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Abstract—Android developers are known to frequently update
their apps for fixing bugs and addressing vulnerabilities, but
more commonly for introducing new features. This process leads
a trail in the ecosystem with multiple successive app versions
which record historical evolutions of a variety of apps. While the
literature includes various works related to such evolutions, little
attention has been paid to the research question on how quality
evolves, in particular with regards to maintainability and code
complexity. In this work, we fill this gap by presenting a large-
scale empirical study: we leverage the AndroZoo dataset to obtain
a significant number of app lineages (i.e., successive releases
of the same Android apps), and rely on six well-established,
maintainability-related complexity metrics commonly accepted in
the literature on app quality, maintainability etc. Our empirical
investigation eventually reveals that, overall, while Android apps
become bigger in terms of code size as time goes by, the apps
themselves appear to be increasingly maintainable and thus
decreasingly complex.

I. INTRODUCTION

Android has been attracting the interest of developers since
its early days. This also creates the situation of high compe-
tition in Android app development. Consequently, to keep up,
developers are engaged in a frenzy of updates [1], [2], [3],
[4]. In general, developers update their apps for (1) keeping
up with the evolution of Android APIs (e.g., discarding the use
of deprecated ones [5] while accessing early-release ones [6]),
(2) adapting to new requirements or providing new features
to keep the app competitive, (3) fixing bugs that may cause
runtime crashes, or that make the app vulnerable to security
threats, (4) improving the performance or maintainability,
either by removing unnecessary code or by refactoring existing
functionalities.

Standing out among other apps requires app developers to
guarantee a level of quality in their app code. Unfortunately,
in the absence of a concrete guideline for maintaining quality,
it is difficult to measure to what extent quality is taken into
account with respect to update changes. Instead, and as the
first step towards building such a guideline, it is important
to investigate some quality properties of various app versions
in order to draw insights from the practice of real-world app
development. Our objective is thus to conduct a large-scale
empirical study on the quality evolution of Android apps.

To that end, we focus on measuring maintainability of app
code. Software maintainability is indeed considered today as
one of the most important concerns in the software indus-
try [7], [8]. Corbi, a recognized expert in the field, has even
elevated maintainability as a major challenge for program
understanding since the 1990s. Generally, code complexity is

accepted to provide a good proxy for measuring maintain-
ability [9]. Given the pervasiveness of mobile software in our
daily life today, it is important to study how complexity has
evolved in order to build knowledge towards improving quality
in software development.

In this work, we leverage an unprecedented large dataset
of 28,564 app lineages and investigate evolution trends of
complexity, relying on six metrics proposed by Chidamber
et al. [10]. We implement a process where each app is
analyzed and six renowned maintainability-related complexity
metrics are computed, trends are highlighted and outliers are
summarized.

To summarize, this paper makes the following contributions:
• We share with the community all complexity metric

values for a large dataset of Android apps where each
app is associated with several of its release versions.

• We present an empirical study on the evolution of com-
plexity in Android apps based on six well-established
metrics (such as NOC, Number of Children or LCOM,
Lack of cohesion in Methods), and from different per-
spectives such as median and standard deviation values.

• We discuss insights from our study and enumerate its
implications as well as the limitations.

• We make our toolset publicly available to readily compute
complexity metrics for Android app APKs.

The remainder of this paper is organized as follows. Sec-
tion II presents background information on Android devel-
opment as well as on the metrics leveraged in our work.
Section III overviews the experimental setup for answering
the research questions. Section IV details the results of our
study while Section V discusses some insights as well as the
limitations. Finally, we discuss related work in Section VI and
the conclusion of this paper in Section VII.

II. BACKGROUND

To ease the understanding of our work, we provide some
necessary background information about Android app devel-
opments and app complexity metrics.

A. Android Framework

The Android mobile operating system is built on top of
the Linux kernel and provides a framework to facilitate the
development of Android apps. As the framework evolves,
the provided Software Development Kit (SDK), including
the Application Programming Interfaces (APIs), is regularly
updated. To better track and reflect those changes, each major



release of the Android framework is tagged with multiple
names: (1) its version number (e.g., Android 4.4); (2) its
API level (e.g., 19); and (3) a name of sweet (e.g., KitKat).
Figure 1 presents an example of API levels with respect to
their adoption by millions of Android-powered devices using
the official Google Play store as of May 2018.
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4.3%

Android 4.1/4.2/4.3
Level 16/17/18

KitKat
10.3%

Android 4.4
Level 19

Lollipop
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Marshmallow
25.5%

Android 6.0
Level 23

Nougat
31.1%

Android 7.0/7.1
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Oreo
5.7%

Android 8.0/8.1
Level 26/27

Fig. 1: Distributions of API levels supported by current Android-
powered devices (versions with less than 1% are not shown).

B. Android Apps

Android apps are generally written in Java. During com-
pilation, the Java code is then transferred into Dalvik/ART
bytecode (in DEX format). Together with other resource
files such as the AndroidManifest configuration and images,
the bytecode is then assembled into an Android Application
Package (APK), which can then be distributed on app mar-
kets. When developing an Android app, developers have to
specify the ideal API level that the app supports, i.e., the
app needs to be thoroughly tested against devices running a
framework at that level. This ideal API level is stored in the
app as an attribute named targetSdkVersion, where the value
of this attribute can be programmatically extracted. Hence,
each Android app can be associated with an integer number
indicating the targeted API level that the app is implemented
upon.

C. Terminology

APK (Application Package Kit) is the Android application
package for distribution and installation of Android apps.
Moreover, to update an Android app, an APK of the new
version needs to be provided. Therefore, an app lineage is
recognized as the consecutive series of its APKs and each of
the APK is also called an app version. Hereafter, we then use
app lineage and app version to distinguish these two different
concepts,

D. Complexity Metrics

Chidamber et al. [10] have introduced six metrics to “mea-
sure the complexity in the design of classes”. Since Android
apps, as mentioned before, are written in Java and thereby have
extended Java’s object-oriented features, the proposed six met-
rics should also be able to reliably improve the development
processes of Android apps. State-of-the-art studies such as Jost
et al. [11], [12] have also leveraged those metrics for Android
app developers to consider so as to write high-quality code.
We note that these metrics are highly related to complexity

concerns, and thus, we adopt them to measure the complexity
of Android apps.

1) Weighted methods per class (WMC) is the sum of the
complexities of all methods in a class. It is used to mea-
sure the effort required for developing and maintaining a
particular class as well as the inheritability and reusability
of a class. A high WMC score of a class means that
the class is complex that hence is difficult to reuse and
maintain. To simplify the calculation, in this work, we
consider the complexity of all methods to be unity. Then
WMC is simply a method counter of each class.

2) Depth of inheritance tree (DIT) is used to measure
the depth of a given class based on the inheritance tree.
Ideally, the value of DIT metric should be kept low as the
complexity of developing, testing and maintaining a class
would significantly increase if the depth of inheritance
tree increases. As DIT defined, the inheritance tree of
each class is calculated and the maximum length is set
as the value of DIT.

3) Number of children (NOC) is another metric leveraged
to measure the “width” of a given class (i.e., the number
of direct sub-classes) based on the inheritance tree. The
value of NOC approximately indicates the reuse degree of
a given class. While the reusability of a class increases if
more children are introduced, the responsibility required
to maintain the class not to break the children’s behavior
also increases.

4) Lack of cohesion in methods (LCOM) is a metric
used to measure the cohesiveness between methods and
attributes of a given class. A higher LCOM value in-
dicates a low cohesion between the methods and data,
which hence increases the complexity of the class and
subsequently increasing the possibility of introducing
errors during the development of software. There are two
ways to calculate the value according to Linda et al. [13]
and in this work, we choose the first one which is based
on the average percentage of each data field used by the
methods of a class.

5) Coupling Between Object classes (CBO) measures
the dependency of a class on other classes. High CBO
value indicates excessive dependency which means lower
reusability and higher testing complexity. It is calculated
by counting the number of other classes used by a class.

6) Response For a Class (RFC) reflects the potential invo-
cation of methods of a class on responding to a message.
A low value of RFC is preferred since it indicates short
possible invocation chain which makes debugging and
testing easier. RFC is calculated by counting all the
methods invoked in a class. For methods invoked more
than once, only the first time will be counted.

Initially, we have considered the 22 quality metrics proposed
by Mercaldo et al. [14]. However, our preliminary experiments
have revealed that many of them are highly correlated with
each other as demonstrated in Figure 2. Moreover, because of
space limitations to present the results of all the 22 metrics,



Therefore, for this study, we decide to focus only on the six
classic metrics. We believe that the other metrics, especially
the ones that are recently introduced, are also worth to explore
and hence we will consider them in our future works.

Fig. 2: Metrics Correlation Map

III. EXPERIMENT SETUP

To set up the empirical experiments related to the complex-
ity evolution of Android apps, we present the main research
questions this work explores and the dataset this work stands
upon in Section III-A and Section III-B, respectively.

A. Research Questions

Our objective is to understand the evolution of Android
apps’ complexity and hence to empirically observe practical
insights for guiding the evolution of Android apps towards
engineering more reliable apps. To fulfill this objective, we
plan to perform an exploratory study to answer the following
research questions:

• RQ1: How does the code of Android apps generally
evolve? As the first research question, in order to have an
overall understanding of the general evolution of Android
apps, we empirically investigate the changes in terms of
code size (i.e., DEX size and class number) of Android
apps over time.

• RQ2: How does the complexity of Android apps evolve
as time goes by? The complexity evolution within this
research question will be investigated year by year. For
each app lineage, we choose one app version for each
year: the latest one released in that year. The chosen
apps from the same year (different lineages) will be
considered as a whole and the extracted metric values will
be leveraged to represent app complexity of that year.

• RQ3: How do Android API level updates impact on app
complexity? Android framework is recurrently updated
to introduce new features or fix critical bugs. To benefit
from these updates, Android apps need to be correspond-
ingly changed. Hence, the complexity evolution within
this research question will be investigated based on the
targeted API levels of the considered apps.

• RQ4: What are the patterns of complexity evolution? By
defining feature patterns, the evolution of complexity will
be investigated in the manner of individual app lineage.
Then, how Android apps evolves normally as well as what

is the uncommon pattern during complexity evolution can
be spotted.

B. Dataset

To answer the aforementioned research questions, we resort
to so far the largest app collection, namely AndroZoo [15],
[16], to prepare the experimental environment. AndroZoo1 is
a growing collection of Android apps collected from various
sources, including the official Google Play app market and
third party alternative markets such as AppChina. So far,
AndroZoo repository contains over 5 million Android apks
and has been successfully applied to support the analysis of
various research studies [17], [18]. For this study, based on
AndroZoo, we eventually re-construct 28,564 app lineages of
app versions no less than 10, which contains 465,037 app
versions. Figure 3a shows the distribution of the releasing
years of the apks. The releasing time is obtained from the last
modification time of the “classes.dex” files decompressed from
apks. While, Figure 3b exhibits its target API level distribution.
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Fig. 3: Statistics of Lineage Dataset

C. Re-construction of App Lineages

We re-construct app lineages based on AndroZoo’s data
heap and according to the procedure proposed by Gao et
al.[19] as illustrated in Figure 4.

1) Application ID Extraction: name is required to be given
for every Android app by following Java package naming
convention. It needs to be unique for each app and used
as the ID of the app. We group together APKs with same
name as candidate app versions of an app lineage.

2) App Certificate Clustering: to be sure that all app versions
are from the same developer, the developer signature
is considered. APKs with the same application ID but
the different signature will not be classified in one app
lineage.

1https://androzoo.uni.lu



3) App Market Clustering: we assume that developers al-
ways distribute their apps on the same market. Then we
further constraint that our app lineages need to contain
APKs from the same market.

4) App Version Sorting: to reflect the evolution process, the
app versions of a given app lineage are ordered according
to their versionCode which is declared in their APKs.

Extraction of 
App IDs

App Clustering
by Certificate

App Clustering 
by Market

Sorting Apps 
by Version

…
…

..

Fig. 4: App Lineage Re-construction Process

D. Metrics Computing

In this work, the metric values are computed at the smali
code level. All the considered lineage apps are disassembled
by Apktool, a well-known static analysis tool for reverse
engineering Android APK files.2 Apktool will translate the
executable part of an app, namely the DEX bytecode into the
so-called smali code.

Because the considered complexity metrics are measured
at class levels, while Android apps normally are made up of
multiple classes, for a given metric, we regard its value for
a given Android app as the median and standard deviation
value among that of all the classes of the app. Statistically
speaking, these two values have characterised the majority of
the sample population (i.e., median) and their spreads (i.e.,
standard deviation). Indeed, for a certain app, the median value
can represent the app in most of its classes while the standard
deviation reflects the extent the complexity of the classes can
go, e.g., either better or worse.

In this work, we rename these two values (median and stan-
dard deviation) as feature and variation3, which are explained
as follows:

Given an app a, C = {c1, c2, . . . , cn} is the set of its
classes, for a certain metric m, the value of ci is vm(ci),
where ci ∈ C, then

• feature value: feature(a) =M , where M is the median
value of {vm(c1), ..., vm(cn)}.

• variation value: variation(a) = σ, where σ is the
standard deviation of {vm(c1), ..., vm(cn)}.

During our experiments, we have found that the an-
droid.support package has been widely presented in some
Android apps. Since this package is provided by Google as an
official library for resolving issues such as compatibility4, we
do not take this package into consideration when computing
the values of metrics.

2https://ibotpeaches.github.io/Apktool/
3The rationale behinds this renaming is to avoid confusions about expres-

sions such as “median of the median values”.
4https://developer.android.com/topic/libraries/support-library/index.html

It is also worth to mention that not all lineage apps can
be successfully reverse engineered by our tool for computing
the values of our selected metrics. The main reasons led to
the failures are 1) Apktool crashes due to exceptions such as
no smali code generated, (2) null values are returned by our
tool because the number of classes is too small (e.g., less
than three for some app versions) or there is no field defined
by some classes (i.e., this will lead to null value for metric
LCOM). Moreover, since date information is also important
to this study, (e.g., we leverage it to perform the year-based
evolution study), we further remove such app lineages that
have incomplete DEX date associated, i.e., we cannot extract
a validated assembly time from the app.

To conclude, among the 28,559 lineages (464,649 app
versions in total), 1,389 app lineages (23,451 apps versions)
that have confronted the aforementioned issues are ignored in
this study. In other words, our study is conducted based on
27,170 app lineages (441,198 app versions).

IV. RESULTS

We now present our investigation details towards answering
the aforementioned research questions.

A. RQ1: General Evolution of Android Apps

Fig. 5: Cumulative distribution function (CDF) of the update fre-
quency of selected lineage apps. Given a frequency (e.g., x = 365
days), the probability for an app to have an update within x = 365
days can be quickly observed from the CDF (i.e., the corresponding
value in the Y-axis).

Since it is non-trivial to select the time interval for re-
aligning lineage apps, we resort to a simple empirical study
to select such time interval. The study looks into the update
frequency of all the selected lineage apps. Figure 5 illustrates
the Cumulative Distribution Function (CDF) of the update
frequency, where the frequency is counted in days (as shown
in the X-axis). For about a year (e.g., 365 or 366 days),
more than 95% of considered apps have been updated at least
once, presenting a great time interval to build our time-based
evolution dataset. Therefore, we select a year as the time
interval to investigate the complexity evolution of Android
apps.

To understand the general evolution of Android apps, we
first look into the evolution of size and the number of Java
classes of Android apps. Figure 6 shows how are the median
value of app size and the number of classes evolved as time



goes by. For each median value, it is calculated based on all
apps of that year.
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Fig. 6: App Size and # Classes Evolution in Time

Quite clearly, both app sizes and class numbers were in-
creasing, especially, from 2014 to 2015, the rise was dramatic.
This evidence suggests that Android apps become bigger and
bigger in both size and the number of classes.

Fig. 7: Scatter Plot of App Size and # Classes

Furthermore, as demonstrated in Fig. 7, there is also a
strong correlation between app size and the number of classes.
This strong correlation is also confirmed to be statistically
significant via the Pearson’s correlation coefficient (ρ > 0.9,
showing a strong positive correlation). This strong positive
correlation implies that app updates are more likely to add
new classes than simply add codes to existing classes. Indeed,
in our selected app lineages, 80.73% of them have their apps
eventually become bigger (comparing the last app version with
the first one) in terms of the number of classes, while the
percentage is even higher when talking about the app size:
83.4% of selected lineages.

As app size and the number of classes getting bigger
and bigger, intuitively, apps are becoming more complex and
more difficult to maintain. Consequently, a detailed study on
app complexity evolution is expected. This research question
actually motivated us to perform an in-depth analysis of the
complexity evolution of Android apps.

During the evolution, app developers are more likely
to introduce new classes rather than adding code to
existing ones, as shown by the strong correlation of
changing in app size and number of classes.

B. RQ2: Complexity Evolution via Time

We investigate the complexity evolution of Android apps via
their release time5. State-of-the-art approaches for time-based
evolution normally choose random apps for different time-
points. As a result, the apps chosen in different time-points
could be different. On the contrary, our lineage based time
evolution approach is expected to always select app versions
from same app lineages. By doing this, the consistency of
samples between different time-points can be well reserved,
which makes the final result more reliable. To support this
kind of investigation, we need to re-construct a fine-grained
dataset where the considered lineage apps are aligned via time.
To this end, we re-align our lineage apps by selecting the last
app version of each year from each app lineage.

Figure 8a presents the evolution of the metrics feature value
from 2011 to 2016. The median value of metrics NOC, DIT,
WMC and CBO exhibit as horizontal lines with very low
values, which indicates that app complexity in terms of these
4 metrics has kept very low and constant for past 6 years.
These values tell us that for most classes of an app, they were
not sub-classed (i.e., 0 of NOC), they had shallow inheritance
trees (i.e., 1 of DIT), their method complexities are low (i.e.,
3 of WMC) and they were not coupled with other classes (i.e.,
0 of CBO). Regarding the standard deviations shown as the
ribbons, NOC, DIT and CBO show no ribbon at all while
WMC shows an observable ribbon with a narrow-down trend.
Since the standard deviations reflect the difference between
different apps, we can say that the vast majority of apps exhibit
no difference of complexity in terms of NOC, DIT and CBO.
Meanwhile, in terms of WMC, there are apps with different
feature values, but the difference is not big (±1 on average)
and getting smaller.

On the other hand, RFC and LCOM show more changes
as they evolving. The drop of RFC in 2012 indicates a clear
improvement of this metric for most of the apps. While a slight
deterioration of LCOM happened in 2013 can be observed
as well. Furthermore, the difference between apps in these 2
metrics was getting narrower too.

Because the feature values only reflect app complexity in
major situations as explained in Section III-D. To have a more
comprehensive understanding of apps complexity evolution,
we further resort to an investigation into the evolution of
variation values of Android apps.

Figure 8b shows the evolution of app variation values. From
the median value perspective, 4 of the metrics show a clear
decline trend which are NOC, DIT, RFC and LCOM. While for
CBO and WMC, they were slightly increased over the years.
As the variation of a metric measures the differences of the
metrics among different classes of an app, Thus, a decreasing
in trend is preferred. On the other hands, the differences
of variation values between different apps are exhibited by

5Since AndroZoo does not collect the release date metadata for Android
apps, and it is virtually impossible to retrieve such metadata for previous
app versions, as these metadata have already been overwritten by the data of
updated app versions, in this work, we consider the assemble DEX time as
the app release time.
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Fig. 8: Lineage based evolution with the central lines depict the trend of median value while the ribbons show the changing of standard
deviation and the boxplots illustrate the distribution of each year

the ribbons in the figure. Therefore, for past 6 years, the
differences of NOC and CBO have been increased while DIT
and LCOM have been decreased. For RFC and WMC, the
differences kept almost the same.

As time goes by, the complexity in terms of RFC
has been mitigated but deteriorated in LCOM. Out
of the six metrics, nature updates (update via time)
have only impacted these two metrics, although the
impacts are quite limited. It is worth to highlight that
the complexity difference between different apps is
getting closer during the evolution.

C. RQ3: Complexity Evolution via API Level

In order to understand the possible impact of API levels
on the evolution of app complexity, we conduct another study
that specifically looks into the complexity difference between
such apps that target different Android API levels. To this end,
for each app lineage, we pair up adjacent app versions, which
target different API levels, for difference examination. Given
a pair of app versions (ai, ai+1) and their targeted API levels
(Li, Li+1), we define level skip as the difference between the
two targeted API levels (i.e., level skip := Li+1 − Li). Fig-
ure 9 illustrates the distribution of API level skips summarized
from our app lineage dataset. The level skips vary from −16
to 19 while the majority app pairs fall into the category of
level skip equals to 1, followed by 2 and 3 skips respectively.
The reasons causing minus level skips could be: (1) to support
previous users or features requiring old API, (2) version code
assigned reversely, (3) some other unknown purposes. As these
cases are rare and abnormal, in this paper, they will not be
considered. In this work, we take into account all the app
pairs that have API level skip between 1 and 3. Based on this
criterion, we form a new dataset containing three types of app

pairs: S1, S2 and S3 for app pairs with one, two and three
level skips, respectively,
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Fig. 9: Distribution of API level skips for every two adjacent app
versions while x = 0 is not shown as it means no skip
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Figure 10 illustrates the distribution of feature value dif-
ferences of app pairs via level skip. Since metrics NOC,
DIT, WMC and CBO are quite stable during the evolution
of Android apps, as shown in Section IV-B, we only present
the distribution of metrics RFC and LCOM in the figure.



Interestingly, the median values stay closely to 0 suggests
that the changes are quite small despite the targeted API level
is updated. The fact that the major parts of the boxes fall into
the negative side of Y-axis and larger level skips seem to yield
larger ranges of the negative parts indicates that the changes
do not seem to increase the app complexity (at least for RFC
and LCOM).

Figure 11 illustrates the distribution of variation value
differences via level skip. Similarly, except for metric WMC,
where the median values are generally decreasing when level
skip increases, the median values of other metrics are very
close to 0. Regarding the body of the boxes, the major parts
for metrics DIT, WMC, RFC and LCOM fall into the negative
side of Y-axis while for metrics NOC and CBO, they fall
into the positive side. The body size is increased as level
skip increasing. For NOC and CBO, they increase mainly on
the positive side of Y-axis. But the rest four metrics increase
mainly on the negative side.
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Fig. 11: API Level based Evolution of Variation Values

As the interpretation of these patterns, updates of API
levels may effect on different metrics differently. A bigger
level skip normally causes a larger increase in the complexity
difference within an app from the aspect of NOC and CBO
(remind that the definition of variation value in Section III-D).
However, from the aspect of DIT, WMC, RFC and LCOM,
the complexity difference shrinks mostly.

API level updates could cause the complexity of An-
droid apps to decrease, although the extent is quite
limited. Also, for most of the metrics, API level
updates shrink the complexity difference within apps.

D. RQ4: Patterns of Complexity Evolution
We remind the readers that in this work we use lineage apps

rather than randomly selected apps to investigate the complex-
ity evolution of Android apps, where the dataset allows us to
have a deeper look at how each app lineage evolves. Consider
an app lineage with n app versions app1, app2, . . . , appn. Let
set M = {m1,m2, . . . ,mn} stand for the feature or variation
values of a metric of these app versions and σ be the standard
deviation of set M . The possible evolution patterns that each
app lineage may fall into are defined as follows:
• overall patterns

– flat: |m1−mn| < σ, which means the difference between
the first and last app version is less than the standard
deviation of the app lineage.

– decrease: m1 −mn ≥ σ, which means the value of the
first app version is greater than the value of the last one
and the difference is bigger than the standard deviation.

– increase: mn − m1 ≥ σ, which means the value of the
last app version is greater than the value of the first one
and the difference is bigger than the standard deviation.

• detail patterns
– constant: patterns between adjacent app versions are con-

sistent with the overall pattern. For flat pattern, it means
mi = mj . For decrease pattern, mi ≥ mi+1. For increase
pattern, mi ≤ mi+1. Where i, j ∈ {1, . . . , n}.

– hill: maxM ∈ {m2, . . . ,mn−1} and maxM −
max {m1,mn} > σ, which means maximum value hap-
pens in an app version which is not the first or the last
app version. Additionally, the maximum value needs to
be greater than the maximum value of the first and the
last app version and the difference need to be bigger than
the standard deviation of the app lineage.

– valley: this is the opposite situation of hill and it expresses
as minM ∈ {m2, . . . ,mn−1} and min {m1,mn} −
minM > σ

– wave: other cases where no constant, hill and valley
patterns can be observed.

TABLE I: Possible Patterns & Abbreviation

Pattern Abbreviation
Flat Constant fc
Increase Constant ic
Decrease Constant dc
Flat Wave fw
Increase Wave iw
Decrease Wave dw
Flat Hill fh
Increase Hill ih
Decrease Hill dh
Flat Valley fv
Increase Valley iv
Decrease Valley dv
Flat Hill & Valley fhv
Increase Hill & Valley ihv
Decrease Hill & Valley dhv

The overall patterns are the patterns defined by the starting
and ending points. They are designed to give a brief concept
of what is the evolution trend. While detail patterns are



Fig. 12: Real world examples of patterns of complexity evolution with the name of patterns as x-axis labels and application names as y-axis
labels

meant to reflect the feature patterns during the evolution. To
give a complete evolution pattern, one of the overall patterns
combined with one or two detail patterns is required and the
possible combination patterns are shown in Table I. Figure 12
further shows the real world examples of each defined pattern
from our dataset.

According to the patterns defined, we analyze each app
lineage to obtain their evolution patterns and then calculate
the frequency of each pattern. The final result is displayed by
a heat map in Figure 13. Likewise, frequencies of NOC, DIT
and CBO feature values are removed from the figure because
all their values keep constant (cf. Section IV-B).
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Fig. 13: Frequency distribution of patterns of complexity evolution
with feature and variation value parts divided by a red horizontal
dash line

Regarding the evolution pattern summarized via feature val-
ues (the part under the red horizontal dash line), undoubtedly,
fc is the most evident column, followed by column dc and ic
sequentially. On the other hand, in the variation value part
(the part above the red horizontal dash line), although the
column of fc is still noticeable, there are only 2 tiles (which
are DIT and NOC) with a very dark color, while the rest
tiles are quite bright. Meanwhile, column dw and iw are also
very distinguishable and with much even darkness. Moreover,
3 brightest columns are also spotted which are dhv, fw and
ihv and both median value and standard deviation parts are
consistent in these 3 brightest columns.

So far, we can observe that the complexity of major Android
apps tends to stay constant (do not forget that the median
values of the 3 removed metrics are even more constant).
Nonetheless, there are still many apps tend to decrease con-
stantly in complexity while others may increase constantly.

However, except for metrics DIT and NOC, where the evolu-
tion pattern of most apps is still, the complexity difference
within an app lineage is more likely to either decrease or
increase wavily.

According to the patterns of complexity evolution,
wavily increasing and decreasing have dominated the
trend of complexity difference during the evolution of
Android apps. This empirical evidence suggests that
app developers might not really be aware of controlling
the complexity of their apps.

V. DISCUSSION

In this section, we discuss several implications that this
study can lead to and disclose the potential threats to the
validity.

A. Implication

a) Towards Engineering Better Metrics: Our experimen-
tal results suggest that app complexity does not significantly
change during app updates. This evidence can be explained by
the fact that, as shown in Section IV-A, Android app updates
usually do not simply add codes to existing classes but are
more likely to add new classes. Unfortunately, the six metrics
we used in this study are all based on classes. They might not
be representative to fully capture the complexity of Android
apps. Therefore, we argue that there is still a lot of space to
improve towards engineering better metrics for characterizing
the development of mobile apps. To this end, designing
a new set of complexity-related metrics (e.g., to take into
account invocation chains) is needed. Moreover, neglecting
the complexity conducted by the interaction between classes
is not reasonable, so comprehensive application level metrics
are also needed.

b) Best Practice to Guide Future Quality Evolutions:
Generally, preserving and improving software quality is a
long-time challenge that is difficult to resolve. Due to soft-
ware aging, without active countermeasures, the quality of
applications slowly degrades during their evolutions [20], [21].
As argued by Mens et al., there is a need to provide tools
and techniques that preserve or even improve the quality



characteristics of software systems [22]. In this study, around
9% of our selected app lineages are always in line with that
of the mainstream. For our future work, good practices could
be learned based on these apps. If so, we subsequently present
automated tools to apply the obtained good practices, e.g., by
instrumenting directly the bytecode of Android apps [23].

c) Observing differences between developer capabilities:
Since an Android app is likely developed by multiple devel-
opers, who might have different abilities to control the quality
of their implemented code, we believe that standard deviation
value could be a good means to capture the differences among
developers in a team which can further provide insights to
optimize development teams.

B. Threats to Validity

The study conducted in this work has presented several
threats to the validity.

First, the considered six metrics may not be fully represen-
tative of the quality of Android apps. For example, compared
to the six metrics proposed by Jost [11], we have missed
four of them although have additionally considered 2 metrics.
Also, many metrics are highly correlated with others. Hence,
as suggested by Mourad et al. [24], there is a need to invent
new quality metrics that attempt to unify similar metrics so as
to simplify further analysis and make interpretation concise.
We consider this as our future work.

For an app lineage, some versions could be missing without
our awareness. Also, the order of app versions may not
be correct if the version code in the manifest is assigned
randomly. However, the impact of missing versions on this
study is limited while given random version is not common
practice.

Finally, our time-based evolution study is at year level,
although we have empirically shown that a year is actually
a reasonable interval, it might still be too long for this study
as in practice popular apps are updated more frequently. To
mitigate this potential threat, we plan to design and implement
a generic framework for supporting more advanced evolution
analyses of mobile apps, where different parameters such as
time interval, level skips and metrics can be easily configured
and adjusted.

VI. RELATED WORK

In this section, we discuss related work on quality metrics
and evolution-related studies.

A. Quality Metrics

Various studies have investigated the problem of observing
reliable metrics for characterizing the quality of mobile apps.
Chidamber and Kemerer [10] introduce six metrics for guiding
the design of object-oriented programs and four of them
have been considered by Jost et al. [11] and hence by this
work. Thomas McCabe [25] further introduced Cyclomatic
Complexity (CC) for measuring the complexity. Fenton and
Neil [26] argued that the future for software metrics lies in

using them to develop decision-support tools to support risk
assessment.

Several researches have focused on quality metrics related
to Android apps. Tian et al. [27] investigated the characteristics
which make Android apps high-rated. They found that metrics
such as app size, target SDK version are influential factors
contributing to the success of Android apps. Protsenko et
al. [28] also leverage software metrics to detect Android
malware. Experimental results show that software metrics
are reliable for distinguishing malware and resilient against
common obfuscation.

B. Evolution Study

There are several researchers studied the general laws of
software evolution [29], [20], [30], which show that software
will continuously change and so does its complexity, demon-
strating that software evolution analysis is essential in our
community.

Software evolution analysis has been widely adopted to
understand the evolutionary process of a software system and
hence to predict its future evolution [31], [32], [33]. Gen-
erally, software evolution analysis investigates the evolution
of a software system to identify potential shortcomings in
its architecture. Those identified shortcomings can then be
addressed specifically to improve the quality of the software
system.

Neamtiu et al. [31], by studying nine open-source projects
covering 705 official releases, they confirmed Lehman’s two
laws of software evolution (i.e., software continuing change
and continuing growth). Behnamghader et al. [33] argued that
studying software quality before and after each commit can
reveal how each change impacts the overall quality.

However, Android apps are generally released as APKs
which do not contain commit messages. Therefore, researches
leveraged the difference between two subsequent app releases
to investigate the evolution of Android apps [34], [6], [35],
[4]. Calciati et al. [35] have investigated the evolution of
permissions. Taylor et al. [4] investigated the evolution of
app vulnerabilities. The most closed work to ours is the one
presented by Hecht et al. [36], who investigate the evolution
of Android poor design choices based on 3,568 versions of
106 Android apps. Our work, although focusing on different
metrics, is generally in line with theirs and thus can be taken
as a supplement to the state-of-the-art.

VII. CONCLUSION

In this work, we have conducted a large-scale empirical
study of the complexity evolution of Android apps. To sup-
port the study, we re-constructed 28,564 app lineages from
AndroZoo, where each app lineage is made up of at least
10 versions that record the historical releases of the same app.
Subsequently, we select six metrics that have been successfully
leveraged by literature works for quantifying the complexity of
Android apps. Based on the evolution of these six metrics, we
eventually find that (1) Android apps usually become bigger
during their evolutions and updates are tend to add new classes,



(2) nature updates do not really impact on the complexity of
Android apps, (3) the update of Android framework could
mitigate app complexity but very limited, (4) complexity
evolution is more like to wavily increase or decrease.
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[11] GREGOR JOŠT, JERNEJ HUBER, and MARJAN HERIČKO. Using
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