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Recent successes in training word embeddings for NLP tasks have encouraged a wave of research on representation learning for source
code, which builds on similar NLP methods. The overall objective is then to produce code embeddings that capture the maximum
of program semantics. State-of-the-art approaches invariably rely on a syntactic representation (i.e., raw lexical tokens, abstract
syntax trees, or intermediate representation tokens) to generate embeddings, which are criticized in the literature as non-robust
or non-generalizable. In this work, we investigate a novel embedding approach based on the intuition that source code has visual
patterns of semantics. We further use these patterns to address the outstanding challenge of identifying semantic code clones. We
propose the WySiWiM (“What You See Is What It Means”) approach where visual representations of source code are fed into powerful
pre-trained image classification neural networks from the field of computer vision to benefit from the practical advantages of transfer
learning. We evaluate the proposed embedding approach on the task of vulnerable code prediction in source code and on two variations
of the task of semantic code clone identification: code clone detection (a binary classification problem), and code classification (a
multi-classification problem). We show with experiments on the BigCloneBench (Java), Open Judge (C) that although simple, our
WySiWiM approach performs as effectively as state of the art approaches such as ASTNN or TBCNN. We also showed with data
from NVD and SARD thatWySiWiM representation can be used to learn a vulnerable code detector with reasonable performance
(accuracy∼90%). We further explore the influence of different steps in our approach, such as the choice of visual representations or the
classification algorithm, to eventually discuss the promises and limitations of this research direction.
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1 INTRODUCTION

Semantic code clone identification is a long-standing challenge in software engineering [41]. It has applications in
diverse automation tasks, including bug and vulnerable code prediction, program repair and synthesis, etc. Until recently,
semantic clones were reliably identified using dynamic approaches, such as DyCLINK [56], which compare execution
traces to decide whether two code fragments behave similarly.
Unfortunately, such approaches typically require high-coverage testing to guarantee accuracy. In consequence, they do
not effectively scale, and are not usually practical since they require complete and executable code as input. Recent
advances in neural networks have provided a new play field for researching static approaches that attempt to learn
semantic representations of code via source code embeddings.

Semantic representation learning of source code has attracted significant attention in the research community in the
last couple of years [2, 3, 12, 18, 29, 33, 38, 60–62]. Traditionally, the literature proposes approaches that process code
directly or use a syntactic tree representation, where code is treated as sentences. Then, specific approaches inspired
by techniques from the Natural Language Processing (NLP) field are used to yield embeddings of these “sentences”.
Various works in this realm face robustness issues [10] since simplification of Abstract Syntax Trees (AST), to cope with
implementation constraints, weaken the capability of neural network models to capture real and complex semantics [63].
To address these limitations, the state-of-the-art ASTNN [62] approach proposes to split each large AST into a sequence
of small statement trees, and recursively encodes the statement trees to vectors by capturing the lexical and syntactical
information from statements. Although this approach shows promising results on benchmark samples, its reliance on
lexical similarity eventually poses two challenges: (1) the model must be regularly trained on new datasets to allow
the inner word2vec [44] model to capture new vocabulary; (2) the model could be misled by relying on tokens, given
that two different library methods with the same names may have different semantics implemented outside the code
fragment.

In this paper we propose to investigate another representation learning direction for capturing semantics. In contrast
to recent works which focus on lexical and syntactical information to capture semantics, or process code to map with
some pixel values, the intuition behind our approach is to leverage the power of visual representation: a program, either
in its source code form or AST form can be viewed as an image that the programmer can analyse to look for structures
that he/she has seen before, by applying his/her experiences. From those recognized structures, the programmer may
identify patterns of functionality implementations or reveal vulnerable code fragments in his/her implementations. We
follow this intuition to design theWySiWiM (“What You See Is What It Means”) approach: instead of directly training
a complex and opaque semantic representation or embeddings based on syntactical information in source code, we
simply render source code into a visual representation1. Given the advances in the litterature of computer vision, the
WySiWiM approach can directly benefit from the state-of-the-art, notably with transfer learning. After the visualization
process,WySiWiM performs two different procedures. First, using the generated images, the visual structures of the
code are extracted. To that end, a pre-trained image classification neural network, i.e., a neural network that has been
trained on other image classification datasets is used to yield a vector of internal features which represent structural
information of the input image (i.e., of the code). Optionally, the pre-trained network can be re-trained by adding
samples of images representing code. Second, the feature vectors are used for learning to discriminate between samples
implementing different semantics, just as a human developer would do. Eventually, we expect to leverage the produced
classifiers for code classification (i.e., given a code fragment, predict its functionality label), clone detection (i.e., given a
1We do not claim that visualization is sufficient to perform all tasks. We are investigating a novel approach where features extracted from visualization
artefacts may serve some downstream tasks. In any case we consider different formats of the code, including plain text and AST representations.
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pair of code fragments, decide whether they are semantic clones) and vulnerable code identification (i.e., given a code
fragment, predict if it contains a vulnerability or not).

Our main contributions are as follows:

• We propose a novel approach to semantic representation learning of code based on visual representations of code
fragments. The WySiWiM approach is intuitively simple, and it builds on transfer learning to efficiently produce
embeddings by exploiting powerful pre-trained image classification models from the field of computer vision.

• We apply the visual representation embeddings of WySiWiM to variant tasks of semantic code clone identification.
Experimental validations against the BCB [58] and OJ [46] datasets show that WySiWiM is capable of keeping
up with the state-of-the-art while providing significant potential for improvement.

• We also apply the visual representation embeddings to the task of vulnerable code prediction. Experimental
validations using the dataset by Ponta et al. [52] show promising results.

• Finally, we provide an analysis of the influence of some implementation choices. Notably, we discuss the
possibilities of visual representations of code and the challenges associated to duplicates in the clone benchmarks
as part of threats to validity.

The remainder of this paper is structured as follows. In Section 2, we present background and review related work.
In Section 3, we discuss the design of WySiWiM and its visualization methods, as well as the learning models that are
used. Section 4 enumerates the research questions, overviews the datasets and details the experiments. In the Sections 5
and 6, respectively, we present our experimental results and provide some discussion about the threats to validity as
well as the limitations of WySiWiM.

2 BACKGROUND & RELATEDWORK

We provide in this section an overview of related work after defining essential concepts to facilitate the readers
understanding of theWySiWiM approach description.

2.1 Definitions

2.1.1 Code clone concepts. We use the following clone-related definitions for our approach in Section 3.

• Code Fragment: Also referred to as code snippet, it is a piece of software. Formally, a code fragment is a contiguous
set of code lines, which represents the input unit for clone identification. In practice, a code fragment can be a small
set of instructions, a whole code block, a whole method or even a whole class.

• (Code) Clone Pair: It is a pair of code fragments that are syntactically or semantically similar to each other.
• Clone Class: This refers to a set of code fragments where any pairwise combination of code fragments is a clone
pair.

• Syntactic clone pair: It is a clone pair where the code fragments were deemed similar according to a specific
syntactic similarity measure.

• Semantic clone pair: It is a clone pair where the code fragments implement the same functionality, respectively
the same behaviour or “semantics”.

• Candidate pair: It refers to a pair of code fragments that may or may not constitute a clone pair. We use this
terminology when we do not want to distinguish, or do not yet know, whether or not a pair of code fragments
represents a clone pair.

We also recall for the reader the following well-accepted definitions of clone types [8, 54, 57]
Manuscript submitted to ACM
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• Type-1: Identical code fragments, except for differences in whitespace, layout, and comments.
• Type-2: Identical code fragments, except for differences in identifier names and literal values, in addition to Type-1
clone differences. They are also called parameterized or renamed clones.

• Type-3: Syntactically similar code fragments that differ at the statement level. The fragments have statements added,
modified and/or removed with respect to each other, in addition to Type-1 and Type-2 clone differences. They are
also called gapped or near-miss clones.

• Type-4: Syntactically dissimilar code fragments that implement the same functionality. They are also known as
functional or semantic clones. In practice, Type-4 clones are often identified as Type-3 clones with an upper-bound
threshold on the syntactic similarity with respect to a specific similarity measure. It should be noted that Type-1 to
Type-4 clones are generally considered mutually exclusive.

⇒Semantic/functional clones are the primary target in this work.

2.1.2 Machine learning concepts. Since Section 3 develops a machine learning approach, we recall for the reader
important concepts that we leverage. However, the inner details of these concepts are strictly out of the scope of this
work.
Image Classification: Image classification is a well-studied problem in computer vision with several applications
such as facial recognition in smart houses, object recognition for self-driving cars, or disease diagnostic in healthcare.
The typical task consists in training a model to classify an image into a single or multiple predefined categories [26, 40].
Recent advances in deep neural networks have led to significant breakthroughs in image classification, where computers
manage to match human-level accuracy under some conditions [20]. Convolutional Neural Networks (CNNs) is the
most popular neural network model being used to address the image classification problem. The general idea behind
CNNs is that a local understanding of an image is good enough. A convolution is then a weighted sum of the pixel
values of the image, as a sliding window is moved across the whole image. Eventually, the CNNs extract low, middle
and high-level features and classifiers in an end-to-end multi-layer fashion, and the number of stacked layers can enrich
the “levels” of features. Simply explained, those image classification neural networks learn to recognize visual features
from the images, such as structures and colorings.

However, CNNs have been shown to present a degradation problem when the deeper network starts to converge:
with the network depth increasing, accuracy gets saturated and then degrades rapidly. Residual networks [20] (ResNets)
have then been proposed to overcome this problem by explicitly letting deeper stacked layers to fit a residual mapping
(instead of an underlying mapping as in CNNs). In this work, we will build on these tried and true models from the
literature.
Transfer Learning: Transfer learning is a technique in machine learning which consists of transferring knowledge
from a specific domain to another one [49, 64]. To give a real-world example to the concept, we could imagine that
learning to play the piano can help a human to learn to play guitar later on. Even though the instruments are very
different, the notes and the rhythms are the same, hence we can transfer this knowledge from one task to the other and
thus reduce the effort to learn. In the transfer learning theory paper [9], authors have established the foundations of the
approach. From this theory, given two domains (a source domain and a target domain), authors explain that when there
is no classifier that performs well on both source and target domains, we cannot expect to find a good target model
by training only on the source domain. Nevertheless, a study by Huh et al. [21] have already suggested that “most
changes in the choice of pre-training data long thought to be critical, do not significantly affect transfer performance”,
which implies that the domains for transfer learning can be different as long as the tasks share commonalities. In
Manuscript submitted to ACM
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our case, we seek to learn features that help to discriminate between two (code) images using transfer learning from
ImageNet [30, 31] pre-trained model. Thus the learned generic features from ImageNet diverse dataset of images
constitute a good starting point. In the case of computer vision problems, we have the intuition that certain low-level
features, such as edges, shapes, corners and intensity, can be shared between domains, thus allowing knowledge transfer
between. Our empirical experiments further confirm that this choice is reasonable.

2.2 Related work

Our work is related to various research directions in the literature, including code visualization, code clone detection,
computer vision, machine learning and software engineering benchmarking.

2.2.1 Code clone identification. Although code clone identification has been largely studied in the literature, relatively
few techniques have explicitly targeted semantically similar code fragments. Most approaches indeed focus on textually,
structurally or syntactically similar code fragments. The state-of-the-art techniques on static detection of code clones
leverage various intermediate representations to compute code similarity. Token-based [6, 27, 36] representations are
used in approaches that target syntactic similarity. AST-based [7, 23] representations are employed in approaches that
detect similar but potentially structurally different code fragments. Finally, (program dependency) graph-based [29, 39]
representations are used in detecting clones where statements may be intertwined with each other. Although similar
code fragments identified by all these approaches usually have similar behavior, such static approaches still miss finding
such fragments which have similar behavior even if their code is dissimilar [25].

To find similarly behaving code fragments, researchers have relied upon dynamic or concolic code similarity detection
which consists in identifying programs that yield similar outputs for the same inputs [24, 28, 32, 34, 57]. Although
these approaches can be very effective in finding semantic code clones, dynamic execution of code is not scalable and
implies several limitations for practical usage (e.g., the need of exhaustive test cases to ensure confidence in behavioral
equivalence).

Conceptually, the closest related work is by Ragkhitwetsagul et al. [53] who developed a syntactic code clone
detection approach based on a visual representation of code. In order to visually represent the code, they pre-process the
code by removing comments and normalizing the code formatting. The code is then rendered while applying a syntax
highlighting, as done in an IDE, to create the code image. This image is then post-processed by applying various simple
image transformations, such as blurring, to finally measure the resulting image similarity. The decision of whether or
not two code snippets are clones is then based on the level of image similarity between the visual layout. The scope
of such an approach is only limited to syntactic clones. Nevertheless, their experiments also show that the visual
representation-based method can generally keep up with the state-of-the-art for syntactic clone detection. Although
our approach shares the core concept of visualizing code, we have a different scope (semantic clones in our case) and we
additionally augment this visual representation through transfer learning.

Recently, researchers have investigated leveraging advanced natural language processing and deep learning tech-
niques to statically detect harder-to-detect clones (i.e., type-4 clones). Kim et al. [17] proposed the FaCoY code-to-code
search engine where tokens from input code fragments are alternated by considering code fragments from related
stackoverflow posts. This enables the search engine to identify syntactically dissimilar code fragments from the search
database. This work, however, is rather competitive to online code search engines than code clone detectors. With their
Oreo framework, Saini et al. [55] have proposed to use a combination of machine learning, information retrieval, and
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software metrics to deal with all clone types. They build a specific deep neural network with siamese architecture to
address type-4 clones with relative success.

2.2.2 Vulnerable code prediction. Deep learning has already been successfully used by researchers to automatically
detect vulnerability. Li et al. [37] have proposed the first semantic framework to detect vulnerabilities using deep
learning. Entitled "Syntax-based, Semantics-based, and Vector Representations (SySeVR)", the framework uses program
representations that lead to syntax and semantic information pertinent to identify vulnerable code. The approach
follows the notion of region proposal in image processing which, transferred to the software domain, divides a program
into smaller pieces of code. In order to characterize vulnerabilities, authors introduced the concept of Syntax-based
Vulnerability Candidates (SyVCs) and Semantics-based Vulnerability Candidates (SeVCs). Unfortunately, the definition
of SyVC and SeVC, which is made from manual observations of most vulnerabilities, does not a priori cover all variants
of vulnerable code. Li et al. [35] propose another deep learning based method for automated and intelligent vulnerability
prediction in source code. Their approach, more broadly, is based on a minimum intermediate representation learning
of source code.

2.2.3 Code visualization. Prior work has already investigated image representation of code for software engineering
tasks. Chen et al. [11] indeed propose to convert code characters into pixels whose color values will be decided based on
the ASCII decimal value of the associated characters. The resulting pixels are then arranged in a matrix, thus obtaining
code images. In contrast, our representation is a simple and straightforward screenshot of either the code (displayed as
is or its AST view).

2.2.4 Semantic representation learning. Deep learning advances have been exploited for statically learning semantic
representations of code. A prominent work in this direction is the Tree-based convolutional neural network (TBCNN)
proposed byMou et al. [46]. The authors proposed an effective embeddingmethod for programming language processing,
and introduced a large dataset of functional clones which is necessary to train and evaluate the task of code classification.
More recently, Zhang et al. [62] set the new state-of-the-art representation learning approach with ASTNN, which was
demonstrated to be more effective than TBCNN for code clone identification tasks. ASTNN is a semantic embedding
method which splits a given code AST into a sequence of smaller statement subtrees and applies a word2vec [44, 45]
embedding to those subtrees. This way ASTNN manages to capture both the lexical and syntactical information within
code fragments. We consider both ASTNN and TBCNN as the state-of-the-art for semantic clone identification, and
thus they will be used as references for benchmarking ourWySiWiM approach.

2.2.5 ResNets. In the literature, the Deep Residual Networks [20] are among the best performing models for image
classification. The end-to-end deep learning benchmark and competition, DAWNBench [13] ranks first the ResNet
models ahead of several other approaches on the basis of the imageNet dataset. This neural network architecture allows
to create deeper neural networks for image classification while reducing the network complexity in comparison to
other deep learning techniques. Experimental data confirmed that the strategy is effective and may lead to human-level
accuracy for the task of image classification. Our approach builds on the success of these networks.

2.2.6 Benchmarks. In the code clone identification literature, two main benchmarks are widely used.

• BigCloneBench (BCB), released by Svajlenko et al. [58], is the first big-data-curated benchmark of real clones. It is
widely explored in the literature for assessing state of the art clone detection tools. BCB contains 8 million clone
pairs and is to the best of our knowledge the biggest publicly available Java code clone benchmark. It was built by
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labeling pairs of code fragments from the IJaDataset-2.0 [4]. These pairs of clones in the dataset implement the same
functionality and are divided into the 4 types of clones : type-1, type-2, type-3 and type-4. Particularly for type-3 and
type-4, authors distinguish them following their syntactic similarity. However, there is no consensus on the minimum
similarity of a type-3 clone, so it is difficult to separate type-3 and type 4 clones. Thus, in this paper we maintain the
following proposal of the BCB authors: Types 3 and 4 are divided into three categories according to their syntactic
similarity values: “strongly type-3” for a similarity in the range [0.7, 1.0], “moderately type-3” corresponding to
similarity in the range [0.5, 0.7), and “weakly type-3+4” when the similarity is in the range [0.0, 0.5). Table 1 shows
the distribution of the types of clones contained in the dataset.

• OpenJudge (OJ), released by Mou et al. [46], is another public dataset used to evaluate code-clone detection. It
is mostly used in the literature for evaluating program classification approaches, although recent works [55, 62]
have applied code clone detection approaches to it. The dataset consists of solutions submitted by students to 104
programming questions on OpenJudge2, written in C. For each question, there are 500 corresponding solutions, each
of which is verified to be correct by OpenJudge and are thus considered as clones.

Table 1. the distribution of clone types contained in BigCloneBench.

Clone Type Number of samples
Type-1 48,116
Type-2 4,234

Strongly Type-3 175,743
Moderately Type-3 2,535,847
Weakly Type-3+4 5,820,213

All 8,584,153

3 WYSIWIM

In this section, we will overview the design of WySiWiM, providing details on the considered visualizations and the
learning models.

3.1 Approach overview

The core of the WySiWiM approach is about the production of embeddings for a given code fragment. The idea is
to take a code fragment and produce a vector of real numbers so that we receive an actionable representation of
the embedded semantic information. As illustrated in Figure 1, we consider a deep feature extractor which works by
producing embeddings for image renderings of code fragments.

Building a deep feature extractor requires a training step based on a large dataset of images. During such a training,
the neural networks learn suitable representations for the images within a feature space. Given that deep neural
network architectures for image classification are known to capture a large number of structural features of images,
we postulate that pre-trained models can be explored in a transfer learning scenario (cf. Section 3.2). Transferring
the knowledge, embedded in those pre-trained models, allows us to extract visual features without the need of huge
amounts of task-specific data to train the feature extractor.

2http://poj.openjudge.cn/
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Feature Vector X

Diverse visual representations can be 
used, e.g., plain text, color syntax 
highlighting, geometric syntax 
highlighting, or AST in condensed format.

a pre-trained image 
classification Neural Network 
(NN) is used, i.e., a NN that has 
been trained on other larger  
image classification datasets

Visual 
Representation 

Renderer

Deep Feature 
Extractor 

(Pre-Trained NN)

Fig. 1. Deep feature extraction (a.k.a, visualization-based code embedding)

Once the feature extractor is obtained, one can feed code rendered as images into it to collect the resulting feature
vectors. Those can further be used to train simple binary classifiers that learn to apply the embedded semantic
information. Simply put, the deep neural network is used to preprocess images so that they can be used to learn
semantics by applying well-known classical machine learning algorithms.

Clone identification tasks. In this work we apply theWySiWiM approach of visualization-based code semantics learning
to the problem of clone identification, which is approached in two different ways: as a classical code clone detection
problem and as a code classification problem.
★ In code classification, the goal is to predict the functionality implemented by a code fragment. In practice, we must
learn to map the code fragment to one of a set of predefined semantic functionality labels (i.e. clone classes). It is thus a
multi-class classification problem that takes a single code fragment as input and outputs a functionality label.
★ In clone detection, the goal is to directly decide if two code fragments are clones. It is thus a binary classification
problem that takes a pair of code fragments as input and outputs a Yes/No label on whether or not those fragments
form a clone pair.

In principle, both tasks can be emulated by one another. On the one hand, the code classification task could be
emulated by finding all clone pairs and building their transitive closure to generate the semantic clone classes. On
the other hand, the clone detection task, could be emulated by directly comparing the code fragment labels. We have
nevertheless opted in this work to build two separate workflows, both starting by first converting code fragments into
their visual representations.
★ For code classification, the collected code “images” and their associated functionality labels are used to fine-tune

a pre-trained image classification network. To that end, the size of the output layer of the pre-trained image
classification network must be updated. Indeed the output layer nodes map to the classes that are seen during training.
With new datasets, new classes appear.
★ For clone detection, the collected code “images” are directly fed into a pre-trained image classification net-

work in order to retrieve the corresponding embeddings (which are numerical vectors representing the internal
Manuscript submitted to ACM
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structural features within images). Obtained feature vectors are then used for training and testing a classical binary
classifier.

Vulnerable code prediction task. In this work we also apply WySiWiM to the problem of predicting vulnerabilities. We
consider the task as a simple binary classification problem where the goal is to predict whether a code fragment of code
provided as input is vulnerable or not.

3.2 Transfer learning from pre-trained models

In our approach, we transfer the embedded knowledge of the pre-trained image classification neural networks to our
clone identification tasks (i.e., for both code classification and clone detection). The knowledge that is transferred in our
case is the ability to recognize visual patterns and structures from images. Even though the data that those networks are
trained on belong technically to a different domain, we expect that they still capture relevant structural knowledge
that can be reused to extract the structural information from our specialized (code visualization) images. Thus, our
hypothesis here is that, through the transfer learning, we can leverage powerful pre-trained networks which are able to
effectively embed meaningful syntactic as well as semantic structures [20].

ImageNet
http://www.image-net.org/

Neural Network with randomly
initialized weights

Neural Network trained on
ImageNet

New Data:
visual rendering of

code fragments

optional
fine-tuning

internal
visual features

Fig. 2. Principle of transfer learning applied to build our deep feature extractor for code

Image classification neural networks consist of a multitude of convolutional layers that all learn different combinations
and variations of the data contained in the previous layers. In addition, the networks have an input layer which accepts
the input data and a fully connected output layer. This final layer is usually sized according to the number of possible
labels and is in charge of deciding a label for the data coming from the previous layers. In our case, as depicted in
Figure 2, we focus on retrieving the intermediate features that are accessible in the penultimate layer. Actually, these
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Fig. 3. Variations of visual representations of code

features could have been collected on any previous layers. For the sake of prototyping speed, we immediately accessed
the readily-available features. Future work could investigate other layers.

It should be noted that transfer learning is gaining traction within the deep learning community, since several
domains lack sufficient data for training [49]. Therefore, a fundamental motivation in the study of transfer learning is
the fact that people can intelligently apply knowledge learned previously to solve new problems faster or with better
solutions [49]. For example, it has been shown possible to use the knowledge about notes and rhythm, which were
learned for playing the piano, to learn guitar playing; applying the vocabulary learned in French to infer English words
as they share a certain base; or in audio-visual correspondence tasks [5].

3.3 Visualization options

We explore inWySiWiM four variations of code visualizations in order to assess the influence of the selected visual
representation on the performance of WySiWiM. We describe each visual representation by explaining its principle,
detailing its implementation and arguing about its relevance.
• Plain Text: The first visual representation is straightforward. It consists of simply rendering the textual representation
of the code as a black and white image without highlighting any language construct. The rendering is implemented
using the pillow3 Python image drawing and manipulation library: source code text is rendered as-is, i.e., with the
indentations used by the developer, while applying a white background. Plain text, illustrated in Figure 3(a), is
considered as our baseline visual representation of code. With Plain Text, we expect the learning algorithm to learn the
visual shape of characters and words (locally) as well as the code blocks shapes (globally) to identify structures of code
logic (e.g., indentation, if conditions, loops, etc.).
• Color Syntax Highlighting: A simple variation of the Plain text visualization consists in rendering the code
text while highlighting syntax with colors, similarly to what is done in programming environments. This rendering
approach is implemented by first generating an html page to highlight the code using the google code-prettify

javascript library. The web page is then saved as a PNG image using the imgkit4, a python wrapper for the Webkit
web browser engine. As illustrated in Figure 3(b), this visual representation is expliciting code structures for human

3https://pillow.readthedocs.io
4https://pypi.org/project/imgkit/
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programmers. Therefore, we expect that color-based syntax highlighting can be relevant for semantic machine learning
tasks.
• Geometric Syntax Highlighting: In the previous visualization option, emphasis is put on color. Yet, image classifi-
cation neural networks are also known to capture shapes. We propose to build a rendering of code where language
keywords are represented by specific geometric shapes (i.e., icons). The implementation is based on the tokenization of
code fragments using the javalang5 python library. We preset the mapping of language keywords with specific icons.
During rendering, the text tokens are then replaced by the associated icons. Overall, although this representation could
be nonsensical for humans, we expect that it will support the learning algorithm in the same way colored syntax does
for programmers visual perception of code.
• Ast in Condensed Format: Finally, we consider a visual rendering of the abstract syntax trees. The implementation
is based on the AST generated by the javalang python library and leveraging graphviz python bindings6. To render the
resulting graph, we generate a "graphviz" graph model by traversing the AST and representing some subtrees (e.g., the
"for" loop control) in a purely textual manner, while representing other elements as their actual tree structure. This
helps to condense the AST since raw AST quickly explodes in depth and breadth even for small code fragments. In
this representation we generated the graph such that the edges represent the possible control flows inside the code in
order to capture its sequential nature. Further, we apply some geometric shapes to specific types of nodes in order to
augment the visual strength of specific code structures.

Overall, we try inWySiWiM visualization options that emphasize on colors, shapes and structures, and compare
against the baseline plain text rendering. Although the generation of visual renderings is stable (i.e., not a random
process), it should be noted that the AST in condensed format is, by far, the slowest to compute, as it involves many
complex steps.

Concretely, the output of the visualization rendering process is a single PNG image per visualization option and
per code fragment. Each image may also be re-scaled to fit with the input requirements of the pre-trained image
classification neural network.

3.4 Code classification architecture

Figure 4 provides a simple illustration of the overall architecture that we developed for code classification. We leverage
neural networks (specifically, the powerful ResNets) that are pre-trained on the ImageNet dataset [16]. However, we
perform a re-training step, which is actually aimed to fine-tune the neural networks, towards better learning to extract
features that are semantically-relevant to different classes of code functionalities. To that end, we update the size of
the output layer of the pre-trained image classification network so that the final size accounts also for the number of
possible functionality labels in our code dataset. The re-trained (i.e., fine-tuned) network on the training dataset is then
used as a classifier to predict the labels of code fragments in the test set based on their visual renderings. In order to
ensure the stability of the re-training process and to provide some guarantees in the yielded results, we have conducted
the same experiments thrice. Each retraining was performed over 20 epochs. Details on how training and test sets are
split are provided and discussed later in Section 4.2.

5https://pypi.org/project/javalang/
6https://www.graphviz.org/
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Fig. 4. Illustration of the architecture forWySiWiM’s Code classification

3.5 Vulnerable code prediction architecture

Our vulnerability prediction task is a code classification task (hencewith the similar architecture as for code classification)
where the ouput is a binary class related to the presence of a vulnerability. Thus, as with the code classification pipeline,
we use a pre-trained neural network to classify images obtained from different visual representations of code. Again,
we use the ImageNet pre-trained model over resnet18 and resnet50 architectures. This architecture is refined as a binary
classification where we predict whether or not a code fragment is vulnerable. Figure 5 provide an illustration of this
architecture. Similarly to code classification architecture, we do not tune any hyper-parameters of these networks
and we do not need a validation set. In order to re-train and evaluate WYSiWiM on vulnerability code prediction, we
collected, process and split data for training and testing. Details on the dataset are provide in the next section.

3.6 Clone detection architecture

Figure 6 illustrates WySiWiM’s architecture for clone detection. Similarly to the pipeline of code classification, we
leverage a pre-trained neural network for visual classification to which we feed the images obtained from visual
renderings of code snippets. In this case, however, our objective is to simply collect the embeddings produced during
deep feature extraction. Thus, given that we do not need the network to learn about new classes in our new (code-related)
image datasets, we propose to directly use the ResNets that were pre-trained on ImageNet datasets. We expect the
Manuscript submitted to ACM
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Fig. 6. Illustration of the architecture forWySiWiM’s Clone detection

embeddings to still be relevant for capturing structural features. The feature vectors (i.e., embeddings) are then used to
train binary classifiers as in traditional machine learning. Concretely, to train the binary classifiers, the first step is to
calculate the absolute difference between the feature vectors of the candidate pair vectors. Those difference vectors can
then be used to train our binary classifiers.
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Algorithms for binary classification. In code classification, we directly reuse the in-built capability of the neural networks
to perform classification (i.e., using the softmax activation function at the last layer). Indeed, given that the input of the
task is a single image representing the visualization rendering of a code fragment, the classical image classification
neural network is suitable.

In clone detection, however, the input is a pair of code fragments (precisely, a pair of images taken from their
visualization renderings). This means that the architecture of image classification networks is not readily applicable for
this case as it always expects a single input only. For sake of simplicity and optimization, we decided to use the neural
network to collect embeddings for individual images, and train our final classifier separately. This strategy allows us to
experiment with different traditional classification algorithms. Our experiments provide results with Support Vector
Machines [14], k-Nearest Neighbours [15] and a simple binary classification neural network [19].

4 EXPERIMENTAL SETUP

We enumerate the research questions, overview the datasets used in the experiments and discuss some important
implementation details. We open-source the implementation of our prototype implementation of WySiWiM and release
all data related to the experiments recorded in this paper. The artifact web page is currently in an anonymous repository:
https://github.com/wysiwim/wysiwim

4.1 ResearchQuestions

RQ1: How doesWySiWiM perform in comparison with the state-of-the-art?We investigate the ability of our
novel approach of semantics learning based on visual representation of code to keep up with the state-of-the-art
for the tasks of code classification, clone detection and vulnerable code prediction.

RQ2: How does the visual representation influence the performance of WySiWiM? Experiments for this re-
search question are focused on the code clone detection task, wherewe try all the considered visual representations
options and compare the performance differences. We also conducted similar (but less extensive) experiments
for the task of vulnerable code prediction to further assess the learning power of different representations.

RQ3:What is the impact of the classification algorithms onWySiWiM?We investigate in this research question
different supervised learning algorithms that can be leveraged to train the binary classifiers needed for the code
clone detection architecture.

4.2 Selection of datasets

Table 2 summarizes all the datasets used in this paper. We will now detail each of these datasets.

Table 2. Summary of all the datasets

Task Name Dataset Name # of samples
Total Used in Evaluation

Vulnerable Code Prediction The KB Project 1,240 248
SySeVR dataset (based on
NVD and SARD data)

420,627 84,126
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Code Classification: We assess the performance of WySiWiM for the code classification task based on the Open
Judge (OJ) dataset as introduced in [46]. This choice is motivated by the need to directly compare against the state-
of-the-art (namely, TBCNN [46] and ASTNN [62]), which also run experiments on this dataset. This dataset contains
104 different functionalities and 500 samples per functionality. In order to achieve balanced datasets for training and
testing, we apply a stratified sampling over the functionalities with a ratio of 4:1 (i.e, 80% of data for training and 20%
for testing).

Vulnerable code prediction: We leveraged two (02) different datasets for the vulnerability prediction experiments.

The KB Project. We collected our first dataset from the KB project [52] which supports the creation, management
and aggregation of a distributed, collaborative knowledge base of vulnerabilities that affect open-source software.
Thus, we successfully constructed a dataset containing 1,240 code samples (i.e., 620 pairs of vulnerable and non-
vulnerable methods). The vulnerable code samples are spread over 167 Common Vulnerabilities and Exposures
(CVE). Due to the important number of CVE, we mapped each CVE with its corresponding Common Weakness
Enumeration (CWE) ID. The distribution of samples within the CWE categories is provided in Table 3. To achieve
balanced datasets for training and testing, we apply a stratified sampling over the labels and CWE IDs with a
ratio of 4:1 (i.e, 80% of data for training and 20% for testing).

NVD and SARD. In order to be able to compare ourselves directly with the state of the art in vulnerable code prediction
"Syntax-based, Semantics-based, and Vector Representations (SySeVR)" [37], we used the same dataset as SySeVR’s
authors. The dataset is consisting of samples collected from two different sources : The National Vulnerability
Database (NVD) [47] and the Software Assurance Reference Dataset (SARD) [48]. NVD contains vulnerabilities
in production software. Some of the samples contain includes diff files that describe the difference between
the vulnerable code and the correct code. This way we can have vulnerable and non-vulnerable data available.
SARD contains vulnerabilities in production, synthetic and academic software. The samples in this dataset
are categorised as "good" (i.e. having no vulnerabilities), "bad" (i.e. having vulnerabilities) and "mixed" (i.e.
having vulnerabilities for which corrected versions are also available). In order to construct our dataset for
experimentation, we have focused on the same programs and open source projects as in SyseVR [37]. In total,
therefore, we have a set of 420,627 code fragments, 364,232 of which are vulnerable and distributed over 107 types
(CWE [59] - Common Weakness Enumeration ID) of vulnerabilities. In addition, SySeVR’s [37] authors found
that the dataset exposes 4 syntactic characteristics of the vulnerability that are: 𝐿𝑖𝑏𝑟𝑎𝑟𝑦/𝐴𝑃𝐼 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑎𝑙𝑙 ,
𝐴𝑟𝑟𝑎𝑦 𝑈𝑠𝑎𝑔𝑒 , 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 𝑈𝑠𝑎𝑔𝑒 and 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 and for some experiments we focus on this because
of the rather high number of CWEs. Table 4 shows the distribution of the dataset according to the 4 syntactic
characteristics.

Code Clone Detection: The state-of-the-art for code clone detection being ASTNN [62], we reuse the dataset that
they release in their experiment artifacts. This enables a direct and unbiased comparison. The split into training and
testing sets is also predefined and applied as-is. This dataset consists of 20k Type-4 clone pairs and 20k non-clone pairs.

Nevertheless, we found that the ASTNN dataset is not balanced with respect to the number of clones per functionality.
Thus we selected a custom subset of BigCloneBench (BCB) (cf. Section 2.2.6) for our further experiments. We focus on
code fragments related to three functionalities (i.e., #7 - bubble-sort array #13 - shuffle array inplace and # 44 -
check for palindrome) which we consider the most suitable for our evaluation: these code fragments are dissimilar
enough but concise; furthermore #7 and #13 code fragments deal all with arrays and yet semantically distant, offering an
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Table 3. The dataset from KB Project: CWE IDs and description

CWE IDs Description # of samples
CWE-297 Improper Validation of Certificate with Host Mismatch 11
CWE-352 Cross-Site Request Forgery (CSRF) 40
CWE-79 Improper Neutralization of Input During Web Page Generation

(’Cross-site Scripting’)
74

CWE-200 Exposure of Sensitive Information to an Unauthorized Actor 65
CWE-20 Improper Input Validation 119
CWE-94 Improper Control of Generation of Code (’Code Injection’) 27
CWE-287 Improper Authentication 34
CWE-306 Missing Authentication for Critical Function 21
CWE-502 Deserialization of Untrusted Data 68

NVD-CWE-noinfo Insufficient Information 88
CWE-264 Permissions Privileges and Access Controls 73

Table 4. The dataset from NVD and SARD: The distribution of the dataset according to syntactic characteristics [37]

Syntactic Characteristics # of vulnerable samples # of correct samples
Pointer usage 28,391 263,450
Array usage 10,926 31,303

Arithmetic expression 3,475 18,679
API function call 13,603 50,800

All 56,395 364,232

opportunity to properly assess the semantic clone detection approach. The dataset is constructed by randomly sampling
500 Type-4 clone pairs and 500 non-clone pairs per functionality. The ground truth information of clone/non-clone is
based on the annotations provided in BigCloneBench.

4.3 Implementation

Our proof-of-concept implementation of WySiWiM is written in Python using common frameworks and libraries. In
particular, several Python libraries are leveraged for the code fragment processing towards producing visual renderings
as images (cf. Section 3.3). We leverage the pandas7 library for data management. Further for the stratified splitting of
the datasets, we use the dataset splitting method from the scikit-learn8 library.

Data Preprocessing. The pre-trained networks considered in our experiments have a limitation on the input image
size being set to exactly 224x224 pixels. To fit with this requirement, we choose to simply re-scale the code visualizations
to this size.

Data Augmentation. Usually in many machine learning applications, a data augmentation step is performed. In
image classification in particular, one usually uses a set of random transformations to create many variations from
the input data in order to artificially increase the size of the dataset. Those random transformations include rescaling,

7https://pandas.pydata.org/
8https://scikit-learn.org/
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cropping, mirroring etc. For our approach however, we found that this is not beneficial since source code naturally does
not appear up-side down or mirrored.

Code classification. The implementation of our code classification task is mainly based on PyTorch [50] and uses
the pre-trained ResNet models provided by the PyTorch framework. In particular we use a ResNet18 and a ResNet50 to
highlight the increase of performance when the number of layers is increased. Both are pre-trained on the ImageNet
dataset [16].

Vulnerable code prediction: The implementation of our vulnerable code prediction task is also mainly based on
PyTorch [50] and uses the pre-trained ResNet models provided by the PyTorch framework. In particular we use a
ResNet18 and a ResNet50 to highlight the increase of performance when the number of layers is increased. Both are
pre-trained on the ImageNet dataset [16].

Experiment with KB Dataset the dataset for these experiments is made of Java code, leading to the following
constraint for Geometric visual rendering : we did not have enough geometric figures to represent each of the
keywords of the language.

Experiment with SySeVR Dataset With this experiment, we wish to compareWySiWiM results directly with the
state-of-art that use the same dataset. Moreover, we found that in this dataset samples whose code fragments do
not give enough context in order to have their corresponding AST and generate errors. Instead of removing those
problematic sample, we conduct this experiment without the Ast in condensed format visualization. method.

Clone detection. For the implementation of the binary clone detection task, we use again the pre-trained ResNet50
model and drop the last layer in order to generate the raw feature vectors for our visualized code fragments. Those
vectors are then converted into numpy9 arrays which facilitates the calculation of the absolute difference between
vectors. For the final stage of learning and predicting, we use pytorch again to implement a simple binary classification
network. SVM and k-NN algorithm implementations are taken from the scikit-learn library and concerns the different
variants of the algorithms [51]. Thus, we SVM is used with different kernels (𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 , 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑟𝑏 𝑓

known as Gaussian kernel) and k-NN with different algorithms used to compute the nearest neighbors (𝑏𝑎𝑙𝑙_𝑡𝑟𝑒𝑒 ,
𝑘𝑑_𝑡𝑟𝑒𝑒 and 𝑏𝑟𝑢𝑡𝑒).

5 RESULTS

We now present the experimental results in response to the research questions, and based on the experimental settings
presented previously.

5.1 RQ1: [ Performance of WySiWiM ]

5.1.1 Code classification. For performance comparison against the state-of-the-art for the task of code classification,
we focus on the accuracy metric, which is used by the state-of-the-art ASTNN and TBCNN authors to report their
performance (see. [46, 62]). As discussed previously, we also reuse the same OJ dataset that was used for ASTNN and
TBCNN validation. We conducted these experiments using allWySiWiM’s visualisation methods.

Results: Table 2 shows the results of all the experiments on code classification. To compare with TBCNN and
ASTNN, we report in the table 6 our best performance (the accuracy values) according to the two (02) classification
models used. ThusWySiWiM provides an accuracy of 89.7 and 86.4 percent for code classification on the OJ dataset
9https://www.numpy.org/
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Visualization method Model Accuracy Precision Recall F1 score

Plain Text ResNet18 86.4 85.8 84.7 82.2
ResNet50 89.7 85.7 87.4 86.3

Color Syntax Highlighting ResNet18 79.8 80.2 79.8 79.8
ResNet50 87.7 87.7 87.7 87.6

Geometric syntax highlighting ResNet18 83.9 83.9 83.9 83.8
ResNet50 83.3 83.3 83.4 83.3

Ast condensed format ResNet18 84.3 84.2 84.3 84.0
ResNet50 87.9 84.6 84.2 83.9

Table 5. WySiWiM Code Classification Task: All Experimental Results

with ResNet18 and ResNet50 respectively. These results suggest that we perform reasonably well in comparison to the
state-of-the-art which are reported to yield accuracy scores of 94.0% and 98.2% for TBCNN and ASTNN respectively.

Method Variation Accuracy
TBCNN - 94.0
ASTNN - 98.2
WySiWiM with ResNet18 pre-trained model 86.4
WySiWiM with ResNet50 pre-trained model 89.7

Table 6. Accuracy comparisons for code classification.

5.1.2 Clone Detection. Experiments for Clone detection are done with the BigCloneBench which already has labels
on pairs of clones and non-clones. For fair comparisons, we run ASTNN and WySiWiM on the same samples of
Type-4 clones that were used to evaluate ASTNN by Zhang et al. [62]. For each visualization method of WySiWiM,
we conducted the experiments with all the selected classification algorithms and we discuss the results for our best
configuration: the Color syntax highlighting as the visualization option and the 𝑙𝑖𝑛𝑒𝑎𝑟 SVM as classification algorithm.
We refer the reader to next research questions where we show that the visualization and algorithms have a limited
impact on the performance of WySiWiM. Finally, contrary to previous experiments, we do not compare against TBCNN
since this approach has not been applied for clone detection.

Results: The table 7 and the Figure 7 show respectively the results of all the experiments on the code clone
detection task and the confusion matrix for our best performance. We report in the table 8 the performance of our best
experiment (achieve with the the Color syntax highlighting visualization and the 𝑙𝑖𝑛𝑒𝑎𝑟 SVM algorithm) and provide
a direct comparison with ASTNN, the state-of-the-art approach in the code clone detection task. This performance
comparison show that, overall, we outperform the state-of-the-art in terms of F-Measure. It is further noteworthy that
WySiWiM offers a better trade-off between precision and recall than ASTNN which presents quasi-perfect precision
but lower recall.

5.1.3 Vulnerable code prediction. In order to answer to our first research question on WySiWiM performance in
vulnerable code prediction task, we compute its prediction performance on two (02) different datasets (cf. Section 4.2):
The KB project dataset and the SySeVR dataset built from NVD [47] and SARD [48] data. For each of these datasets, we
conducted experiments with the Resnet18 and ResNet50 models, and usingWySiWiM’s visualization methods. Due
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Visualization method Classifier Variation Accuracy Precision Recall F1 score

Plain Text

NN - 90.4 92.2 88.6 0.90.3

SVM

linear 97.2 96.9 96.9 96.8
poly 93.2 90.3 97.8 94.0
rbf 94.7 94.0 96.3 95.2

sigmoid 68.3 70.4 72.3 71.3

kNN
brute 95.8 97.2 94.9 96.0
kd_tree 95.8 97.2 94.9 96.0
ball_tree 95.8 97.2 94.9 96.0

Color Syntax Highlighting

NN - 95.4 95.9 95.9 95.8

SVM

linear 97.9 98.6 95.6 97.1

poly 92.8 89.3 98.7 93.7
rbf 95.9 97.2 95.3 96.6

sigmoid 58.6 62.4 60.5 61.4

kNN
brute 94.3 95.9 93.6 94.7
kd_tree 94.3 95.9 93.6 94.7
ball_tree 94.3 95.9 93.6 94.7

Geometric syntax highlighting

NN - 88.1 86.3 91.1 88.6

SVM

linear 96.5 96.9 96.6 96.8
poly 93.2 90.3 97.9 94.0
rbf 94.7 94.1 96.3 95.2

sigmoid 68.3 70.4 72.3 71.3

kNN
brute 91.6 91.4 93.2 92.3
kd_tree 91.6 91.4 93.2 92.3
ball_tree 91.6 91.4 93.2 92.3

Ast condensed format

NN - 92.7 96.7 93.9 95.3

SVM

linear 97.8 97.7 97.6 97.1

poly 95.4 95.6 95.9 95.9
rbf 95.6 95.9 95.9 95.9

sigmoid 67.6 71.9 66.6 69.1

kNN
brute 92.8 95.7 90.9 93.2
kd_tree 92.8 95.7 90.9 93.2
ball_tree 92.8 95.7 90.9 93.2

Table 7. WySiWiM Code Clone Detection Task: All Experimental Results

Method F1 score Precision Recall
ASTNN 93.7 99.8 88.3
WySiWiM 97.1 98.6 95.6

Table 8. Performance comparison for clone detection.

to errors during the generation of ASTs for some samples in the SySeVR dataset, we have not considered the AST in
condensed format visualization method for this dataset.
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Fig. 7. Confusion Matrix: Code Clone Detection

Dataset Visualization Method Model Accuracy Precision Recall F1 score

KB Project

Plain Text ResNet18 55.6 55.7 55.7 55.6
ResNet50 62.5 62.8 62.5 62.2

Color Syntax Highlighting ResNet18 67.4 66.3 65.2 64.6
ResNet50 71.7 70.7 71.7 71.6

Geometric syntax highlighting ResNet18 56.0 56.4 56.0 55.4
ResNet50 62.1 62.2 62.1 62.0

Ast condensed format ResNet18 55.6 55.9 55.6 55.2
ResNet50 56.4 56.4 56.4 56.4

SySeVR

Plain Text ResNet18 88.1 88.3 88.3 88.1
ResNet50 88.8 88.8 88.9 88.8

Color Syntax Highlighting ResNet18 88.6 88.6 88.7 88.6
ResNet50 90.9 90.9 91.0 90.9

Geometric syntax highlighting ResNet18 56.0 56.4 56.0 55.4
ResNet50 62.1 62.2 62.1 62.0

Table 9. WySiWiM Vulnerable Code Prediction Task: All Experimental Results

Approach Accuracy Precision Recall F1 score
SySeVR - 98.0 90.8 - 92.6
WySiWiM with ResNet18 pre-trained model 88.6 88.6 88.7 88.6
WySiWiM with ResNet50 pre-trained model 90.9 90.9 91.0 90.9
Checkmarx On a different dataset [37] 72.9 30.9 - 36.1

Table 10. Performance Comparison for Vulnerable Code Prediction (with SySeVR Dataset)

Results: The table 9 shows allWySiWiM experimental results on the vulnerable code prediction. Figure 8 illustrates
the confusion matrix of our best performance on the SySeVR dataset and obtained with the resnet50 model. In table 10,
we summarize the results for the task of vulnerability prediction by WySiWiM and state of the art tools. With respect
to Precision and F1 scores,WySiWiM and SySeVR yield very close results (90.9 vs 90.8 for Precision and 90.9 vs 92.6
Manuscript submitted to ACM
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Fig. 8. Confusion Matrix: Vulnerable Code Prediction

for F1). Furthermore SySeVR’s performance has not been analysed thoroughly by the authors to clear any doubts on
overfitting. We have made an analysis of the dataset and found a huge imbalance in vulnerability syntactic characteristic
(cf. Table 4), which may significantly bias performance result computation. We also compare against the results reported
in the literature for the commercial Checkmarx tool. Although the datasets used for evaluation are different, we include
this comparison as done by the SySeVR state of the art work. The results show thatWySiWiM significantly outperforms
Checkmarx in detecting vulnerable code.

In the light of SySeVR’s authors findings on the dataset (cf. Section 4.2), we present in Figure 9 the percentage
of correct predictions per vulnerability syntactic characteristic (𝐴𝑃𝐼 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑎𝑙𝑙 , 𝐴𝑟𝑟𝑎𝑦 𝑈𝑠𝑎𝑔𝑒 , 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 𝑈𝑠𝑎𝑔𝑒 and
𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛) following the different visualization methods. These results show that WySiWiM predicts
better and more correctly samples exhibiting 𝑃𝑜𝑖𝑛𝑡𝑒𝑟 𝑈𝑠𝑎𝑔𝑒 as syntactic characteristic. Then we have the samples from
𝐴𝑃𝐼 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑎𝑙𝑙 and 𝐴𝑟𝑟𝑎𝑦 𝑈𝑠𝑎𝑔𝑒 respectively. 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is the one with weak results. The number of
samples per vulnerability syntactic characteristic (cf. Table 4) seems to be at the origin of these discrepancies in results.

We have also applied WySiWiM on a different (smaller) dataset of vulnerable code from the KB project. The
experimental results (Table 9) show that the performance is less significant, although it is still on par with the
performance yielded by the Checkmarx commercial tool. The performance degradation that we observe however is in
line with recent studies that show that given larger networks and more data the general performance of deep learning
can be improved tremendously (e.g. see GPT-2 vs. GPT-3 [43].

Given the limitations that our implementation carries (cf. Section 6.2) and the potential for improvement (cf.
Section 6.3), the yielded performance results for code classification, clone detection and vulnerable code prediction
of WySiWiM are largely promising. In particular,WySiWiM achieves the best results on the clone detection and
vulnerability prediction tasks. We will consider these two tasks in the next sections in order to answer the research
questions related to the influence of the visualisation method and the algorithms.
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Fig. 9. Performance of WySiWiM-based vulnerable code prediction per vulnerability syntactic characteristic samples set (i.e.,

Percentage of vulnerability syntactic characteristic related samples accurately predicted by the learned prediction model) with

ResNet50 architecture

5.2 RQ2: [ Visualization influence ]

5.2.1 Clone Detection. To examine the influence of visualization methods, we consider first the clone detection task
where WySiWiM implements the binary neural network classifier for the final clone decision. The process is then
performed for all previously-described visual representations options (cf. Section 3.3).

Results: The results depicted in figure 10 suggest that theAst in condensed format and theColor syntax highlighting
visual representations yield the best results (which are further very similar for these two representations). On the
one hand, it is noteworthy that the Color syntax highlighting improves over the Plain text visualization, hence
confirming our initial intuition that colors can help to better capture semantics visually. On the other hand, although
Geometric syntax highlighting performs slightly less well than others, it’s relatively high performance indeed suggests
that visual shapes are expressive enough to help learn semantics of code structures. In any case, we also suspect that
the performance degradation of Geometric syntax highlighting visualizations might emerge from a bad choice of the
keyword substitution shapes. Finally, we note that, depending on the performance metric, any of the visualizations may
perform better or worse than other visualizations.

5.2.2 Vulnerable code prediction. We also examine the impact of visualization methods on the vulnerability predic-
tion task. We only focus (based on the insights of RQ1 on vulnerable code prediction) on the experiment on our
Manuscript submitted to ACM
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Fig. 10. Influence of visualization methods on clone detection performance. Comparison done with our best classification algorithm:

SVM with 𝑙𝑖𝑛𝑒𝑎𝑟 kernel

SySeVR [37] dataset with the Resnet50 architecture like model. This experiment concerns the Plain text, the Color
Syntax Highlighting and the Geometric as visualization methods (cf. Section 4.3).

Results: The results in figure 11 suggest that the Color syntax highlighting visual representations yield the best
results. The Geometric and the Plain text visualization gave low results on this task. These results confirm for a
second time our initial intuition : the Color syntax highlighting visualization help to better capture semantics of source
code. Also, Just like the results on clone detection, the Geometric syntax highlighting performs slightly less well than
other visualization methods.

5.3 RQ3: [ Algorithm impact ]

To run several experiments of clone detection while varying the classification algorithms, we leverage our main
dataset sampled from BCB (cf. Section 4.2). We also fix the visualization option to the Color syntax highlighting. The
experiments are then performed to compare the variations of sensitivity of the WySiWiM embeddings with respect to
different algorithms. We use 3 variants of k-NN10 (with the algorithms 𝑏𝑎𝑙𝑙_𝑡𝑟𝑒𝑒 , 𝑘𝑑_𝑡𝑟𝑒𝑒 and 𝑏𝑟𝑢𝑡𝑒 to compute the
nearest neighbors) , a simple NN11, and 4 variants of SVM (use of the kernels 𝑙𝑖𝑛𝑒𝑎𝑟 , 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 , 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 and 𝑟𝑏 𝑓 ).

Results: Figure 12 presents the comparison results. It appears that the algorithm has a slight impact on all scores
between k-NN variants. Compared to the Neural Network classifier, the scores also fluctuated very little except the
accuracy which is lower for the Neural Network classifier. Using the 𝑟𝑏 𝑓 or 𝑙𝑖𝑛𝑒𝑎𝑟 kernels, SVM is the algorithm with
the best scores compared to the others. Besides, SVM with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 kernel has the lowest results overall. Our intuition is
that the use of the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 kernel requires hyperparameters tuning whereas in our experiments, all other parameters are
10We use kNN with the default setting of scikit-learn where 𝑘 = 5
11The NN is a simple fully-connected linear layer with bias, so in essence a linear combination
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Fig. 11. Influence of visualization methods on Vulnerable code prediction performance with ResNet50 architecture

kept by default. Nevertheless, all algorithms except SVM with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 kernel offer reasonably good performance, which
suggests that the embeddings produced by the pre-trained models are effective in terms of semantic representations.
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Fig. 12. Impact of classification algorithms on clone detection performance

6 DISCUSSION

Our experimental evaluation bears some threats to validity, while the approach itself has limitations that can be
improved in future work.
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Approach Accuracy Precision F1 score
SySeVR (SOTA) 98.0 90.8 92.6
WySiWiM with ResNet50 pre-trained model 90.9 90.9 90.9
CODEGRID with ResNet50 pre-trained model 91.2 90.8 90.9
Checkmarx On a different dataset 72.9 30.9 36.1

Table 11. Performance Comparison for Vulnerable Code Prediction

6.1 Threats to Validity

Internal Validity - Dataset. Our dataset selections are limited in terms of size and diversity of functionalities. For the
clone detection variant in particular, even though the number of clones is rather high, the number of code fragments that
the clone and non-clones pairs are based on is still very small as the pairs are formed from those base code fragments
by pairwise combination. This lack of diversity might negatively influence the generalizability of the evaluation
results. Nevertheless, we mitigate this threat in the comparison experiment (RQ1) by using the same datasets as the
state-of-the-art (i.e., ASTNN).
External Validity - Dataset. Even though the BigCloneBench is widely used throughout the literature, the judgment
of whether or not a pair of code fragments form a clone remains biased and purely based on benchmark authors’
intuition. Further, there is no single or precise notion of what semantic similarity is. Thus, the semantic boundaries
of the functionality classes might not be consistent across all the represented functionalities. Finally, the program
semantics of a code fragment might be obscured by the usage of external libraries that are not included within the
dataset, in which case the decision task is technically unfeasible.
External Validity - Neural Network Architecture. In this paper we have worked with the ResNet neural network
architecture (cf. Section 2.2.4). However, we have also conducted the experiments with the DenseNet [22] architecture.
Although more sophisticated in its design, the results (Figure 13) show that DenseNet and ResNet50 have almost similar
performance.
External Validity - Classification Algorithms. For the final learning and prediction stage of the code clone detection
task, we used a simple binary classification neural network but also two (02) classical classification algorithms among
the several existing ones. The experimental results for this task can then be influenced by the chosen classification
algorithms. Therefore, we selected the simplest and widely used algorithms (kNN and SVM) in order to reduce the
potential biases.
External Validity - Presence of clone duplicates in BCB. During development, we noticed the existence of con-
ceptually duplicated clones in BigCloneBench. This fact showed up in the form of identical visual representations of
code for different code fragment ids. It turned out that those fragments emerged from Type-1 clone pairs, which are
technically the same code. When those both clone fragments are combined with another code fragment to form clone
pairs, those clone pairs are conceptually duplicated. Although we cannot provide precise statistics on the extent of
clone duplicates present in BigCloneBench, we can approximate, based on the code fragments that are used in Type-1
and Type-4 clone pairs, an upper-bound of approximately 30 percent clone duplicates. If we consider that Type-2 and
Type-3 code snippets can also build clone duplicates, this estimation goes up to even 60 percent. In our case, during the
development, we experienced drops of performance of about 10 percent, on small development examples. Hence we
conclude that code clones should not be disregarded if precise and valid evaluations are desired. This conclusion is
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Fig. 13. Code classification performance: Densenet vs. Resnet architectures

consistent with recent empirical results reported by Alamanis on the adverse effects of code duplication in machine
learning models of code [1].

To explore the impact of code duplicates on the performance of WySiWiM, we build a dataset (based on the same three
functionalities and numbers of clones/non-clone pairs) where we do not use any clones that contain code fragments
that are also used in Type-1 clone pairs. The results from figure 14 show that the avoidance of clone duplicates slightly
degrades the overall results. This makes sense since the existence of clone duplicates makes the task easier and allows to
achieve a higher score. This finding is further valid for SVM with 𝑙𝑖𝑛𝑒𝑎𝑟 (Figure 14 (a)) kernel and k-NN with 𝑏𝑎𝑙𝑙 𝑡𝑟𝑒𝑒
algorithm (Figure 14 (b)).
Construct Validity - Dataset. A recurrent construct validity issue in the machine learning literature is related to
class imbalance. In clone detection, one must ensure that all functionalities are balanced in the dataset of clone and
non-clone pairs. Some approaches may overfit to specific (and largely represented) classes. To check for this issue, we
build a balanced dataset (with and without duplicates) and compared the performance of WySiWiM clone detection on
this dataset as well as the imbalanced dataset provided in ASTNN artifacts. Indeed, the ASTNN dataset is randomly
sampled from the BCB (using a fixed random seed) and hence -more or less- keeps the unbalancing that is present
in the BCB itself. Comparison results in Figure 12 with balanced and imbalanced (i.e., ASTNN dataset) suggest that
WySiWiM keeps its promises on performance.

Dataset Accuracy F1 score Precision Recall
ASTNN 91.8 94.8 95.4 94.3
balanced 94.1 94.5 95.2 93.8
balanced w/o duplicates 92.1 92.0 94.1 90.1

Table 12. Impact of class imbalance in the dataset of code clones
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Fig. 14. Influence of clone duplicates.

Construct Validity - Geometric Visual Representation Due to the lack of sufficient geometric forms to map the
vocabulary of terms in our datasets, we only replace language keywords with some geometric forms. Other terms are
left as is. The mix of words and geometric forms may however lead to a deterioration of the learning performance
Construct Validity - Cross validation.We did not perform any cross validation on our approach, as our goal was to
rather convey the concepts behind the approach rather than achieve high results. It is probable that the exact results
vary to a certain extent on different splits of the dataset, especially since the different code fragments are probably not
"semantically equally diverse" to each other, without further specifying what that could mean.
Conclusion Validity - Lack of definitions of semantic similarity. The software engineering community faces a
crucial challenge for defining what semantic similarity means. Since we do not dare to explicitly define what semantic
similarity means, we have to rely on the semantic value that is embedded in our dataset, respectively as it was implied
by the creators of the BCB. In consequence, a specific selection of a subset of the dataset may even influence the overall
semantics it carries. However, even when two approaches are applied on the same dataset, they might still view semantic
similarity differently. These facts make it hard to evaluate and especially compare semantic approaches of any sort.

6.2 Limitations

Input size of ResNets. Image classification networks have technically and by construction a strong limitation on their
input size. This is problematic as it introduces loss and distortion of our input data. In consequence, we may completely
loose the fine-grained lexical information that is contained in the visual representations of our code fragments.
Code fragment granularity. The approach as presented is mainly designed to work with method granularity code
fragments. Image classification networks are designed to assign a single most suitable label to a whole single input. This
is consistent with generally accepted good coding style rules, which claim that a single method should always implement
a single functionality (known as the single responsibility principle) [42]. To enlarge the scope of the granularity, our core
concept of code visualization could be leveraged to full programs by applying object localization instead of detecting
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what functionalities a software is composed of. This principle could also explain why our approach works slightly
less well on the OJ dataset, which consists of whole programs, while the BigCloneBench rather provides method level
granularities.
Colors in visualizations.Our visualizations apply colors only very sparsely, in the case of the color syntax highlighting
variant, or not at all for the other visual representations. The current implementation of WySiWiM is thus not fully
leveraging the potential of ResNet, which is designed to operate on all 3 color channels.
Traditional classification algorithms. For the clone detection task we apply very basic binary classification algo-
rithms. These algorithms do probably not explore all semantics learned by the ResNet deep feature extractor.
Scope of the clone datasets. The datasets are not only a threat to validity but also a major limitation. Our hypothesis
is that, due to the limited variety and size of the datasets available today, it is not possible yet to learn general semantic
knowledge that can by applied to all possible data.

6.3 Lessons learned and Future work

As the current implementation of WySiWiM represents only a proof-of-concept with limited goals, it offers a lot of
potential for extensions and improvements. Furthermore, the general concept of visualizing code and learning on
those visual representations could be interesting also to other software engineering tasks, or could be combined with
existing approaches. Beyond our approach, we identified some general current limitations on the task of semantic code
clone detection, such as the lack of suitable datasets and benchmarks but also the lack of more precise and actionable
definitions of semantics or semantic similarity.

Visual vs Semantics. It is rather intuitively acceptable that the visual representation of code works well for tasks such
as code classification. However our experiments also show that WySiWiM neural networks yield features that help to
identify semantically equivalent code fragments that are actually visually different (Type 4 clones). This shows the
power of the generic features that are extracted from raw (straightforward) visual representations, which should be
further investigated in other tasks that deal with semantics.

Mitigating Image classifier input limitation. As mentioned in the previous sub-section, a major limitation of our
approach is the fixed input image size of the ResNet classifier. One potential way to mitigate this limitation could be to
slice the image into multiple images of the required input size. Those slices could then be used to generate a larger
feature vector, representing the whole image. This would allow to capture more fine-grained information as well. Of
course, it might be necessary to apply also scaled versions of the images to capture large-scale structural information
too.

Visualizations. As our visualizations showed, the use of colors can have a positive effect on the results. However, as
our condensed AST visualization has been one to yield the best overall results, it might be interesting to further apply
color coding on ASTs to make better use of the full potential of the image classification neural networks.

Datasets and Benchmarks: A future work that is important beyond our approach is the development of datasets and
benchmarks that are more suitable for semantic code clone detection and semantic approaches in general. This includes
a high number of different functionalities and a high number of diverse code examples per functionality. Especially sets
providing a multitude of more basic functionalities that do not depend on external libraries would be desirable. They
would allow to learn models the way humans learn semantics of computing languages, by starting very small.
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Data augmentation: Similarly to data augmentation done in image classification via generating variant images
through rotation, cropping, etc., we could envision to apply a data augmentation, although at the meta level, such as
mutating the code in semantically-equivalent ways in order to increase the size of our dataset.

Actionable definitions of semantics (similarity): Another very important future work would be to make efforts towards
actionable definitions of semantics, or semantic similarity. A possible approach to this could be the definition of
semantics through software tests. As software tests represent an executable variant of software specifications, they give
a good notion of the requirements we put into our semantics. Of course, there are a few problematic aspects in this
approach. One aspect is that each application may require different abstractions of a certain functionality. Another
aspect is that the code snippets for a certain functionality would all have to use test suites.

7 CONCLUSIONS

We presented a novel direction to code semantics learning based on visualization and transfer learning. WySiWiM ex-
ploits the power of pre-trained ResNets to extract deep features from visualization renderings of source code fragments.
We apply this approach to two variants of clone identification, namely code classification and clone detection as
well as to the task vulnerable code prediction. Experimental results on BigCloneBench and the Open Judge datasets
show that our approach performs reasonably well and can keep up with the state-of-the-art within the scope of our
experimental settings (which we carefully design to be comparable to literature experiments). Our experiments reveal
that visualizations of AST and Color syntax highlighting yield the best overall clone detection results. We complete
the paper by enumerating a list of limitations, which, if resolved, may unleash a huge potential of WySiWiM beyond
clone identification tasks.
Availability: All experimental data as well as the source code of WySiWiM is open sourced in an anonymous
repository:

https://github.com/wysiwim/wysiwim
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A WYSIWIM CODE VISUALIZATION EXAMPLES

A.1 Vulnerability Prediction

(a) Vulnerable code fragment

(b) Non-Vulnerable code fragment

Fig. 15. Plain Text visual representation of a CWE-264 example of code fragment

(a) Vulnerable code fragment

(b) Non-Vulnerable code fragment

Fig. 16. Color Syntax Highlighting visual representation of a CWE-264 example of code fragment
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(a) Vulnerable code fragment

(b) Non-Vulnerable code fragment

Fig. 17. Geometric visual representation of an example of code fragment from 𝐴𝑃𝐼 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐶𝑎𝑙𝑙 vulnerability syntactic character-

istic samples
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(a) Vulnerable code fragment

(b) Non-Vulnerable code fragment

Fig. 18. AST in condensed format visual representation of a CWE-297 example of code fragment
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