
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Evaluating Representation Learning of Code Changes for
Predicting Patch Correctness in Program Repair

Anonymous Author(s)

ABSTRACT
A large body of the literature of automated program repair de-
velops approaches where patches are generated to be validated
against an oracle (e.g., a test suite). Because such an oracle can be
imperfect, the generated patches, although validated by the oracle,
may actually be incorrect. While the state of the art explore re-
search directions that require dynamic information or that rely on
manually-crafted heuristics, we study the benefit of learning code
representations in order to learn deep features that may encode
the properties of patch correctness. Our empirical work mainly
investigates different representation learning approaches for code
changes to derive embeddings that are amenable to similarity com-
putations. We report on findings based on embeddings produced
by pre-trained and re-trained neural networks. Experimental re-
sults demonstrate the potential of embeddings to empower learning
algorithms in reasoning about patch correctness: a machine learn-
ing predictor with BERT transformer-based embeddings associated
with logistic regression yielded an AUC value of about 0.8 in the
prediction of patch correctness on a deduplicated dataset of 1000 la-
beled patches. Our investigations show that learned representations
can lead to reasonable performance when comparing against the
state-of-the-art, PATCH-SIM, which relies on dynamic information.
These representations may further be complementary to features
that were carefully (manually) engineered in the literature.

1 INTRODUCTION
Automation in software engineering has recently reached new
heights with the promising results recorded in the research direc-
tion of program repair [25, 38]. While a few techniques try to model
program semantics and synthesize execution constraints towards
producing quality patches, they often fail to scale to large programs.
Instead, the large majority of research contributions [37] explore
search-based approaches where patch candidates are generated and
then validated against an oracle.

In the absence of strong program specifications, test suites rep-
resent affordable approximations that are widely used as the oracle
in program repair. In their seminal approach to test-based program
repair, Weimer et al. [49] considered that a patch is acceptable as
soon as it makes the program pass all test cases in the test suite.
Since then, a number of studies [41, 44] have explored the overfitting
problem in patch validation: a given patch is synthesized to pass a
test suite and yet is incorrect with respect to the intended program
specification. Since limited test suites only weakly approximate
program specifications, a patched program can indeed satisfy the
requirements encoded in the test cases, and present a behavior out-
side of those tests that are significantly different from the behavior
initially expected by the developer.

ASE 2020, September 21–25, 2020, Melbourne, Australia

2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Overfitting patches constitute a key challenge in generate-and-
validate approaches of automated program repair (APR). Recent
evaluation campaigns [16, 29, 30, 43, 50] on APR systems are stress-
ing on the importance of estimating the correctness ratio among the
valid patches that can be found. To improve this ratio, researchers
are investigating several research directions. We categorize them in
three main axes that focus on actions before, during or after patch
generation:
• test-suite augmentation: Yang et al. [56] proposed to generate
better test cases to enhance the validation of patches, while Xin
and Reiss [52] opted for increasing test inputs.

• curation of repair operators: approaches such as CapGen [50] suc-
cessfully demonstrated that carefully-designed (e.g., fine-grained
fix ingredients) repair operators can lead to more correct patches.

• post-processing of generated patches: Long and Rinard [32] have
explored some heuristics to discard patches that are likely over-
fitting.
Our work is related to the latter thrust. So far, the state-of-the-art

works targeting the identification of patch correctness are mainly
implemented based on computing the similarity of test case execu-
tion traces [53]. Ye et al. [57] followed up by presenting preliminary
results suggesting that statically-extracted code features at the syn-
tax level could be used to predict overfitting patches. While such
an approach is appealing, the feature engineering effort can be
huge when researchers target generalizable approaches. To cope
with this problem, Csuvik et al. [8] have proposed a preliminary
small-scale study on the use of embeddings: leveraging pre-trained
natural language sentence embedding models, they claim to have
been able to filter out 45% incorrect patches generated for 40 bugs
from the QuixBugs dataset [58].

This paper. Embeddings have been successfully applied to vari-
ous prediction tasks in software engineering research [1, 27, 45, 46].
For patch correctness prediction, the literature does not yet pro-
vide extensive experimental results to guide future research. Our
work fills this gap. We investigate in this paper the feasibility of
leveraging advances in deep representation learning to produce
embeddings that are amenable to reasoning about correctness.

❶ We investigate different representation learning models adapted
to natural language tokens and source code tokens that are more
specialized to code changes. Our study considers both pre-trained
models and the retraining of models.

❷ We empirically investigate whether, with learned representations,
the hypothesis of minimal changes incurred by correct patches
remains valid: experiments are performed to check the statistical
difference between similarity scores yielded by correct patches
and those yielded by incorrect patches.

❸ We run exploratory experiments assessing the possibility to select
cutoff similarity scores between learned representations of buggy
code and patched code fragments for heuristically filtering out
incorrect patches.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ASE 2020, September 21–25, 2020, Melbourne, Australia Anon.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

❹ Finally, we investigate the discriminative power of deep learned
features in a classification training pipeline aimed at learning to
predict patch correctness.

2 BACKGROUND
Our work deals with various concepts and techniques from the
fields of program repair and machine learning. We present the
relevant details in this section to facilitate readers’ understanding
of our study design and the scope of our experiments.

2.1 Patch Plausibility and Correctness
Defining patch correctness is a non-trivial challenge in automated
program repair. Until the release of empirical investigations by
Smith et al. [44], actual correctness (w.r.t. program behavior in-
tended by developers) was seldom used as a performance criterion
of patch generation systems. Instead, experimental results were
focused on the number of patches that make the program pass all
test cases. Such patches are actually only plausible. Qi et al. [41]
demonstrated in their study that an overwhelming majority of
plausible patches generated by GenProg [24], RSRepair [40] and
AE [48]) are overfitting the test suite while actually being incorrect.

To improve the probability of program repair systems to generate
correct patches, researchers have mainly invested in strengthening
the validation oracle (i.e., the test suites). Opad [56], DiffTGen [52],
UnsatGuided [60], PATCH-SIM/TEST-SIM [53] generate new test
inputs that trigger behavior cases which are not addressed by APR-
generated patches.

More recent works [8, 57] are starting to investigate static fea-
tures and heuristics (or machine learning) to build predictive mod-
els of patch correctness. Ye et al. [57] presented the ODS approach
which relates to our study since it investigated machine learning
with static features extracted from Java program patches. Their
approach however builds on carefully hand-crafted features, which
may not generalize to other programming programming languages
or even to varied patch datasets. The study of Csuvik et al. [8] is also
closely related to ours since it explores BERT embeddings to define
similarity thresholds. Their work however remains preliminary (it
does not investigate the discriminative power of features) and has
been performed at a very small scale (single pre-trained model on
40 one-line bugs from simple programs).

2.2 Distributed Representation Learning
Learning distributed representations have been widely used to ad-
vance several machine learning tasks. In particular, in the field
of Natural Language Processing embedding techniques such as
Word2Vec [20], Doc2Vec [20] and BERT [9] have been success-
fully applied for different semantics-related tasks. By building on
the hypothesis of code naturalness [2, 12], a number of software
engineering research works have also leveraged the aforemen-
tioned approaches for learning distributed representations of code.
Alon et al. [3] have then proposed code2vec, an embedding tech-
nique that explores AST paths to take into account structural in-
formation in code. More recently, Hoang et al. [13] have proposed
CC2Vec, which further specializes to code changes.

Our work explores different techniques across the spectrum of
distributed representation learning. We therefore consider four

variants from the seemingly-least specialized to code (i.e., Doc2Vec)
to the state of the art for code change representation (i.e., CC2Vec).
2.2.1 Doc2Vec. Doc2Vec [20] is an unsupervised frameworkmostly
used to learn continuous distributed vector representations of sen-
tences, paragraphs and documents, regardless of their lengths. It
works on the intuition, inspired by the method of learning word vec-
tors [36], that the document representation should be good enough
to predict the words in the document Doc2Vec has been applied in
various software engineering tasks. For example, Wei and Li [47]
leveraged Doc2Vec to exploit deep lexical and syntactical features
for software functional clone detection. Ndichu et al. [39] employed
Doc2Vec to learn code structure representation at AST level to
predict JavaScript-based attacks.
2.2.2 BERT. BERT [9] is a language representation model that
has been introduced by an AI language team in Google. BERT is
devoted to pre-train deep bidirectional representations from unla-
belled texts. Then a pre-trained BERT model can be fine-tuned to
accomplish various natural language processing tasks such as ques-
tion answering or language inference. Zhou et al. [61] employed
a BERT pre-trained model to extract deep semantic features from
code name information of programs in order to perform code rec-
ommendation. Yu et al. [59] even leveraged BERT on binary code
to identify similar binaries.
2.2.3 code2vec. code2vec [3] is an attention-based neural code
embedding model developed to represent code fragments as con-
tinuous distributed vectors, by training on AST paths and code
tokens. Its embeddings have notably been used to predict the se-
mantic properties of code fragments [3], in order, for instance, to
predict method names. In a recent work, however, Kang et al. [18]
reported an empirical study, which highlighted that the yielded to-
ken code2vec embeddings may not generalize to other code-related
tasks such as code comment generation, code authorship identifica-
tion or code clone detection. code2vec remains however the state of
the art in code embeddings: Compton et al. [7] recently leveraged
code2vec to embed Java classes and learn code structures for the
task of variable naming obfuscation.
2.2.4 CC2Vec. CC2Vec [13] is a specialized hierarchical attention
neural network model which learns vector representations of code
changes (i.e., patches) guided by the associated commit messages
(which is used as a semantic representation of the patch). As the
authors demonstrated in their in large empirical evaluation, CC2Vec
presents promising performance on commit message generation,
bug fixing patch identification, and just-in-time defect prediction.

3 STUDY DESIGN
First, we overview the research questions that we investigate. Then
we present the datasets that are leveraged to answer these research
questions. Finally, we discuss the actual training of (or use of pre-
trained) models for embedding the code changes.

3.1 Research Questions
RQ1: Do different representation learning models yield compara-

ble distributions of similarity values between buggy code and

patched code?

A widespread hypothesis in program repair is that bug fix-
ing generally induce minimal changes [5, 6, 15, 16, 28–30, 35,

2

Haoye TIAN

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Predicting Patch Correctness using Embeddings ASE 2020, September 21–25, 2020, Melbourne, Australia

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

49, 50, 54]. We propose to investigate whether embeddings
can be a reliable means for assessing the extent of changes
through computation of cosine similarity between vector
representations.

RQ2: To what extent similarity distributions can be generalized for

inferring a cutoff value to filter out incorrect patches?

Following up on RQ1, We propose in this research question
to experiment ranking patches based on cosine similarity of
their vector representations, and rely on naively-defined sim-
ilarity thresholds to decide on filtering of incorrect patches.

RQ3: Can we learn to predict patch correctness by training classifiers
with code embeddings input?

We investigate whether deep learned features are indeed
relevant for building machine learning predictors for patch
correctness.

3.2 Datasets
We collect patch datasets by building on previous efforts in the
community. An initial dataset of correct patches is collected by
using five literature benchmarks, namely Bugs.jar [42], Bears [33],
Defects4J [17], QuixBugs [26] and ManySStuBs4J [19]. These are
developer patches as committed in open source project repositories.

We also consider patches generated by APR tools integrated
into the RepairThemAll framework. We use all patch samples
released by Durieux et al. [10]. This only includes sample patches
that make the programs pass all test cases. They are thus plausible.
However, no validation information on correctness was given. In
this work, we proceed to manually validate the generated patches,
among which we identified 900 correct patches. The correctness
validation follows the criteria defined by Liu et al. [31].

In a recent study on the efficiency of program repair, Liu et al. [31]
released a labeled dataset of patches generated by 16 APR systems
for the Defects4J bugs.We consider this dataset as well as the labeled
dataset that was used to evaluate the PATCH-SIM [53] approach.

Overall, Table 1 summarizes the data sets that we used for our
experiments. Each experiment in Section 4 has specific require-
ments on the data (e.g., large patch sets for training models, labeled
datasets for benchmarking classifiers, etc.). For each experiment,
we will recall which sub-dataset has been leveraged and why.
Table 1: Datasets of Java patches used in our experiments.

Subjects
contains
incorrect
patches

contains
correct
patches

labelled
dataset # Patches

Bears [33] No Yes - 251
Bugs.jar [42] No Yes - 1,158
Defects4J [17]† No Yes - 864
ManySStubBs4J [19] No Yes - 34,051
QuixBugs [26] No Yes - 40
RepairThemAll [10] Yes Yes No‡ 64,293
Liu et al. [31] Yes Yes Yes 1,245
Xiong et al. [53] Yes Yes Yes 139
Total 102,041

†The latest version 2.0.0 of Defects4J is considered in this study.
‡The patches are not labeled in [10]. We support the labeling effort in this
study by comparing the generated patches against the developer patches. The
2,918 patches for IntroclassJava in [10] are also excluded from our study since
IntroClassJava is a lab-built Java benchmark transformed from the C program
bugs in small student-written programming assignments from IntroClass [23].

3.3 Model input pre-processing
Samples in our datasets are patches such as the one presented in
Figure 1 extracted from the Defects4J dataset. Our investigations
with representation learning however require input data about the
buggy and patched code. A straightforward approach to derive
those inputs would be to consider the code files before and after
the patch. Unfortunately, depending on the size of the code file,
the differences could be too minimal to be captured by any simi-
larity measurement. To that end, we propose to focus on the code
fragment that appears in the patch. Thus, to represent the buggy
code fragment (cf. Figure 2), we keep all removed lines (i.e., starting
with ’-’) as well as the patch context lines (i.e., those not starting
with either ’-’, ’+’ or ’@’). Similarly, the patched code fragment (cf.
Figure 3) is represented by added lines (i.e., starting with ’+’) as well
as the same context lines. Since tool support for the representation
learning techniques BERT, Doc2Vec, and CC2Vec require each input
sample to be on a single line, we flatten multi-line code fragments
into a single line.
−−− a/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.

java
+++ b/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
@@ −1794,7 +1794,7 @@ public abstract class AbstractCategoryItemRenderer

extends AbstractRenderer
}
int index = this.plot.getIndexOf(this);
CategoryDataset dataset = this.plot.getDataset(index);

− if (dataset != null) {
+ if (dataset == null) {

return result;
}
int seriesCount = dataset.getRowCount();

Figure 1: Example of a patch for the Defects4J bug Chart-1.

1: a/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
2: }
3: int index = this.plot.getIndexOf(this);
4: CategoryDataset dataset = this.plot.getDataset(index);
5: if (dataset != null) {
6: return result;
7: }
8: int seriesCount = dataset.getRowCount();

Figure 2: Buggy code fragment associated to patch in Fig. 1.

1: b/source/org/jfree/chart/renderer/category/AbstractCategoryItemRenderer.java
2: }
3: int index = this.plot.getIndexOf(this);
4: CategoryDataset dataset = this.plot.getDataset(index);
5: if (dataset == null) {
6: return result;
7: }
8: int seriesCount = dataset.getRowCount();

Figure 3: Patched code fragment associated to patch in Fig. 1.
In contrast to BERT, Doc2Vec, and CC2Vec, which can take as

input some syntax-incomplete code fragments, code2vec requires
the fragment to be fully parsable in order to extract information
on Abstract Syntax Tree paths. Since patch datasets include only
text-based diffs, code context is generally truncated and is likely
not parsable. However, as just explained, we opt to consider only
the removed/added lines to build the buggy and patched code input
data. By doing so, we substantially improved the success rate of the
JavaExtractor tool used to build the tokens in the code2vec pipeline.

3

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

ASE 2020, September 21–25, 2020, Melbourne, Australia Anon.

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

3.4 Embedding models
When representation learning algorithms are applied to some train-
ing data, they produce embedding models that have learned to map
a set of code tokens in the vocabulary of the training data to vectors
of numerical values. These vectors are also referred to as embed-

dings. Figure 4 illustrates the process of embedding buggy code and
patched code for the purpose of our experiments.

patch

Code	representation

buggy	code

patched	code

buggy	code	
vector

patched	code	
vector

Bert,	Doc2Vec	or	Code2Vec
embedding	model

Preprocessing

Figure 4: Producing code fragment embeddings with BERT,
Doc2Vec and code2vec.

The embedding models used in this work are obtained from
different sources and training scenarios.

• BERT. In the first scenario, we consider an embedding model
that initially targets natural language data, both in terms of the
learning algorithm and in terms of training data. The network
structure of BERT, however, is deep, meaning that it requires large
datasets for training the embedding model. As it is now custom
in the literature, we instead leverage a pre-trained 24-layer BERT
model, which was trained on a Wikipedia corpus.

• Doc2Vec. In the second scenario, we consider an embedding
model that is trained on code data but using a representation
learning technique that was developed for text data. To that end,
we have trained the Doc2Vec model with code data of 36,364
patches from the 5 repair benchmarks (cf. Table 1).

• code2vec. In the third scenario, we consider an embeddingmodel
that primarily targets code, both in terms of the learning algo-
rithm and in terms of training data. We use in this case a pre-
trained model of code2vec, which was trained by the authors
using ~14 million code examples from Java projects.

• CC2Vec. Finally, in the fourth scenario, we consider an embed-
ding model that was built in representation learning experiments
for code changes. However, the pre-trained model that we lever-
aged from the work of Hoang et al. [13] is embedding each patch
into a single vector. We investigate the layers and identify the
middle CNN-3D layer as the sweet spot to extract embeddings
for buggy code and patched code fragments. We illustrated the
process in Figure 5.

Trained	CC2vec	model

patch

3D	CNN	
layer	

Lookup	em
bedding

Fully	connected
layer

Output	
layer

buggy	code	
vector

patched	code	
vector

CC2Vec	code	representation

Figure 5: Extracting code fragment embeddings from
CC2Vec pre-trained model.

4 EXPERIMENTS
Wepresent the experiments that we designed to answer the research
questions of our study. For each experiment, we state the objective,
overview the execution details before presenting the results.

4.1 [Similarity Measurements for Buggy and
Patched Code using Embeddings]

Objective: We investigate the capability of different learned
embeddings to capture the similarity/dissimilarity between code
fragments. The experiments are performed towards providing an-
swers for two sub-questions:
RQ-1.1 Is correct code actually similar to buggy code based on

learned embeddings?
RQ-1.2 To what extent is buggy code more similar to correctly-

patched code than to incorrectly-patched code?
Experimental Design: We perform two distinct experiments

with available datasets to answer RQ-1.1 and RQ-1.2.

[Experiment ❶] Using the four embedding models considered in
our study (cf. Section 3.4), we produce the embeddings for buggy
and patched code fragments associated to 36k patches available
in five repair benchmarks (as shown in Table 2). In this case, the
patched code fragment represents correct code since it comes from
labeled benchmark data (generally representing developer fix patches).
Given those embeddings (i.e., code representation vectors), we com-
pute the cosine similarity between the vector representing the
buggy code fragment and the vector representing the patched code
fragment.

Table 2: Patch datasets used for computing similarity scores
between buggy code fragments and correct code fragments.

Bea
rs

Bug
s.ja

r

Def
ect

s4J

Many
SSt

uBs
4J

Qu
ixB

ugs
Tot

al

Patches 251 1,158 864 34,051 40 36,3641

1 Due to parsing failures, code2vec embeddings are available for 21,135 patches.

[Experiment ❷] To compare the similarity scores of correct code
fragment vs incorrect code fragment to the buggy code, we consider
combining datasets with correct patches and datasets with incorrect
patches. Note that, all patches in our experiments are plausible since
we are focused on correctness: plausibility is straightforward to
decide based on test suites. Correct patches are provided in bench-
marks. However, incorrect patches associated to all benchmark bugs
are not available. We rely on the dataset released by Liu et al. [31]:
674 plausible but incorrect patches generated by 16 repair tools for
184 Defects4J bugs are considered from this dataset. Those 674 in-
correct patches are selected within a larger set of incorrect patches
by adding the constraint that the incorrect patch should be chang-
ing the same code location as the developer-provided patch in the
benchmark: such incorrect patch cases may indeed be the most
challenging to identify with heuristics. We propose to compare the
similarity scores between the incorrect code and buggy code associ-
ated to the dataset with the similarity scores between correct code
and buggy associated to all benchmarks, all Defects4J benchmark
data, or only the subset of Defects4J that corresponds to the 184
patches for which relevant incorrect patches are available.

4

Haoye TIAN

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Predicting Patch Correctness using Embeddings ASE 2020, September 21–25, 2020, Melbourne, Australia

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

Figure 6: Distributions1 of similarity scores between correct
and buggy code fragments.

1 “ManySS” stands for “ManySStuBs4J”
Results: Figure 6 presents the boxplots of the similarity distribu-

tions with different embedding models and for samples in different
datasets. Doc2Vec and code2vec models appear to yield similarity
values that are lower than BERT and CC2Vec models.

In Figure 7, we zoom in the boxplot region for each embed-
ding model experiment to overview the differences across different
benchmark data. We obverse that, when embedding the patches
with BERT, the similarity distribution for the patches in Defects4J
dataset is similar to Bugs.jar and Bears dataset, but is different
from the dataset ManySStBs4J and QuixBugs. The Mann-Whitney-
Wilcoxon (MWW) tests [34, 51] confirm that the similarity of me-
dian scores for Defects4J, Bugs.jar and Bears is indeed statistically
significant. MWW tests further confirms the statistical significance
of the difference between Defects4J and ManySStBs4J/QuixBugs
scores.

Defects4J, Bugs.jar and Bears include diverse human-written
patches for a large spectrum of bugs from real-world open-source
Java projects. In contrast, ManySStuBs4J only contains patches for
single statement bugs. Quixbugs dataset is further limited by its
size and the fact that the patches are built by simply mutating the
code of small Java implementation of 40 algorithms (e.g., quicksort,
levenshtein, etc.).

While CC2Vec and Doc2Vec exhibit roughly similar patterns
with BERT (although at different scales), the experimental results
with code2vec present different patterns across datasets. Note that,
due to parsing failures of code2vec, we eventually considered only
118 Bears patches, 123 Bugs.jar patches, 46 Defects4J patches, 20,840
ManySStuBs4J patches and 8 QuixBugs. The change of dataset size
could explain the difference with the other embedding models.

✍ RQ1.1 ▶ Learned representations of buggy and correct code

fragments exhibit high cosine similarity scores. Median scores

are similar for patches that are collected with similar heuristics

(e.g., in the wild patches vs single-line patches vs debugging ex-

ample patches). The pre-trained BERT natural language model

captures more similarity variations than the CC2Vec model, which

is specialized for code changes.◀

In the second experiment, we further assess whether incorrectly-
patched code exhibits different similarity score distributions than
correctly-patched code. Figure 8 shows the distributions of cosine

Figure 7: Zoomed views of the distributions of similarity
scores between correct and buggy code fragments.

Figure 8: Comparison of similarity score distributions for
code fragments in incorrect and correct patches.
similarity scores for correct patches (i.e., similarity between buggy
code and correct code fragments) and incorrect patches (i.e., sim-
ilarity between buggy code and incorrect code fragments). The
comparison is done with different scenarios specified in Table 3.

The comparisons do not include the case of embeddings for
code2vec. Indeed, unlike the previous experiment where code2vec
was able to parse enough code fragments, for the considered 184
correct patches of Defects4J, code2vec failed to parse most of the
relevant code fragments. Hence, we focus the comparison on the
other three embedding models (pre-trained BERT, trained Doc2Vec
and pre-trained CC2Vec). Overall, we observe that the distribution

5

Haoye TIAN

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

ASE 2020, September 21–25, 2020, Melbourne, Australia Anon.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

Table 3: Scenarios for similarity distributions comparison
Scenario Incorrect patches Correct patches

Imbalanced-all1 674 incorrect patches all correct patches from 5
benchmarks in Table 2.

Imbalanced-Defects4J by 16 APR tools [31] all correct patches from
Defects4J.

Balanced-Defects4J for 184 Defects4J bugs all correct patches for the 184
Defects4J bugs.

1 Except for Defects4J, there are no publicly-released incorrect patches for APR
benchmarks.

of cosine similarity scores is substantially different for correct and
incorrect code.

We observe that the similarity distributions of buggy code and
patched code from incorrect patches are significantly different from
the similarities for correct patches. The difference of median values
is confirmed to be statistically significant by an MWW test. Note
that the difference remains high for BERT, Doc2Vec and CC2Vec
whether the correct code is the counterpart of the incorrect ones
(i.e., the scenario of Balanced-Defects4J) or whether the correct
code is from a larger dataset (i.e., Imbalanced-all and Imbalanced-
Defects4J scenarios).

✍RQ1.2▶ Learned representations of code fragments with BERT,

CC2Vec and Doc2Vec yield similarity scores that, given a buggy

code, substantially differ between correct code and incorrect code.

This result suggests that similarity score can be leveraged to dis-

criminate correct patches from incorrect patches.◀

4.2 [Filtering of Incorrect Patches based on
Similarity Thresholds]

Objective: Following up on the findings related to the first research
question, we investigate the selection of cut-off similarity scores
to decide on which APR-generated patches are likely incorrect.
Results from this investigation will provide insights to guide the
exploitation of code embeddings in program repair pipelines.

Experimental design. To select threshold values, we consider
the distributions of similarity scores from the above experiments
(cf. Section 4.1). Table 4 summarizes relevant statistics on the dis-
tributions on the similarity scores distribution for correct patches.
Given the differences that were exhibited with incorrect patches in
previous experiments, we use, for example, the 1st quartile value
as an inferred threshold value.
Table 4: Statistics on the distributions of similarity scores
for correct patches of Bears+Bugs.jar+Defects4J
Subjects Min. 1st Qu. Median 3rd Qu. Max. Mean
BERT 90.84 99.47 99.73 99.86 100 99.54
CC2Vec 99.36 99.91 99.95 99.98 100 99.93
Doc2Vec 28.49 85.80 92.60 96.10 99.89 89.19
code2vec 2.64 81.19 93.63 98.87 100 87.11

Given our previous findings that different datasets exhibit dif-
ferent similarity score distributions, we also consider inferring a
specific threshold for the QuixBugs dataset (cf. statistics in Table 5).
We do not compute any threshold based on ManySStuBs4J since it
has not yet been applied to program repair tools.

Our test data is constituted of 64,293 patches generated by 11
APR tools in the empirical study of Durieux et al. [10]. First, we
use the four embedding models to generate embeddings of buggy

Table 5: Statistics on the distributions of similarity scores
for correct patches of QuixBugs.
Subjects Min. 1st Qu. Median 3rd Qu. Max. Mean
BERT 95.63 99.69 99.89 99.95 99.97 99.66
CC2Vec 99.60 99.94 99.99 100 100 99.95
Doc2Vec 55.51 89.56 96.65 97.90 99.72 91.29
code2vec 81.16 98. 53 100 100 100 97.06

code and patched code fragments and compute cosine similarity
scores. Second, for each bug, we rank all generated patches based
on the similarity score between the patched code and the buggy,
where we consider that the higher the score, the more likely the
correctness. Finally, to filter incorrect candidates, we consider two
experiments:

(1) Patches that lead to similarity scores that are lower to the in-
ferred threshold (i.e., 1st Quartile in previous experimental data)
will be considered as incorrect. Patches where patched code ex-
hibit higher similarity scores than the threshold are considered
likely correct.

(2) Another approach is to consider only the top-1 patches with
the highest similarity scores as correct patches. Other patches
are considered incorrect.

In all cases, we systematically validate the correctness of all
64,293 patches to have the correctness labels, for which the dataset
authors did not provide (all plausible patches having been consid-
ered as valid). First, if the file(s) modified by a patch are not the
same buggy files in the benchmark, we systematically consider
it as incorrect: with this simple scheme, 33 489 patches are found
incorrect. Second, with the same file, if the patch is not making
changes at the same code locations, we consider it to be incorrect:
26 386 patches are further tagged as incorrect with this decision
(cf. Threats to validity in Section 5). Finally, for the remaining 4 418
plausible patches in the dataset, we manually validate correctness
by following the strict criteria enumerated by Liu et al. [31] to
enable reproducibility. Overall, we could label 900 correct patches.
The remainders are considered as incorrect.

Results. By considering the patch with the highest (top-1) simi-
larity score between the patched code and buggy code as correct,
we were able to identify a correct patch for 10% (with BERT), 9%
(with CC2Vec) and 10% (with Doc2Vec) of the bug cases. Overall we
also misclassified 96% correct patches as incorrect. However, only
1.5% of incorrect patches were misclassified as correct patches.

Given that a given bug can be fixed with several correct patches,
the top-1 criterion may not be adequate. Furthermore, this criterion
makes the assumption that a correct patch indeed exists among
the patch candidates. By using filtering thresholds inferred from
previous experiments (which do not include the test dataset in this
experiment), we can attempt to filter all incorrect patches generated
by APR tools. Filtering results presented in Table 6 show the recall
scores that can be reached. We provide experimental results when
we use 1st Quartile and Mean values of similarity scores in the
"training" set as threshold values. The threshold are also applied by
taking into account the datasets: thresholds learned on QuixBugs
benchmark are applied to generated patches for QuixBugs bugs.

6

Haoye TIAN

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

Predicting Patch Correctness using Embeddings ASE 2020, September 21–25, 2020, Melbourne, Australia

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944

Table 6: Filtering incorrect patches by generalizing thresholds inferred from Section 4.1.Results.

Dataset # CP # IP Threshold BERT CC2Vec Doc2Vec
+CP # -IP +Recall -Recall # +CP # -IP +Recall -Recall # +CP # -IP +Recall -Recall

Bears, Bugs.jar
and Defects4J 893 61,932 1st Qu. 57 48,846 6.4% 78.9% 797 19,499 89.2% 31.5% 794 25,192 88.9% 40.7%

Mean 49 51,783 5.5% 83.6% 789 23,738 88.4% 38.3% 771 33,218 86.3% 53.6%

QuixBugs 7 1,461 1st Qu. 4 1,387 57.1% 94.9% 4 1,198 57.1% 82.0% 7 1,226 100% 83.9%
Mean 4 1,378 57.1% 94.3% 4 1,255 57.1% 85.9% 7 1270 100% 86.9%

∗“# CP” and “# IP” stand for the number of correct and incorrect patches, respectively. “# +CP” means the number of correct patches that can be ranked upon the threshold,
while “# -IP” means the number of incorrect patches that can be filtered out by the threshold. “+Recall” and “-Recall” represent the recall of identifying correct patches
and filtering out incorrect patches, respectively.

✍ RQ2 ▶Building on cosine similarity scores, code fragment

embeddings can help to filter out between 31.5% (with CC2Vec)

and 94.9% (with BERT) of incorrect patches. While it can achieve

the highest recall of filtering incorrect patches, BERT produces

embeddings that lead to a lower recall (at 5.5%) at identifying

correct patches.◀

4.3 [Classification of Correct Patches with
supervised learning]

Objective. Cosine similarity between embeddings (which was used
in the previous experiments) considers every deep learned feature
as having the same weight as the others in the embedding vector.
We investigate the feasibility to infer, using machine learning, the
weights that different features may present with respect to patch
correctness. We compare the prediction evaluation results with the
achievements of related approaches in the literature.

Experimental design. To perform our machine learning exper-
iments, we first require a ground-truth dataset. To that end, we rely
on labeled datasets in the literature. Since incorrect patches gener-
ated by actual APR tools are only available for the Defects4J bugs,
we focus on labeled patches provided by two independent teams
(Liu et al. [31] and Xiong et al. [53]). Very few patches generated
by the different tools are actually labeled as correct, leading to an
imbalanced dataset. To reduce the imbalance issue, we supplement
the dataset with developer (correct) patches as supplied in the De-
fects4J benchmark. Eventually, our dataset included 1134 patches.
We removed duplicates to avoid data leak bias.
Table 7: Dataset for evaluatingML-based predictors of patch
correctness

Correct patches Incorrect patches Total
Liu et al. [31] 137 502 639
Xiong et al. [53] 30 109 139
Defects4J (developers) [17] 356 0 356
Whole dataset 523 611 1134
Final Dataset (deduplicated) 468 532 1000

Our ground truth dataset patches are then fed to our embedding
models to produce embedding vectors. As for previous experiments,
the parsability of Defects4J patch code fragments prevented the
application of code2vec: we use pre-trainedmodels of BERT (trained
with natural language text) and CC2Vec (trained with code changes)
as well as a retrained model of Doc2Vec (trained with patches).

Since the representation learning models are applied to code
fragments inferred from patches (and not to the patch themselves),
we collect the embeddings of both buggy code fragment and patched
code fragment for each patch. Then we must merge these vectors
back into a single input vector for the classification algorithm. We
follow an approach that was demonstrated by Hoang et al. [13] in
a recent work on bug fix patch prediction: the classification model

performs best when features of patched code fragment and buggy
code fragment are crossed together. We thus propose a classification
pipeline (cf. Figure 9) where the feature extraction for a given patch
is done by applying subtraction, multiplication, cosine similarity
and euclidean similarity to capture crossed features between the
buggy code vector and the patched code vector. The resulting patch
embedding has 2*n+2 dimensions where n is the dimension of input
code fragment embeddings.

Feature	extractor

Cc2vec

patches

buggy	code
fragments

patched	code
fragments

Preprocessing

Input

code	representation	learning	m
ethod

Bert

Doc2vec

n

Feature	crosses

n

Train	&
	test

Classifiers

Logistic	regression

Decision	tree

Naive	Bayes

Eb

Ep 2*n+2

sub

multi

cosine
Euclidian

Figure 9: Feature engineering for correctness classification.
Results. We compare the performance of different predictors

(varying the embeding models) using different learners (i.e., classifi-
cation algorithms). Results presented in Table 8 are averaged from a
5-fold cross validation setup. All classical metrics used for assessing
predictors are reproted: Accuracy, Precision, Recall, F1-Measure,
Area Under Curve (AUC). Logistic Regression (LR) applied to BERT
embeddings yield the best performance measurements: 0.720 for F1
and 0.808 for AUC.
Table 8: Evaluation of Bert representation on three ML clas-
sifiers.

Classifier Embedding Acc. Prec. Recall. F1 AUC

DecisionTree
BERT 63.6 62.0 57.3 59.6 0.632
CC2Vec 69.0 66.9 68.0 67.2 0.690
Doc2Vec 60.2 57.4 57.7 57.5 0.600

Logistic regression
BERT 74.4 73.8 70.3 72.0 0.808
CC2Vec 73.9 72.5 72.0 72.0 0.788
Doc2Vec 66.3 65.3 59.9 62.3 0.707

Naive bayes
BERT 60.3 55.6 77.0 64.5 0.642
CC2Vec 58.0 65.4 22.7 28.5 0.722
Doc2Vec 66.3 69.4 49.8 57.9 0.714

✍ RQ3.1 ▶ An ML classifier trained using Logistic Regression

with BERT embeddings yield very promising performance on

patch correctness prediction (F-Measure at 72.0% and AUC at

80.8%). ◀

[Comparison against the state of the art]. There are two
related works for patch prediction which were both evaluated on
139 patches released by Xiong et al. [53]. PATCH-SIM [53] com-
pares execution traces of patched programs to identify correctness.
ODS [57] leverages manually-crafted features to build machine
learning classifiers.

7

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

ASE 2020, September 21–25, 2020, Melbourne, Australia Anon.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

We consider the 139 patches as test set and the remainder in our
dataset (870 = 1000 − 1301) for training. Note that the 139 patches
are associated to bug cases where repair tools can generate patches.
These patches may thus be substantially different from the rest
in our dataset. Indeed our best learner (Logistic Regression with
BERT embeddings) yields an AUC of 0.765. The Receiver Operating
Characteristic (ROC) curve is presented in Figure 10.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic

AUC = 0.765

Figure 10: Performance of ML patch correctness predictor
using BERT/Logistic Regression: Test set from [53].

In the validation of PATCH-SIM [53], the authors aimed for avoid-
ing to filter out any correct patches. Eventually, when guaranteeing
that no correct patch is excluded, they could still exclude 62 (56.3%)
incorrect patches. If we constrain the threshold of our predictor to
avoid misclassifying any correct patch (threshold value = 0.219),
our predictor is able to exclude up to 43 (39.4%) incorrect patches,
which represents a reasonably promising achievement since no
dynamic information is used (in contrast to PATCH-SIM). Table 9
overviews the prediction results comparison.
Table 9: Comparison of incorrect patch identification
between PATCH-SIM (uses dynamic information) and
BERT+LR (uses embeddings statically inferred from
patches)

Ground Truth PATCH-SIM BERT + LR
Project Incorrect Correct Incorrect Correct Incorrect Correct

excluded (%) excluded excluded (%) excluded
Chart 23 3 14(60.9%) 0 16(69.6%) 0
Lang 10 5 6(54.5%) 0 1(10%) 0
Math 63 20 33(52.4%) 0 23(36.5%) 0
Time 13 2 9(69.2%) 0 3(23.1%) 0

Total 109 30 62(56.3%) 0 43(39.4%) 0

We also compare the predictive power of our models against that
of ODS [57], which builds on manually engineered features. We
directly compare against the results reported by the authors on the
139 test patches. While the pre-trained BERT model associated with
Logistic Regression (LR) achieves better AUC than ODS LR-based
model (0.765 vs 0.705), ODS Random Forest-based model achieves a
higher AUC at 0.841. Note however that ODS has been trained on
over 13 thousand patches (including patches for bugs associated to
the test set patch), our training dataset includes only 870 patches
(i.e., ∼1/20th of their dataset).

Tables 10 and 11 provide confusion matrices for different cut-off
thresholds of the classifiers for ODS and our BERT embeddings-
based classifiers: TP (true positives) represent correct patches that
were classified as such; TN (true negatives) represent incorrect

19 patches in the ground truth dataset by Xiong et al. [53] were duplicates (e.g.,
Patch151 ≡ Patch23).

patches that were classified as such; FP (false positives) represent
incorrect patches that were classified as correct; and FN (false neg-
atives) represent correct patches that were classified as incorrect.
Overall, the BERT-based predictor is very sensitive to the cut-off
thresholds while ODS is less sensitive. We also note that BERT
embeddings applied to Random Forrest does not yield good perfor-
mance: decision trees are indeed known to be good for categorical
data and request large datasets for training. In our case, the data
set is small, while ODS has a training dataset that is about 20 times
larger. The hand-crafted features of ODS may also help split the
patches into categories while our deep learned features are based
on a large vocabulary of natural language text.
Table 10: Confusion matrix of ML predictions based on
BERT embedddings with different thresholds.

Learners AUC Thresholds
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR 0.765

#TP 30 30 24 19 16 12 10 6 4
#TN 13 37 61 79 85 95 100 106 108
#FP 96 72 48 30 24 14 9 3 1
#FN 0 0 6 11 14 18 20 24 26

RF 0.751

#TP 30 30 29 26 20 12 4 2 0
#TN 1 1 6 32 79 102 107 108 109
#FP 108 108 103 77 30 7 2 1 0
#FN 0 0 1 4 10 18 26 28 30

Table 11: Confusion matrix of ODS predictions with differ-
ent thresholds.

Learners AUC Thresholds
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

LR 0.705

#TP 27 27 27 27 27 27 27 27 27
#TN 50 50 50 50 50 51 51 52 52
#FP 60 60 60 60 60 59 59 58 58
#FN 2 2 2 2 2 2 2 2 2

RF 0.841

#TP 29 29 29 29 29 29 25 23 14
#TN 20 33 36 43 51 60 68 81 101
#FP 90 77 74 67 59 50 42 29 13
#FN 0 0 0 0 0 0 4 6 15

We observe nevertheless that LR classifiers fed with BERT em-
beddings are able to recall high numbers of incorrect patches (#TN is
high and #FP is low on threshold > 0.5). In contrast ODS consistently
recalls correct patches (however with high false positives). These
experimental results suggest that both approaches can be used in a
complementary way. In future work, we will propose an approach
that carefully merges deep learned features to hand-crafted features
towards yielded a better predictors of patch correctness.

✍ RQ3.2 ▶ML predictors trained on learned representations ap-

pear to perform slightly less well than state of the art PATCH-SIM

approach which relies on dynamic information. On the other hand,

deep code representations appear to be complementary to hand-

crafted features engineered for ODS. Overall, we recall that our

experimental evaluations are performed in a zero-shot scenario,

i.e., without fine-tuning the parameters of any of the pre-trained

models. Furthermore, the training dataset of the classifiers is an

order of magnitude smaller
a
than the one used by most closely-

related work (i.e., ODS) and may further not be representative to

best fit the test set.◀

aWe were not able to collect or reconstitute the training dataset used in ODS
to train our model.

8

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

Predicting Patch Correctness using Embeddings ASE 2020, September 21–25, 2020, Melbourne, Australia

1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

5 DISCUSSIONS
We enumerate a few insights from our experiments with represen-
tation learning models and discuss some threats to validity.

5.1 Experimental insights
[Code-oriented embedding models may not yield the best embeddings

for training predictors.] Our experiments have revealed that the
BERT model which was pre-trained on Wikipedia is yielding the
best recall in the identification of incorrect patches. There are sev-
eral possible reasons to that: Bert implements the deepest neural
network and builds on the largest training data. Its performance sug-
gests that code-oriented embeddings should aim for being accurate
with small training datasets in order to become competitive against
BERT. While we were completing the experiments, a pre-trained
CodeBERT [11] model has been released (on April 27). In future
work, we will investigate its relevance for producing embeddings
that may yield higher performance in patch correctness prediction.
In any case, we note that CC2Vec provided the best embeddings
for yielding the best recall in identifying correct. patches (using
similarity thresholds). This suggests that future research should
investigate the value of merging different representations or com-
bining the eventual prediction probabilities to improve performance
in identifying both correct patches while excluding most incorrect
patches.
[The small sizes of the code fragments lead to similar embeddings.].
Figure 11 illustrates the different cosine similarity scores that can
be obtained for the BERT embeddings of different pairs of short
sentences. Although the sentences are semantically (dis)similar, the
cosine similarity scores are quite close. This explains why recalling
correct patches based on a similarity threshold was a failed attempt
(∼ 5% for APR-generated patches for. Defects4J+Bears+Bugs.jar
bugs). Nevertheless, experimental results demonstrated that deep
learned features were relevant for learning to discriminate.

"our",	"grandpa",	"has",	"a",
"very",	"handsome",	"look"

"computer",	"science",
"is",	"difficult"

"his",	"spouse",	"is",
"lovely"

0.919 0.914 0.869

Figure 11: Close cosine similarity scores with small-sized in-
puts for BERT embedding model.

[Embeddings are most suitable when applied to simple ML algo-

rithms.] Because embeddings are yielded from neural networks,
they are actually formed by complex crossed features. When they
are fed to a complex discriminant model such as Random Forrest,
it may lead to overfitting with small datasets. Our experiments
however show that simple Logistic Regression yields the best AUC,
suggesting that this learner was able to better identifying discrimi-
nating features for the prediction task.

5.2 Threats to validity
Our empirical study carries a number of threats to validity that we
have tried to mitigate.

Threats to External validity. There are a variety of representa-
tion learning models in the literature. A threat to validity of our
study is that we may have a selection bias by considering only
four embedding models. We have mitigated this threat by consid-
ering representative models in different scenarios (pre-trained vs
retrained, code change specific vs code-specific vs natural language
oriented).

Another threat to validity is related to the use of Defects4J data
in evaluating the ML classifiers. This choice however was dictated
by the data available and the aim to compare against related work.

Finally, with respect to the explored models, the attention sys-
tem of CC2Vec requires some execution parameters to perform
well. Since the relevant code was not available, we use use a non-
attention version instead, potentially making CC2Vec embeddings
be under-performing. We release the artifacts for future compar-
isons by the research community. Threats to Internal validity.

A major threat to internal validity lies in the manual assessment
heuristics that we applied to the RepairThemAll-generated dataset.
We may have misclassified some patches due to mistakes or conser-
vatism. This threat however holds for all APR work that relies on
manual assessment. We mitigate this threat by following clear and
reproducible decision criteria, and by further releasing our labelled
datasets fro the community to review2.

Threats to Construct validity. For our experiment, the con-
sidered embedding models are not perfect and they may have
been under-trained for the prediction task that we envisioned. For
this reason, the results that we have reported are likely an under-
estimation of the capability of representation learning models to
capture discriminative features for the prediction of patch correct-
ness. Our future studies on representation learning will address
this threat by considering different re-training experiments.

6 RELATEDWORK
Analyzing Patch Correctness: To assess the performance of

fixing bugs of repair tools and approaches, checking the correctness
of patches is key, but not trivial. However, this task was largely ig-
nored or unconcerned in the community until the analysis study of
patch correctness conducted byQi et al. [41]. Thanks to their system-
atic analysis of the patches reported by three generate-and-validate
program repair systems (i.e., GenProg, RSRepair and AE), they
shown that the overwhelming majority of the generated patches
are not correct but just overfit the test inputs in the test suites of
buggy programs. In another study, Smith et al. [44] uncover that
patches generated with lower coverage test suites overfit more.
Actually, these overfitting patches often simply break under-tested
functionalities, and some of them even make the “patched” pro-
gram worse than the un-patched program. Since then, the overfit-
ting issue has been widely studied in the literature. For example,
Le et al. [22] revisit the overfitting problem in semantics-based
APR systems. In [21], they further assess the reliability of authors
and automated annotations in assessing patch correctness. They
recommend to make publicly available to the community the patch
correctness evaluations of the authors. Yang and Yang [55] explore
the difference between the runtime behavior of programs patched

2see: https://anonymous.4open.science/r/cdd9881b-7be2-4afe-afd3-6f8e050d0bbb

9

https://anonymous.4open.science/r/cdd9881b-7be2-4afe-afd3-6f8e050d0bbb
Haoye TIAN

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

ASE 2020, September 21–25, 2020, Melbourne, Australia Anon.

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358

with developer’s patches and those by APR-generated plausible
patches. They unveil that the majority of the APR-generated plausi-
ble patches leads to different runtime behaviors compared to correct
patches.

Predicting Patch Correctness: To predict the correctness of
patches, one of the first explored research directions relied on the
idea of augmenting test inputs, i.e., more tests need to be proposed.
Yang et al. [56] design a framework to detect overfitting patches.
This framework leverages fuzz strategies on existing test cases
in order to automatically generate new test inputs. In addition, it
leverages additional oracles (i.e., memory-safety oracles) to improve
the validation of APR-generated patches. In a contemporary study,
Xin and Reiss [52] also explored to generate new test inputs, with
the syntactic differences between the buggy code and its patched
code, for validating the correctness of APR-generated patches. As
complemented by Xiong et al. [53], they proposed to assess the
patch correctness of APR systems by leveraging the automated
generation of new test cases and measuring behavior similarity of
the failing tests on buggy and patched programs.

Through an empirical investigation, Yu et al. [60] summarized
two common overfitting issues: incomplete fixing and regression
introduction. To assist alleviating the overfitting issue for synthesis-
based APR systems, they further proposed UnsatGuided that
relies on additional generated test cases to strengthen patch synthe-
sis, and thus reduce the generation of incorrect overfitting patches.

Predicting patch correctness with thanks to an augmented set of
test cases heavily relies on the quality of tests. In practice, tests with
high coverage might be unavailable [57]. In our paper, we do not
rely on any new test cases to assess patch correctness, but leverage
representation learning techniques to build representation vectors
for buggy and patched code of APR-generated patches.

To predict overfitting patches yielded by APR tools, Ye et al. [57]
propose ODS, an overfitting detection system. ODS first statically
extracts 4,199 code features at the AST level from the buggy code
and generated patch code of APR-generated patches. Those features
are fed into three machine learning algorithms (logistic regression,
KNN, and random forest) to learn an ensemble probabilistic model
for classifying and ranking potentially overfitting patches. To evalu-
ate the performance of ODS, the authors considered 19,253 training
samples and 713 testing samples from the Durieux et al. empir-
ical study [10]. With these settings, ODS is capable of detecting
57% of overfitting patches. The ODS approach relates to our study
since both leverage machine learning and static features. However,
ODS only relies on manually identified features which may not
generalize to other programming languages or even other datasets.

In a recent work, Csuvik et al. [8] exploit the textual and struc-
tural similarity between the buggy code and the APR-patched code
with two representation learningmodels (BERT [9] andDoc2Vec [20])
by considering three patch code representation (i.e., source code,
abstract syntax tree and identifiers). Their results show that the
source code representation is likely to be more effective in correct
patch identification than the other two representations, and the
similarity-based patch validation can filter out incorrect patches
for APR tools. However, to assess the performance of the approach,
only 64 patches from QuixBugs [58] have been considered (includ-
ing 14 in-the-lab bugs). This low number of considered patches

raises questions about the generalization of the approach for fixing
bugs in the wild. Moreover, unlike our study, new representation
learning models (code2vec [3] and CC2Vec [13]) dedicated to code
representation have not been exploited.

RepresentationLearning for ProgramRepair Tasks: In the
literature, representation learning techniques have been widely ex-
plored to boost program repair tasks. Long and Rinard explored
the topic of learning correct code for patch generation [32]. Their
approach learns code transformation for three kinds of bugs from
their related human-written patches. After mining the most recent
100 bug-fixing commits from each of the 500 most popular Java
projects, Soto and Le Goues [45] have built a probabilistic model
to predict bug fixes for program repair. To identify stable Linux
patches, Hoang et al. [14] proposed a hierarchical deep learning-
based method with features extracted from both commit messages
and commit code. Bader et al. [4] have proposed Getafix to learn
recurring fix patterns from human-written patches and suggest
fixes. Our paper is not aiming at proposing a new automated patch
generation approach. We indeed rather focus on assessing repre-
sentation learning techniques for predicting correctness of patches
generated by program repair tools.

7 CONCLUSION
In this paper, we investigated the feasibility of statically predicting
patch correctness by leveraging representation learning models
and supervised learning algorithms. The objective is to provide
insights for the APR research community towards improving the
quality of repair candidates generated by APR tools. To that end,
we, first investigated the use of different distributed representation
learning to capture the similarity/dissimilarity between buggy and
patched code fragments. These experiments gave similarity scores
that substantially differ for across embedding models such as BERT,
Doc2Vec, code2vec and CC2Vec. Building on these results and in
order to guide the exploitation of code embeddings in program
repair pipelines, we investigated in subsequent experiments the
selection of cut-off similarity scores to decide which APR-generated
patches are likely incorrect. This allowed us to filter out between
31.5% and 94.9% incorrect patches based on brute cosine similarity
scores. Finally, we investigated the discriminative power of the deep
learned features by training machine learning classifiers to predict
correct Patches. DecisionTree, Logistic Regression and Naive Bayes
are tried with code embeddings from BERT, Doc2Vec and CC2Vec.
Logistic Regression with BERT embeddings yielded very promising
performance on patch correctness prediction with metrics like F-
Measure at 0.72% and AUC at 0.8% on a labeled deduplicated dataset
of 1000 patches. We further showed that the performance of these
models on static features is promising when comparing against
the state of the art (PATCH-SIM [53]), which uses dynamic exe-
cution traces. Experimental results suggests that the deep learned
features can be complementary to hand-crafted features (such as
those engineered by ODS [57]).

Availability.All artifacts of this study are available in the following
anonymous repository:

https://anonymous.4open.science/r/cdd9881b-7be2-4afe-afd3-
6f8e050d0bbb

10

https://anonymous.4open.science/r/cdd9881b-7be2-4afe-afd3-6f8e050d0bbb
https://anonymous.4open.science/r/cdd9881b-7be2-4afe-afd3-6f8e050d0bbb

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

Predicting Patch Correctness using Embeddings ASE 2020, September 21–25, 2020, Melbourne, Australia

1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496

REFERENCES
[1] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles A. Sutton. 2014.

Learning natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering. 281–293. https:
//doi.org/10.1145/2635868.2635883

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar T. Devanbu, and Charles A. Sutton.
2018. A Survey of Machine Learning for Big Code and Naturalness. ACM Comput.

Surv. 51, 4 (2018), 81:1–81:37. https://doi.org/10.1145/3212695
[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning

distributed representations of code. Proceedings of the ACM on Programming

Languages 3, POPL (2019), 40:1–40:29. https://doi.org/10.1145/3290353
[4] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

learning to fix bugs automatically. Proceedings of the ACM on Programming

Languages 3, OOPSLA (2019), 159:1–159:27. https://doi.org/10.1145/3360585
[5] Earl T. Barr, Yuriy Brun, Premkumar T. Devanbu, Mark Harman, and Federica

Sarro. 2014. The plastic surgery hypothesis. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering. ACM,
306–317. https://doi.org/10.1145/2635868.2635898

[6] Junjie Chen, Alastair F. Donaldson, Andreas Zeller, and Hongyu Zhang. 2017.
Testing and Verification of Compilers (Dagstuhl Seminar 17502). Dagstuhl Reports
7, 12 (2017), 50–65. https://doi.org/10.4230/DagRep.7.12.50

[7] Rhys Compton, Eibe Frank, Panos Patros, and Abigail Koay. 2020. Embedding
Java Classes with code2vec: Improvements from Variable Obfuscation. CoRR
abs/2004.02942 (2020). https://arxiv.org/abs/2004.02942

[8] Viktor Csuvik, Dániel Horváth, Ferenc Horváth, and László Vidács. 2020. Utilizing
Source Code Embeddings to Identify Correct Patches. In Proceedings of the 2nd

International Workshop on Intelligent Bug Fixing. IEEE, 18–25.
[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. 4171–4186. https:
//doi.org/10.18653/v1/n19-1423

[10] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019.
Empirical Review of Java Program Repair Tools: A Large-Scale Experiment on
2,141 Bugs and 23,551 Repair Attempts. arXiv preprint arXiv:1905.11973 (2019).

[11] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. CodeBERT:
A Pre-Trained Model for Programming and Natural Languages. arXiv preprint
arXiv:2002.08155 (2020).

[12] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar T. De-
vanbu. 2012. On the naturalness of software. In Proceedings of the 34th Interna-

tional Conference on Software Engineering. 837–847. https://doi.org/10.1109/ICSE.
2012.6227135

[13] Thong Hoang, Hong Jin Kang, Julia Lawall, and David Lo. 2020. CC2Vec: Dis-
tributed Representations of Code Changes. In Proceedings of the 42nd International
Conference on Software Engineering. IEEE.

[14] Thong Hoang, Julia Lawall, Yuan Tian, Richard Jayadi Oentaryo, and David Lo.
2019. PatchNet: Hierarchical Deep Learning-Based Stable Patch Identification for
the Linux Kernel. CoRR abs/1911.03576 (2019). http://arxiv.org/abs/1911.03576

[15] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Inferring
Program Transformations From Singular Examples via Big Code. In Proceedings

of the 34th IEEE/ACM International Conference on Automated Software Engineering.
255–266.

[16] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping program repair space with existing patches and similar code. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing

and Analysis. ACM, 298–309.
[17] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of

existing faults to enable controlled testing studies for Java programs. In Proceed-

ings of the 2014 International Symposium on Software Testing and Analysis. ACM,
437–440.

[18] Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. 2019. Assessing the
Generalizability of Code2vec Token Embeddings. In Proceedings of the 34th

IEEE/ACM International Conference on Automated Software Engineering. 1–12.
https://doi.org/10.1109/ASE.2019.00011

[19] Rafael-Michael Karampatsis and Charles A. Sutton. 2020. How Often Do Single-
Statement Bugs Occur? The ManySStuBs4J Dataset. In Proceedings of the 17th

Mining Software Repositories. IEEE. http://arxiv.org/abs/1905.13334
[20] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences

and Documents. In Proceedings of the 31th International Conference on Machine

Learning. 1188–1196.
[21] Xuan-Bach D Le, Lingfeng Bao, David Lo, Xin Xia, Shanping Li, and Corina

Pasareanu. 2019. On reliability of patch correctness assessment. In Proceedings of

the 41st International Conference on Software Engineering. IEEE, 524–535.
[22] Xuan Bach D Le, Ferdian Thung, David Lo, and Claire Le Goues. 2018. Overfitting

in semantics-based automated program repair. Empirical Software Engineering

23, 5 (2018), 3007–3033.

[23] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. IEEE Transactions

on Software Engineering 41, 12 (2015), 1236–1256.
[24] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.

GenProg: A generic method for automatic software repair. IEEE Transactions on

Software Engineering 38, 1 (2012), 54–72.
[25] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated

Program Repair. Commun. ACM (2019).
[26] Derrick Lin, James Koppel, Angela Chen, and Armando Solar-Lezama. 2017.

QuixBugs: A multi-lingual program repair benchmark set based on the Quixey
Challenge. In Proceedings Companion of the 2017 ACM SIGPLAN International

Conference on Systems, Programming, Languages, and Applications: Software for

Humanity. ACM, 55–56.
[27] Kui Liu, Dongsun Kim, Tegawendé F. Bissyandé, Tae-young Kim, Kisub Kim, Anil

Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and refactor
inconsistent method names. In Proceedings of the 41st International Conference on

Software Engineering. 1–12. https://doi.org/10.1109/ICSE.2019.00019
[28] Kui Liu, Dongsun Kim, Anil Koyuncu, Li Li, Tegawendé F Bissyandé, and Yves

Le Traon. 2018. A closer look at real-world patches. In 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, 275–286.
[29] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar:

Fixing semantic bugs with fix patterns of static analysis violations. In Proceedings

of the 26th IEEE International Conference on Software Analysis, Evolution and

Reengineering. IEEE, 456–467.
[30] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:

Revisiting Template-based Automated Program Repair. In Proceedings of the 28th

ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM,
31–42.

[31] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F. Bissyandé,
Dongsun Kim, Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020.
On the Efficiency of Test Suite based Program Repair: A Systematic Assessment
of 16 Automated Repair Systems for Java Programs. In Proceedings of the 42nd

International Conference on Software Engineering. IEEE.
[32] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning

correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, Vol. 51. ACM, 298–312.
[33] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019.

Bears: An Extensible Java Bug Benchmark for Automatic Program Repair Studies.
In Proceedings of the 26th IEEE International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE, 468–478.
[34] Henry B Mann and Donald R. Whitney. 1947. On a Test of Whether One of

Two Random Variables Is Stochastically Larger than the Other. The Annals

of Mathematical Statistics 18, 1 (1947), 50–60. https://doi.org/10.1214/aoms/
1177730491

[35] Matias Martinez and Martin Monperrus. 2015. Mining software repair models for
reasoning on the search space of automated program fixing. Empirical Software

Engineering 20, 1 (2015), 176–205.
[36] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[37] Martin Monperrus. 2009. The living review on automated program repair.
In Proceedings of the Symposium on the Foundations of Software Engineering.
HAL/archives-ouvertes. fr, 315–324.

[38] Martin Monperrus. 2018. Automatic software repair: A bibliography. Comput.

Surveys 51, 1 (2018), 17:1–17:24.
[39] Samuel Ndichu, Sangwook Kim, Seiichi Ozawa, Takeshi Misu, and Kazuo Mak-

ishima. 2019. A machine learning approach to detection of JavaScript-based
attacks using AST features and paragraph vectors. Applied Soft Computing 84
(2019). https://doi.org/10.1016/j.asoc.2019.105721

[40] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014. The
strength of random search on automated program repair. In Proceedings of the

36th International Conference on Software Engineering. ACM, 254–265.
[41] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of patch

plausibility and correctness for generate-and-validate patch generation systems.
In Proceedings of the International Symposium on Software Testing and Analysis.
ACM, 24–36.

[42] Ripon Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul Prasad. 2018.
Bugs.jar: A large-scale, diverse dataset of real-world java bugs. In Proceedings

of the 15th IEEE/ACM International Conference on Mining Software Repositories.
IEEE, 10–13.

[43] Seemanta Saha, Ripon K Saha, and Mukul R Prasad. 2019. Harnessing evolution
for multi-hunk program repair. In Proceedings of the 41st International Conference

on Software Engineering. IEEE, 13–24.
[44] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure

worse than the disease? overfitting in automated program repair. In Proceedings

of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
532–543.

11

https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145/3212695
https://doi.org/10.1145/3290353
https://doi.org/10.1145/3360585
https://doi.org/10.1145/2635868.2635898
https://doi.org/10.4230/DagRep.7.12.50
https://arxiv.org/abs/2004.02942
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1109/ICSE.2012.6227135
https://doi.org/10.1109/ICSE.2012.6227135
http://arxiv.org/abs/1911.03576
https://doi.org/10.1109/ASE.2019.00011
http://arxiv.org/abs/1905.13334
https://doi.org/10.1109/ICSE.2019.00019
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1016/j.asoc.2019.105721

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

ASE 2020, September 21–25, 2020, Melbourne, Australia Anon.

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634

[45] Mauricio Soto and Claire Le Goues. 2018. Using a probabilistic model to predict
bug fixes. In Proceedings of the 25th International Conference on Software Analysis,

Evolution and Reengineering. IEEE, 221–231.
[46] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic

features for defect prediction. In Proceedings of the 38th International Conference

on Software Engineering. 297–308. https://doi.org/10.1145/2884781.2884804
[47] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional

Clone Detection by Exploiting Lexical and Syntactical Information in Source Code.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence.
3034–3040. https://doi.org/10.24963/ijcai.2017/423

[48] WestleyWeimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In Proceedings

of the 28th IEEE/ACM International Conference on Automated Software Engineering.
IEEE, 356–366.

[49] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the

31st International Conference on Software Engineering. IEEE, 364–374.
[50] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.

Context-aware patch generation for better automated program repair. In Proceed-

ings of the 40th International Conference on Software Engineering. ACM, 1–11.
[51] F. Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics

Bulletin 1, 6 (1945).
[52] Qi Xin and Steven P Reiss. 2017. Identifying test-suite-overfitted patches through

test case generation. In Proceedings of the 26th ACM SIGSOFT International Sym-

posium on Software Testing and Analysis. ACM, 226–236.
[53] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018.

Identifying patch correctness in test-based program repair. In Proceedings of the

40th International Conference on Software Engineering. ACM, 789–799.

[54] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In Proceedings

of the 39th IEEE/ACM International Conference on Software Engineering. IEEE,
416–426.

[55] Bo Yang and Jinqiu Yang. 2020. Exploring the Differences between Plausible and
Correct Patches at Fine-Grained Level. In Proceedings of the 2nd International

Workshop on Intelligent Bug Fixing. IEEE, 1–8.
[56] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases

for better automated program repair. In Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering. ACM, 831–841.
[57] He Ye, Jian Gu, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019.

Automated Classification of Overfitting Patches with Statically Extracted Code
Features. CoRR abs/1910.12057 (2019). http://arxiv.org/abs/1910.12057

[58] He Ye, Matias Martinez, Thomas Durieux, and Martin Monperrus. 2019. A
Comprehensive Study of Automatic Program Repair on the QuixBugs Benchmark.
In Proceedings of the 1st International Workshop on Intelligent Bug Fixing. IEEE,
1–10.

[59] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi Wu. 2020. Order
Matters: Semantic-Aware Neural Networks for Binary Code Similarity Detection.
(2020). https://keenlab.tencent.com/en/whitepapers/Ordermatters.pdf

[60] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. 2019. Alleviating patch overfitting with automatic test generation:
a study of feasibility and effectiveness for the Nopol repair system. Empirical

Software Engineering 24, 1 (2019), 33–67. https://doi.org/10.1007/s10664-018-
9619-4

[61] Shufan Zhou, Beijun Shen, and Hao Zhong. 2019. Lancer: Your Code Tell Me
What You Need. In Proceedings of the 34th IEEE/ACM International Conference on

Automated Software Engineering. 1202–1205. https://doi.org/10.1109/ASE.2019.
00137

12

https://doi.org/10.1145/2884781.2884804
https://doi.org/10.24963/ijcai.2017/423
http://arxiv.org/abs/1910.12057
https://keenlab.tencent.com/en/whitepapers/Ordermatters.pdf
https://doi.org/10.1007/s10664-018-9619-4
https://doi.org/10.1007/s10664-018-9619-4
https://doi.org/10.1109/ASE.2019.00137
https://doi.org/10.1109/ASE.2019.00137

	Abstract
	1 Introduction
	2 Background
	2.1 Patch Plausibility and Correctness
	2.2 Distributed Representation Learning

	3 Study Design
	3.1 Research Questions
	3.2 Datasets
	3.3 Model input pre-processing
	3.4 Embedding models

	4 Experiments
	4.1 [Similarity Measurements for Buggy and Patched Code using Embeddings]
	4.2 [Filtering of Incorrect Patches based on Similarity Thresholds]
	4.3 [Classification of Correct Patches with supervised learning]

	5 Discussions
	5.1 Experimental insights
	5.2 Threats to validity

	6 Related Work
	7 Conclusion
	References

