Keynote Talk

ASSS ’21, June 7, 2021, Virtual Event, Hong Kong

A Journey Through Android App Analysis:
Solutions and Open Challenges

Jacques Klein
jacques.klein@uni.lu
University of Luxembourg
Luxembourg

ABSTRACT

Users can today download a wide variety of apps ranging from
simple toy games to sophisticated business-critical apps. They rely
on these apps daily to perform diverse tasks, some of them related
to sensitive information such as their finance or health. Ensuring
high-quality, reliable, and secure apps is thus key. In the TruX re-
search group of the interdisciplinary center for Security, Reliability,
and Trust (SnT) of the University of Luxembourg, we are working
for about 10 years to deliver practical techniques, tools, and other
artifacts (such as repositories) making the analysis of Android apps
possible. In this paper, we will briefly introduce our key contri-
butions in both (1) Android app static analysis to detect security
issues, and (2) Android Malware Detection with machine learning.
We will conclude by listing several open challenges that we are
currently facing towards improving the analysis and security of
Android apps.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Software and its engineering — Software verification and
validation.

KEYWORDS

Static Analysis, Malware Detection, Android Security, Software
Security

ACM Reference Format:

Jacques Klein. 2021. A Journey Through Android App Analysis: Solutions
and Open Challenges. In Proceedings of the 2021 International Symposium on
Advanced Security on Software and Systems (ASSS °21), June 7, 2021, Virtual
Event, Hong Kong. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3457340.3458298

1 INTRODUCTION

We are in 2021 and Android is a popular teenager. "Teenager" be-
cause the first smartphone running on Android was released in
2008. A few weeks ago, I discussed with my 15 year old daughter
who is digital native and she was doubtful when I claimed that she is
older than the first Android smartphone. "Popular” because the user
base of Android constantly grew to reach over 2 billion monthly

Ce

This work is licensed under a Creative Commons Attribution International 4.0 License.

ASSS °21, June 7, 2021, Virtual Event, Hong Kong.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8403-2/21/06.
https://doi.org/10.1145/3457340.3458298

active users. With 3 million apps on Google Play, the official An-
droid app store, the number of available apps is also impressive.
In the meantime, the research community dedicated considerable
effort in inspecting and analyzing both the Android framework and
the Android apps. A simple query on Google Scholar returns more
than 1 million entries for the word "Android". The appetite of the
researcher community is not only explained by the marketing suc-
cess of Android. The Android framework is open-source and even
if the apps are released as apk files, unpacking the apks is possible
making most of the code accessible and ready to be analyzed.

In this paper, we present our contribution towards analyzing
Android apps. More specifically, in Section 3, we first explain how
we pioneered the domain of Android app static analysis. Then,
we present our contribution towards Android app modeling and
sensitive/private data flow analysis. We also detail several studies
that we conducted by leveraging Android app "lineages". Finally,
we list several ad hoc static analyses we performed to check diverse
app properties. In Section 4, we present our works towards malware
detection, mostly by relying on machine-learning based approaches.
We first present AndroZoo, a large repository of Android apps that
we made available to the research community. Then, we explain
several validation protocol biases that can occur when assessing
ML based malware detectors. Finally, we present our contributions
related to the detection of both repackaged and piggybacked apps.
In Section 5, we list several open challenges related to both static
analysis and malware detection.

2 ACKNOWLEDGMENT

The work presented in this paper is not only my "own" work. I
am not even first author of a single publication cited in this paper.
So, I would like to gratefully thank all my co-authors! and col-
leagues for their support and fruitful collaborations. I have plenty
of great stories to tell about these collaborations. As researchers,
we are privileged to travel, discover new places, meet, discuss and
exchange with great people. In addition, all these achievements
would not have been possible without the support of a strong re-
search team. In this regard, I was a member of the Serval SnT team
leaded by Prof. Le Traon, and since 2019, I have the privilege to
co-head the TruX team together with my colleague Prof. Bissyandé.
Big thanks to both of them. I also thank all the PhD students that I
have supervized or I am supervizing on topics related to Android
app analysis: Dr. A. Bartel, Dr. K. Allix, Dr. L. Li, Dr. M Hurier, Dr. J.
Gao, Dr. P. Kong, Mr. T. Riom, Ms. N. Doudi, Mr. J. Samhi.

IThanks to D. Octeau, M. Monperrus, P. McDaniel, S. Rasthofer, E. Bodden, H.
Cai, S. Arzt, T. Liu, F. Dong, Y. Guo, D. Lo, Y. Zhao, L. Ma, X. Xia, L. Cavallaro, S. Jha,
C. Fritz, Y. Zhao, J. Grundy, Z. Liu, X. Luo, X. Sun, etc., but sorry, I cannot cite all

https://doi.org/10.1145/3457340.3458298
https://doi.org/10.1145/3457340.3458298
https://doi.org/10.1145/3457340.3458298
https://creativecommons.org/licenses/by/4.0/

Keynote Talk

I would also like to thank Prof. Weizhi Meng and Prof. Li Li,
the organizers of the ASSS workshop (https://asss.compute.dtu.dk/
2021/), for having inviting me to present a keynote speech at the
ASSS workshop.

Finally, please note that this work has been partially supported (1)
by the Luxembourg National Research Fund (FNR), under projects
CHARACTERIZE C17/1S/11693861, (2) and by the SPARTA project,
which has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement No
830892.

3 OUR CONTRIBUTIONS TOWARDS
STATICALLY ANALYZING ANDROID APPS

With my colleagues, we developed and publicly released tools mak-
ing the static analysis of Android apps possible. Below we list some
of our contributions related to this topic (this list is not exhaustive).

3.1 Making the app analyzable

In early 2000, when the first Android apps were uploaded into
Google Play, it was not possible to directly use static analyzers
such as Soot [33] or Wala [10] to analyze Android apps. Indeed,
while Android apps are mostly developed in Java (or Kotlin), the
resulting executable files are released as ".dex" files that contain
Dalvik bytecode. This bytecode differs from traditional Java byte-
code. Several researchers worked on this issue and proposed tools
to translate Dalvik bytecode into another representation that can be
used by an already existing static analyzer. We contributed to this
effort by developing Dexpler [8], a module integrated today in Soot,
that converts Dalvik bytecode into Jimple, the Soot intermediate
representation. To sum up, we made Soot able to process Android

apps.

3.2 Android app Modeling for Sensitive Data
Flow Detection

Being now able to analyze Android apps, we started to search for
security issues such as sensitive data flow leakages (also called
privacy leaks). In 2012/2013, we started a fantastic collaboration
with colleagues from Penn State University in the USA and TU
Darmstadt in Germany. This collaboration yielded popular state-
of-the-art tools such as FlowDroid [7] (presented at PLDI 2014),
EPICC [30] (presented at Usenix Security 2013, and further extended
by [29] and [28]), and finally ICCTA [18] (presented at ICSE 2015).
These tools have been designed to detect security issues in Android
apps. For instance, FlowDroid can be used to detect data leaks in
apps. It was probably the first approach proposing to model the
specificities of Android apps (lifecycle, callback methods, ...) making
a sound analysis possible.

Android apps are made of components that communicate be-
tween each others via Inter-Component Communication (ICC)
methods such as startActivity, which takes an Intent ob-
ject as parameter. ICCTA relies on EPICC to retrieve information
from the Intent object and then computes the ICC links, i.e., the
links between components (e.g., Activity A communicates with
Activity B). Thanks to this, ICCTA was able to extend FlowDroid
by supporting inter-component analysis (including inter-app anal-
ysis as shown in [19]). However, typical static analysis limitations

ASSS ’21, June 7, 2021, Virtual Event, Hong Kong

remain. In particular, if an ICC method such startActivity is
called by reflection, ICCTA fails to catch this method call. In 2016,
we propose the DroidRA [21] instrumentation-based approach to
address this issue in a non-invasive way. With DroidRA, we reduce
the resolution of reflective calls to a composite constant propaga-
tion problem. We leverage the COAL solver [29] to infer the values
of reflection targets and app, and we eventually instrument this app
to include the corresponding traditional Java call for each reflective
call. Our approach allows to boost an app so that it can be immedi-
ately analyzable by ICCTA (and more generally static analyzers that
were not reflection-aware). Recently, in [32] we extended DroidRA
to, for instance, also consider Fragment.

Our last work on the topic of private data flow detection will be
presented at ICSE 2021 [31]. In this work, we show that tools such
as FlowDroid+ICCTA, Amandroid [34], or EPICC do not model all
existing ICC methods. Indeed, in addition to usual ICC methods
such as startActivity, the framework provides other atypical
ways of performing ICCs. To address this limitation in the state of
the art, we propose RAICC [31] a static approach for modeling new
ICC links and thus boosting previous analysis tasks such as ICC
vulnerability detection, privacy leaks detection, malware detection,
etc.

3.3 App lineages to perform evolutionary
studies

Software evolution is a key topic in software engineering and soft-
ware security. Like other software artifacts, Android apps evolve.
In the literature, the set of the successive versions of a given app is
defined as "app lineage". However, investigating these app lineages,
i.e., the evolution of Android apps, is not trivial. Indeed, Android
developers update their apps by providing new apk files, and these
apks have to be published via relevant markets. Nevertheless, main-
stream Android app markets including the official market Google
Play provide apps as a fleeing data stream where only the latest
version of an app is available: when the next updated version is
uploaded, the past version is lost. This causes one of the main
difficulties to re-construct the lineage of Android apps.

In [13], we explained how we re-construct the versioned lineages
of Android apps, by leveraging AndroZoo [5], a popular Android
application repository made available to researchers. Then, we per-
formed a large-scale investigation on how vulnerabilities evolve in
Android apps. We fully rely on static vulnerability detection tools
(FlowDroid [7], AndroBugs [27], and IC3 [29]) and report their
results on consecutive versions of Android apps. We investigate
specifically 10 vulnerability types associated with 4 different cate-
gories related to common security features (e.g., SSL), its sandbox
mechanism (e.g., Permission issues), code injection (e.g., WebView
RCE vulnerability) as well as its inter-app message passing (e.g., In-
tent spoofing). Among the main findings, we can cite that: (1) Most
vulnerabilities will survive at least 3 updates. (2) Some third-party
libraries are major contributors to most vulnerabilities detected
by static tools. (3) Some vulnerabilities reported by detection tools
may foreshadow malware.

In an MSR paper [11], we presented our attempt to learn crypto-
APIs usage from the crowd, i.e., by mining crypto-APIs usage rules

https://asss.compute.dtu.dk/2021/
https://asss.compute.dtu.dk/2021/

Keynote Talk

from app lineages. Android app developers recurrently use crypto-
APIs to provide data security to app users. Unfortunately, misuse of
APIs only creates an illusion of security and even exposes apps to
systematic attacks. It is thus necessary to provide developers with
a statically enforceable list of specifications of crypto-API usage
rules. On the one hand, such rules cannot be manually written as
the process does not scale to all available APIs. On the other hand,
a classical mining approach based on typical usage patterns is not
relevant in Android, given that a large share of usages include mis-
takes. In [11], building on the assumption that “developers update
API usage instances to fix misuses”, we proposed to mine the app
lineages dataset to infer API usage rules. Eventually, our investi-
gations yield negative results on our assumption that API usage
updates tend to correct misuses. Actually, it appears that updates
that fix misuses may be unintentional: subsequent updates quickly
re-introduce the same misuses patterns.

3.4 Other static analyses performed on
Android apps

Besides data flow analysis and studies on app lineages, we investi-
gated other properties of Android apps by leveraging static analysis
tools. We present in the following some of these studies:
Common Libraries: By mining 1.5 million apps from Google Play,
we released to the community a list of 1,113 common libraries
(including 240 libraries for advertisement) used in Android apps [23]
(further extended by a journal paper [26]). This list can be used to
identify the code that has been actually written by the developer of
a given Android app.

Direct Inter-app Code Invocation: The Android ecosystem of-
fers different facilities to enable communication among app compo-
nents and across apps to ensure that rich services can be composed
through functionality reuse. At the heart of this system is the Inter-
component communication (ICC) scheme, which has been largely
studied in the literature. Less known in the community is another
powerful mechanism that allows for direct inter-app code invoca-
tion which opens up for different reuse scenarios, both legitimate
or malicious. In a FSE 2020 paper [12], we exposed the general
workflow for this mechanism, which beyond ICCs, enables app
developers to access and invoke functionalities (either entire Java
classes, methods or object fields) implemented in other apps using
official Android APIs. We experimentally showcased how this reuse
mechanism can be leveraged to “plagiarize” supposedly protected
functionalities. Typically, we could leverage this mechanism to by-
pass security guards that a popular video broadcaster has placed for
preventing access to its video database from outside its provided
app. We further contributed with a static analysis toolkit, named
DICIDer, for detecting direct inter-app code invocations in apps.
Compatibility Issues: The Android API provides the necessary
building blocks for app developers to harness the functionalities
of the Android devices, including for interacting with services and
accessing hardware. This API thus evolves rapidly to meet new
requirements for security, performance, and advanced features, cre-
ating a race for developers to update apps. Unfortunately, given the
extent of the API and the lack of automated alerts on important
changes, Android apps are suffered from API-related compatibility
issues. These issues can manifest themselves as runtime crashes

ASSS ’21, June 7, 2021, Virtual Event, Hong Kong

creating a poor user experience. In an ISSTA 2018 paper [22], we
presented an automated approach named CiD for systematically
modeling the lifecycle of the Android APIs and analyzing app byte-
code to flag usages that can lead to potential compatibility issues.
We demonstrated the usefulness of CiD by helping developers re-
pair their apps, and we validated that our tool outperforms the
state-of-the-art on benchmark apps that take into account several
challenges for automatic detection.

Deprecated Android APIs: Because of functionality evolution,
or security and performance-related changes, some APIs eventu-
ally become unnecessary in a software system and thus need to
be cleaned to ensure proper maintainability. Those APIs are typi-
cally marked first as deprecated APIs and, as recommended, follow
through a deprecated-replace-remove cycle, giving an opportunity
to client application developers to smoothly adapt their code in next
updates. Such a mechanism is adopted in the Android framework
development where thousands of reusable APIs are made available
to Android app developers. In a 2018 MSR paper [24] (further ex-
tended with a journal version [25]), we presented a research-based
prototype tool called CDA and apply it to different revisions (i.e.,
releases or tags) of the Android framework code for characteriz-
ing deprecated APIs. Based on the data mined by CDA, we then
performed an empirical study on API deprecation in the Android
ecosystem and the associated challenges for maintaining quality
apps. In particular, we investigated the prevalence of deprecated
APIs, their annotations and documentation, their removal and con-
sequences, their replacement messages, developer reactions to API
deprecation, as well as the evolution of the usage of deprecated APIs.
Experimental results reveal several findings that further provide
promising insights related to deprecated Android APIs. Notably, by
mining the source code of the Android framework base, we have
identified three bugs related to deprecated APIs. These bugs have
been quickly assigned and positively appreciated by the framework
maintainers, who claim that these issues will be updated in future
releases.

Mining Android Crash Fixes: Android apps are prone to crash.
This often arises from the misuse of Android framework APIs, mak-
ing it harder to debug since official Android documentation does
not discuss thoroughly potential exceptions. Recently, the program
repair community has also started to investigate the possibility to
fix crashes automatically. Current results, however, apply to lim-
ited example cases. In both scenarios of repair, the main issue is
the need for more example data to drive the fix processes due to
the high cost in time and effort needed to collect and identify fix
examples. In an ISSTA 2019 paper [16], we proposed a scalable
approach, CraftDroid, to mine crash fixes by leveraging a set of 28
thousand carefully reconstructed app lineages from app markets,
without the need for the app source code or issue reports. We de-
veloped a replicative testing approach that locates fixes among app
versions that output different runtime logs with the exact same test
inputs. Overall, we have mined 104 relevant crash fixes, further
abstracted 17 fine-grained fix templates that are demonstrated to be
effective for patching crashed apks. Finally, we release ReCBench, a
benchmark consisting of 200 crashed apks and the crash replication
scripts, which the community can explore for evaluating generated
crash-inducing bug patches.

Keynote Talk

4 OUR CONTRIBUTIONS TOWARDS
ANDROID MALWARE DETECTION

Malware is a real threat to the Android Ecosystem and its user base.
Several studies have shown that malicious apps (i.e., malware) are
present, in no low number, in Android markets including Google
Play [6]. Researchers have proposed various and numerous ap-
proaches to detect Android malware. One of the most popular tech-
niques used by researchers is the one based on machine-learning
where the idea is to learn what is goodware, what is malware,
and what discriminates malware from goodware. This learning is
most of the time supervised, i.e., the training step is performed on a
ground truth dataset, i.e., a dataset with well-labeled samples. In sev-
eral related-works, the reported performance scores are extremely
high when assessed with an "in the lab" setting. In Section 4.2, we
report on several studies that we conducted to check if this high
performance in the lab can translate into high performance in the
wild. Before reporting our studies, in Section 4.1, we present Andro-
Zoo, a large repository of Android apps that we built and shared
with the research community. We also present our attempt to better
label Android malicious samples. Finally, in Section 4.3, we briefly
present our work aiming at detecting repackaged and piggybacked

apps.

4.1 Large Datasets and Ground Truth:
AndroZoo
2

Together with my colleagues, we are maintaining AndroZoo [5]°, a
growing collection of Android Applications collected from several
sources, including the official Google Play app market. Our Andro-
Zoo repository currently contains more than three million apps,
each of which has been analyzed by tens of different Antivirus
products to know which apps are detected as Malware. We provide
this dataset to contribute to ongoing research efforts, as well as to
enable new potential research topics on Android Apps. By releasing
AndroZoo to the research community, we also aim at encouraging
our fellow researchers to engage in reproducible experiments. By
March 2021, we have distributed more than 1100 AndroZoo access
keys to researchers.

Having access to a large number of samples opens new research
directions aiming at efficiently vetting apps, but reliable malware la-
bels are a necessary input to guarantee the quality of both malware
detection and classification models. Malware labeling, however, is
not a trivial task. Manual labeling, where a human analyst inspects
the actions of the malware in a bid to classify them, is prohibitively
expensive, given the number of malware samples discovered ev-
ery day. In such a setting, it is reasonable to rely on the collective
judgment of Anti-Virus (AV) vendors who specialize in malware
labeling. However, deriving a unified label from labels attached to
samples by AV vendors is difficult. Inconsistencies in Anti-Virus
(AV) labels are indeed common. This is due to both naming disagree-
ments [14] across vendors and also a lack of adopted standards for
naming malware. In particular, on the one hand, samples are often
mis-labeled as different parties use distinct naming schemes for
the same sample. On the other hand, samples are frequently mis-
classified due to conceptual errors made during labeling processes.

2The main maintainer is Dr. Kevin Allix

ASSS ’21, June 7, 2021, Virtual Event, Hong Kong

In [15], we analyze the associations between all labels given by
different vendors and we propose a system called EUPHONY to
systematically unify common samples into family groups. The key
novelty of our approach is that no a-priori knowledge on malware
families is needed.

4.2 ML Assessment Protocols

To address the issue of malware detection through large sets of
apps, researchers have investigated the capabilities of machine-
learning techniques for proposing effective approaches. So far,
several promising results were recorded in the literature, many
approaches being assessed with what we call in the lab validation
scenarios. In [3] (and previously in a short paper [2]), we revisited
the purpose of malware detection to discuss whether such in the
lab validation scenarios provide reliable indications on the perfor-
mance of malware detectors in real-world settings, aka in the wild.
To this end, we have devised several Machine Learning classifiers
that rely on a set of features built from applications’ CFGs. We use
a sizeable dataset of over 50 000 Android applications collected
from sources where state-of-the-art approaches have selected their
data. We show that, in the lab, our approach outperforms existing
machine learning-based approaches. However, this high perfor-
mance does not translate into high performance in the wild. The
performance gap we observed—F-measures dropping from over 0.9
in the lab to below 0.1 in the wild—raises one important question:
How do state-of-the-art approaches perform in the wild?

In another paper [4], we consider the relevance of timeline in the
construction of datasets, to highlight its impact on the performance
of a machine learning-based malware detection scheme. Typically,
we show that simply picking a random set of known malware to
train a malware detector, as it is done in many assessment sce-
narios from the literature, yields significantly biased results. In
the process of assessing the extent of this impact through various
experiments, we were also able to confirm a number of intuitive
assumptions about Android malware. For instance, we discuss the
existence of Android malware lineages and how they could impact
the performance of malware detection in the wild.

Recently, in [35], we reported another potential bias in machine-
learning based malware detection. Datasets may include a large
portion of duplicated samples, which indeed may bias recorded
experimental results and insights. We performed extensive experi-
ments to measure the performance gap that occurs when datasets
are de-duplicated. Our experimental results reveal that duplication
in published datasets has a limited impact on supervised malware
classification models. This observation contrasts with the finding
of Allamanis [1] on the general case of machine learning bias for
big code. Our experiments, however, show that sample duplica-
tion more substantially affects unsupervised learning models (e.g.
malware family clustering). Nevertheless, we argue that our fellow
researchers and practitioners should always take sample duplica-
tion into consideration when performing machine learning (via
either supervised or unsupervised learning) based Android mal-
ware detection, no matter how significant the impact might be.

Keynote Talk

4.3 Repackaging and Piggybacking Detection

We investigated two closely related activities that are still an issue
for the Android ecosystem: Repackaging and Piggybacking

Repackaging is indeed a serious threat to the Android ecosys-
tem as it deprives app developers of their benefits, contributes to
spreading malware on users’ devices, and increases the workload
of market maintainers. In the space of six years (2012-2017), the
research around this specific issue has produced 57 approaches
that do not readily scale to millions of apps or are only evaluated
on private datasets without, in general, tool support available to
the community. In [20], through a systematic literature review of
the subject, we argued that the research was slowing down, where
many state-of-the-art approaches have reported high-performance
rates on closed datasets, which are unfortunately difficult to repli-
cate and to compare against. In [20], we proposed to reboot the
research in repackaged app detection by providing a literature
review that summarises the challenges and current solutions for
detecting repackaged apps and by providing a large dataset (named
RePack) that supports replications of existing solutions and im-
plications of new research directions. As a baseline, we proposed
a straightforward machine-learning based repackaging detection
approach that yields reasonable performance scores.

Piggybacking: The Android packaging model offers ample op-
portunities for malware writers to piggyback malicious code in
popular apps, which can then be easily spread to a large user base.
Although researchers have proposed approaches and tools to iden-
tify piggybacked apps, the literature was lacking a comprehensive
investigation into such a phenomenon. In [17], we filled this gap
by 1) systematically building a large set of piggybacked and be-
nign apps pairs, which we release to the community, 2) empirically
studying the characteristics of malicious piggybacked apps in com-
parison with their benign counterparts, and 3) providing insights on
piggybacking processes. Among several findings providing insights
analysis techniques should build upon to improve the overall detec-
tion and classification accuracy of piggybacked apps, we showed
that piggybacking operations not only concern app code, but also
extensively manipulates app resource files, largely contradicting
common beliefs. We also found that piggybacking is done with little
sophistication, in many cases automatically, and often via library
code.

5 OPEN CHALLENGES

We identified several challenges related to the static analysis of
mobile apps.

(1) First, a common limitation of static analyzers, not specific to
Android apps, is the potentially high number of false alarms.
This is still an open challenge, and approaches allowing
to automatically check that an alarm triggered by a static
analyzer is an actual issue would be great.

(2) A second open challenge is related to the modeling of An-
droid apps. Better models lead to more precise analyses. Re-
lated work such as FlowDroid [7] has proposed modeling
of apps that allow overcoming specifies of Android apps
(examples of such specificities are call back methods that can
be triggered at any time by the Android system). However,
recent works (e.g., [31]) have shown that this model can be

ASSS ’21, June 7, 2021, Virtual Event, Hong Kong

incomplete. More works towards better modeling Android
apps are still required.

(3) Binaries files (code written with the C language and then
compile in .so files) are often not considered by static ana-
lyzers that usually focus on the Dalvik bytecodes (.dex files).
Not analyzing binary files is currently an important threat
to validity regarding the completeness of the static analyses.

We also identified several challenges related to the detection of
Android malware by using Al techniques (mostly machine learn-

ing).

(1) Automatically locating malicious payloads and understand-
ing what is the behavior of malware is definitely a big con-
cern for the research community. Actually, as a starting
point, it would be great to understand what really captures
a machine-learning based detector.

(2) Second, a common challenge in the Al domain is representa-
tion learning. This challenge still holds for Android malware
detection. Indeed, what is the best representation of Android
apps to detect malware is still not an answered question.

(3) In addition to locating the malicious part(s) of an app, ex-
plaining the decisions of machine-learning based malware
detectors, i.e., why an app has been classified as malware is
still an open challenge. In the same direction, characterizing
malware, and more specifically characterizing families of
malware would be beneficial for the entire community.

(4) Finally, in a recent paper [9], we attempt a complete Repro-
duction of five Android Malware Detectors from the liter-
ature and discuss to what extent they are “Reproducible”.
Notably, we provided insights on the implications around
the guesswork that may be required to finalize a working
implementation. We also discussed how barriers to Repro-
duction could be lifted, and how the malware detection field
would benefit from stronger reproducibility standards—like
many various fields already have. So, a last open challenge
that we could report is to improve artifacts (datasets, bench-
marks, tools, etc.) availability and reproducibility in order to
benefit the research community.

6 BIOGRAPHY OF THE AUTHOR

Prof. Dr. Jacques Klein is a researcher and professor in software engi-
neering and software security who develops innovative approaches
and tools towards helping the research and practice communities
build trustworthy software. He is a member of the Interdisciplinary
Centre for Security, Reliability and Trust (SnT) at the University
of Luxembourg. He received a Ph.D. degree in Computer Science
from the University of Rennes, France, in 2006. His main areas of
expertise are threefold: (1) Software Security (Malware detection,
prevention and dissection, Static Analysis for Security, Vulnera-
bility Detection, etc.); (2) Software Reliability (Software Testing,
Semi-Automated and Fully-Automated Program Repair, etc.); (3)
Data Analytics (Multi-objective reasoning and optimization, Model-
driven data analytic, Time Series Pattern Recognition, etc.). In addi-
tion to academic achievements, Prof. Klein also has a long-standing
experience and expertise in successfully running industrial projects
with several industrial partners in various domains by applying

Keynote Talk

data analytics, software engineering, information retrieval, etc., to
their research problems.

REFERENCES

[1] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine

[10

(11

[12

(13

[14

[15

[16

]

]

learning models of code. In Proceedings of the 2019 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. ACM, 143-153.

Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu State,
and Yves Le Traon. 2014. Large-Scale Machine Learning-Based Malware Detec-
tion: Confronting the "10-Fold Cross Validation" Scheme with Reality. In Proceed-
ings of the 4th ACM Conference on Data and Application Security and Privacy (San
Antonio, Texas, USA) (CODASPY ’14). Association for Computing Machinery,
New York, NY, USA, 163-166. https://doi.org/10.1145/2557547.2557587

Kevin Allix, Tegawendé F. Bissyandé, Quentin Jérome, Jacques Klein, Radu State,
and Yves Le Traon. 2016. Empirical assessment of machine learning-based
malware detectors for Android - Measuring the gap between in-the-lab and
in-the-wild validation scenarios. Empirical Software Engineering 21, 1 (2016),
183-211. https://doi.org/10.1007/s10664-014-9352-6

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2015.
Are Your Training Datasets Yet Relevant?. In Engineering Secure Software and
Systems. ESSoS 2015 (Lecture Notes in Computer Science, Vol. 8978). Springer, 51-67.
https://doi.org/10.1007/978-3-319-15618-7_5

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468-471. https://doi.org/
10.1145/2901739.2903508

K. Allix, Q. Jerome, T. F. Bissyandé, J. Klein, R. State, and Y. L. Traon. 2014. A
Forensic Analysis of Android Malware — How is Malware Written and How it
Could Be Detected?. In 2014 IEEE 38th Annual Computer Software and Applications
Conference. 384-393. https://doi.org/10.1109/COMPSAC.2014.61

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. SIGPLAN Not. 49, 6 (June 2014), 259-269.
https://doi.org/10.1145/2666356.2594299

Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. 2012.
Dexpler: converting android dalvik bytecode to jimple for static analysis with
soot. In Proceedings of the ACM SIGPLAN International Workshop on State of the
Art in Java Program analysis. 27-38.

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein. 2021.
Lessons Learnt on Reproducibility in Machine Learning Based Android Malware
Detection. Empirical Software Engineering, accepted for publication on Feb. 26,
2021 (2021).

Stephen J. Fink et al. [n.d.]. T.J. Watson Libraries for Analysis (WALA), http:
//wala.sourceforge.net/.

J. Gao, P. Kong, L. Li, T. F. Bissyandé, and J. Klein. 2019. Negative Results
on Mining Crypto-API Usage Rules in Android Apps. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). 388-398. https:
//doi.org/10.1109/MSR.2019.00065

Jun Gao, Li Li, Pingfan Kong, Tegawendé F. Bissyandé, and Jacques Klein. 2020.
Borrowing Your Enemy’s Arrows: The Case of Code Reuse in Android via Direct
Inter-App Code Invocation. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 939-951. https://doi.org/10.1145/
3368089.3409745

J. Gao, L. Li, P. Kong, T. F. Bissyandé, and J. Klein. 2021. Understanding the
Evolution of Android App Vulnerabilities. IEEE Transactions on Reliability 70, 1
(2021), 212-230. https://doi.org/10.1109/TR.2019.2956690

Médéric Hurier, Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves
Le Traon. 2016. On the Lack of Consensus in Anti-Virus Decisions: Metrics and
Insights on Building Ground Truths of Android Malware. In Detection of Intrusions
and Malware, and Vulnerability Assessment, Juan Caballero, Urko Zurutuza, and
Ricardo J. Rodriguez (Eds.). Springer International Publishing, Cham, 142-162.
M. Hurier, G. Suarez-Tangil, S. K. Dash, T. F. Bissyandé, Y. Le Traon, J. Klein,
and L. Cavallaro. 2017. Euphony: Harmonious Unification of Cacophonous Anti-
Virus Vendor Labels for Android Malware. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). 425-435. https://doi.org/10.
1109/MSR.2017.57

Pingfan Kong, Li Li, Jun Gao, Tegawendé F. Bissyandé, and Jacques Klein. 2019.
Mining Android Crash Fixes in the Absence of Issue- and Change-Tracking
Systems. In Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (Beijing, China) (ISSTA 2019). Association for Com-

puting Machinery, New York, NY, USA, 78-89. https://doi.org/10.1145/3293882.
3330572

(17

(18]

[19

[20]

[21

[22

[24

[25

[26

~
=

[28

[29

[30

[31

[32

[33

&
=)

[35

ASSS ’21, June 7, 2021, Virtual Event, Hong Kong

Li, Daoyuan Li, Tegawende F. Bissyande, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding Android App Piggybacking: A
Systematic Study of Malicious Code Grafting. Trans. Info. For. Sec. 12, 6 (June
2017), 1269-1284. https://doi.org/10.1109/TIFS.2017.2656460

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mc-
Daniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 280-291.

LiLi, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon.
2015. ApkCombiner: Combining Multiple Android Apps to Support Inter-App
Analysis. In ICT Systems Security and Privacy Protection, Hannes Federrath and
Dieter Gollmann (Eds.). Springer International Publishing, Cham, 513-527.

L. Li, T. F. Bissyande, and J. Klein. 2019. Rebooting Research on Detecting
Repackaged Android Apps: Literature Review and Benchmark. IEEE Transactions
on Software Engineering (2019), 1-1. https://doi.org/10.1109/TSE.2019.2901679
Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. Droidra:
Taming reflection to support whole-program analysis of android apps. In Pro-
ceedings of the 25th International Symposium on Software Testing and Analysis.
318-329.

Li Li, Tegawendé F. Bissyandé, Haoyu Wang, and Jacques Klein. 2018. CiD:
Automating the Detection of API-Related Compatibility Issues in Android Apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis (Amsterdam, Netherlands) (ISSTA 2018). Association for
Computing Machinery, New York, NY, USA, 153-163. https://doi.org/10.1145/
3213846.3213857

L.Li, T. F. Bissyandé, J. Klein, and Y. L. Traon. 2016. An Investigation into the Use
of Common Libraries in Android Apps. In 2016 IEEE 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. 403-414.

Li Li, Jun Gao, Tegawendé F. Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2018.
Characterising Deprecated Android APIs. In Proceedings of the 15th International
Conference on Mining Software Repositories (Gothenburg, Sweden) (MSR ’18).
Association for Computing Machinery, New York, NY, USA, 254-264. https:
//doi.org/10.1145/3196398.3196419

Li Li, Jun Gao, Tegawendé F. Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. 2020.
CDA: Characterising Deprecated Android APIs. Empirical Software Engineering
25, 3 (2020), 2058-2098.

Li Li, Timothée Riom, Tegawendé F. Bissyandé, Haoyu Wang, Jacques Klein, and
Le Traon Yves. 2019. Revisiting the impact of common libraries for android-
related investigations. Journal of Systems and Software 154 (2019), 157-175.
https://doi.org/10.1016/].jss.2019.04.065

Yu-Cheng Lin. 2015. AndroBugs Framework: An Android Application Security
Vulnerability Scanner. In Blackhat Europe 2015.

Damien Octeau, Somesh Jha, Matthew Dering, Patrick Mcdaniel, Alexandre Bartel,
Li Li, Jacques Klein, and Yves Le Traon. 2016. Combining Static Analysis with
Probabilistic Models to Enable Market-Scale Android Inter-component Analysis.
In Proceedings of the 43th Symposium on Principles of Programming Languages
(POPL 2016).

Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite constant propagation: Application to android inter-
component communication analysis. In Proceedings of the 37th International
Conference on Software Engineering (ICSE).

Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. 2013. Effective inter-component communica-
tion mapping in android with epicc: An essential step towards holistic security
analysis. In Proceedings of the 22nd USENIX Security Symposium.

Jordan Samhi, Alexandre Bartel, Tegawendé F. Bissyandé, and Jacques Klein.
2021. RAICC: Revealing Atypical Inter-Component Communication in Android
Apps. In Proceedings of the 43rd International Conference on Software Engineering
(ICSE).

Xiaoyu Sun, Li Li, Tegawendé F. Bissyandé, Jacques Klein, Damien Octeau, and
John Grundy. Accepted for publication on Nov. 29, 2020. Taming Reflection:
An Essential Step Towards Whole-Program Analysis of Android Apps. ACM
Transactions on Software Engineering and Methodology (TOSEM) (Accepted for
publication on Nov. 29, 2020), 1-20.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization Framework. In
CASCON First Decade High Impact Papers (Toronto, Ontario, Canada) (CASCON
’10). IBM Corp., USA, 214-224. https://doi.org/10.1145/1925805.1925818
Fengguo Wei, Sankardas Roy, and Xinming Ou. 2014. Amandroid: A precise and
general inter-component data flow analysis framework for security vetting of
android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. 1329-1341.

Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F. Bissyandé, Jacques
Klein, and John Grundy. Accepted for publication on Jan. 07, 2021. On the Impact
of Sample Duplication in Machine Learning based Android Malware Detection.
ACM Transactions on Software Engineering and Methodology (TOSEM) (Accepted
for publication on Jan. 07, 2021), 1-20.

https://doi.org/10.1145/2557547.2557587
https://doi.org/10.1007/s10664-014-9352-6
https://doi.org/10.1007/978-3-319-15618-7_5
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1109/COMPSAC.2014.61
https://doi.org/10.1145/2666356.2594299
http://wala.sourceforge.net/
http://wala.sourceforge.net/
https://doi.org/10.1109/MSR.2019.00065
https://doi.org/10.1109/MSR.2019.00065
https://doi.org/10.1145/3368089.3409745
https://doi.org/10.1145/3368089.3409745
https://doi.org/10.1109/TR.2019.2956690
https://doi.org/10.1109/MSR.2017.57
https://doi.org/10.1109/MSR.2017.57
https://doi.org/10.1145/3293882.3330572
https://doi.org/10.1145/3293882.3330572
https://doi.org/10.1109/TIFS.2017.2656460
https://doi.org/10.1109/TSE.2019.2901679
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/3213846.3213857
https://doi.org/10.1145/3196398.3196419
https://doi.org/10.1145/3196398.3196419
https://doi.org/10.1016/j.jss.2019.04.065
https://doi.org/10.1145/1925805.1925818

	Abstract
	1 Introduction
	2 Acknowledgment
	3 Our Contributions towards Statically Analyzing Android apps
	3.1 Making the app analyzable
	3.2 Android app Modeling for Sensitive Data Flow Detection
	3.3 App lineages to perform evolutionary studies
	3.4 Other static analyses performed on Android apps

	4 Our Contributions towards Android Malware Detection
	4.1 Large Datasets and Ground Truth: AndroZoo
	4.2 ML Assessment Protocols
	4.3 Repackaging and Piggybacking Detection

	5 Open Challenges
	6 Biography of the Author
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 48.00, 71.15 Width 251.14 Height 90.86 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 47.9998 71.146 251.1418 90.8568

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 6
 0
 1

 1

 HistoryList_V1
 qi2base

