranking of Methods Based on Execution
Scenarios and Information Retrieval. IEEE Transactions on Software Engineering
33, 6 (June 2007), 420–432.

[73] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming 74, 7 (2009), 470–495.

[74] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. SourcererCC: scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering. ACM, 1157–1168.

[75] Gerard Salton and Michael J. McGill. 1986. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA.

[76] G. Salton, A. Wong, and C. S. Yang. 1975. A Vector Space Model for Automatic
Indexing. Commun. ACM 18, 11 (Nov. 1975), 613–620.

[77] Huascar Sanchez. 2013. SNIPR: Complementing Code Search with Code Retarget-
ing Capabilities. In Proceedings of the 2013 International Conference on Software
Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 1423–1426.

[78] Niko Schwarz, Mircea Lungu, and Romain Robbes. 2012. On How Often Code is
Cloned Across Repositories. In Proceedings of the 34th International Conference
on Software Engineering. IEEE Press, Piscataway, NJ, USA, 1289–1292.

[79] Raphael Sirres, Tegawendé F. Bissyandé, Dongsun Kim, David Lo, Jacques Klein,
Kisub Kim, and Yves Le Traon. 2017. Augmenting and Structuring User Queries
to Support Efficient Free-Form Code Search. Empirical Software Engineering
(2017), (to appear).

[80] Kathryn T. Stolee, Sebastian Elbaum, and Daniel Dobos. 2014. Solving the Search
for Source Code. ACM Trans. Softw. Eng. Methodol. 23, 3 (June 2014), 26:1–26:45.
DOI:http://dx.doi.org/10.1145/2581377

[81] Fang-Hsiang Su, Jonathan Bell, Kenneth Harvey, Simha Sethumadhavan, Gail
Kaiser, and Tony Jebara. 2016. Code Relatives: Detecting Similarly Behaving
Software. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE 2016). ACM, 702–714.

[82] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In Proceedings of the 36th International Conference on Software
Engineering. ACM, 643–652.

[83] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In Software Maintenance and Evolution (ICSME), 2014 IEEE Interna-
tional Conference on. IEEE, 476–480.

[84] Jeffrey Svajlenko and Chanchal K Roy. 2015. Evaluating clone detection tools
with bigclonebench. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on. IEEE, 131–140.

[85] Christoph Treude and Martin P Robillard. 2016. Augmenting API documenta-
tion with insights from Stack Overflow. In Proceedings of the 38th International
Conference on Software Engineering. ACM, 392–403.

[86] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep Learning Code Fragments for Code Clone Detection. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, New York, NY, USA, 87–98.

[87] Xin Xia, Lingfeng Bao, David Lo, Pavneet Singh Kochhar, Ahmed E. Hassan, and
Zhenchang Xing. 2017. What do developers search for on the web? Empirical
Software Engineering (April 2017), 1–37.

[88] Tao Xie and Jian Pei. 2006. MAPO: Mining API Usages from Open Source
Repositories. In Proceedings of the 2006 International Workshop on Mining Software
Repositories (MSR ’06). ACM, New York, NY, USA, 54–57.

[89] Le Zhao and Jamie Callan. 2010. Term Necessity Prediction. In Proceedings of the
19th ACM International Conference on Information and Knowledge Management.
ACM, New York, NY, USA, 259–268.

[90] Le Zhao and Jamie Callan. 2012. Automatic Term Mismatch Diagnosis for Se-
lective Query Expansion. In Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, New
York, NY, USA, 515–524.

http://dx.doi.org/10.1145/2581377

	Abstract
	1 Introduction
	2 Motivation and Insight
	3 Approach
	3.1 Indexing
	3.2 Search

	4 Evaluation
	4.1 Implementation details
	4.2 RQ1: Comparison with code search engines
	4.3 RQ2: Finding similar code in IJaDataset
	4.4 RQ3: Validating semantic similarity
	4.5 RQ4: Recommending patches with FaCoY

	5 Discussions
	6 Related Work
	7 Conclusion
	References

