
Noname manuscript No.
(will be inserted by the editor)

ANCHOR: Locating Android Framework-specific
Crashing Faults

Pingfan Kong · Li Li · Jun Gao ·
Timothée Riom · Yanjie Zhao ·
Tegawendé F. Bissyandé · Jacques Klein

Received: date / Accepted: date

Abstract Android framework-specific app crashes are hard to debug. Indeed,
the callback-based event-driven mechanism of Android challenges crash local-
ization techniques that are developed for traditional Java programs. The key
challenge stems from the fact that the buggy code location may not even
be listed within the stack trace. For example, our empirical study on 500
framework-specific crashes from an open benchmark has revealed that 37 per-
cent of the crash types are related to bugs that are outside the stack traces.
Moreover, Android programs are a mixture of code and extra-code artifacts
such as the Manifest file. The fact that any artifact can lead to failures in the
app execution creates the need to position the localization target beyond the
code realm. In this paper, we propose Anchor, a two-phase suspicious bug
location suggestion tool. Anchor specializes in finding crash-inducing bugs
outside the stack trace. Anchor is lightweight and source code independent
since it only requires the crash message and the apk file to locate the fault. Ex-
perimental results, collected via cross-validation and in-the-wild dataset eval-
uation, show that Anchor is effective in locating Android framework-specific
crashing faults. Finally, we put our empirical study results openly accessible
at https://github.com/anchor-locator/anchor.

Keywords Android Crash · Crashing Fault · Fault Localization

P. Kong · J. Gao · T. Riom · T. Bissyandé · J. Klein
University of Luxembourg, Luxembourg
E-mail: {pingfan.kong,jun.gao,timothee.riom,tegawende.bissyande,jacques.klein}@uni.lu

L. Li · Y. Zhao
Monash University, Australia
E-mail: {li.li,yanjie.zhao}@monash.edu

2 Pingfan Kong et al.

1 Introduction

App crashes are a recurrent phenomenon in the Android ecosystem [53]. They
generally cause damages to the app reputation and beyond that to the provider’s
brand [12]. Apps with too many crashes can even be simply uninstalled by an-
noyed users. They could also receive bad reviews which limit their adoption
by new users. Too many apps crashes could also be detrimental to specific app
markets that do not provide mechanisms to filter out low-quality apps con-
cerning proneness to crash. The challenges of addressing Android app crashes
have attracted attention in the research community.

Fan et al. [9] have recently presented insights on their large-scale study on
framework-specific exceptions raised by open source apps. In more recent work,
Kong et al. [21] have proposed an automated approach to mine fix patterns
from the evolution of closed-source apps (despite the lack of change tracking
systems). Tan et al. [47] further presented an approach to repair Android
crashing apps. A common trait of all these crash-related studies is that the
underlying approaches heavily rely on the generated stack traces to identify
the fault locations. Although the state of the art is effective for many bugs,
they are generally tailored to the generic cases where the stack traces provide
relevant information for locating the bug. Unfortunately, there is a fair share
of faults whose root causes may remain invisible outside the stack trace. Wu
et al. [56] have already reported this issue when locating crashing faults for
general-purpose software. In the realm of Android, the phenomenon where
the stack trace may be irrelevant for fault localization is exacerbated by two
specificities of Android:

The Android system is supported by a callback-based and event-driven mech-
anism: Each component in Android has its lifecycle and is managed by a set
of callbacks. Every callback serves as a standalone entry point and root to a
separate call graph. Yet, existing crash-inducing bug localization techniques
for Java such as CrashLocator [56] assume a single entry point to compute
certain metrics for the suspiciousness score of different methods. Additionally,
since the Android system is event-driven, the invocation sequence to functions
and callbacks is affected by non-deterministic user inputs or system events,
making the stack trace unreliable for quick analyses.

The Android app package includes both code and resources that together
form the program: Android apps are more than just code. They are combi-
nations of Java/Kotlin code, XML files, and resources (such as images and
databases). The different component classes in an Android app are loosely
coupled. They follow design principles like IoC (Inversion of Control) to re-
ceive the flow of control from a generic framework, herein, the Android frame-
work. The Android framework analyzes metadata such as component layout
information in XML files, and switches control by invoking the corresponding
callback method of any component. In this way, the Android framework or-
chestrates functionalities in the apps. Therefore, an error by developers within
an XML document can eventually lead to a runtime crash. Similarly, it is
important to note that crashes can occur due to other concerns such as the

ANCHOR: Locating Android Framework-specific Crashing Faults 3

arrangements of app resources, use of deprecated APIs (e.g., due to version in-
compatibility [28]), omissions in permission requests, etc. Typical such errors,
which occur outside of code pointed to by stack traces, will cause either de-
velopers or Automatic Program Repair (APR) tools (e.g., [47]) to pointlessly
devote time in attempting to fix the code.

This paper. Our work aims at informing the research community on the
acute challenges of debugging framework-specific crashes. To that end, we pro-
pose to perform an empirical study that investigates the share of crashes that
cannot be located by current localization approaches. Following this study, we
present a new approach to locate faults, aiming at covering different categories
of root cause locations. Overall, we make the following contributions:

– We present the results of an empirical study performed on a set of 500
app crashes retrieved from the ReCBench dataset [21]. A key finding in
this study is that we were able to identify that 37% crash root causes are
associated with crash cases where the stack trace is not directly relevant
for fault localization.

– We propose Anchor, a tool-supported approach for locating crashing
faults. Anchor unfolds in two phases and eventually yields a ranked list
of location candidates. The first phase applies a classification algorithm to
categorize each new crash into a specific category. Depending on this cate-
gory, a dedicated localization algorithm is developed in the second phase.
Anchor currently implements 3 localization algorithms that eventually
generate a ranked list of buggy methods (when the bug is in the code) or
resource types (when it is outside of code).

– We performed 5-fold cross-validation on the 500 crash cases to assess the
effectiveness of Anchor in placing the crashing fault location in the top
of its ranked list of suggestions. Anchor exhibited an overall MRR (Mean
Reciprocal Rank) metric value of 0.85. An analysis of the open dataset of
crashed open-source Android apps further shows that our method scales
to new app crashes.

The rest of this paper is organized as follows. Section 2 introduces back-
ground details on Android app crashes and callback-based event-driven mech-
anisms. Section 3 revisits the motivating example by the previous work [47]
and demonstrates why research in crash localization has standing challenges.
Section 4 discusses the findings of our empirical study and explores the insights
that can be leveraged for a new approach. Section 5 presents Anchor. We
describe experimental setup in Section 6 and approach evaluation in Section 7.
We bring further discussion in Section 8. Threats to validity are acknowledged
in Section 9 and related work is presented in Section 10. Finally, Section 11
concludes the paper.

2 Background

In this section, we introduce the important concepts related to this paper.

4 Pingfan Kong et al.

2.1 Android App Crash Stack Trace

Like all Java1 based software, when Android apps crash, they can dump ex-
ecution traces which include the exception being thrown, a crash message,
and most importantly, a stack trace of a callee-caller chain starting from the
Signaler, i.e., the method that initially constructed and threw the exception
object. Figure 1 is an example of stack trace for the crash of the app Sailer’s
Log Book. This app helps sailors to keep their logbook accurate and up-to-date.
On the first line, the exception IllegalArgumentException is thrown. On the
second line, the log system reports message ”recursive entry to executePend-
ingTransactions”. Starting from the third line, the Signaler of the stack trace
is listed: it is this framework method that instantiates the exception type,
composes the log message and throws it to its caller to handle. On Lines 4-5
that are also marked in grey, there are other two methods that continue to pass
on the exception. Line 5 holds the API, which is the only framework method
in this stack trace that is visible to the developer. Since the crash happens
directly due to invocation to it, we call it the Crash API. Line 6 is the devel-
oper method that invoked this API. Line 7 is the developer implementation of
the callback, inherited from the superclass of the Android framework. Android
framework decides, based on certain conditions and system/user events, when
to invoke this method, and what parameter values to pass in. Lines 8-9 are
part of the Android framework core that is, again, not accessible to developers.

com.android.internal.os.ZygoteInit.main

com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run

com.poterion.logbook.fragments.SettingsFragment.

onSharedPreferenceChanged

com.poterion.logbook.activities.MainActivity.show

android.app.FragmentManagerImpl.executePendingTransactions
android.app.FragmentManagerImpl.popBackStackImmediate

android.app.FragmentManagerImpl.executePendingActions

Callback

Crash API

Signaler

Core

Crash

method

Framework

Framework

Developer

IllegalArgumentExceptionException

Recursive entry to executePendingTransactions.Message

1

2

3
4

5

6

7

8

9

Fig. 1: Crash Stack Trace of app Sailer’s Log Book.

The crash stack trace is often the first thing that developers want to exam-
ine when a crash is reported [20]. Even when it is not given, developers would
reproduce and retrieve them. Intuitively, the crash arises from mistakes in the

1 Kotlin has also been widely used in recent years as an alternative for Android app
development, it is designed to fully interoperate with Java.

ANCHOR: Locating Android Framework-specific Crashing Faults 5

developer methods, e.g., Lines 6-7 in Figure 1. Particularly, the Crash method
that directly invoked the Crash API. Our empirical study in Section 4 shows
that this intuition is correct, that 63% of the total crash types are in the stack
trace. However, in the rest of this section, we will introduce the specialty of
Android that may lead to the rest 37%.

2.2 Callback-based and Event-driven Mechanism

Unlike most Java programs, Android apps do not have the main method from
which the programs start their execution [5]. Android apps comprise 4 basic
component types: Activity, Broadcast Receiver, Service, and Content Provider.
Each basic component instance can be started on their own. The lifecycle of
such components are managed by callback methods (e.g., Line 7 in Figure 1).
The callback methods are declared in the component’s base class (as part
of the Android framework), inherited by the developer-defined subclass, and
maybe overridden by the developers. The Android framework core, based on
the user inputs and system environments, decides when to invoke the call-
backs and what parameter values to pass in. Each callback is standalone, and
in general Android does not encourage developers to invoke those callbacks
from their self-defined methods, unless these methods are callbacks overriding
and invoking their super. As a result, existing static call graph based fault
localization techniques [56] for Java programs can not be simply reused, since
they assume a single main method and need to compute weighing scores based
on the graph. There are, however, works [58, 39] that have invented methods
to track the control flows or data flows and tried to build the callback con-
nections. These proposed approaches are either computationally expensive or
confined in limited number of component classes, and does not scale to all
scenarios. Other approaches like [25] or [5] create a dummy main to invoke all
callbacks in order to reuse Java based analysis tools, but this method discarded
the relation among callbacks, which is crucial to estimate the possibility of a
method containing the real bug.

X

Android Framework core

f4

f3

f2

f14

f13

f12

f24

f23

f22

f10 f15
f25

?

?

Android Framework Core
A developer method
in the stack trace
A developer method
outside the stack trace
The crash method in the
stack trace that invokes
the Crash API

? The buggy method

Fig. 2: Call Graph Comparison between General Java Program (left) and An-
droid App (right), inspired from [56]

6 Pingfan Kong et al.

Figure 2 examplifies the difference of call graphs between general Java
program (left) and Android app (right). The filled circles represent the devel-
oper methods in the stack trace, while the non-filled circles represent developer
methods outside the stack trace. The partially filled circles represent the Crash
method that invokes the Crash API. Generally, the buggy method is the Crash
method. However, as shown in our empirical study, it appears that the buggy
method (the circle filled with question mark in Figure 2) is not connected to
the Crash method. A traditional Java program static call graph based approach
such as CrashLocator [56] will be able to locate this buggy method only if the
buggy method is ”close enough” to the generated call graph (roughly speaking
they generate an extended call graph leveraging the stack trace). However, on
the right, in the case of Android apps, the buggy method could be in a sepa-
rate call graph because of callback methods that are invoked by the Android
framework. Such cases will be missed by approaches such as CrashLocator [56]
that only detects buggy methods captured by its extended call graph, but does
not consider callback methods.

2.3 Android APK File Format

Android apps are distributed in a package file format with extension ”.apk”.
It is a compressed folder containing code, resources, assets, certificates, and
manifest file. All of these files are crucial to the expected good functioning of
the apps. Therefore, some crashes may be induced when there are problems
with these files.

2.3.1 Android Manifest File

Every app project needs to have an AndroidManifest.xml file at the root of
the project source set [31]. Along with the package name and components of
the app, this file also declares the permissions that the apps needs, as well as
the hardware and software features that the app requires.

2.3.2 Android Component Layout Description File

Android component layout description files are also crucial to the execution of
the app. E.g., Listing 1 is the layout file of the main Activity of an Android app
Transistor. In this file, a child fragment is defined and described. The attribute
android:id defines the layout file name to be inflated for the fragment, the
attribute android:name gives the full name of the user defined Fragment class.
When the main Activity is being created, the Android framework scans this
layout file, and invokes a series of relevant callbacks on this Fragment to draw
it along with the main Activity.

ANCHOR: Locating Android Framework-specific Crashing Faults 7

Listing 1: Main Activity Layout File of app Transistor.

<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:id="@+id/fragment_main"

android:name="org.y20k.transistor.MainActivityFragment"

android:layout_width="match_parent"

android:layout_height="match_parent"

tools:layout="@layout/fragment_main" />

3 Motivating Example

We further illustrate the challenges of locating faults outside Android app
stack traces by revisiting an example that was used to motivate a previous
work on Android app crash automatic repairing by Tan et al. [47]. Transistor2

is a popular online radio streaming app. We showed its partial resources in
Section 2.3.2. However, it was reported that following the input sequence in
Figure 3, the app will crash.

Crash

(1) Open the app (2) Exit app by
clicking back

button

(3) Open the app again (4) Click on image
change icon

Fig. 3: Crash of Transistor.

Listing 2: Crash Message of Transistor.

1 java.lang.IllegalStateException:
2 MainActivityFragment{e7db358} not attached to Activity
3 at ...MainActivityFragment.startActivityForResult(Fragment.java:925) (Crash API)
4 at ...agment.selectFromImagePicker(MainActivityFragment.java:482) (Crash method)
5 at ...k.transistor.MainActivityFragment.access$500(MainActivityFragment.java:58)
6 at ...transistor.MainActivityFragment$6.onReceive(MainActivityFragment.java:415)

The crash message filtered out from logcat is shown in Listing 2. It appears
that invoking the startActivityForResult API on the MainActivityFragment

(line 3) throws an unhandled IllegalStateException (line 1), and the Android
system reports that the fragment is not attached to the hosting activity (line
2). By inspecting the source code of Android framework of the Crashed API
(line 3), we see that the startActivityForResult method of the fragment in-
stance attempts to invoke its context’s (i.e., its host Activity’s) API with the
same name startActivityForResult. This invocation is guarded by an if-clause,
which checks whether the fragment is still attached to the host Activity. If
not, however, the IllegalStateException will be thrown.

2 https://github.com/y20k/transistor/issues/21

8 Pingfan Kong et al.

Listing 3: Fix from Tan et al.

new BroadcastReceiver(){

onReceive(...){ ...

+ if(getActivity()!=null)

startActivityForResult(pickImageIntent,REQUEST_LOAD_IMAGE);}}

Biased by the assumption that the fault should only be in the developer
methods in the stack trace (lines 4-6), Tan et al. [47] proposed to amend the
Crash method (line 4). Listing 3 shows their fix. Their fix applies a checker
on invocation to startActivityForResult, which will not be executed if value of
getActivity is null (i.e., when the fragment is no longer attached to its hosting
Activity). As a result, the app avoids crashing. This fix indeed prevents
the exception. However, it is not explainable: applying the checker not only
prevents the crash, but it should also prevent opening the SelectImageActivity
as designed for. Due to this paradox, we have a good reason to suspect that
the true bug location is still hidden.

Transistor’s developer, who is also dedicated in debugging in the stack
trace, proposed a fix on her/his own in Listing 4. Realizing that the Fragment

lost its reference to the host Activity. The developer declared a variable
mActivity to hold the reference. Then in the Crash method (line 4 in List-
ing 2), she/he switched the invocation of the startActivityForResult API from
Fragment to mActivity.

Listing 4: Fix from Developer.

+ mActivity = getActivity(); ...

new BroadcastReceiver(){

onReceive(...){ ...

- startActivityForResult(pickImageIntent,REQUEST_LOAD_IMAGE);

+ mActivity.startActivityForResult(pickImageIntent,REQUEST_LOAD_IMAGE);}}

This fix also bypassed the crash, but it causes regression. After the final
step in Figure 3, if the user clicks on the back button two more times, the
app should have first returned to the MainActivity, then back to the home
screen. Instead, it opens another SelectImageActivity. In the issue tracking, the
developer admits that she/he had no idea of how to fix it. While after several
months, the bug ”fixed” itself, which she/he described as ”scary”. Even Tan
et al. failed to explain the cause of this regression.

Based on the understanding of Android’ callback-based mechanism intro-
duced in Section 2.2, we suspect that the bug may not exist in the stack trace.
We confirmed our fix shown in Listing 5. This fix is reported to the developer
and we received positive feedback in the issue tracking, as can be verified in
Transistor’s respository given above.

ANCHOR: Locating Android Framework-specific Crashing Faults 9

Listing 5: Fix Inspired by this Article.

MainActivityFragment extends Fragment{

onDestroy(){

+ super.onDestroy();

+ LocalBroadcastManager.getInstance(mApplication).unregisterReceiver(

imageChangeRequestReceiver,imageChangeRequesIntentFilter);}}

We broaden the search for the bug outside the stack trace. Noticing the
crash originated from the onReceive callback (cf. line 6 in Listing 2), we exam-
ine the lifecycle of this BroadcastReceiver object. We found that it is regis-
tered in the onCreate callback of MainActivityFragment, but never unregis-
tered in its counterpart callback onDestroy. As a result, after Step 2 (cf. Fig-
ure 3), the registered BroadcastReceiver and its host MainActivityFragment
are leaked in the memory. In Step 4, the callbacks of the leaked objects are
stealthily invoked by the Android framework and eventually caused the Ille-
galStateException. Knowing the true cause of the crash, it is not difficult to
explain the paradox of Tan et al.’s fix and the regression caused by the devel-
oper’s fix. However, given the page limit, we put detailed reasoning online at
https://anchor-locator.github.io.

Hint: The fault locations in Android apps may: (1) Be outside the stack
trace; (2) Be even outside the call graph extended from the stack trace;
(3) Not even “exist” in the code, i.e., they are inherited methods without
visible code snippets. Locating such faults may require tremendous efforts.
Fixes based on incorrect localization may even cause regression.

4 Empirical Study on Fault Locations

In this section, we present the results of an empirical study that we performed
on a set of 500 app crashes retrieved from the ReCBench dataset [21]. This
study aims at assessing to what extent the locations of crashing faults reside
outside the stack trace.

4.1 Dataset Construction

We extract our dataset from ReCBench, an open dataset proposed by Kong et
al. [21] in 2019. ReCBench has been built by running hundreds of thousands of
Android apps downloaded from various well-known Android markets [4, 27].
In addition to a collection of crashed Android apps focusing on framework-
specific crashes3, ReCBench offers the possibility to collect crash log messages

3 Android framework methods are not visible or understandable to general developers,
hence greater challenge is acknowledged for locating framework-specific crashes compared
to developer-written methods. [9, 21]

10 Pingfan Kong et al.

and scripts to reproduce the crashes. Today, ReCBench contains more than
1000 crashed apps (still growing). For our empirical study, we focus on crashed
apps for which:

– First, the stack trace of the crash contains at least one developer method.
This is a requirement to be able to start an exploration process to find the
crash root cause.

– Second, since we specifically target the crashes induced by Android API s,
the Signaler must be Android-specific.

The reason why we only choose bug reports with higher priority are two-fold.
First, we want to target bugs that are most difficult for developers to locate.
Second, we need to limit the number of crashing cases for manual validation.
After applying these two rules, we randomly selected 500 crashed apps from
the remaining apps. The dataset is publicly accessible at:
https://github.com/anchor-locator/anchor.

4.2 Ground Truth & Results

We manually inspect all the 500 crashed apps to understand the reason be-
hind the crashes and to create our ground truth. We perform this manual
inspection following a similar protocol discussed in the large scale analysis of
Android framework-specific app crashes [9]. First, we group crashes into buck-
ets. Specifically, if two crash cases have identical framework crash sub-trace,
they will be put into the same bucket. Second, for each bucket, we turn to
the Android official API reference 4 as well as online discussion forums like
StackOverflow 5 and GitHub 6 to understand the root cause. Third, we ana-
lyze the code of each crashed apk combining the root cause to locate the true
bug locations. Note that unlike [9], source code is not available for the crashed
apks in our dataset. We therefore leverage the CodeInspect [10] tool. CodeIn-
spect is an Integrated Development Environment (IDE) that transforms the
app apk’s Dalvik bytecode into the Jimple [6] format and better visualize for
human comprehension.

Each of the crashed apps has been categorized into one of the following
categories:

– Category A groups the crashed apps for which the buggy method (i.e., the
root cause) is one of the developer methods present in the stack trace;

– Category B groups the crashed apps for which the buggy method is not
present in the stack trace, but still in the code.

– Category C groups the crashed apps for which the crash arises from non-
code reasons.

4 https://developer.android.com/reference
5 https://stackoverflow.com
6 https://github.com

ANCHOR: Locating Android Framework-specific Crashing Faults 11

The above partition is one out of many alternatives, e.g., one can also
separate bugs based on whether they are concurrent [51, 7, 29, 48, 33]. We later
show in Section 5.2 how this partition helps with building our localization tool.
Table 1 summarizes the outcome of the empirical study. It appears that for 89
(49+40) crashed apps (representing 18% of the total cases), the crashing fault
location is not in any of the developer methods present in the stack trace. The
respective numbers of Categories B and C are close, with 49 cases in Category
B and 40 cases in Category C. The last two columns in Table 1 present the
number of buckets per category. Overall, there are 105 types of crashes (i.e.,
buckets) in the dataset. The percentage of types of crashes in Categories B
and C are 16% and 21%, respectively. In total, there are 37% of buckets whose
buggy reasons are not shown in the stack traces. Each unique framework crash
sub-trace suggests a unique type of crash-inducing bug. Therefore, considering
crash types encountered per the same number of cases (buckets#/case#) in
each category, more debugging effort will be needed for Categories B and C
than in Category A.

Table 1: Categories of Fault Locations in Android apps

Category stack trace code case# percent bucket# percent
A in yes 411 82% 66 63%
B out yes 49 10% 17 16%
C out no 40 8% 22 21%

Total - - 500 100% 105 100%

Hint: 18% of the crashes are due to bugs for which the location is outside
the stack trace. A significant number of root causes (buckets), i.e., 37%
(16%+21%), are associated with cases where the stack trace is not directly
relevant for localization. In even 21% of the cases, the root causes are not
located in the code.

We now detail each category in the rest of this Section.

4.3 Category A: in Stack Trace

Category A includes all crash cases whose bugs reside in one of the developer
methods present in the stack trace. Most crashes in our dataset fall into this
category. It is expected that by default, developers start their debugging pro-
cess with the methods present in the stack trace [17, 42, 44, 16]. The automatic
crash-inducing bug repairing tool named Droix [47] implements a locater, by
assuming that the Crash method is the bug location in all scenarios. How-
ever, we also notice that the true crashing fault may reside in other developer
methods, in particular when moving downward in the stack trace. An example
of such a case is when the caller methods pass an incorrect instance to the

12 Pingfan Kong et al.

crashed developer methods. Generally, much less effort is needed in locating
faults in this category. Since the number of suspected methods is limited and
their names are already known. Therefore they are not the focus of this paper.

4.4 Category B: out of Stack Trace, in the Code

It has drawn attention to researchers that Java program crashes can be caused
by methods that are not listed in stack traces. Approaches like CrashLoca-
tor [56] broadens the search for such faulty methods in extended call graphs
from stack traces. We demonstrate in the rest of this section why this broad-
ened search is not enough for Android apps. There are in total 49 cases in this
category, each crashed from wrongly handling a framework API. Based on the
type of the framework API (call-in or callback), we further categorize them
into two sub-categories: (1) Misused Call-In APIs and (2) Non-Overridden
Callback APIs.

4.4.1 Type 1: Misused Call-In APIs (44 cases out of 49)

This first type groups crashing faults caused by the misuse of call-in APIs. This
means that the bug leading to a crash is due to a buggy explicit invocation of
an API from a developer method. Moreover, this invocation is often performed
from another implemented callback, other than the callback in the stack trace.
Since both callback methods are triggered by the framework, it is unlikely that
an extended call graph can cover such methods (cf. Figure 2).

Listing 6: Bug Explanation to app Geography Learning.

public class MainActivity extends Activity{

onCreate(...){

try{bindService(intent,serviceConnection,integer);/*Bug Location*/

}...}...

onDestroy(){unbindService(serviceConnection);/*Crash location*/}}

Listing 6 gives a concrete example. This example is extracted from an
app named Geography Learning which helps users to remember geography
knowledge in a quiz game format. When the MainActivity7 of this app is
launched, the callback method onCreate is automatically triggered by the
Android framework. Then, this onCreate method invokes the bindService

API to bind to Service. Service is one of the four basic components of An-
droid, and wrongly handling of Service is not uncommon [45] in Android app
development. When the user exits the MainActivity, the Android Framework
invokes the onDestroy callback method and tries to unbind the Service bound
in the onCreate method. Thereafter, the app crashes with the exception type

7 The Main Activity of an app is the first screen shown to the user when launched.

ANCHOR: Locating Android Framework-specific Crashing Faults 13

IllegalArgumentException. Analysing the message which says: “Service not reg-
istered: com.yamlearning. geographylearning.e.a.e@29f6021”, we understand
that the Service has not been bound. In the method body of the overrid-
den onCreate callback, we found that the invocation to API bindService was
misused. Indeed, bindService is surrounded by a try-catch clause, and another
statement preceding this API invocation threw an exception which redirects
the execution flow to the catch block, skipping the invocation to bindService.

Out of a total of 49 cases in Category B, 44 falls into this sub-category.

4.4.2 Type 2: Non-Overridden Callback APIs (5 cases out of 49)

This second type includes crashes caused by the non-overridden callback APIs.
Callbacks, or call-afters, are APIs that are invoked when the Android frame-
work decides so, based on certain system environment change and/or user
actions. Callbacks are inherited, when developers define classes that are sub-
classing Android base component classes. Developers are often required to
override certain, although not all, callback APIs. Forgetting to handle these
callbacks may cause apps to crash immediately. Moreover, these crashes may
often seem flaky, since its reproduction requires re-establishing the same sys-
tem environments and/or repeating user action sequences. Existing Java crash
locators fail to spot such bugs with two reasons: (1) These callback APIs are
not in the extended call graphs of stack traces; (2) The method snippets in
developer-defined codes do not exist, so are easily missed.

Listing 7 shows an example of this crash type. The app Fengshui Master
is a Chinese fortune teller app. The app crashes when trying to get a refer-
ence to the writable database. However, when the app crashes, the exception
SQLiteDatabaseException is triggered with a message claiming ”not able to
downgrade database from version 19 to 17”.

Listing 7: Bug Explanation to Android app Fenshui Master.

public class com.divination1518.f.s{

a(..){sqliteOpenHelper.getWritableDatabase();/*Crash location*/}}

public class com.divination1518.g.p extends SQLiteOpenHelper{ ...

+ onDowngrade(..){...}/*Bug Location*/}

According to the Android documentation, the app developer needs to im-
plement the callback method onDowngrade in the self-defined subclass of
SQLiteOpenHelper. This callback method will be invoked when the database
in storage has a higher version than that of the system distribution. Failing
to override this callback API immediately crashes the app. Note that the mo-
tivating example (cf. Section 3) also falls into this sub-category. Given the
stealthiness of this fault type, it is particularly difficult, even for a human de-
veloper, to spot the bug reason without being very familiar with the Android

14 Pingfan Kong et al.

official documentation. Out of a total of 49 cases in Category B, 5 falls into
this sub-category.

Note that we use apih to denote the wrongly handled API (call-in API
or callback API) for cases of Category B. This denotation is later needed for
Section 5.2.2.

4.5 Category C: out of Stack Trace, out of Code

As introduced in Section 2.3, except code, an Android apk also contains re-
sources, assets, certificate, and manifest. They are critical to the functioning
of the app. As a result, mistakes in those files may also cause crashes. Table 2
gives a summary of the buggy locations outside of code. As illustrated, eleven
cases of crashes originate from the Manifest.xml file. Most cases in this type are
because the permissions are not properly declared in the manifest. Resources
include specifically files with ”.xml” extension (excluding the Manifest.xml
file). An Android app uses these resource files to store the layout and pieces
of information like string values. If the required resource is missing or wrong,
then the app will crash. Assets are the large files, like fonts, images, bitmaps.
Assets should be put in the correct directory. If the Android framework is not
able to find them and it will crash the app.

Table 2: Crash Causes of Categorie C

Sub-Category Manifest Hardware Asset Resource Firmware
Cases 11 5 4 2 18

Aside from the files inside the apk, some constraints put forward by the
device’s hardware and firmware, i.e., the framework may also cause the app
to crash. For example, the Android billing service can only be tested on real
devices, if, however, tested on emulators, the app crashes [32]. Also, since
Android is quickly updated with new features and designs, old apps may crash
on newly distributed devices, due to reasons like deprecated APIs and new
security protocols established by the framework. Developers should generally
redesign the relevant functionalities, therefore no single buggy location can be
decided.

5 Ranking Suspicious Locations

To help developers identify the true fault locations when debugging app crashes,
including faults that reside outside the stack traces, we propose Anchor.
Anchor is a fault location recommendation system based on a two-phase ap-
proach. In the first phase, Anchor categorizes a given crash in one of the
three categories (A, B, or C) with a classification system. Then, in the second

ANCHOR: Locating Android Framework-specific Crashing Faults 15

phase, according to the decided category, Anchor each adopts a unique al-
gorithm to suggest a rank of locations that are suspected to contain the true
faults. The rest of this section describes Phase 1 and Phase 2 in more detail.

5.1 Phase 1: Categorization

The first phase aims at assigning a new crash to one of the three categories
(A, B, or C). We start by trying to develop a rule-based algorithm that sum-
marizes rules from augmenting the stack traces. However, as Fan et al. [8]’s
experiments suggest, there are at least thousands of unique stack traces which
the crash log may contain. Summarizing rules from such a great number of
stack traces is extremely effort-consuming and error-prone. Even if such a rule-
based algorithm can be developed, it requires constant manual updates when
new stack traces are reported. Therefore, we consider using machine learning
algorithms to achieve the goal. We use the Näıve Bayes algorithm [41] for the
categorization. Näıve Bayes is one of the most effective and competitive algo-
rithms in text-based classification. It is widely used for spam detection [36, 60],
weather forecasting [50], etc. It is especially suitable in the scenario when the
training set does not contain a large number of records [14], e.g., our empirical
dataset contains merely 500 manually constructed records.

To construct a vector for each crash record, we feature words extracted from
the crash message. The value of each feature dimension is binary, indicating
whether a word exists or not in the message. More specifically, we extract
three parts from the crash message: (1) The exception type, which is a Java
class (e.g., IllegalArgumentException); (2) The exception message, which
briefly describes the reason of the crash, e.g., line 2 in Figure 1; (3) The top
framework stack frames, each being a Java method, e.g., lines 3-5 in Figure 1.
For (1) and (3), we use “.” as the word separator, for (2), we use space as
the separator. To avoid overfitting and to save computing resources, we do
not need the entirety of the vocabulary to build the vector. In Section 6.4, we
further discuss how many words are necessary.

With this categorization system, each new crash will firstly be categorized
as a type of ”A”, ”B” or ”C” before being processed in Phase 2.

5.2 Phase 2: Localization

The goal of this phase is to provide a rank of potential bug locations (in
descending order of suspiciousness), in the form of developer methods when
the bug is in the code (i.e., Categories A and B) and of sub-categories when
the bug is not in the code (i.e., Category C). Before presenting in the following
sub-sections 3 standalone algorithms, one for each category, we explain how
we compute a similarity score between two crashes. This similarity score is
used in both Categories B and C localization algorithms.

16 Pingfan Kong et al.

Similarity between two Crashes: We quantify the similarity between
two crashes C1 and C2 by computing the edit similarity between their crash
messages as presented in Equation 1:

SimC1,C2
= Edit Sim(seqC1

, seqC2
) = 1− Lev(seqC1

, seqC2
)

max(len(seqC1), len(seqC2))
(1)

In this equation, SimC1,C2
represents the similarity between two crashes

C1 and C2. seqCi
is the sequence of framework stack frames in a crash message

Ci, e.g., lines 3-5 in Figure 1. SimC1,C2
is computed by considering the Edit

Similarity between the sequences seqC1 and seqC1 . Lev(seqC1 , seqC2) is the
Levenshtein distance [40] of the two sequences. It equals the minimum num-
ber of single stack frame edits required to change seqC1

to seqC2
. The intuition

here is that when two crashes share similar bug reasons, they tend to share
framework stack frames, although not necessarily in identical sequence. Equa-
tion 1 then normalizes the distance and takes one’s complement to quantify
such similarity.

5.2.1 Category A: In Stack Trace

Since the crash is assigned to Category A, it indicates that the buggy method
is one of the developer methods in the stack trace. We inherit the intuition
from [47], that if the developer method is closer to the Crash API in the stack
trace, there is a higher chance that it contains the true fault. Therefore, we
can obtain the rank without changing the order of the developer methods in
the stack trace. For example, in Figure 1, methods on line 6 and line 7 are
respectively ranked first and second.

5.2.2 Category B: Out of Stack Trace, in the Code

When the crash is classified into Category B, it indicates that the buggy de-
veloper method is not in the stack trace, but still in the code. As discussed
in Section 4.4, the buggy method should either be a developer method that
misused a call-in API, or a callback API that has not been overridden. In the
remainder of this section, we will note apih this API (call-in API or callback
API) that has been wrongly handled (cf. Section 4.4). To infer a ranked list
of potentially buggy methods, we propose Algorithm 1. The overall idea is,
starting from each developer method in the stack trace, in addition to exam-
ining the developer methods (1) in the extend call graph, we also examine
those that either (2) control the Android components’ lifecycles, or (3) are
involved in the data flow of the crash. The computation of the suspiciousness
score follows the same intuition as explained in Section 5.2.1.

First of all, Algorithm 1 requires three input data: (1) crash, the crash
under study; (2) ST, which is the list of developer methods contained in the
stack trace, e.g. lines 6-7 in Figure 1; (3) apih, the wrongly handled API, which
is approximated as the associated wrongly handled API of the most similar

ANCHOR: Locating Android Framework-specific Crashing Faults 17

crash present in Category B of our empirical dataset. More formally, let be
CrashB the set of all the crashes in Category B. We identify the most similar
crash crashsim by following Equation 2. Since their crash reasons are the most
similar, it is with the highest possibility that both have wrongly handled the
same API.

Simcrash,crashsim = max(Simcrash,crashb
), crashb ∈ CrashB (2)

The algorithm starts with retrieving a set of developer methods S from
the entire apk that has invoked the apih (line 1). The outmost for-loop (lines
2-19) loops over each stack frame sf in the stack trace ST . Then based on the
type of the apih, there are two sub-routines: (a) when apih type is “call-in”
(lines 4-11); (b) when apih type is “callback” (lines 13-17). Next we discuss
both sub-routines in detail.

Data: crash: the crash to resolve
Data: ST : List of developer methods in stack trace of crash
Data: apih: Wrongly handled API
Result: R: Rank of suspicious developer methods

1: S ← Developer methods that invoke apih;
2: for sf ∈ ST do
3: if apih type “call-in” then
4: for s ∈ S do
5: for am ∈ AM do
6: if s links am then
7: s.score+ = 1

d
8: end if
9: end for

10: end for
11: R ← S.sort()
12: else if apih type “callback” then
13: for nc ∈ NC do
14: if nc inherits apih then
15: R.put(nc)
16: end if
17: end for
18: end if
19: end for

Algorithm 1: Localization Algorithm for Category B

Sub-routine for type “call-in” is a for-loop (lines 4-11) that loops over each
method s in S. We then loop over (lines 5-9) all Active Methods (AM) declared
in the same class as sf , where Active Methods are methods having actual code
snippets in the Java class files, not including the inherited ones. The function
links (line 6) checks 3 sub-conditions: (1) if s is invoked by am, or (2) if s and
am are declared in the same Java class or (3) if an instance of the declaring
class of s has been passed to am as a parameter. Sub-condition (1) checks if s
is in the extended call graph of am, same as locators like [56]. Sub-condition
(2) implies that s is a callback method that involves controling the component
lifecycle as am does. Sub-condition (3) implies potential data flow between s

18 Pingfan Kong et al.

and am. When the condition holds true in line 6, a score is added for s (line
7). Here d is the distance between sf and Crashed API in the stack trace. It
reflects on the same intuition in Section 5.2.1.

Sub-routine for type “callback” is implemented with a for-loop (lines 13-
17) that loops over all the inherited Non-overridden Callback (NC) of the
class where sf is declared. If nc inherits from apih (line 14), it implies that
overriding it may fix the problem, therefore nc will be added to the rank R
(line 15). With the same intuition in Section 5.2.1, this sub-routine is designed
so that when sf is closer to Crashed API in the stack trace, nc is in the higher
location in the rank.

Algorithm 1 addresses the concerns in the empirical study (cf. Section 4.4).
It can further locate faulty methods that are not in the extended call graphs,
or even methods without actual code snippets.

5.2.3 Category C: Out of Stack Trace, out of Code

Figure 4 describes the localization process for crashes that have been classified
into Category C. To infer a ranked list of potentially buggy locations, this
process computes a suspiciousness score for each location. Since the true fault
locations in Category C are not in the code, the locations in this ranked list
are sub-categories (e.g. manifest, asset, etc.).

Sim1

Sort

Avg

Rank

Compute
Similarity

New crash

Crash Dataset
of Category C

Sim2

Sim12

Sim17

Avg

Avg

Sim11

Sim16

Sim34

M
an

ife
st

H
ar

dw
ar

e
Fi

rm
w

ar
e

ScoreManifest

ScoreHardware

ScoreFirmware

Fig. 4: Localization Process for Category C.

With any new crash, we start the process by computing the similarity score
Simcrash,crashc

, crashc ∈ CrashC . Here CrashC is the set of all the crashes
of Category C in the empirical dataset. In Figure 4, the similarity scores are
denoted as SimcaseID for short. We then take an average of SimcaseID over the
same sub-categories. Sub-categories with higher similarity scores take higher
positions in the Rank.

ANCHOR: Locating Android Framework-specific Crashing Faults 19

6 Experimental Setup

This section clarifies the research questions, the metrics used to assess An-
chor, and the parameter values involved.

6.1 Research questions

We empirically validate the performance of Anchor by investigating the fol-
lowing research questions:

– RQ1: To what extent is the categorization strategy effective?
– RQ2: To what extent are the localization algorithms reliable?
– RQ3: What is the overall performance of Anchor?
– RQ4: How does Anchor perform on crashes in the wild?

6.2 Metrics

Crash localization is a recommendation problem. To measure the performance
of Anchor, we rely on rank-aware metrics, which are widely used in infor-
mation retrieval communities and have been previously used to evaluate crash
localization techniques [56].

Recall@k: The percentage of crash cases whose buggy functions appear
in top k locations. A higher score indicates better performance of Anchor.

MRR (Mean Reciprocal Rank): The mean of the multiplicative inverse of
the rank of the first correct location. As defined in Equation 3, Ranki is the
rank for the ith crash case, in a set of crash cases E. A high value of MRR
means developers on average need to examine fewer locations in the rank, and
therefore, a better performance [43].

MRR =
1

|E|

|E|∑
i=1

1

Ranki
(3)

6.3 Cross-validation

We perform 5-fold cross-validation over the empirical dataset of 500 sample
crashes. The dataset is randomly divided into 5 subsets of 100 sample crashes:
5 experiments are then carried where every time a specific subset of 100 is
used as “test” data while the remaining subsets containing the rest 400 cases
are merged to form “training” dataset. The computed performance metrics
are then summed over the 5 folds.

20 Pingfan Kong et al.

0.7

0.8

0.9

1.0

10 20 30 40 50 60 70 80 90 100
Selected Features %

F
M

ea
su

re

Fig. 5: F Measure v.s. Selected Features.

6.4 Feature Selection

In the empirical dataset, the vocabulary contains 1108 unique words. To avoid
over-fitting, we select only a portion of them for Phase 1. We use the χ2 test for
each word [37]. A higher value of χ2 indicates a stronger correlation between
the word and the category. Figure 5 shows the relation between the F Measure
of Phase 1 and the percentage of words chosen (ranked in descending order
by χ2 values). We can see that with the top 50% of the features, the overall
performance already stabilizes. We then always use top 50% of the words in
the vocabulary.

7 Experimental Results

7.1 RQ1: Effectiveness of Categorization

We use our ground truth of 500 crashes to assess the performance of Anchor
in the first phase of the approach, namely the categorization. We provide in
Table 3 the confusion matrix as well as the precision and recall of our experi-
mental results. Anchor yields a very high precision for predicting crashes in
Category A, reaching 0.96. The precision for crashes in Categories B and C
are comparably lower, at 0.65 and 0.60, respectively. In terms of recall, the
approach is effective for Category A (0.91), Category B (0.82), and Category
C (0.75). Overall, Anchor is successful in categorizing 444 out of 500 crash
samples (88.8%).

Table 3: Effectiveness of Categorization (Phase 1)

Actual
A B C Total

Predicted as Category A 374 6 8 388
Predicted as Category B 20 40 2 62
Predicted as Category C 17 3 30 50

Total 411 49 40 500

Precision Recall
Category A 0.96 0.91
Category B 0.65 0.82
Category C 0.60 0.75

ANCHOR: Locating Android Framework-specific Crashing Faults 21

Answer to RQ1: Anchor is overall effective in categorizing new crash
samples. However, there is still room of improving the precision when pre-
dicting samples in Categories B and C.

7.2 RQ2: Effectiveness of Localization

Since the two phases of Anchor are loosely coupled (i.e., each phase is an
independent module that can be improved or replaced individually, as long as
the in/output format is maintained), it may be insightful to investigate the
performance of Phase II when crashes are previously perfectly categorized. In
this way, the evaluation of Phase II is not affected by the performance of Phase
I.

To evaluate the localization phase of Anchor, we consider sample crashes
for each category and assess the rank localization yielded by the specific al-
gorithm developed for that category. Table 4 summarizes the Recall@k (with
k ∈ {1, 5, 10} and MRR.

To make sure the evaluation of Phase 2 is not affected by the outcome
of Phase 1, we propose to assess the performance of localization with the
assumption of perfect categorization.

Table 4: Localization Performance

Category Recall@1 Recall@5 Recall@10 MRR
A 0.97(400/411) 0.99(406/411) 0.99(407/411) 0.98
B 0.39(19/49) 0.61(30/49) 0.63(31/49) 0.48
C 0.78(31/40) 1.00(40/40) 1.00(40/40) 0.85

Total 0.90(450/500) 0.95(476/500) 0.96(478/500) 0.92

For cases in Category A, the true fault location can almost always be found
at the top of the rank. The high value of MRR at 0.98 confirms the intuition
in Section 5.2.1 that it takes much less effort in finding fault location for
Category A. For cases in Category B, the recall@1 starts at 0.39 and increased
substantially for recall@5 at 0.61. One more case is successfully located with
recall@10 at 0.63. The overall MRR is 0.48. Given the fact that the search
space is vast (there can be tens of thousands of developer methods in the apk),
Algorithm 1 demonstrates decent performance. For most cases in Category C,
the true sub-category of the fault location can be found topmost, with the
MRR at 0.85.

Answer to RQ2: The localization algorithms (Phase 2) of Anchor are
reasonably effective for suggesting the correct fault location. Anchor shows
descent performance even when challenged by the vast search space for
crashes in Category B.

22 Pingfan Kong et al.

7.3 RQ3: Overall Performance of Anchor

Table 5 summarizes the overall performance of Anchor combining Phase
1 and 2. The MRR of all 3 categories slightly dropped, since some cases are
miscategorized in Phase 1. Clearly, the overall performance is affected by Phase
1. However, since the two phases in Anchor are loosely coupled, we envisage
improvements of overall performance in the future when better classifiers are
proposed.

Table 5: Overall Performance of Anchor

Category Recall@1 Recall@5 Recall@10 MRR
A 0.90(370/411) 0.91(373/411) 0.91(373/411) 0.90
B 0.37(18/49) 0.59(29/49) 0.61(30/49) 0.46
C 0.72(29/40) 0.75(30/40) 0.75(30/40) 0.73

Total 0.83(417/500) 0.86(432/500) 0.87(433/500) 0.85

Answer to RQ3: Anchor is an effective approach for locating crashing
faults when they are in/outside stack traces, even outside code. Better per-
formance is guaranteed when categorization (Phase 1) is further improved.

7.4 RQ4: Performance in the Wild

The heuristics based on which Anchor is built may be biased by the empirical
dataset. To mitigate this threat, we assess the effectiveness of Anchor with
a dataset selected in the wild. We want to verify to what extent Anchor
can be generalized. We leverage the independent dataset prepared by Fan et
al. [9] who thoroughly (by crawling the entire GitHub) and systematically (by
applying strict criteria) collected 194 crashed apks from open-source Android
repositories. Before evaluation, we apply the constraint rules of Section 4.1,
and focus on the 69 relevant crash cases that could be identified. Note that this
dataset contains true fault locations already verified by the app developers.
Since the cases in the dataset are from a wide time span (2011-2017), the
partition is randomly decided on normal distribution over the year of app
release.

Table 6 shows the confusion matrix, as well as the precision and recall of
Phase 1 (categorization) on this independent dataset. The precision for all cat-
egories is high, reaching 0.98 (54/55), 0.67 (6/9), and 0.80 (4/5) respectively.
The recalls are also high, at 0.93 (54/58) for A, 0.86 (6/7) for B, and a perfect
1.00 (4/4) for C.

Table 7 provides measures for the overall performance. To compute the
similarity scores which are required to locate the bug related to crashes from
Categories B and C, we use the crash records from the empirical dataset. The

ANCHOR: Locating Android Framework-specific Crashing Faults 23

Table 6: Categorization on an independent dataset.

Actual
A B C Total

Predicted as Category A 54 1 0 55
Predicted as Category B 3 6 0 9
Predicted as Category C 1 0 4 5

Total 58 7 4 69

Precision Recall
Category A 0.98 0.93
Category B 0.67 0.86
Category C 0.80 1.00

recalls and MRR in Category A remain high. As for Category B, Anchor is
able to yield recall@k values and MRR of 0.43 when suggesting fault locations.
As for Category C, the total MRR is at 0.43, suggesting more stack traces in
Category C might be the key for better performance.

Table 7: Recall@k and MRR on an independent dataset.

Category Recall@1 Recall@5 Recall@10 MRR
A 0.72(42/58) 0.93(54/58) 0.93(54/58) 0.81
B 0.43(3/7) 0.43(3/7) 0.43(3/7) 0.43
C 0.25(1/4) 1.00(4/4) 1.00(4/4) 0.40

Total 0.67(46/69) 0.88(61/69) 0.88(61/69) 0.74

Answer to RQ4: The evaluation on an independent dataset shows that
Anchor can be generalized. Anchor is a milestone in this respect that
it considers various crashing location cases. However, a community effort
is still required to construct a representative dataset of crashes to push
forward the state of the art in crashing fault localization.

8 Disscussion

8.1 Comparing Anchor with other Locators

Along with their empirical analysis of Android app crashes, Fan et al. [9, 46]
mentioned a prototype crashing fault locator: ExLocator. Unfortunately, since
the tool has not been publicly released, we could not directly compare it against
Anchor. We note, based on its description, however, that ExLocator has
a limited usage scenario since it focuses on only 5 exception types. Fan et
al. [8] also studied one specific type of exception locating. CrashLocator [56]
can also locate faults outside the stack trace. However, CrashLocator needs to
abstract patterns from a great number of repeated crashes of the same project.
Unfortunately, for both datasets presented in this paper, this requirement is
not satisfied. Moreover, CrashLocator requires source code and change tracking

24 Pingfan Kong et al.

of the projects, unavailable for our empirical dataset. Therefore, we are not
able to apply CrashLocator.

Although direct comparison in terms of effectiveness is not possible in this
scenario, we can compare the applicability. Anchor is considered to have
a wider application range compared to ExLocator, i.e., it can be applied to
all exception types, and considered to be more lightweight and source code
independent compared to CrashLocator, i.e., it requires only the crash message
and the apk.

8.2 Developer Effort for Locating Bugs

In the motivating example, we demonstrated why locating buggy methods
outside the stack trace can be challenging. We also want to measure the effort
that developers put in locating such bugs. In Fan et al.’s dataset, each crash
is documented with its duration, i.e., the time between the issue creation and
its official closure by the developers. For bugs in the stack trace, it takes
developers 26 days on average to close the issues. For bugs outside the stack
trace, it drastically increases to 41 days. The ratio is 41/26=158%. Although
it may not always be precise to measure effort in terms of issue duration, this
would confirm our observation to some extent.

8.3 Improving Locating for Category B

In RQ3, we see that Anchor has the lowest performance for locating crashes in
Category B. This is because Android apks may contain thousands of developer
methods. CrashLocator [56] also reports similar overall MRR for large Java
projects. Despite this challenge, we revisited some unsatisfying rankings and
concluded two things that can be done to improve for Category B. First, the
apih (c.f Section 5.2.2) inferred could be incorrect. As a result, the rank never
contains the true bug location. Computing apih correctly calls for a larger and
more sophisticated set of crash samples with ground truth. Because there’s
a higher possibility that such a set may contain samples sharing a similar
root cause with the crash-under-study. Second, the true buggy location may
appear low in the rank. This may be because the weight assigned to them is
comparatively low. Refining the weight computation (c.f Line 7, Algorithm 1)
may result in better performance.

8.4 Locating ICC- and IPC-related Crashes

The Android framework adopts the Intent objects to facilitate ICC (Inter-
Component Communication) and IPC (Inter-Process Communication) in or-
der to provide a message passing mechanism for data exchange among compo-
nents and even among apps [5, 24]. However, apps may also crash because of
malformed Intent objects [34]. When the crash arises from IPC, the true fault

ANCHOR: Locating Android Framework-specific Crashing Faults 25

location may reside in other apps. In such a scenario, Anchor is not appro-
priate, since it only looks for fault locations inside the current apk. When the
crash arises from the ICC, Anchor may be able to find the fault location. For
example, one common exception in many crashes in our empirical dataset is
ActivityNotFoundException. There are often two scenarios. First, the Intent is
implicit, but there is no Activity in the current device/emulator that matches
the Intent ’s filter. Second, the Intent is explicit, but the specified destination
Activity of the Intent is not available in the device/emulator. In both scenar-
ios, Anchor tends to categorize the crash in Category A and effectively finds
the true location. When other fields of the Intent is malformed and the true
bug location is outside the stack trace, it is also possible that Anchor finds
the buggy method by following Algorithm 1, i.e., by correctly computing apih
and putting the buggy method which misused apih in the rank.

8.5 Generalization of Anchor

Android Remote Method Invocation (RMI) [19] allows Android apps to invoke
methods from other devices running Android. Since Anchor only searches
for bug locations inside Android apk files, if an app crashes from remotely
invoked methods, Anchor will not be able to locate them. Apps running on
other mobile platforms like iOS also suffer from app crashes, even those with
billions of downloads [49]. Similarly, a crash log containing the stack trace is
also available for crashed iOS apps. However, locating for such crashes is also
challenged by bugs outside the stack trace [15]. Therefore, it is possible to
apply ANCHOR to locate crash-inducing bugs for iOS apps. Although some
details of the algorithm need to be reconsidered, e.g., the core development
language that iOS apps use is Swift, instead of Java or Kotlin for Android
apps.

9 Threats to Validity

9.1 Internal Threats

9.1.1 Ground Truth

In the empirical study presented in Section 4, we have manually built the
ground truth of buggy locations that we made available to the community.
Although we have tried our best to perform this manual inspection with the
help of (1) the Android official documentation, (2) programmer information
exchanging forums like StackOverflow or GitHub, (3) tools such as Soot or
CodeInspect, there is no guarantee that all buggy locations we retrieved are
the true causes for the crashes. This might affect the conclusions we draw from
this dataset and the answers to RQ1-RQ3.

26 Pingfan Kong et al.

9.1.2 Taxonomy

By dividing bug locations into “code” and “non-code” (Category C), and by
further dividing “code” into ”in stack trace” (Category A) and ”outside stack
trace” (Category B), we are confident that our taxonomy guarantees exhaus-
tion. However, our taxonomy is not the only option. Also, more fine-grained
divisions can be included in this taxonomy, e.g., if the Android framework
supports new non-code features in future versions, there might be more sub-
categories in Category C.

9.2 External Threats

9.2.1 Datasets

We extracted our dataset from the open benchmark ReCBench built by Kong
et al [21]. Although the large dataset they propose contains diverse apks col-
lected from various popular app markets such as Google Play (ensuring a good
diversity of apps), the collected crash cases are retrieved by testing apks with
only two testing tools. Therefore, the yielded crashes could not be represen-
tative of the whole spectrum of crashes present in the Android ecosystem.
Similarly, the dataset proposed by Fan et al. [9] is extracted from open source
Android app GitHub repositories only. Moreover, they have applied certain
rules for collecting the crashed cases, e.g., they extract only crash bugs that
have been closed by repository maintainers. The potential limitations with
both datasets may affect the effectiveness we have shown in RQ1-RQ4.

9.2.2 Android Framework Evolution

Android framework is fast evolving [30]. New APIs are proposed in every
version. Old APIs maybe deprecated or may have their logic renewed. This
would result in new crashing faults previously unseen. However, Anchor is
able to evolve with these new changes. First, for the categorization phase, we
can include more crashing logs and the crashed apks retrieved from running
apps on newer Android framework versions. Like all Machine Learning-based
algorithms, our categorization phase suffers from concept drifting, therefore,
it is necessary to retrain the model with new data. Second, such new crash
logs also benefit the localization of crashes in Category B (e.g., new misused
APIs and new non-overridden callbacks) and in Category C (e.g., new sub-
categories).

10 Related Work

A recent survey by Wong et al. [55] marks the activity of identifying the
locations of faults in a program to be most tedious, time-consuming, and ex-
pensive, yet equally critical. Therefore, lots of techniques have been proposed

ANCHOR: Locating Android Framework-specific Crashing Faults 27

attempting to ease the work of finding the fault locations. Although we did not
find a dedicated tool for identifying locations in Android apps, there are some
approaches proposed for general software programs. For example, Wu et al.
proposed CrashLocator [56] to score and rank suspicious locations that have
caused program crashes. CrashLocator suggests that the buggy methods can
be located in the static call graphs extended from the stack traces. However,
it is not suitable to work on programs with multiple entry points and separate
call graphs such as Android apps. Moreover, its scoring factors, which require
source code and change histories, also limit its application scope to Android
apps, for which most of them are released in a closed way (i.e., no change
histories). Gu et al. [13] proposed another approach called CraTer that adopts
information retrieval techniques to predict whether the real fault resides in-
side the stack traces. However, CraTer is not able to suggest the actual buggy
location. BugLocator [62] applies a revisited Vector Space Model (rSVM) to
retrieve relevant files for fixing a bug on a large number of bug reports. How-
ever, its granularity falls in file level, which still requires human verification
for more fine-grained location identification. Wong et al. [54] build their work
on top of BugLocator [62] and leveraged stack trace to improve the approach
and indeed achieved better performance. Fan et al. [9] briefly describes a fault
localization prototype ExLocator for Android apps. ExLcator only supports 5
exception types and has a limited usage scenario. APEChecker [8] manifests
async programming errors and can statically spot faults for this specific crash
inducing error. Furthermore, in the community of Automatic Program Repair
(APR), statement-level fault localization is often among the first few steps.
Researchers have improved it in various aspects [1, 22, 2, 18, 3, 52, 23].

Many research works have been proposed to address Android app crashes
in recent years. For example, Fan et al. [9] performed a large scale analysis
on framework-specific Android app crashes. They have invented the group-
ing techniques to group the Android app crash cases into buckets to study
similar root causes based on each bucket. Researchers have also spent efforts
attempting to automatically reproduce the reported crashes [26, 35]. Indeed,
to achieve this purpose, Zhao et al. have proposed ReCDroid [61], which ap-
plies a combination of natural language processing (NLP) and dynamic GUI
exploration to reproduce given crashes. Gómez et al. [11] proposed another
approach for reproducing crashes by providing sensitive contexts. Moran et
al. [38] further presented a prototype tool called CrashScope, aiming at gener-
ating an augmented crash report to automatically reproduce crashes on target
devices. Researchers have gone one step deeper to propose automated tools to
automatically fix such identified crashes. Indeed, Tan et al. [47] have proposed
an automatic repairing framework named Droix for crashed Android apps.
Droix adopts 8 manually constructed fixing patterns on crashed Android apps
to generate app mutants and suggest one that fixes the crash. Following this
work, Kong et al. [21] present to the community an automatic fix pattern
generation approach named CraftDroid for fixing apps suffering from crashes.

The special Android callback-based mechanism and its effect have drawn
the attention of many researchers with the ever-booming of Android devices.

28 Pingfan Kong et al.

Yang et al. [58] targets the even-driven and multi-entry point issue of Android
apps, and proposed a program representation that captures callback sequences
by using context-sensitive static analysis of callback methods. Flowdroid [5]
targets at exposing privacy leakages on Android phones. It establishes a precise
model of the Android lifecycle, which allows the analysis to properly handle
callbacks invoked by the Android framework. Relda2 [57] is a light-weight
and precise static resource leak detection tool based on Function Call Graph
(FCG) analysis, which handles the features of the callbacks defined in the
Android framework. Together with other existing works like [59, 25], they all
dealt with Android callback-based mechanism in various manners. Although
these works are different from ours, their approach in handling lifecycle and
callback methods could be borrowed to enhance our approach towards better
dealing with Category B crashes.

11 Conclusions

In this work, we performed an empirical study. This study shows that 37%
crash types are related to bugs that are outside the stack traces, which imposes
challenges to the localization problem. We then proposed Anchor, a two-
phase categorization and localization tool that is able to generate a ranked
list of bug locations for developers to examine. The effectiveness of Anchor
is assessed with both this empirical dataset and an in-the-wild scenario on a
third-party dataset. Our work brings inspiring insights into the crashing faults
localization problem for Android apps and calls for more attention from both
the developers and the research community.

Acknowledgements This work was supported by the Fonds National de la Recherche
(FNR), Luxembourg, under CORE projects CHARACTERIZE C17/IS/11693861 and REC-
OMMEND 15/IS/10449467, and AFR-PhD project 11620657.

References

1. Abreu R, Zoeteweij P, Van Gemund AJ (2007) On the accuracy of
spectrum-based fault localization. In: Testing: Academic and Industrial
Conference Practice and Research Techniques-MUTATION (TAICPART-
MUTATION 2007), IEEE, pp 89–98

2. Abreu R, Zoeteweij P, Golsteijn R, Van Gemund AJ (2009) A practical
evaluation of spectrum-based fault localization. Journal of Systems and
Software 82(11):1780–1792

3. Abreu R, Zoeteweij P, Van Gemund AJ (2009) Spectrum-based multi-
ple fault localization. In: 2009 IEEE/ACM International Conference on
Automated Software Engineering, IEEE, pp 88–99

4. Allix K, Bissyande TF, Klein J, Traon YL (2016) AndroZoo: Collect-
ing Millions of Android Apps for the Research Community. In: 2016

ANCHOR: Locating Android Framework-specific Crashing Faults 29

IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), pp 468–471, DOI 10.1109/MSR.2016.056

5. Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon
Y, Octeau D, McDaniel P (2014) Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. In:
Acm Sigplan Notices, ACM, vol 49, pp 259–269

6. Bartel A, Klein J, Le Traon Y, Monperrus M (2012) Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot. In: Pro-
ceedings of the ACM SIGPLAN International Workshop on State of the
Art in Java Program analysis, pp 27–38

7. Bielik P, Raychev V, Vechev M (2015) Scalable race detection for android
applications. ACM SIGPLAN Notices 50(10):332–348

8. Fan L, Su T, Chen S, Meng G, Liu Y, Xu L, Pu G (2018) Efficiently mani-
festing asynchronous programming errors in android apps. In: Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, pp 486–497

9. Fan L, Su T, Chen S, Meng G, Liu Y, Xu L, Pu G, Su Z (2018) Large-scale
analysis of framework-specific exceptions in android apps. In: Proceedings
of the 2018 IEEE/ACM 40th International Conference on Software Engi-
neering (ICSE), IEEE, pp 408–419

10. Fraunhofer (2020) Codeinspect tool of fraunhofer. https://codeinspect.
sit.fraunhofer.de/

11. Gómez M, Rouvoy R, Adams B, Seinturier L (2016) Reproducing context-
sensitive crashes of mobile apps using crowdsourced monitoring. In: Inter-
national Conference on Mobile Software Engineering and Systems

12. Google (2020) Crashes — android developers. https://developer.

android.com/topic/performance/vitals/crash

13. Gu Y, Xuan J, Zhang H, Zhang L, Fan Q, Xie X, Qian T (2019) Does
the fault reside in a stack trace? assisting crash localization by predicting
crashing fault residence. Journal of Systems and Software 148:88–104

14. Huang Y, Li L (2011) Naive bayes classification algorithm based on small
sample set. In: 2011 IEEE International Conference on Cloud Computing
and Intelligence Systems, IEEE, pp 34–39

15. Inc A (????) Diagnosing and resolving bugs in your running app.
https://developer.apple.com/documentation/xcode/diagnosing_

and_resolving_bugs_in_your_running_app

16. Indi TS, Yalagi PS, Nirgude MA (2016) Use of java exception stack trace
to improve bug fixing skills of intermediate java learners. In: 2016 Inter-
national Conference on Learning and Teaching in Computing and Engi-
neering (LaTICE), IEEE, pp 194–198

17. Jiang S, Zhang H, Wang Q, Zhang Y (2010) A debugging approach for
java runtime exceptions based on program slicing and stack traces. In: 2010
10th International Conference on Quality Software, IEEE, pp 393–398

18. Jones JA, Harrold MJ (2005) Empirical evaluation of the tarantula auto-
matic fault-localization technique. In: Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, ACM, pp

30 Pingfan Kong et al.

273–282
19. Kang H, Jeong K, Lee K, Park S, Kim Y (2016) Android rmi: a user-

level remote method invocation mechanism between android devices. The
Journal of Supercomputing 72(7):2471–2487

20. Kim D, Wang X, Kim S, Zeller A, Cheung SC, Park S (2011) Which
crashes should i fix first?: Predicting top crashes at an early stage to
prioritize debugging efforts. IEEE Transactions on Software Engineering
37(3):430–447

21. Kong P, Li L, Gao J, Bissyandé TF, Klein J (2019) Mining android crash
fixes in the absence of issue- and change-tracking systems. In: International
Symposium on Software Testing and Analysis (ISSTA), ACM, pp 78–89

22. Koyuncu A, Liu K, Bissyandé TF, Kim D, Monperrus M, Klein J, Le Traon
Y (2019) ifixr: bug report driven program repair. In: Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ACM,
pp 314–325

23. Lal S, Sureka A (2012) A static technique for fault localization using char-
acter n-gram based information retrieval model. In: Proceedings of the 5th
India Software Engineering Conference, pp 109–118

24. Li L, Bartel A, Bissyandé TF, Klein J, Le Traon Y, Arzt S, Rasthofer S,
Bodden E, Octeau D, McDaniel P (2015) Iccta: Detecting inter-component
privacy leaks in android apps. In: Proceedings of the 37th International
Conference on Software Engineering-Volume 1, IEEE Press, pp 280–291

25. Li L, Bissyandé TF, Octeau D, Klein J (2016) Droidra: Taming reflection
to support whole-program analysis of android apps. In: The 2016 Interna-
tional Symposium on Software Testing and Analysis (ISSTA 2016)

26. Li L, Bissyandé TF, Papadakis M, Rasthofer S, Bartel A, Octeau D, Klein
J, Le Traon Y (2017) Static analysis of android apps: A systematic liter-
ature review. Information and Software Technology

27. Li L, Gao J, Hurier M, Kong P, Bissyandé TF, Bartel A, Klein J, Le Traon
Y (2017) Androzoo++: Collecting millions of android apps and their meta-
data for the research community. arXiv preprint arXiv:170905281

28. Li L, Bissyandé TF, Wang H, Klein J (2018) Cid: Automating the de-
tection of api-related compatibility issues in android apps. In: The ACM
SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA 2018)

29. Li Q, Jiang Y, Gu T, Xu C, Ma J, Ma X, Lu J (2016) Effectively manifest-
ing concurrency bugs in android apps. In: 2016 23rd Asia-Pacific Software
Engineering Conference (APSEC), IEEE, pp 209–216

30. LLC G (????) Codenames, tags, and build numbers. https://source.

android.com/setup/start/build-numbers

31. LLC G (2020) App manifest overview. https://developer.android.

com/guide/topics/manifest/manifest-intro, accessed: 2020-01-26
32. LLC G (2020) Test google play billing. https://developer.android.

com/google/play/billing/billing_testing.html, accessed: 2020-01-
26

ANCHOR: Locating Android Framework-specific Crashing Faults 31

33. Maiya P, Kanade A, Majumdar R (2014) Race detection for android ap-
plications. ACM SIGPLAN Notices 49(6):316–325

34. Maji AK, Arshad FA, Bagchi S, Rellermeyer JS (2012) An empirical
study of the robustness of inter-component communication in android. In:
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN 2012), IEEE, pp 1–12

35. Martin W, Sarro F, Jia Y, Zhang Y, Harman M (2016) A survey of app
store analysis for software engineering. IEEE transactions on software en-
gineering 43(9):817–847

36. Metsis V, Androutsopoulos I, Paliouras G (2006) Spam filtering with naive
bayes-which naive bayes? In: CEAS, Mountain View, CA, vol 17, pp 28–69

37. Miller R, Siegmund D (1982) Maximally selected chi square statistics.
Biometrics pp 1011–1016

38. Moran K, Linares-Vásquez M, Bernal-Cárdenas C, Vendome C, Poshy-
vanyk D (2016) Automatically discovering, reporting and reproducing an-
droid application crashes. In: Software Testing, Verification and Validation
(ICST), 2016 IEEE International Conference on, IEEE, pp 33–44

39. Octeau D, Luchaup D, Dering M, Jha S, McDaniel P (2015) Composite
constant propagation: Application to android inter-component communi-
cation analysis. In: Proceedings of the 37th International Conference on
Software Engineering-Volume 1, IEEE Press, pp 77–88

40. Qin J, Wang W, Lu Y, Xiao C, Lin X (2011) Efficient exact edit similarity
query processing with the asymmetric signature scheme. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of
data, pp 1033–1044

41. Rish I, et al. (2001) An empirical study of the naive bayes classifier. In:
IJCAI 2001 workshop on empirical methods in artificial intelligence, vol 3,
pp 41–46

42. Schroter A, Schröter A, Bettenburg N, Premraj R (2010) Do stack traces
help developers fix bugs? In: 2010 7th IEEE Working Conference on Min-
ing Software Repositories (MSR 2010), IEEE, pp 118–121

43. Shi Y, Karatzoglou A, Baltrunas L, Larson M, Oliver N, Hanjalic A (2012)
Climf: learning to maximize reciprocal rank with collaborative less-is-more
filtering. In: Proceedings of the sixth ACM conference on Recommender
systems, pp 139–146

44. Sinha S, Shah H, Görg C, Jiang S, Kim M, Harrold MJ (2009) Fault
localization and repair for java runtime exceptions. In: Proceedings of the
eighteenth international symposium on Software testing and analysis, pp
153–164

45. Song W, Zhang J, Huang J (2019) Servdroid: detecting service usage inef-
ficiencies in android applications. In: Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp 362–373

46. Su T, Fan L, Chen S, Liu Y, Xu L, Pu G, Su Z (2020) Why my app
crashes understanding and benchmarking framework-specific exceptions
of android apps. IEEE Transactions on Software Engineering

32 Pingfan Kong et al.

47. Tan SH, Dong Z, Gao X, Roychoudhury A (2018) Repairing crashes in
android apps. In: Proceedings of the 40th International Conference on
Software Engineering, ACM, pp 187–198

48. Tang H, Wu G, Wei J, Zhong H (2016) Generating test cases to ex-
pose concurrency bugs in android applications. In: Proceedings of the 31st
IEEE/ACM international Conference on Automated software engineering,
pp 648–653

49. Verge T (????) How to stop facebook’s ios bug from crashing spotify, pin-
terest, tinder, and other apps. https://www.theverge.com/21319817/

facebook-ios-sdk-bug-fix-spotify-pinterest-tinder-crash-iphone-ios

50. Walton NA, Poynton MR, Gesteland PH, Maloney C, Staes C, Facelli JC
(2010) Predicting the start week of respiratory syncytial virus outbreaks
using real time weather variables. BMC medical informatics and decision
making 10(1):68

51. Wang J, Jiang Y, Xu C, Li Q, Gu T, Ma J, Ma X, Lu J (2018) Aatt+:
Effectively manifesting concurrency bugs in android apps. Science of Com-
puter Programming 163:1–18

52. Wang Q, Parnin C, Orso A (2015) Evaluating the usefulness of ir-based
fault localization techniques. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis, pp 1–11

53. Wei L, Liu Y, Cheung SC (2016) Taming android fragmentation: Char-
acterizing and detecting compatibility issues for android apps. In: Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ACM, pp 226–237

54. Wong CP, Xiong Y, Zhang H, Hao D, Zhang L, Mei H (2014) Boosting
bug-report-oriented fault localization with segmentation and stack-trace
analysis. In: 2014 IEEE International Conference on Software Maintenance
and Evolution, IEEE, pp 181–190

55. Wong WE, Gao R, Li Y, Abreu R, Wotawa F (2016) A survey on software
fault localization. IEEE Transactions on Software Engineering 42(8):707–
740

56. Wu R, Zhang H, Cheung SC, Kim S (2014) Crashlocator: locating crashing
faults based on crash stacks. In: Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ACM, pp 204–214

57. Wu T, Liu J, Xu Z, Guo C, Zhang Y, Yan J, Zhang J (2016) Light-weight,
inter-procedural and callback-aware resource leak detection for android
apps. IEEE Transactions on Software Engineering 42(11):1054–1076

58. Yang S, Yan D, Wu H, Wang Y, Rountev A (2015) Static control-flow anal-
ysis of user-driven callbacks in android applications. In: 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, IEEE, vol 1,
pp 89–99

59. Yang Z, Yang M (2012) Leakminer: Detect information leakage on android
with static taint analysis. In: 2012 Third World Congress on Software
Engineering, IEEE, pp 101–104

60. Yang Z, Nie X, Xu W, Guo J (2006) An approach to spam detection by
naive bayes ensemble based on decision induction. In: Sixth International

ANCHOR: Locating Android Framework-specific Crashing Faults 33

Conference on Intelligent Systems Design and Applications, IEEE, vol 2,
pp 861–866

61. Zhao Y, Yu T, Su T, Liu Y, Zheng W, Zhang J, Halfond WG (2019)
Recdroid: automatically reproducing android application crashes from bug
reports. In: Proceedings of the 41st International Conference on Software
Engineering, IEEE Press, pp 128–139

62. Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more
accurate information retrieval-based bug localization based on bug reports.
In: 2012 34th International Conference on Software Engineering (ICSE),
IEEE, pp 14–24

