
Received: 30 September 2021 Revised: 24 October 2022 Accepted: 25 October 2022

DOI: 10.1002/spe.3171

R E S E A R C H A R T I C L E

A model-based framework for inter-app Vulnerability
analysis of Android applications

Atefeh Nirumand1 Bahman Zamani1 Behrouz Tork-Ladani1

Jacques Klein2 Tegawendé F. Bissyandé2

1MDSE Research Group, Department of
Software Engineering, University of
Isfahan, Isfahan, Iran
2Interdisciplinary Center for Security,
Reliability and Trust, University of
Luxembourg, Esch-sur-Alzette,
Luxembourg

Correspondence
Bahman Zamani, Model-Driven Software
Engineering Research Group, Department
of Software Engineering, University of
Isfahan, Isfahan, Iran.
Email: zamani@eng.ui.ac.ir

Abstract
Android users install various apps, such as banking apps, on their smart
devices dealing with user-sensitive information. The Android framework, via
Inter-Component Communication (ICC) mechanism, ensures that app compo-
nents (inside the same app or on different apps) can communicate. The literature
works have shown that this mechanism can cause security issues, such as app
security policy violations, especially in the case of Inter-App Communication
(IAC). Despite the plethora of research on detecting security issues in IAC, detec-
tion techniques face fundamental ICC challenges for improving the precision of
static analysis. Challenges include providing comprehensive and scalable mod-
eling of app specification, capturing all potential ICC paths, and enabling more
effective IAC analysis. To overcome such challenges, in this paper, we propose a
framework called VAnDroid2, as an extension of our previous work, to address
the security issues in multiple components at both intra- and inter-app analysis
levels. VAnDroid2, based on Model-Driven Reverse Engineering, has extended
our previous work as per following: (1) providing a comprehensive Interme-
diate Representation (IR) of the app which supports extracting all the ICC
information from the app, (2) extracting high-level representations of the apps
and their interactions by omitting the details that are not relevant to inter-app
security analysis, and (3) enabling more effective IAC security analysis. This
framework is implemented as an Eclipse-based tool. The results of evaluating
VAnDroid2 w.r.t. correctness, scalability, and run-time performance, and com-
paring with state-of-the-art analysis tools well indicate that VAnDroid2 is a
promising framework in the field of Android inter-app security analysis.

K E Y W O R D S

android, inter-app communication, inter-component communication, model-driven reverse
engineering, security analysis

1 INTRODUCTION

Nowadays, smartphones have become an integral part of users’ daily life, because users are constantly installing various
apps, such as banking and medical apps, on their devices. It is estimated that more than 2 billion Android apps have

Softw: Pract Exper. 2022;1–42. wileyonlinelibrary.com/journal/spe © 2022 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0001-6424-1442
https://orcid.org/0000-0003-2280-8839
https://orcid.org/0000-0003-4052-475X
http://wileyonlinelibrary.com/journal/SPE

2 NIRUMAND et al.

been developed so far.1-3 As these apps can deal with user-sensitive information, the insecurity of apps will have serious
consequences on users’ lives.2 When developing an app, there are different aspects of security to be considered. There-
fore, there is a basic need for Android app developers, app distributors, and app analysts to have easy-to-use automated
techniques and tools for the security analysis of apps, including vulnerability analysis.1

Three types of program analysis are mostly used to check the security properties of Android applications: static,
dynamic, or hybrid.4,5 In static analysis, security checks are performed without the actual execution of the program code.
Compared with dynamic analysis, static analysis is often more scalable and covers more execution paths of the program.6
Therefore, this paper is focused on static analysis. In this context, several studies7-11 have been conducted to identify var-
ious security issues of Android applications, such as vulnerabilities and information leaks. However, several challenges
can be enumerated for the Android static analysis methods. Following are the five most recurrent challenges.

(1) Since Android apps are event-driven, and app components can interact with each other via the Inter-Component
Communication (ICC) mechanism, mainly through Intent messages, the execution paths in these apps are unpre-
dictable, hence, it is challenging to identify all ICC paths. As Android apps become more complex software, many
potential execution paths must be considered in the analysis.12 Therefore, one of the significant challenges in the
static analysis of Android apps is capturing and analyzing all possible ICC paths to avoid losing potentially dangerous
behavior while not introducing too many false alarms.11

(2) According to recent studies,1,6,13 most of the current static analysis approaches suffer from low precision. Further-
more, it should be noted that identifying more security issues in Android applications highly depends on the ability of
analytical methods to characterize the app specification accurately.2 In this characterization, the entire Android spec-
ification related to the Android app structure must be considered. Therefore, there is a fundamental need for studies
to improve the precision of static analysis techniques in characterizing the app specification. These techniques must
be applicable to large and complex apps.5

(3) The Android framework ensures that the apps produced by a wide variety of developers are able to interact when
installed on a single mobile phone, as long as these interactions comply with the restrictions imposed by this frame-
work.5 While Google provides several best practices, many Android app developers fail to properly follow these
practices for Android secure programming, allowing malicious apps designed to misuse the IAC mechanism to
trick vulnerable Android apps into performing activities beyond their privilege. Investigating these features (i.e., the
Android communication model) will reveal a new set of security issues.5 The main reason for these issues is that the
Android access control model operates at the level of individual apps and does not provide any mechanism to check
the security status of the entire system (Inter-app communication [IAC] level).14 However, according to the litera-
ture review studies,6,13,15 most of the existing research are limited to the analysis of a single app. While today security
issues such as vulnerabilities and information leaks through the incorrect implementation of the IAC mechanism
are ubiquitous,2 it is necessary to identify security problems in communication between apps.

(4) Fragmentation, evolution, and upgrading of the Android Application Programming Interfaces (APIs) often block the
existing ICC analysis tools.12,16 Therefore, when developing new approaches, researchers need to be able to adapt
their work to new versions of Android APIs.

(5) In unstable environments like Android, where apps are constantly added, removed, or updated, there is a fundamen-
tal need to conduct more scalable and practical ICC analysis, such as incremental ICC analysis that uses the results
of previous analyses to optimize subsequent analyses and automatically updates ICC analysis to respond to the app
changes.14

Given the above challenges, the field of security analysis of Android applications demands an automated framework
for providing comprehensive and scalable modeling to enable more effective security analyses. Such a framework can be
used to address the security issues in IAC.

One way to cope with the structural complexity of software systems is to create a high-level abstraction (i.e., character-
ization) of these systems and focus only on the specifications required for analysis.17 Model-Driven Reverse Engineering
(MDRE) is one of the approaches that benefit from this idea and uses models to decrease the heterogeneity of systems.
We argue that using MDRE solutions in the field of security analysis of Android apps could be helpful and has several
advantages, including extensibility, full coverage, (re)use, and integration.17,18 Our earlier work19 proposed a framework
called VAnDroid, which stands for “Vulnerability Analysis of Android Applications.” This framework takes advantage
of MDRE to perform a more effective intracomponent analysis of Android apps. VAnDroid19 is only able to detect the
security issues in a single app component.

NIRUMAND et al. 3

F I G U R E 1 The positioning of the original VAnDroid framework19 and the VAnDroid2 framework (based on the taxonomy proposed
by Sadeghi et al.13)

To overcome the challenges mentioned above, in this paper, an automated model-based framework called VAnDroid2
is proposed. This framework is an extension of the original VAnDroid framework19 to add the ability to take advantage
of MDRE to conduct a more effective intercomponent analysis and improve the detection of security issues at intra- and
inter-app levels. In this framework, technology-independent standards (i.e., metamodels) are used to extract models that
have the required features for Android app security analysis. It is also possible to determine precisely how these features
relate to security issues, such as the types of vulnerabilities. Furthermore, it is possible to enable inter-app security analysis
by paying a one-time cost of generating model-based representations from Android applications.

To clearly specify the boundary of the contribution as well as the extensions and enhancements made to the origi-
nal VAnDroid framework,19 we use Figure 1, inspired by the taxonomy provided by Sadeghi et al.13 for Android security
analysis. As depicted in this figure, the original VAnDroid framework19 is intended to address security issues in a single
app component (i.e., intracomponent analysis). VAnDroid2 made substantial extensions to the original VAnDroid frame-
work19 for addressing the security issues in multiple app components (i.e., intercomponent analysis). Also, VAnDroid2 is
intended to consider both a single app (i.e., intra-app analysis) and a combination of apps (i.e., inter-app analysis). There-
fore, in VAnDroid2, four levels of analysis are supported: intracomponent (single component), intercomponent (multiple
components), intra-app (single app), and inter-app (multiple apps). Among the three major types of interprocess commu-
nication (IPC) mechanisms (i.e., Intent, Android Interface Definition Language [AIDL], and data sharing), VAnDroid2
focuses on Intent.

The VAnDroid2 framework has been developed to generate comprehensive and scalable models of the Android app
specification to enable more effective IAC security analysis. At the heart of this framework is a model-based static anal-
ysis approach for Android applications, implemented to enable an incremental and automated analysis of the security
specification and structure of Android apps that are constantly being installed, removed, and updated on user’s devices.
The VAnDroid2 framework consists of three phases. In the Model Discovery phase, through model-based static analysis,
the comprehensive Intermediate Representation (IR) of each app in a bundle is created without losing information. Then,
in the transformation and Integration phase, by collecting security information in the form of domain-specific models
from each app, the comprehension of the Android system is facilitated and all potential inter-component communica-
tion (inside the same app or among different apps) are captured from a bundle of apps in an analyzable domain-specific
model. Finally, in the analysis phase, according to the resulting models, a formal analysis process is conducted to support
both intra- and inter-app vulnerability analysis.

The proposed framework has been developed as an Eclipse-based tool. It can be used to identify two prominent
inter-app vulnerabilities called Intent Spoofing and Unauthorized Intent Receipt. To evaluate the VAnDroid2 tool, it has
been applied to 10 bundles of real-world Android apps to examine the criteria of correctness, scalability, and run-time per-
formance. These bundles, each containing 35 apps, have been randomly selected from the provided dataset in this study
(i.e., a collection of benign, malicious, and vulnerable Android applications). The VAnDroid2 tool is also compared with
several existing state-of-the-art tools related to ICC analysis of Android apps: IC3,20 IccTA,9 Amandroid,11 and COVERT.10

The evaluation results indicate that VAnDroid2 has conducted a more effective IAC security analysis and achieved higher
precision and recall in intra- and inter-app vulnerability detection. Research artifacts, including the tool and evaluation
results, are available on the VAnDroid2 website*.

*https://mdse.ui.ac.ir/project/vandroid2/

https://mdse.ui.ac.ir/project/vandroid2/

4 NIRUMAND et al.

To summarize, this paper makes the following contributions (significant extensions from the original VAnDroid
framework19).

(1) Model-based static program analysis for Android. We presented a model-based static program analysis for
Android, which supports extracting all the ICC information from an Android app needed for analyzing ICC at intra-
and inter-app levels.

(2) Model-based ICC extractor for Android. We developed a model-based ICC extractor for Android to precisely infer
all potential ICCs at intra- and inter-app communication levels. This ICC extractor implements a model-based app
component analysis that conducts a precise intent resolution (matching) algorithm to extract all potential ICCs from
a bundle of Android apps.

(3) A formal model-based analysis process. We implemented model-to-model (M2M) transformations through ATL
(as a model transformation language) and OCL (as a formal language) rules, which supports the identification of
two prominent ICC vulnerabilities at intra- and inter-app communication levels.

(4) An extended version of the Android application security aspects metamodel. The metamodel is proposed to
extract the security information from each app in a bundle of apps and integrate them into a single Android Appli-
cation Security Aspects model. This model is reusable and detailed enough that it can be conducted to perform a
more effective inter-app security analysis. This metamodel is an extension of the metamodel defined in our ear-
lier work.19 This metamodel is extensively enhanced to consider the more complete specification of Android apps,
including various types of app components, all kinds of intent objects, and enforced permissions by components, as
a set of permissions required to access components of an app. We also improved the implementations for extracting
the Android Application Security Aspects model to perform an elementary string analysis. In this analysis, intent
parameters are extracted to identify the more precise correspondence between the source and targets for ICC. The
details of this metamodel are described in Section 5.1.

(5) A metamodel for ICC of Android apps. This brand new metamodel is proposed to extract all potential ICCs in a
bundle of apps at the intra- or inter-app levels and integrate them into a single model. In order to extract this model,
a model-based algorithm has been implemented to perform app components analysis. This algorithm conducts the
precise Intent resolution process, which makes it possible to support both intra- and inter-app analysis.

(6) Implementation of the proposed framework as an Eclipse-based tool. To show the ability of the proposed
approach to perform both intra- and inter-app vulnerability analysis, it is developed as an incremental and automated
Eclipse-based tool called VAnDroid2. This tool receives multiple apps (app bundles) and performs incremental ICCs
analysis to identify security issues at four analysis levels: intracomponent, intercomponent, intra-app, and inter-app.
VAnDroid2 is extendable, and all components of this tool can be used for other types of inter-app vulnerabilities.

(7) Experiments. The evaluation results of the VAnDroid2 tool w.r.t. correctness, scalability, and run-time performance
have been presented. These experimental evaluation results corroborated VAnDroid2’s ability to perform effective
inter-app ICC analysis. VAnDroid2 is also compared with several state-of-the-art tools (i.e., IC3, IccTA, Amandroid,
and COVERT) related to ICC and IAC analysis of Android applications. The results of the comparisons indicate that
VAnDroid2 outperforms the state-of-the-art tools. In comparison with IC3, as a program analysis tool for Android,
VAnDroid2 significantly outperforms the IC3 tool both in extracting more comprehensive specifications from each
app and execution time. In comparison with IccTA and Amandroid, as two intra-app analysis tools for Android, VAn-
Droid2 outperforms the other two tools and achieves higher precision (100%), recall (96%), and F-measure (98%) in
intra-app ICC analysis. In comparison with COVERT, as an inter-app analysis tool for Android, VAnDroid2 signifi-
cantly outperforms COVERT and achieves higher precision (100%), recall (100%), and F-measure (100%) in inter-app
ICC analysis.

The remainder of this paper is organized as follows. Section 2 presents background information required to understand
this study. Section 3 reviews the related work. Section 4 explains an illustrative inter-app vulnerability example to motivate
our research. Section 5 introduces an overview of the proposed approach, the proposed metamodels, and tool support.
The evaluation results are presented in Section 6. We discuss evaluation results, limitations, and threats to validity in
Section 7. Finally, Section 8 concludes the paper and highlights the areas of future work.

2 BACKGROUND

This section provides background information on Android apps, ICC, access control model, and MDRE concepts.

NIRUMAND et al. 5

2.1 Android applications

As the most popular mobile platform, Android accounted for 73% market share in June 2021.21 This platform includes
the Linux operating system, middleware, system libraries, and a set of pre-installed Android applications.5 The Android
platform architecture consists of several layers. At the bottom of this platform, there is a hardware layer that contains
the hardware components of the Android system. The Linux layer, as the second layer, is the core of the Android Sys-
tem. This layer is responsible for the proper operations of all system components.22 At the top of this layer, there is a
Hardware Abstraction Layer (HAL). This layer contains several library modules that provide interfaces for each hardware
component. Finally, at the top of the Android system, there is an application layer that provides the API for Android apps
to interact with the system. These applications can be pre-installed apps that exist on the Android system by default or
installed by users from various repositories, which are called third-party apps.22

Android apps are distributed as the Android Package (APK) file formats.4 An APK consists of several files. The
Manifest file is a mandatory and important file for any app which contains metadata about the app, including the app com-
ponents, required permissions, and enforced permissions. Components are the primary and logical units of the Android
app, which can be following four types:4

• Activity. It is the basis of the application interface. An Android app may have several activities that display different
pages of the app to the user.

• Service. It provides the background processing of the app, such as playing music. This component does not provide
any user interface.

• Broadcast Receiver. It responds to the system’s broadcast messages. The Receiver also operates as a gateway for other
app components and sends messages to handle services or activities.

• Content Provider. It provides the ability to share data between Android applications.

2.2 Intercomponent communication

Android separates apps from each other and system resources using the sandbox mechanism as part of the protection
mechanism. This separation requires interaction through a message passing system called ICC.5 Figure 2 illustrates this
procedure and shows that the components of two Android apps, Maps and Facebook, can communicate with each other
through the ICC mechanism. As depicted in this figure, app components can interact with each other inside the same
app or among different apps.

F I G U R E 2 An example of app component interactions through the intercomponent communication mechanism (adapted from
Reference 15)

6 NIRUMAND et al.

The ICC mechanism is done through Intent messages or Uniform Resource Identifiers (URIs).4 Intent objects provide
an abstract description of the app’s capabilities. On the other hand, the component’s capabilities are determined by a set of
intent filters specified in the Manifest file.10 An Intent message specifies an event to perform a specific action with data that
supports that action.4 The components of Activity, Service, and Receiver can communicate with each other via Intent mes-
sages. URIs are used to communicate with Content Provider, as a database for an Android app.4 An Intent message can be
addressed to a specific app component, which is called an explicit intent. However, an Intent message can be sent implic-
itly, which is called an implicit intent. In this type of intent, the component receiving the intent is not explicitly specified.15

In the ICC mechanism, components can be invocated through Intent messages at two levels: intra-app (inside the same
app) or inter-app (among different apps).4 As shown in Table 1, the Android framework provides several ICC methods
that can be used for sending intent messages. In order to identify these ICC methods, the works of Chin et al.,23 Ma et al.,24

Samhi et al.,25 and Android API reference documentations26-28 have been studied. App components can be activated
by calling these intent-sending mechanisms like startActivity, startService, and sendBroadcast. Also, some methods are
related to sending Intent through PendingIntent and IntentSender objects.5,25 PendingIntent, as a wrapper around the
Intent, allows the Intent’s action to be performed in the future, even when the original sender app of intent is not active
anymore.

T A B L E 1 A nonexhaustive list of intercomponent communication methods23-28

Usage Method

To receiver sendBroadcast(intent i)

sendBroadcast(intent i, String rcvrPermission)

sendOrderedBroadcast(intent i, String recvrPermission, BroadcastReceiver receiver, …)

sendOrderedBroadcast(intent i, String recvrPermission)

sendStickyBroadcast (Intent i)

sendStickyBroadcast(intent i)

sendStickyOrderedBroadcast(intent i, BroadcastReceiver receiver, …)

To activity startActivity(intent i)

startActivityForResult(intent i, int requestCode)

onActivityResult(int requestCode, int resultCode, intent intent)

setResult(int resultCode, intent intent)

To service startService(intent i)

bindService(intent i, ServiceConnection conn, int flags)

PendingIntent send(Context context, int code, Intent intent, PendingIntent.OnFinished onFinished, …)

send(int code, PendingIntent.OnFinished onFinished, Handler handler)

send(Context context, int code, Intent intent)

setExact(int type, long triggerAtMillis, PendingIntent operation)

requestLocationUpdates(long minTimeMs, float minDistanceM, Criteria criteria, PendingIntent pendingIntent)

requestLocationUpdates(String provider, long minTimeMs, float minDistanceM, PendingIntent pendingIntent)

getActivity(Context, int, Intent, int)

getActivities(Context, int, Intent[], int)

getBroadcast(Context, int, Intent, int)

getService(Context, int, Intent, int)

getIntentSender()

IntentSender sendIntent(Context context, int code, Intent intent, IntentSender.OnFinished onFinished, Handler handler)

sendIntent(Context context, int code, Intent intent, IntentSender.OnFinished onFinished, Handler handler, String
requiredPermission)

NIRUMAND et al. 7

2.3 Android access control model

Android access control model is implemented at the level of individual Android applications. In this access model, two
types of privileges are considered for app components:4 (1) ICC that allows a component to interact with other app
components in the same or among different apps. (2) Resource access privilege that allows an app component to access
resources of the mobile device. As explained in Section 2.2, ICC is done through Intent messages or URIs. Since the ICC
mechanism is mainly done through Intent messages, this paper is focused on the message passing mechanism through
intent.

While various mechanisms are considered in the Android access control model, including the Android permis-
sion model, this access model does not provide any mechanism to check the security status of the entire system and
its applications.14,29 Therefore, several malicious apps can combine their permissions or take advantage of benign
apps’ vulnerabilities to perform activities beyond their privilege. This causes important security issues in inter-app
communications, including Intent Spoofing and Unauthorized Intent Receipt attacks,5,23 described in the following.

2.3.1 Intent spoofing

In this security attack, the malicious app component can communicate with a public (exported) app component while
not expecting such communication. An app component is public if the exported attribute for this component is set
to true or if it has at least one Intent Filter. If the victim (exported) app component blindly trusts the incoming
(received) intent, the malicious app component can cause the victim component to perform malicious actions.4,23 This
security attack can be three types according to the type of victim app component.4,23 These three types are described
as follows.

• Malicious activity launch. This attack occurs when an exported activity of the victim app is initiated by a mali-
cious app component that does not expect such communication. Since the activity component provides the GUI
interface, this attack can be used to deceive the user. If this attack is successful, it can modify the background data
according to the Intent’s data sent by the malicious component. Also, information leakage may occur via the victim
Activity.

• Malicious Service launch: This attack occurs when a malicious app component can start an exported Service of the
victim app. This type of attack is similar to a malicious activity launch attack, except that the interaction between the
victim and the malicious components occurs in the background. If this attack is successful, the victim service may leak
sensitive information or perform unauthorized tasks.

• Malicious broadcast injection. This attack occurs when a public (exported) receiver blindly trusts the intent sent by
the malicious component. Since the Broadcast Receiver operates as a gateway for other app components and sends
messages to handle services or activities, the malicious intent can propagate throughout the application. As a result,
this attack can perform an inappropriate operation on the data from the intent or even run operations that the malicious
component is not supposed to trigger.

2.3.2 Unauthorized intent receipt

In this security attack, the malicious app component can intercept an implicit intent by introducing a filter that matches
the sent intent. Therefore, the malicious app component can access all the data on the intent.4,23 This security attack can
be three types according to the type of malicious component.4,23 These three types are described as follows.

• Activity hijacking. This attack occurs when a malicious Activity component has received the intent. As a result, this
Activity is launched instead of the legitimate Activity.

• Service hijacking. This attack occurs when a malicious Service is initiated instead of a legitimate Service. If this attack
is successful, it may trigger a false response attack in which the malicious result is returned to the Intent sender.

• Broadcast theft. This attack occurs when the receiver app component can silently read the content of the broadcast
intent without any interruption in the Receiver component.

8 NIRUMAND et al.

2.4 Model-driven reverse engineering

As a paradigm for software engineering, model-driven engineering (MDE) focuses on creating, manipulating, and using
models.17 These models can describe various complementary aspects of software systems. In MDE, models are considered
as first-class entities in the design, development, deployment, maintenance, and evolution of software systems. Therefore,
many benefits can be achieved by moving from code-based approaches to model-based ones, including increasing the level
of abstraction, increasing problem understanding to better complexity management, and improving the overall efficiency
of various software engineering tasks.17

MDE is based on three main concepts: model, metamodel, and model transformation. The metamodel deter-
mines the possible element types and relationship types of the model that conform to it. Model transformation
can be done as model-to-model transformation (e.g., Eclipse ATL30) or model-to-text transformation (e.g., Eclipse
Acceleo31). The first type specifies a mapping from the source metamodel to the target metamodel. The second
type, also called code generation, specifies a mapping from the source metamodel to the grammar of the target
language.17,32,33

MDRE takes advantage of the MDE principles and techniques in reverse engineering to develop more effective solu-
tions that facilitate the understanding of software systems.18 MDRE obtains a set of models from the software system
artifacts (e.g., configuration files and source code).33 MDRE uses models to reduce the structural complexity of software
systems. The heterogeneity of the systems decreases with the use of homogeneous models. MDRE can also be directly
exploited from MDE technologies and their capabilities, such as generality, extensibility, integration, and coverage.34 An
MDRE process consists of three phases as follows:33

• Model Discovery. High-level representations (models) are obtained from software artifacts.
• Model Understanding. The models obtained in the previous phase are understood.
• Model (Re)generation. The generated models in the previous phase can be used to produce new models or to migrate

the software system into a new platform.

3 RELATED WORK

There exist extensive research work on Android security analysis in general and on security vulnerability detection in
particular. In the following, an overview of the researches that are most closely related to our research is given. First,
in Section 3.1, an overview of the studies related to performing program Analysis of Android apps for security is pro-
vided. Then, in Section 3.2, the studies related to performing ICC analysis of Android apps for vulnerability detection are
described.

3.1 Program analysis of Android apps for security

Over the past decade, significant studies have been made to improve the security of Android applications. These studies
have resulted in the development of tools for analyzing Android applications. In the following, an overview of the tools
in light of our research is explained.

CHEX35 is a static analysis tool that automatically analyzes a single Android app to detect component hijacking vul-
nerability. CHEX identifies this type of vulnerability through data flow modeling. This modeling is done by analyzing the
Android application to identify the data stream being hijacked. CHEX is based on Dalysis, as a framework proposed by
Lu et al.35 for performing various static analyses of Android bytecode.

Epicc7 is an Android static analysis tool that detects security issues related to the Android communication model and
analyzes the app components that can interact with each other. This tool converts the Dalvik bytecode to Java bytecode
via Dare36 and then creates an ICC call graph for Android app analysis. The approach used in this tool is flow-sensitive,
inter-procedural, and content-sensitive.

FlowDroid8 is an Android taint analysis tool. This tool implements an analysis that is object, context, field, and
flow-sensitive. FlowDroid models the complete lifecycle of an Android app. This tool evaluates the configuration files and
bytecode to detect existing privacy leaks.

NIRUMAND et al. 9

DroidSafe37 examines the information flow in the Android application code and detects possible leaks of sensitive
information. This tool well models the Android execution environment and provides a combination of an accurate,
comprehensive, and precise model of the Android execution environment with design decisions.

IIFA,38 as a static analysis tool, performs information flow analysis of Android apps to identify potential data leaks.
This tool examines sensitive information flows that can occur through intent messages. These information flows are not
limited to one component and can occur between the components in the same or different apps.

3.2 ICC analysis of Android apps for vulnerability detection

Since our work focuses on ICC analysis to detect inter-app vulnerabilities, in the following, an overview of some of the
researches that considered ICC analysis and vulnerability detection is described.

Chin et al.23 studied the Android communication model to identify ICC attacks that can occur through intent
messages. They also developed the ComDroid tool to detect two types of vulnerabilities called Intent Spoofing and Unau-
thorized Intent Reception through static analysis of Android applications. Android app developers can conduct this tool
to analyze their apps before release.

DidFail39 performs a static analysis of Android applications. This tool combines Epicc7 and FlowDroid8 analyses to
accurately track data flow in the app bundles at intercomponent and intracomponent levels. DidFail identifies data flows
in each app separately. It then identifies potentially dangerous flows that may occur.

IccTA9 is an Android static analysis tool for performing ICC analysis. This tool identifies privacy leaks between compo-
nents by constructing a highly precise control-flow graph. In this tool, the APK file is received as input, and the bytecode of
the Android application is transformed into Jimple, as a Soot’s † internal representation. Then, the ICC links are extracted,
and based on these links, Soot-based representations are modified to analyze the data flow between components. It also
extracts a complete control-flow graph from the whole Android application.

Jha et al.40 proposed a conceptual model to display ICC in Android apps at a higher abstraction level from the code.
They also developed an automated tool called ICCMATT to perform ICC modeling and testing of Android apps. This tool
extracts an ICC graph from the source code to specify intra- and ICCs within the Android app. Android app developers
and analysts can use this call graph to identify ICC vulnerabilities.

COVERT10 has been developed to address IAC, in which a combination of static analysis with formal methods is
applied. The main purpose of this tool is to detect permission-induced issues in Android apps, namely permission-induced
security attacks and permission-induced compatibility defects.

Amandroid11 is a tool that addresses the security problems such as data leaks, data injection, and API abuse. Initially,
this tool converts the app’s Dalvik bytecode to an IR. Amandroid creates an environment model that emulates communi-
cations of the Android system with the app. This environment is similar to the environment created by the FlowDroid,8
but unlike an app-level environment model used in FlowDroid, it is a component-level environment model. Amandroid
performs the component-based analysis. For this purpose, for each app component, a Data Flow Graph (DFG) is gener-
ated, and the component-level data dependence graph (DDG) is created based on the DFG. In fact, this tool creates an
abstraction of the app behavior using a DFG and a DDG at the component level.

Based on the review of related studies, we realized that (1) most of the solutions are proposed to address the detection
of sensitive information leaks in Android apps, (2) the majority of related studies are limited to consider ICC analysis at
the intra-app level (i.e., a single Android app), and (3) Most static analysis methods have used Soot framework, as an IR
of the code. We will later, in Section 7.2 (Discussion), compare the proposed approach with the related works.

4 MOTIVATING EXAMPLE

In this section, we illustrate an inter-app vulnerability where a malicious app component performs an inter-app Intent
Spoofing attack. In this example, a bundle from the Ghera repository1 is considered. The Broadcast Receiver component in
Android apps can be dynamically registered in the Java code (i.e., at runtime).14 This type of component is automatically
considered as an exported component without any access restriction. Therefore, any app can access this component via
the ICC mechanism, even malicious apps. As a result, unintended operations may be triggered by this component.1

†https://github.com/soot-oss

https://github.com/soot-oss

10 NIRUMAND et al.

F I G U R E 3 A running example of inter-App vulnerabilities

Consider the bundle shown in Figure 3. This bundle contains a benign app and a malicious app (i.e., Benign and
Malicious). Benign has a component called MainActivity. The code excerpt of this component is shown in Listing 1. As
can be seen, in line 3, there is an implicit intent with an action edu.ksu.cs.action.EMAIL. Benign registers a Broadcast
Receiver that can dynamically receive the intent. The Java code snippet related to registering this Broadcast Receiver is
shown in Listing 2. This Broadcast Receiver has an intent filter with an action edu.ksu.cs.action.EMAIL (line 6) and can
be triggered by any app via the intent, even a malicious app.

1 @Override
2 public void onClick (View v) {
3 Intent intent = new Intent ("edu.ksu.cs.action.EMAIL");
4 intent.putExtra("email", "diagnostics@startup.com");
5 intent.putExtra("text", "I am " + username);
6 sendBroadcast(intent);
7 }

Listing 1: Code excerpt of MainActivity of Benign

1 @Override
2 protected void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4 setContentView(R.layout.activity_main);
5 emailBroadcastRecv = new EmailBroadcastRecv();
6 registerReceiver(emailBroadcastRecv, new IntentFilter("edu.ksu.cs.action.EMAIL"));
7 }

Listing 2: Code excerpt of register the dynamic Broadcast Receiver in Benign

1 @Override
2 public void onClick(View v) {
3 Intent intent = new Intent("edu.ksu.cs.action.EMAIL");
4 intent.putExtra("email", "rookie@malicious.com");
5 intent.putExtra("text", "I can send email without any permissions");
6 sendBroadcast(intent);
7 }

Listing 3: Code excerpt of MalActivity of Malicious

The second app is a malicious app. This app has an Activity called MalActivity. This component has a filter with an
action android.intent.action.MAIN. The code excerpt of MalActivity is shown in Listing 3. In line 3, this component has
an implicit intent with an action edu.ksu.cs.action.EMAIL. Malicious can invoke the Broadcast Receiver in Benign and
exploit it to send the email, although Malicious is not allowed to send an email.

NIRUMAND et al. 11

F I G U R E 4 The attack scenario for Benign

The scenario of Malicious attacking Benign is shown in Figure 4. As can be seen, after running Malicious, Benign
receives the intent from Malicious and then sends it through an email, and the message specified by Malicious is displayed.
While sending emails is not very dangerous, the Broadcast Receiver registered dynamically can very well be exploited by
a malicious app component to perform more dangerous operations. This is a common practice (i.e., anti-pattern) among
the developers of Android applications.23

The above example is one of the most important vulnerabilities in IAC called Intent Spoofing, which we consider as
an example of an inter-app vulnerability throughout this paper.

5 THE PROPOSED APPROACH

This section overviews the proposed approach to enable a more effective ICC analysis and detection of security issues at
both intra- and inter-app levels. As explained earlier, this approach addresses two prominent ICC vulnerabilities called
Intent Spoofing and Unauthorized Intent Receipt. The proposed approach starts with receiving a bundle of Android apps.
The comprehensive IR of each app is first created. Then, the security information from each app is extracted and integrated
into a single domain-specific model. By collecting this model from each app, the comprehension of the Android system is
facilitated and all potential ICCs (inside the same app or among different apps) are extracted in the form of an analyzable
domain-specific model. Finally, two prominent ICC vulnerabilities, Intent Spoofing and Unauthorized Intent Receipt, are
identified by performing formal analysis operations (i.e., queries and model manipulation techniques).

To extract the security information from each app, the android security aspects metamodel proposed in our earlier
work19 has been enriched and extended to consider the more complete specification of Android apps. Also, the ICC
metamodel is proposed to capture all potential ICCs from the Android system.

In the following, first, the proposed metamodels are explained in Sections 5.1 and 5.2. Then, in Section 5.3, an overview
of the proposed approach and its phases are presented. Finally, the incremental ICC analysis feature and the tool support
are explained in Sections 5.4 and 5.5, respectively.

5.1 Android application security aspects metamodel

For automatic security analysis of IAC, a model of each app is required to identify its security structure and specification,
which conforms to the metamodel shown in Figure 5. This metamodel is an extension of the proposed metamodel by
our earlier work.19 The elements with dark colors indicate the extended concepts. In the following, Sections 5.1.1-5.1.8
describe the main elements of this metamodel and their relationships.

12 NIRUMAND et al.

F I G U R E 5 Android application security aspects metamodel (extended from the proposed metamodel by our earlier work,19 the
extended concepts are in dark color)

NIRUMAND et al. 13

5.1.1 ApplicationPolicyFile

This element represents the root of the metamodel, which contains essential information of the Android application: (1)
Package that identifies the name of APK file, (2) VersionCode that is needed for other apps to identify the version of the
app, and 3) VersionName that specifies the version of the app shown to users.

5.1.2 SDK

The SDK element identifies the Android API level required to run the application. This element contains three attributes:
(1) MinSdkVersion that specifies the Android API minimum level required to run the application, (2) MaxSdkVersion that
specifies the Android API maximum level required to run the application, and (3) TargetSdkVersion that specifies the
Android API level, which the Android application is designed to run on it.

5.1.3 UsesPermission

Android conducts a permission-based mechanism that restricts the access of Android apps to critical resources, other
apps, or other app components.41 These requested permissions by the app are stored in the application’s sandbox and
granted to all app components.42 This model of coarse-grained Android permissions violates the principle of least
privilege.43 Hence, malicious apps may exploit this mechanism for activities beyond their privilege.41 Therefore, the
information related to requested permissions is one of the necessary security aspects of Android apps for static ICC
analysis.

The UsesPermission element in the metamodel represents the requested permissions concept. This element specifies
a set of permissions that an application needs to access protected parts of the system or other apps, both system-defined
and application-defined permissions.

This element contains two attributes of Name and Permissionkind that identify the name and the type of requested
permission, respectively. Android permissions are divided into four levels: normal, dangerous, Signature, and Signature-
OrSystem, which are considered through ProtectLevel in the metamodel.

5.1.4 AppPermission

This element is a set of permissions required to access components of an Android application, which con-
tains two attributes of Name and Permissionkind that identify the name and the type of required permission,
respectively.

5.1.5 Component

As explained before, an Android app can contain four types of components: Activity, Service, Receiver, and Content
Provider. The Component element represents this concept of the Android app. All app components must be statically
introduced in the Manifest file, but the Receiver component can also be dynamically introduced in the Java code.14 This
type of component is considered through DynamicRegisteredComponent in the metamodel.

5.1.6 IntentFilter

This element represents a set of intent filters specified for a component. Activity, Service, and Receiver can have a set
of intent filters, each of them specifies a different capability of the component. Intent filters for Broadcast Receivers
registered dynamically must be declared in their Java code (i.e., at runtime), which is specified through SourceType in the
metamodel.

14 NIRUMAND et al.

5.1.7 CompPermission

If an app component is public (exported), the other app components (inside the same app or on different apps) can access
this app component. However, a component can specify permissions to restrict access. The CompPermission element
represents a set of permissions for a component that other components must have to communicate this component. This
element contains two attributes of Name and Permissionkind that identify the name and the type of required permission,
respectively.

5.1.8 Intent

As discussed in Section 2.2, app components can interact with each other mainly through Intent messages. The Intent
element represents a set of intent messages that can be used for intra- and inter-app communication. This element has
the following attributes:

• Name. This attribute specifies the name of intent.
• Action. Each intent can contain at most one action, which represents the general action that must be performed by the

app component receiving the intent.
• Permission. It indicates the required permission to limit the number of app components that can receive the broadcast

intent.
• IntentKind. It specifies the type of intent that can be of two types: explicit and implicit.
• SendComponentName. This attribute specifies the name of the component that creates the intent.
• TargetComponentName. This attribute specifies the name of the component that should receive and handle the intent

(this attribute for explicit intent must be explicitly specified).
• MethodForSend. It indicates the used ICC methods for intent-sending mechanisms.

Each intent also has two sets: (1) Data, which specifies additional information related to the data that must be
processed by the specified action. (2) Category, the intent object can also have a set of categories.

5.2 ICC metamodel

Regarding the Android access control model (described in Section 2.3), this research focuses on addressing ICC at the
intra- and inter-app levels. As discussed earlier, ICC in Android is mainly implemented through the use of intent messages.
Each of these intent messages is a specific event that executes an action on data that supports that action. The capabilities
of the components are then determined by a set of filters that indicate the type of requests that the component can handle.
In fact, intent filters provide interfaces for a component. Components can be invocated in different ways: (1) explicit, (2)
implicit, (3) intra-app, or (4) inter-apps.43 To extract potential communications in the same or different apps via intent
messages, the metamodel shown in Figure 6 is presented. This metamodel is described in the following.

InterComponentCommunicationInBundleOfApps is the root of the metamodel, which contains two sets that indicate
two communication domains, as follows.

• Explicit Communication represents all potential interactions that can be made through explicit intent. This domain is
considered as ExplicitCommunication in the metamodel.

• Implicit Communication represents all the potential interactions that can be made through implicit intent. This domain
is considered as ImplicitCommunication in the metamodel.

SenderApp indicates the Android application whose component creates the intent. ReceiverApp specifies an Android
application that can receive the intent.

ExplicitIntent represents all explicit intent objects that exist in a bundle of Android apps. This element contains three
attributes: (1) Name, the name of intent, (2) SendComponentName, the sender component name of the intent, and (3)

NIRUMAND et al. 15

F I G U R E 6 Intercomponent communication metamodel

Action, the general action that must be performed by the component receiving the intent. Each ExplicitIntent also has one
ExplicitTargetComponent that specifies the receiver component for the intent.

ImplicitIntent represents all implicit intent objects that exist in a bundle of Android apps. According to the Android
Application Security Aspects metamodel (the part related to the intent element), ImplicitIntent contains five attributes:
Name, SendComponentName, Action, Permission, and MethodForSend. This element also has the Data attribute that indi-
cates the intent has at least one or no Data object. Each ImplicitIntent also has a set of ImplicitTargetComponent that
specifies the receiver app components, which are all components in the Android system that can receive the intent.

5.3 Approach overview

As depicted in Figure 7, the proposed approach works at two levels. First, at the Application level, it receives a bundle of
Android apps, then, at the Model level, it generates useful high-level representations of these apps and their interactions.
The main goal of this approach is to provide a better comprehension of the Android system through relevant model-based
representations. These representations (models) can then be employed for a variety of purposes, including inter-app secu-
rity analysis. Note that, At the Application level, both the APK package and source code of the corresponding application
are allowed. For the case of the APK package, it will be decompiled to obtain its source code using the Jadx44 tool.

As indicated at the Model level, the proposed approach consists of three main phases: (1) Model Discovery that extracts
the initial models from each app without losing any information. These models are detailed enough to be considered as
the starting point of various MDRE scenarios, including inter-app security analysis. (2) Transformation and Integration

16 NIRUMAND et al.

F I G U R E 7 The proposed approach

that uses the chain of model manipulation techniques to transform initial models into more manageable representations.
This transfer is done by deleting the details that are not relevant to inter-app security analysis. This process, which results
in a higher level of abstraction, helps understand Android apps and their interactions better. (3) Analysis that uses the
processed models in the previous phase to inter-app security analysis, and finally generates the results in the form of XMI
models. In the following, each phase is described in more detail.

5.3.1 Model discovery phase

Most static analysis methods have used frameworks and tools such as Soot, WALA ‡, and JPF § that perform their analysis
based on an IR of the code. These tools have various limitations, including considering only a part of the specification
of the Android platform.12 Therefore, the purpose of this phase (i.e., phase 1 of Figure 7) is to provide a comprehensive
IR of Android applications. The idea to reach this purpose is to transform from the low-level heterogeneous apps into
homogeneous models. In this transition, the artifacts of apps, including Java code and Manifest files, are displayed as a
set of interrelated models. For each app, the initial models (i.e., the XML model and the Java model) are obtained through
model discoverers provided by the MoDisco tool¶. The created models are considered as inputs for the Transformation and
Integration phase. These obtained models represent apps at the same level of abstraction to ensure that no information
in this phase is lost.

5.3.2 Transformation and integration phase

In this phase (i.e., phase 2 of Figure 7), the comprehension of the generated initial models (i.e., the created models in
the previous phase) takes place by raising the abstraction level of these initial models using model-to-model (M2M)
transformations written in ATL language30 and obtaining higher-level representations of the Android system.

‡https://researcher.watson.ibm.com/researcher/view_page.php?id=7238
§https://github.com/javapathfinder/jpf-core/wiki
¶https://www.eclipse.org/MoDisco/

https://researcher.watson.ibm.com/researcher/view_page.php?id=7238
https://github.com/javapathfinder/jpf-core/wiki
https://www.eclipse.org/MoDisco/

NIRUMAND et al. 17

Algorithm 1. Extracting ICCs

Input: AASAM-SET: A set of Android Application Security Aspects Models
Output: ICCM: ICC Model

1: // Explicit Communications Extractor - See Sec. 5.3.2
2: ExplicitCommunications ← extractAllExplicitIntents (AASAM-SET)
3: AppComponents ← extractAllComponents (AASAM-SET) ∪ extractAllDynamicRegisteredComponents (AASAM-SET)
4: for each EI = < SCN, TCN, N> ∈ ExplicitCommunications do
5: SenderApp ← extractApplication (SCN)
6: if TCN ∈ AppComponents then
7: ExplicitTargetComponent ← getAppComponent (AASAM-SET, TCN)
8: ReceiverApp← getApplication (AASAM-SET, TCN)
9: else

10: ExplicitTargetComponent ← ∅ // There is no receiver component for this intent in the bundle
11: ReceiverApp← ∅ // There is no receiver app for this intent in the bundle
12: end if
13: end for
14: // Implicit Communications Extractor - See Sec. 5.3.2
15: ImplicitCommunications ← extractAllImplicitIntents (AASAM-SET)
16: for each II = <SCN, N, A, C, D> ∈ ImplicitCommunications do
17: SenderApp ← extractApplication (SCN)
18: // Perform Intent Resolution - See Algorithm 2
19: ImplicitTargetComponents ← intentResolution (II). getImplicitTargetComponents()
20: end for

As depicted in Figure 7 (i.e., phase 2), first, for each app, the security information of initial models is extracted and
gathered into a single security model called Android application security aspects using an M2M transformation. This
generated model conforms to the proposed metamodel shown in Figure 5. The ATL code for this transformation includes
31 rules and 27 helpers. 16 rules and 8 helpers are considered to extract the information from the XML model, whereas
the remaining 15 rules and 19 helpers are implemented to extract the security information from the Java model. Then,
all Android application security aspects models are received as input models to be transformed into a single model called
ICC. This model represents all potential intent-based communications at the intra- and inter-app levels. The ICC model
conforms to the proposed metamodel shown in Figure 6. In the following, the process of modeling these domains (i.e.,
the Transformation to ICC Model process in Figure 7) is described.

5.3.3 Extracting ICC model

The model-driven chain of this step includes an M2M transformation, written in ATL language, as shown in Figure 8. The
ATL code for this transformation includes 17 rules and 28 helpers. In this transformation, a set of Android application
security aspects models, the Android application security aspects metamodel, and the ICC metamodel are received as
inputs, and the ICC model is obtained as output. The steps of this modeling are shown in Algorithm 1. As depicted in
this algorithm, the Extracting ICC Model performs two major steps to extract the ICC model from a bundle of Android
applications: Explicit Communication Extractor (lines 1–13) and Implicit Communication Extractor (lines 14–20), which
are described in the following.

(1) Explicit communication extractor.
As shown in Algorithm 1, to model the explicit communication domain, first (line 2), all explicit intents are extracted
from the desired Bundle of Android apps. According to the Android Application Security Aspects metamodel (the
part related to the intent element and its references), an explicit intent is considered as a tuple EI = <SCN, TCN,
N>, where SCN is the SendComponentName attribute, TCN is the TargetComponentName attribute, and N is the
Name attribute.

18 NIRUMAND et al.

Algorithm 2. Intent resolution process

Input: II = <SCN, N, A, C, D>: An implicit intent in the bundle of Android app
Output: ImplicitTargetComponents: A set of target components in the Android system (the bundle of Android apps)

1: ImplicitTargetComponents ← { }
2: // ActionTest&CategoryTest&DataTest
3: if A ≠ ∅ & C ≠ ∅ & D ≠ ∅ then
4: ImplicitTargetComponents ← ActionTestCategoryTestDataTest (II)
5: else
6: // ActionTest&CategoryTest
7: if A ≠ ∅ & C ≠ ∅ & D = ∅ then
8: ImplicitTargetComponents ← ActionTestCategoryTest (II)s
9: else

10: // ActionTest&DataTest
11: if A ≠ ∅ & C = ∅ & D = ∅ then
12: ImplicitTargetComponents ← ActionTestDataTest (II)
13: else
14: // CategoryTest&DataTest
15: if A = ∅ & C ≠ ∅ & D ≠ ∅ then
16: ImplicitTargetComponents ← CategoryTestDataTest (II)
17: else
18: // ActionTest
19: if A ≠ ∅ & C = ∅ & D = ∅ then
20: ImplicitTargetComponents ← ActionTest (II)
21: else
22: // CategoryTest
23: if A = ∅ & C ≠ ∅ & D = ∅ then
24: ImplicitTargetComponents ← CategoryTest (II)
25: else
26: // DataTest
27: if A = ∅ & C = ∅ & D ≠ ∅ then
28: ImplicitTargetComponents ← DataTest (II)
29: else
30: ImplicitTargetComponents ← ∅
31: end if
32: end if
33: end if
34: end if
35: end if
36: end if
37: end if

For each explicit intent, (line 5), the Android app whose component creates this intent is considered as the sender
app (i.e., SenderApp in the ICC metamodel). Since an explicit intent must be delivered to the app component spec-
ified by the TargetComponentName attribute of the intent, (lines 6–12), if there exists a component in the Android
system that is declared by the explicit intent, this component is considered as the receiver component (i.e., Explicit-
TargetComponent in the ICC metamodel). The Android app whose component is declared by the explicit intent is
considered as the receiver app (i.e., ReceiverApp in the ICC metamodel).

(2) Implicit communication Extractor.
As shown in Algorithm 1, to model the implicit communication domain, all the implicit intents in the Android
system are extracted (line 15). According to the Android Application Security Aspects metamodel (the part related
to the intent element and its references), an implicit intent is considered as a tuple II = <SCN, N, A, C, D>, where

NIRUMAND et al. 19

F I G U R E 8 Transforming Android application security aspects models into an intercomponent communication model

SCN is the SendComponentName attribute, N is the Name attribute, A is the Action attribute, C is a set of categories,
and D is a set of data. According to the specification of each intent, first, the Android app whose component creates
this intent is considered as the sender app (i.e., SenderApp in the ICC metamodel) (line 17).
Then, in line 19, the Intent Resolution process45 is used to extract and determine the receiver app(s) and the receiver
component(s) (all components in the Android system that can receive and handle this intent). The concept of Intent
Resolution and its implementation steps are explained in the following.

5.3.4 The intent resolution process

When the Android system receives an implicit intent, for example, an implicit intent to launch an Activity, the Android
system searches to find the best Activity or Activities for the desired intent. To determine the receiver component(s), the
Android system compares the specification of the intent with the intent filters in all available Activity components.45 This
comparison is made through the following tests:

(1) Action test. The action specified in intent must match one of the actions in the intent filter of the desired component.
(2) Category test. The intent filter for the desired component must have the categories specified in the intent.
(3) Data (both URI and Data type) test. Depending on the structure of the data, the intent filter of the desired component

must support the data in the intent.

The steps considered to implement this process using the ATL and OCL rules are shown in Algorithm 2. This function
receives an implicit intent as input and returns app components that can receive and handle this intent.

As depicted in this Algorithm, depending on what features the intent has (i.e., action, category, and data), the Intent
Resolution Process performs the relevant tests to identify all components of the Android system that can receive and
handle this intent. Listing 6 shows an ATL helper, part of Transformation to ICC Model code (i.e., MAASA2MICC ATL
code in Figure 8), that implements the Action test for an implicit intent and identifies a set of Activity components that
can receive and handle this intent.

20 NIRUMAND et al.

1 ---test OnlyAction for Activity:
2 helper context MMAASA!Intent def:TestActionForActivity:Sequence(MMAASA!Activity)=
3 if MMAASA!Component.allInstances()->select(c | not c.oclIsTypeOf(MMAASA!ContentProvider))
4 .notEmpty() then
5 if MMAASA!Activity.allInstances()->select(c | not c.filters.oclIsUndefined()).notEmpty
6 () then
7 if not thisModule.stringOfIntentAction2FilterAction.get(self.Action).oclIsUndefined()
8 then
9 if not thisModule.IdentifyReceiverComponentActivity(thisModule.

10 stringOfIntentAction2FilterAction.get(self.Action)).oclIsUndefined() then
11 thisModule.IdentifyReceiverComponentActivity(thisModule.
12 stringOfIntentAction2FilterAction.get(self.Action))->flatten()->collect(c | thisModule
13 .createTargetComponentForActivity(c))
14 else
15 OclUndefined
16 endif
17 else
18 if not thisModule.IdentifyReceiverComponentActivity(self.Action).oclIsUndefined()
19 then
20 thisModule.IdentifyReceiverComponentActivity(self.Action)->flatten()->collect(c |
21 thisModule.createTargetComponentForActivity(c))
22 else
23 OclUndefined
24 endif
25 endif
26 else
27 OclUndefined
28 endif
29 else
30 OclUndefined
31 endif;

Listing 4: ATL helper to perform Action test on Activity components for an implicit intent

Note that the two algorithms (Algorithm 1. Extracting ICCs and Algorithm 2. Intent resolution process) have been
implemented precisely and comprehensively to make VAnDroid2 a generic framework for supporting multiple security
issues, including inter-app security analysis. Due to the lack of space in this paper, the details of the ATL and OCL rules
implemented for these algorithms are explained in a technical report.46

5.3.5 Analysis phase

By gathering all potential communications between Android apps and representing them in a single model, it is possible
to automatically and effectively perform security analysis at the intra- and inter-app levels. In this paper, we focus on two
prominent inter-app vulnerabilities called Intent Spoofing and Unauthorized Intent Receipt.

Intent Spoofing is an ICC vulnerability. Definition 1 is used to identify all potential communications that can cause
this type of security vulnerability. In this security threat, the malicious component (c1 in Definition 1) can communicate
with a public component (c2 in Definition 1), while this communication is not expected. If the public component trusts
the incoming (received) intent without performing the required security checks, the malicious app component can cause
this app component to perform malicious actions. As it was previously discussed, according to the type of the victim
component (c2.Type in Definition 1), there are three types of Intent Spoofing:23 (1) Malicious Activity launch, (2) Malicious
Service launch, and (3) Malicious Broadcast injection.

Definition 1 (Intent spoofing). Let BApps be a set of benign apps, MApps be a set of malicious apps, AppBundle
be a set of benign and malicious apps (i.e., AppBundle = BApps ∪ MApps), C be a set of all three kinds of components
(Activity, Service, and Broadcast Receiver), TargetComps be a set of all public (exported) app components of C that can
receive an intent, c1 and c2 be two members of C (i.e., c1, c2 ∈ C), P be a set of all four kinds of permissions (normal,
dangerous, Signature, and SignatureOrSystem), NormalPermissions be a set of all permissions that their types are normal
(i.e., NormalPermissions ⊆ P), c2.Permissions be a set of permissions enforced by c2, c1 and c2 can communicate together,
and this communication can be done through an implicit intent or explicit intent. We say that communicate between c1
and c2 has inter-app Intent Spoofing vulnerability, if c1 and c2 do not belong to the same app and there is no permission
for c2 or all permissions in c2. Permissions are normal permissions.

NIRUMAND et al. 21

IntentSpoofingattackType(communication(c1, c2)) ≡
c2 ∈ TargetComps∧
c1.app ∈ MApps ∧ c2.app ∈ BApps∧
c1.app ≠ c2.app∧
(c2.Permissions = ø ∨ c2.Permissions ⊆ NormalPermissions)

where attackType =
⎧
⎪
⎨
⎪
⎩

Malicious Activity launch, if c2.Type = Activity
Malicious Service launch, if c2.Type = Service
Malicious Broadcast injection, if c2.Type = Broadcast

Unauthorized Intent Receipt is another ICC vulnerability. Definition 2 is used to identify all potential communications
that can cause this type of security vulnerability. In this security threat, the malicious component (c2 in Definition 2)
can intercept an implicit intent (Ii in Definition 2) by introducing a filter that matches the sent intent. Therefore, the
malicious app component can access all the data on the intent. As it was previously discussed, this ICC vulnerability can
be of three types depending on the type of malicious app component (c2.Type in Definition 2):23 (1) Activity hijacking, (2)
Service hijacking, (3) Broadcast theft.

Definition 2 (Unauthorized intent receipt). Let BApps be a set of benign apps, MApps be a set of malicious apps,
AppBundle be a set of benign and malicious apps (i.e., AppBundle = BApps ∪ MApps), C be a set of all three kinds of
components (Activity, Service, and Broadcast Receiver), TargetComps be a set of all public (exported) app components
of C that can receive an implicit intent, c1 and c2 be two members of C (i.e., c1, c2 ∈ C), communicationi(c1, c2) be an
implicit communication between c1 and c2, Ii be an implicit intent that initiates the communicationi(c1, c2), P be a set of
all four kinds of permissions (normal, dangerous, Signature, and SignatureOrSystem), NormalPermissions be a set of all
permissions that their types are normal (i.e., NormalPermissions ⊆ P), Ii.Permission be the permission specified for Ii, We
say that communication between c1 and c2 has inter-app Unauthorized Intent Receipt vulnerability, if c1 and c2 do not
belong to the same app and there is no permission for Ii or Ii.Permission be normal permission.

UnauthorizedIntentReceiptattackType(communicationi(c1, c2)) ≡
c2 ∈ TargetComps∧
c1.app ∈ BApps ∧ c2.app ∈ MApps∧
c1.app ≠ c2.app∧
(Ii.Permission = ø ∨ Ii.P ∈ NormalPermissions)

where attackType =
⎧
⎪
⎨
⎪
⎩

Activity hijacking, if c2.Type = Activity
Service hijacking, if c2.Type = Service
Broadcast theft, if c2.Type = Broadcast

An automated process is performed during this phase which includes three steps: measuring potential communica-
tions in the Android system, identifying communications that have the potential to cause a security threat, and finally
presenting the results to the user using XMI models. The model-driven chain at this phase includes a set of M2M trans-
formations written in ATL transformation language and OCL queries. Due to lack of space in this paper, the details of
these transformations are described in a technical report.46

To better illustrate the phases of the proposed approach, consider the motivation example of Section 4. In the follow-
ing, the results obtained in each phase are described. As discussed earlier, in the Model Discovery phase, for each app, the
initial models (i.e., the XML model and the Java model) are obtained through MoDisco discoverers. These initial models
generated for each app are shown in Figures 9 and 10. The Model Browser of MoDisco is used to display these models. As
shown in Figures 9 and 10, in the left panel of the displayed models, the possible element types are specified (i.e., concepts
related to the concerned metamodels), while in the right panel of the displayed models, the model elements themselves
are shown. In the transformation and integration phase, first, for each app, the security information of initial models is
extracted and gathered into a single security model called Android application security aspects. These models generated
for each app are shown in Figure 11. As can be seen, these models represent the main specification and security structure
of Android apps, including information about the app components. Then, by collecting these models, all potential ICCs

22 NIRUMAND et al.

(A) (B)

F I G U R E 9 The XML models of the described apps in Section 4. (A) Benign; (B) Malicious

(A) (B)

F I G U R E 10 The Java models of the described apps in Section 4. (A) Benign; (B) Malicious

NIRUMAND et al. 23

(A) (B)

F I G U R E 11 The Android application security aspects models of the described apps in Section 4. (A) Benign; (B) Malicious

(at intra- and inter-app levels) are extracted and integrated into a single model called ICC, which is shown in Figure 12.
Since the intent sent by Malicious has the only action, the Action test is executed for it (line 18 in Algorithm 2). There-
fore, all Broadcast Receivers are identified (shown in Figure 12) that can receive and handle this intent. Finally, in the
Analysis phase, by performing formal analysis operations, the ICC vulnerability is identified. As depicted in Figure 13,
the communication between MalActivity in Malicious and emailBroadcastRecv in Benign has a kind of Intent Spoofing
vulnerability called Broadcast Injection.

5.4 Incremental ICC analysis feature

In general, there are three types of ICC analysis approaches.14 First, a pure program analysis approach, such as IccTA,9
considers the entire system as a large program to perform the ICC analysis. Second, a hybrid yet nonincremental approach,
such as COVERT,10 divides the ICC analysis into two tasks: identifying security specification from each app and then
examining the vulnerabilities of these specifications. Since these two approaches lack an appropriate way to consider the
Android system changes, the ICC analysis must be repeated from the beginning for each app. In unstable environments,
such as Android that apps are constantly added, removed, or updated, these approaches are often considered unscalable
and impractical. Therefore, a third approach, incremental ICC analysis, such as FLAIR,14 is proposed to use the results
of the previous system analysis to optimize subsequent analysis and automatically update ICC analysis to respond to
the system changes. In this paper, to further improve the performance and scalability of the proposed approach, the
incremental ICC feature is considered. In the next section, details of the implementation of this feature are described.

5.5 Tool support

To demonstrate the ability of the proposed approach to detect inter-app vulnerabilities, it is developed as an Eclipse-based
tool called VAnDroid2. Figure 14 shows the architecture of the tool implementation. Each phase of the proposed approach
is implemented as a separate component so that each component provides the required input models for another com-
ponent. The implementation of the metamodels (discussed in Sections 5.1 and 5.2) is based on the Eclipse Modeling
Framework#.

Any change to an Android system (i.e., deletion apps or addition apps) is considered in this tool to support the incre-
mental ICC feature. To better illustrate this implementation, consider the app addition. When an Android app is added to

#https://www.eclipse.org/modeling/emf/

https://www.eclipse.org/modeling/emf/

24 NIRUMAND et al.

F I G U R E 12 Intercomponent communication model of the described bundle in Section 4

F I G U R E 13 Evaluation model of the described bundle in Section 4

the system, according to Figure 14, Initial Models Extractor and Android Application Security Aspects Models Extractor are
only executed for the new app, and all the analysis results of the previous system are used for these two components. ICC
Model Extractor and Inter-App Security Analyzer are updated according to the specification of the new app for analyzing
the new system.

6 EMPIRICAL EVALUATION

To evaluate the ability of VAnDroid2 to detect inter-app vulnerabilities in real-world apps, VAnDroid2 has been applied to
10 bundles of real-world Android apps. To create these bundles, first, we constructed a dataset of benign, malicious, and

NIRUMAND et al. 25

F I G U R E 14 Component diagram of the implementation

vulnerable Android apps. Then, 10 app bundles, each containing 35 apps, have been randomly selected from our dataset.
The following research questions are addressed in this evaluation:

- RQ1 (Correctness): How reliable are the analysis results of VAnDroid2?
- RQ2 (Scalability): Is VAnDroid2 capable of performing the inter-app analysis to identify vulnerabilities in real-world

Android apps?
- RQ3 (Run-time performance): Is VAnDroid2 practical in terms of execution performance?

Our experiments ran on a 3.7 GHz, Core i7 computer with 32 GB RAM.
In the following, a description of the provided dataset of real-world Android applications is given in Section 6.1. Then,

the correctness, scalability, and run-time performance criteria are evaluated in Sections 6.2, 6.3, and 6.4, respectively.

6.1 The dataset of real-world Android apps

We constructed a dataset of benign, malicious, and vulnerable Android applications, as shown in Table 2. For benign and
malicious apps, AndroZoo47 is considered. AndroZoo is a growing collection of millions of Android applications collected
from various marketplaces such as Google Play || and F-Droid **. From this collection, 500 benign apps (the creation date
after December 2019), as well as 300 malicious apps (the creation date after December 2018), are selected. In addition,
257 vulnerable apps are considered from four Android application vulnerability benchmarks, including DroidBench,48

ICC-Bench,49 Ghera,1 and UBCBench.50

According to the mobile app statistics in recent two years,51,52 on average, 40 apps in 2020 and 30 apps in 2021 are
installed on the user’s devices per month. Therefore, in this evaluation, 10 bundles of apps, each containing 35 apps, are
created randomly from the provided dataset. Each bundle contains 29 benign apps, 3 malicious apps, and 3 vulnerable

||https://play.google.com/store/apps/
**https://f-droid.org/

https://play.google.com/store/apps/
https://f-droid.org/

26 NIRUMAND et al.

T A B L E 2 Distribution of selected apps from various repositories that were considered in our dataset

Subject app Numbers of apps Repository

Benign 500 AndroZoo

Malicious 300 AndroZoo

Vulnerable 257 DroidBench

ICC-Bench

Ghera

UBCBench

Total 1057 unique Android apps

49

33

28

21

15
13 13 12 12

10 10 10
8 8 8 7

5 5 4 3 3 2 2 1
0

10

20

30

40

50

60

snoitacilp pA fo reb
mu

N

Google Play Category

F I G U R E 15 Histogram of categories of apps selected from Google Play (282 Android apps)

apps. Figure 15 illustrates the distribution of benign apps that were used in the app bundles and belong to the Google Play
repository. Note that out of 290 benign apps used in the app bundles, 282 apps belong to the Google Play repository. As
can be seen in Figure 15, these applications are sufficiently diverse in terms of categories. Therefore, the selected benign
apps from Google play are varied across application domains. Also, according to the statistics of the most popular Google
Play app categories in 2022,53 most of the popular categories exist in our evaluation. As depicted in Figure 16, these apps
vary in terms of 5-star ranking. Therefore, these app bundles simulate the apps installed on the Android devices of the
user, and we consider them to perform 10 independent experiments.

6.2 RQ1 (Correctness)

According to the definition given by Pressman and Maxim,54 correctness indicates the extent to which a software product
satisfies its objectives. This criterion determines the correctness of the approach used in the VAnDroid2 tool and to what
extent the analysis results of this tool (i.e., inter-app vulnerability reports) can be reliable.

To examine the correctness criterion, it is necessary to consider an Android app vulnerability benchmark that proposed
known vulnerabilities in its bundles. For this purpose, the Ghera repository1 is considered. To specify the reason for the
selection of the Ghera repository, the main characteristics of this repository are described in the following.

NIRUMAND et al. 27

49%

5%

13%

33%

4 - 5

None

3 - 4

1 - 3

F I G U R E 16 Ratings of selected apps from Google Play according to their 5-star ranking (282 Android apps)

Ghera1 is a growing repository of Android apps (benchmarks) that captures known vulnerabilities in Android applica-
tions in various categories, including Crypto, Networking, NonAPI, Permission, Storage, System, Web APIs, and ICC. This
repository contains several bundles of Android apps. In each bundle, there is a benign app that has a specific vulnera-
bility and a malicious app that exploits benign to establish a malicious communication. Since the vulnerabilities in the
Ghera repository have already been reported in the literature and documented in Android documentation, these vulner-
abilities are valid. These vulnerabilities can be examined by executing benign and malicious apps on Android emulators
and devices. Therefore, they are exploitable and general. These vulnerabilities can occur on the Android app running on
Android 5.1.1 to 8.1.1

Due to the characteristics of Ghera, to examine the correctness criterion, the Ghera repository is used. From this
repository, only bundles related to ICC that contain Intent Spoofing or Unauthorized Intent Receipt are considered. The
bundles are as follows:

(1) DynamicRegBroadcastReceiver-UnrestrictedAccess
(2) EmptyPendingIntent-PrivEscalation
(3) HighPriority-ActivityHijack
(4) ImplicitPendingIntent-IntentHijack
(5) StickyBroadcast-DataInjection
(6) UnprotectedBroadcastRecv-PrivEscalation

According to an empirical evaluation by Ranganath and Mitra,1 COVERT10 and DIALDroid55 that claim to detect
inter-app vulnerabilities failed to identify vulnerabilities in Ghera. Based on the results of applying VAnDroid2 to these
bundles, this tool detected all the vulnerabilities in these bundles without any further reported security issues. Therefore,
VAnDroid2 can correctly detect inter-app ICC vulnerabilities in Android applications, hence the approach conducted in
this tool is reliable.

6.3 RQ2 (Scalability)

Scalability indicates the ability of a software program to process an increasing number of elements as inputs.56 The soft-
ware system must be performed well while increasing the number of elements as inputs to examine this criterion.57

According to this definition, in this evaluation, the ability of VAnDroid2 to deal with the following issues is examined:

28 NIRUMAND et al.

T A B L E 3 Summary of the results obtained from running VAnDroid2 over the selected app bundles

Bundle

Number of intent

Number of
communication

domain Number of warning

Number of
component Explicit Implicit

Number of
intent filter Explicit Implicit

Number of
component
permission

Intent
spoofing

Unauthorized
intent receipt

Bundle 1 97 109 169 69 44 65 3 48 48

Bundle 2 97 82 121 64 43 101 5 31 93

Bundle 3 139 390 442 69 230 233 5 157 207

Bundle 4 90 63 140 62 25 38 — 21 20

Bundle 5 122 121 184 57 81 150 3 53 141

Bundle 6 163 191 235 61 134 43 1 28 28

Bundle 7 151 161 173 63 107 47 2 32 30

Bundle 8 188 154 182 89 80 130 13 79 120

Bundle 9 154 194 218 66 120 147 2 71 129

Bundle 10 137 159 267 70 86 196 4 123 173

• Android applications in various contexts
• Android applications with different components and resources
• Large applications (in terms of code size)
• Large number of applications

As explained before, we evaluated VAnDroid2 on 10 app bundles containing real-world Android applications to deter-
mine the ability of VAnDroid2 in inter-app ICC vulnerability detection. Table 3 shows the results of running VAnDroid2
on each bundle. The values in this table are the results obtained by applying VAnDroid2 on Android app bundles.

The Component column shows the total number of components (i.e., Activities, Services, Receivers, and Content Pro-
vides). The Intent column specifies the number of intents (both explicit and implicit). The Intent Filter column indicates
the number of interfaces provided (i.e., intent filters). The Communication Domain column specifies all potential explicit
and implicit interactions made by explicit and implicit intents, respectively.

The Component Permission column specifies the number of permissions enforced by components. The Warning
column shows the number of warnings generated by VAnDroid2. Each of these warnings represents a unique interac-
tion with all specifications (i.e., the sender and receiver components) that leads to an Intent Spoofing or Unauthorized
Intent Receipt vulnerability. Note that the Intent Spoofing column is related to both explicit and implicit communication
domains, but the Unauthorized Intent Receipt column is related to the implicit communication domain.

Consider bundle 10 in the last row, this bundle includes 137 app components, 159 explicit intents, 267 implicit intents,
70 intent filters, and 4 component permissions. As depicted in the Communication Domain column, out of 159 explicit
intents, 86 explicit intents can make explicit inter-component communications in this app bundle. Also, out of 267 implicit
intents, 196 implicit intents can make implicit ICCs in this app bundle. According to the Warning column, out of 282
ICCs, 123 communications can cause Intent Spoofing vulnerability. Out of 196 implicit ICCs, 173 communications can
cause Unauthorized Intent Receipt vulnerability.

Table 4 shows the benign Android applications in each bundle according to the lines of code, the average number of
Activities, the average number of intents, and the average evaluation time (in milliseconds). Note that the evaluation time
is related to the time required for analyzing each app to extract the Android application security aspects model.

In Figure 17, we examined the execution time changes for the benign Android apps according to the three app-specific
factors (i.e., the number of intents, the number of Activities, and LOC). As can be seen, when each of these factors
increases significantly, the execution time does not increase significantly and is still an acceptable amount of time. The
median evaluation time is 191.5 ms with the interquartile range of 832 ms, which indicates that VAnDroid2 can quickly
analyze real-world Android applications.

NIRUMAND et al. 29

T A B L E 4 Benign Android apps in each bundle used in the evaluation

Line of code
Numbers
of Apps

Average number
of activities

Average number
of intents

Average of evaluation
time (ms)

0–10 5 2 0 111.6

10–1000 120 2 1 184.1

1000–10,000 49 4 10 320.6

10,000–100,000 112 6 26 1108.2

100,000–200,000 4 6 12 32648.5

0–200,000 290 4 10 1010.63

0

5000

10000

15000

20000

25000

30000

35000

40000

0 10 20 30 40 50 60 70 80 90

(e
miT noitucexE

m
s)

Intents
0

5000

10000

15000

20000

25000

30000

35000

40000

0 5 10 15 20 25 30 35 40 45

Ex
ec

u�
on

 T
im

e
(m

s)

Ac�vi�es

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20000 40000 60000 80000 100000 120000

Ex
ec

u�
on

 T
im

e
(m

s)

LOC

(A) (B)

(C)

F I G U R E 17 Scatterplot representing the execution time for the benign Android apps in each bundle according to (A) the number of
intents, (B) the number of Activities, and (C) lines of code (LOC)

30 NIRUMAND et al.

T A B L E 5 Execution time of applying VAnDroid2 to selected bundles

Bundle

Execution time (ms)

Phase 1 Phases 2 and 3 Total time

Bundle 1 18,655 9765 28,420

Bundle 2 11,549 10,391 21,940

Bundle 3 17,440 9663 27,103

Bundle 4 48,916 9515 58,431

Bundle 5 15,842 9610 25,457

Bundle 6 13,867 8979 22,846

Bundle 7 15,578 9446 25,024

Bundle 8 50,363 10,733 61,092

Bundle 9 50,993 10,802 61,795

Bundle 10 52,128 10,690 62,818

The results show that VAnDroid2 is able to automatically detect inter-app vulnerabilities in bundles of real-world
apps in various contexts (depicted in Figure 15), with different components and resources (depicted in Tables 3 and 4),
with large apps (i.e., in terms of code size as depicted in Table 4), and with new versions of Android API (according to
the creation date of apps which are after December 2019). Therefore, VAnDroid2 has been able to support the scalability
criterion in the detection of ICC vulnerabilities of Android apps.

6.4 RQ3 (run-time performance)

As described in Section 5.4, to further improve the performance and scalability of the proposed approach, incremental ICC
analysis is also considered. In this section, first, the execution time of applying VAnDroid2 to the 10 bundles is examined.
Then, the execution time of VAnDroid2 according to the incremental ICC analysis feature is evaluated.

6.4.1 Results for selected bundles

Since the first phase of VAnDroid2 is based on MoDisco, As depicted in Table 5, we measured the execution time of phase
1 of Figure 7 and the execution time of phases 2 and 3 of Figure 7, separately. As can be seen, VAnDroid2, in less than a
few minutes, is able to analyze and identify inter-app ICC vulnerabilities in bundles of real-world apps that have different
components and interactions.

6.4.2 Results for incremental ICC analysis

Figure 18 shows the execution time of VAnDroid2 with a gradual increase in the number of apps for selected bundles. Note
that, at first, we consider five apps in each bundle. Then, in each experiment, we add five new apps. Consider Bundle10 in
Figure 18B; when its size reaches 15 apps, the execution time is reduced, and this indicates that the results of the analysis
in the previous system were used in the revised system. Therefore, according to these two diagrams, VAnDroid2 has been
able to support ICC incremental analysis to further improve the performance and scalability of the proposed approach.

7 DISCUSSION

According to the evaluation results, VAnDroid2, as a framework for detecting security issues in IAC, can be used by
developers, security analysts, and researchers of Android applications. In the following, to discuss the strengths and
weaknesses of VAnDroid2, in Section 7.1, a breakdown of the ICC vulnerabilities reported by VAnDroid2 is compared
with the work of Chin et al.23 In Section 7.2, VAnDroid2 is compared with the related work that are proposed in the static

NIRUMAND et al. 31

,
,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

(A) (B)

F I G U R E 18 Execution time versus the increasing size of analyzed bundles. (A) the first five bundles; (B) the last five bundles

T A B L E 6 Obtained breakdown by Chin et al.23 and by VAnDroid2

Kind of vulnerability Chin et al. VAnDroid2

Activity hijacking 57% 35%

Broadcast injection 14% 25%

Broadcast theft 12% 25%

Activity launch 12% 15%

Service hijacking 3% 0%

Service launch 1% 0%

Android analysis field (described in Section 3). In Section 7.3, VAnDroid2 is compared with several existing state-of-the-art
tools related to ICC analysis of Android applications. The results of these comparisons indicate that the VAnDroid2 tool
has been able to extract high-level representations (models) from the security specification and structure of Android apps
without losing information. Also, this tool achieved more precision, recall, and F-measure than the other analysis tools.
In Section 7.4, the (re)use and extension potential of VAnDroid2 for other types of ICC vulnerabilities are explained.
Section 7.5 provides a tabular comparison between VAnDroid2 and the original VAnDroid framewor19 to specify in detail
the significance of the extensions made in VAnDroid2. Finally, in Section 7.6, limitations and threats to the validity of
VAnDroid2 are discussed.

7.1 Breakdown of the discovered vulnerabilities

Chin et al.23 discussed several ICC attacks in Android inter-app communication and proposed a breakdown of these
attacks in real-world Android apps. According to the reported breakdown by Chin et al.,23 in the second column of Table 6,
the Activity hijacking vulnerability is the most common inter-app vulnerability, because Activity uses the message passing
mechanism through intent more than other components. According to the discovered vulnerabilities by VAnDroid2 (i.e.,
the Warning column in Table 3), the obtained breakdown, in the third column of Table 6, is similar to the breakdown
obtained by Chin et al.,23 and Activity hijacking is the common vulnerability in Android applications.

7.2 Comparing with related work

Table 7 presents a comparison between the proposed approach and the related studies proposed in the static Android
analysis field (introduced in Section 3). This comparison is based on the granularity of security threats, level of security
threats, detected vulnerabilities, conducted technique, and the framework used for code representation. As can be seen,

32 NIRUMAND et al.

T A B L E 7 A comparison between VAnDroid2 and related work

C
om

D
ro

id
23

C
H

EX
35

Ep
ic

c7

Fl
ow

D
ro

id
8

D
id

Fa
il39

C
O

V
ER

T10

Ic
cT

A
9

D
ro

id
Sa

fe
37

IC
C

M
A

TT
40

A
m

an
dr

oi
d11

II
FA

38

VA
nD

ro
id

2

Granularity of security threats Intracomponent ● ● ● ● ● ● ● ● ● ● ● ●

Intercomponent ● ● ● ○ ● ● ● ● ● ● ● ●

Level of security threats Intra-app ● ○ ● ○ ● ● ● ● ● ● ● ●

Inter-app ○ ○ ○ ○ ● ● ◑ ○ ○ ● ● ●

Detected vulnerability Sensitive information leakage ○ ● ○ ● ● ◑ ● ● ● ● ● ◑

Intent spoofing ● ○ ● ○ ○ ● ○ ○ ○ ○ ○ ●

Unauthorized intent receipt ● ○ ● ○ ○ ● ○ ○ ○ ○ ○ ●

Permission misuse ○ ○ ○ ○ ○ ● ○ ○ ○ ○ ○ ○

Data validation ○ ○ ○ ○ ○ ○ ○ ○ ○ ● ○ ○

Conducted technique Taint Analysis ○ ○ ○ ● ● ◑ ● ● ● ● ● ◑

Code Instrumentation ○ ○ ○ ○ ● ○ ● ● ○ ○ ○ ○

Type/Model Checking ○ ○ ○ ○ ○ ● ○ ○ ● ○ ● ●

Data Flow Analysis ○ ○ ● ● ○ ◑ ● ● ○ ● ● ◑

Reachability Analysis ● ● ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

Model Driven ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ●

Code representation Jimple ○ ○ ● ● ● ● ● ● ○ ○ ○ ○

Smali ○ ● ○ ○ ○ ○ ○ ○ ○ ○ ● ○

Other ● ○ ○ ○ ○ ○ ○ ○ ● ● ○ ●

Abbreviations: ●, Full support; ○, No support; ◑ Partial support.

most of the solutions have been done to address the detection of sensitive information leakage in Android applications,
and some analysis approaches have been proposed to identify ICC vulnerabilities, such as Intent Spoofing and Unautho-
rized Intent Receipt. The majority of related studies are considered a single Android application. These studies do not
support the ICC analysis at the inter-app level. As depicted in this table, the VAnDroid2 tool identifies two prominent
ICC vulnerabilities (i.e., Intent Spoofing and Unauthorized Intent Receipt) at both intra-app and inter-app levels.

The Conducted Technique row of Table 7 delineates the analysis techniques that are conducted by VAnDroid2. The
taint analysis technique tracks the flow of sensitive data within the programs. As previously explained, Android allows
ICC at both intra-app and inter-app levels mainly through intent messages. These intent objects may transfer tainted
data from one component or app to another.16,55 Since VAnDroid2 analyzes ICC at both inter-app and intra-app levels by
focusing on the message passing mechanism through intent, it can detect sensitive ICCs that leak sensitive information.
In this analysis, a leak is considered as a communication between two components or two apps that originates in one
class and ends in another class. Therefore, the taint analysis technique is partially supported by VAnDroid2.

VAnDroid2 conducts the ICC data flow analysis technique. In this analysis, a sensitive ICC is a communication from
an ICC exit point such as bindService and startActivity to an ICC entry point such as getIntent and onActivityResult. This
communication transfers an intent object that can be contained the sensitive data. In this sensitive ICC, the ICC exit leak
identifies the sender app and the ICC entry leak identifies the receiver app.

Type and model checking are two methods for program verification. The purpose of type checking is to ensure that
a program is safe in terms of type error. Model checking is a process that aims to check the status of the program to
ensure that certain specifications are met.6 VAnDroid2 first extracts domain-specific models of the security specifica-
tions of Android apps and their interactions. Then, in the analysis phase, the resulting models are analyzed against ICC
vulnerabilities through a formal analysis process. Therefore, VAnDroid2 conducts the type/model checking technique in
the ICC analysis.

NIRUMAND et al. 33

In comparison with related studies, VAnDroid2 uses the MDRE technique to enable inter-app security analysis. In
this tool, the structural complexity of the Android applications is reduced by extracting the security information of each
Android app in the form of a single model. Due to the nature of these platform-independent models, the proposed
approach does not depend on a specific API and considers features beyond the API in modeling. As a result, it will be
able to support new versions of Android. Since one of the main principles of MDRE is to quickly create initial models of
software artifacts without losing information,17 in the proposed approach, these raw and completely accurate initial mod-
els are considered as IRs of the Android application code. These initial models are then considered as the input (starting
point) for all the reverse engineering activities.

To summarize, since our study is based on MDRE, the main benefits of VAnDroid2 are as follows.

• Extensibility. Due to the use of metamodels, the ability to customize model-based components, and the clear decoupling
of the result models from different phases, new features can be plugged into the developed tool.

• Full coverage. Full coverage of app artifacts can be provided through complementary representations of the app at
different abstraction levels and considering different perspectives (i.e., metamodels).

• (Re)use and integration. Due to the clear separation of concerns in VAnDroid2, Android apps and their specifications
displayed in the form of models are strictly separated, which further facilitates the reusability of such models.

7.3 Comparing with existing tools

In comparison with other tools, the ability of VAnDroid2 to satisfy its goals and to generate reliable analysis results is
examined. As explained earlier, one of the main goals of VAnDroid2 is to provide a comprehensive IR of the Android
app to create high-level models without losing information. These models can also be used for an effective ICC and IAC
security analysis. Therefore, first, in Section 7.3.1, VAnDroid2 is compared with IC3,20 as the state-of-the-art Android static
program analysis tool, in extracting specifications from the Android app. Then, in Section 7.3.2, VAnDroid2 is compared
with three existing state-of-the-art Android static analyzers for ICC vulnerability detection.

7.3.1 Comparing with IC3

To compare with IC3,20 two benchmarks, DroidBench48 and ICC-Bench,49 are used. Table 8 shows the results of com-
paring the effectiveness of VAnDroid2 with IC3 in extracting security specifications from Android apps. As shown in this
table, we counted the number of ICC values, including components, intent filters, and intents inferred by IC3 and VAn-
Droid2. Also, we measured the average execution time for each tool. The values that indicate the superiority of VAnDroid2
to IC3 are distinguished by the bolded text in this table.

According to Table 8, for apps of DroidBench, we observe that VAnDroid2 outperforms IC3 in inferring components,
intent filters, and intents. The reason for these differences is related to the ability of tools in detecting all types of app com-
ponents, including Activity alias and Broadcast Receivers. The Echoer app, related to IAC test cases of DroidBench, has

T A B L E 8 Comparison of VAnDroid2 and IC320

Tool

Number of intent

Number of components Number of intent filters Explicit Implicit Average of execution time (ms)

DroidBench 2.0

IC3 148 138 10 10 3.0

VAnDroid2 172 160 12 56 1.7

ICC-Bench

IC3 51 38 13 13 5.1

VAnDroid2 51 38 13 13 1.3

34 NIRUMAND et al.

an Activity alias that IC3 could not detect. This component is considered as a separate component with its characteris-
tics, including permissions and intent filters.23 Therefore, this component should be considered in extracting information
from the Android app. Furthermore, for some apps of DroidBench, IC3 could not detect Broadcast Receivers that were
dynamically introduced in the Java code. This type of component is one of the most important app components and any
app can send malicious intent to this component. It should be possible to identify all of these components in Android
apps. As shown in Table 8, the average execution time of VAnDroid2 (1.7 ms) is considerably less than IC3 (3.0 ms).
Therefore, for DroidBench, VAnDroid2 significantly outperforms the IC3 tool in terms of extracting more comprehensive
specifications (i.e., ICC values) as well as execution time.

According to Table 8, for apps of ICC-Bench, we observe that VAnDroid2 performs similarly to IC3 in inferring com-
ponents, intent filters, and intents. The average execution time of VAnDroid2 (1.3 ms) is considerably less than IC3 (5.1
ms). Therefore, for ICC-Bench, VAnDroid2 has been able to extract the same specification from each app compared to IC3.
VAnDroid2 significantly outperforms the IC3 tool in terms of execution time. The outputs of running IC3 and VAnDroid2
on Android apps of these two benchmarks are available on the VAnDroid2 website ††.

7.3.2 Comparing with IccTA, Amandroid, and COVERT

In this section, VAnDroid2 is compared with three existing state-of-the-art static analyzers targeting ICC vulnerability
detection: IccTA,9 Amandroid,11 and COVERT.10 All of these analyzer tools have high accuracy in identifying privacy
leakage vulnerabilities and are the most related tools to ICC and IAC. Three benchmarks, DroidBench, ICC-Bench, and
Ghera, are used in this comparison. The first two benchmarks, DroidBench and ICC-Bench, are two benchmarks of
Android applications with ICC-based privacy leaks for which all vulnerabilities are known in advance. DroidBench con-
tains Android apps for evaluating the tools in various static analysis problems, including ICC analysis and inter-app
communication analysis. ICC-Bench is another benchmark of Android apps for various purposes, including Intent com-
munication. In this benchmark, each Android app contains at least one ICC leak. As described in Section 6.2, Ghera is
a growing repository of Android apps that contains known vulnerabilities in various categories, including ICC. In this
comparison, the results of ReproDroid,16 as a framework to infer the ground truth for data leaks in Android apps, are
considered to identify the ground truth for each test case in DroidBench and ICC-Bench. This comparison is based on
True Positive (TP), False Positive (FP), and False Negative (FN). Also, the precision, recall, and F-measure of the tools are
calculated.

Table 9 presents the results of comparing the effectiveness of the VAnDroid2 tool with IccTA and Amandroid in per-
forming inter-component communication analysis on DroidBench48 and ICC-Bench.49 In this comparison, only apps of
DroidBench and ICC-Bench that are related to ICC-based privacy leaks are considered. As explained in Section 7.2, a leak
is considered as a communication between two components or two apps that originates in one class and ends in another
class. Also, a sensitive ICC is a communication from an ICC exit point such as bindService and startActivity to an ICC
entry point such as getIntent and onActivityResult. This communication transfers an intent object that can be contained
the sensitive data.

As can be seen in Table 9, the results indicate that VAnDroid2 outperforms the other two analysis tools and achieves
higher precision (100%), recall (96%), and F-measure (98%) in ICC analysis. VAnDroid2 succeeds in identifying 22 vul-
nerabilities out of 23 in the DroidBench benchmark and detecting all 18 vulnerabilities in the ICC-Bench suite. In the
case of DroidBench, similar to Amandroid, VAnDroid2 has a false negative. The false negative of Amandroid is due to
this tool cannot consider the Java Singletone in its modeling. Therefore, Amandroid is not able to detect ICC vulnera-
bility for the Singletons1 app. The false negative of VAnDroid2 is due to VAnDroid2 uses only static analysis techniques
for Android ICC analysis of Android applications. The UnresolvableIntent1 app has an intent sending mechanism that
cannot be resolved statically. Therefore, VAnDroid2 is not able to detect this type of vulnerability.

Among the vulnerability analysis tools (listed in Reference 58), COVERT claimed to detect inter-app vulnerabilities.
We compared the effectiveness of VAnDroid2 with COVERT in inter-app vulnerability detection. In this comparison,
the extended version of DroidBench proposed by Pauck et al.16 and the bundles of the Ghera repository are used. Only
bundles related to ICC contain Intent Spoofing or Unauthorized Intent Receipt vulnerabilities from the Ghera repository
are considered. These bundles are the six bundles introduced in Section 6.2. Table 10 summarizes the results of this

††https://mdse.ui.ac.ir/project/vandroid2/

https://mdse.ui.ac.ir/project/vandroid2/

NIRUMAND et al. 35

T A B L E 9 Comparison of VAnDroid2 with IccTA and Amandroid (TP, FP, and FN are specified by symbols ��, ⊠, □, respectively)

(a) DroidBench2.0 (b) ICC-Bench

Test Case IccTA Amandroid VAnDroid2 Test Case IccTA Amandroid VAnDroid2

InterComponentCommunication (ICC) Testing ICC Addressing

ActivityCommunication1 �� �� �� ICC_Explicit1 �� �� ��
ActivityCommunication2 ����⊠ ����⊠ ���� ICC_Implicit_Action ���� ���� ����
ActivityCommunication3 □ �� �� ICC_Implicit_Category ���� ���� ����
ActivityCommunication4 ����⊠ ���� ���� ICC_Implicit_Data1 ���� ���� ����
ActivityCommunication5 �� �� �� ICC_Implicit_Data2 ���� ���� ����
ActivityCommunication6 □ �� �� ICC_Implicit_Mix1 ������ ������ ������
ActivityCommunication7 �� �� �� ICC_Implicit_Mix2 ���� ���� ����
ActivityCommunication8 ����⊠ ���� ���� ICC_dynregister1 ���� ���� ����
BroadcastTaintAndLeak1 ���� ���� ���� ICC_dynregister2 ����⊠ ����⊠ ����
ComponentNotInManifest1 Summary

EventOrdering1 �� �� �� Number of �� 18 18 18

IntentSink1 �� �� �� Number of ⊠ 1 1 0

IntentSink2 �� �� �� Number of □ 0 0 0

IntentSource1 �� �� �� Precision P =��/(⊠+��) 95% 95% 100%

ServiceCommunication1 □ �� �� Recall R =��/(□+��) 100% 100% 100%

SharedPreferences1 �� �� �� F-measure 2pr /(p + r) 97% 97% 100%

Singletons1 □ □ ��
UnresolvableIntent1 ������ ������ ����□

Summary

Number of �� 19 22 22

Number of ⊠ 3 1 0

Number of □ 4 1 1

Precision P =��/(⊠+��) 86% 96% 100%

Recall R =��/(□+��) 83% 96% 96%

F-measure 2pr /(p + r) 85% 96% 98%

comparison. As can be seen, VAnDroid2 outperforms the COVERT tool and achieves a precision of 100%, a recall of 100%,
and an F-measure of 100%, in inter-app analysis.

As shown in Table 10, for the DroidBench benchmark, VAnDroid2 outperforms the COVERT tool and succeeds
in detecting all inter-app vulnerabilities. According to the results of applying COVERT to the bundles of Ghera, while
COVERT claimed to detect inter-app vulnerabilities, it could not identify any of the ICC vulnerabilities in the six bundles.
As can be seen in Table 10, VAnDroid2 significantly outperforms the COVERT tool and detects all the vulnerabili-
ties in these bundles without any further reported security issues. Therefore, according to Tables 9 and 10, VAnDroid2
outperforms the other analysis tools in terms of precision, recall, and F-measure.

7.4 Other types of ICC vulnerabilities

While Intent Spoofing and Unauthorized Intent Receipt vulnerabilities have been the focus of this paper, we believe that
VAnDroid2 can be extended to identify other kinds of ICC vulnerabilities and significant components of VAnDroid2 can be

36 NIRUMAND et al.

T A B L E 10 Comparison of VAnDroid2 with COVERT (TP, FP, and FN are specified by symbols ��, ⊠, □, respectively)

(a) DroidBench3.0 (b) Ghera

Source App Destination App COVERT VAnDroid2 Bundle Name COVERT VAnDroid2

SendSMS Echoer �� �� DynamicRegBroadcastReceiver □ ��
StartActivityForResult1 Echoer �� �� EmptyPendingIntent □ ��
DeviceId_Broadcast1 Collector �� �� HighPriority □ ��
DeviceId_ContentProvider1 Collector �� �� ImplicitPendingIntent □ ��
DeviceId_OrderedIntent1 Collector □ �� StickyBroadcast □ ��
DeviceId_Service1 Collector �� �� UnprotectedBroadcastRecv □ ��
Location1 Collector �� �� Summary

Location_Broadcast1 Collector �� �� Number of �� 0 6

Location_Service1 Collector �� �� Number of ⊠ 0 0

Summary Number of □ 6 0

Number of �� 8 9 Precision P =��/(⊠+��) 0% 100%

Number of ⊠ 0 0 Recall R =��/(□+��) 0% 100%

Number of □ 1 0 F-measure 2pr /(p + r) 0% 100%

PrecisionP =��/(⊠+��) 100% 100%

RecallR =��/(□+��) 89% 100%

F-measure 2pr /(p + r) 94% 100%

reused. Each further security analysis is built on top of VAnDroid2 and involves extending two phases: the Transformation
and Integration phase and the Analysis phase (i.e., phases 1 and 2 in Figure 7).

As described in Section 2.2, the ICC mechanism can be done through URIs. URIs are used to communicate with
the Content Provider component as a database for an Android app. We still see various reports about security issues
in Android apps, including insecure interprocess communication and data leakage problems.59,60 Therefore, an impor-
tant category of inter-app vulnerabilities is information data leakage. For this type of vulnerability, VAnDroid2 must be
extended to consider ICC information related to URIs and data sharing as the main mechanism for Android that allows
app components to share data.

To show the extension potential and reuse of VAnDroid2, we describe an example of inter-app information leak-
age vulnerability. Consider a bundle of the Ghera repository called InadequatePathPermission-InformationExposure.
This bundle contains benign and malicious apps. The benign app has a Provider called UserDetailsContentProvider
that is exported (i.e., the other app components can access this provider). This app component has a path-permission
edu.ksu.cs.benign.permission.internalRead with the path prefix /user. This permission controls access to a folder and
has no control access over subfolders. The malicious app has a MalActivity component. This malicious component
has created a read operation request for data within the provider of benign. This data read request has a URI con-
tent://edu.ksu.cs.benign.userdetails/user/ssn.

As explained above, the provider of benign protects the data within the /user folder and does not perform any pro-
tection for the data within the subfolders /user/ssn. Therefore, the malicious app can exploit this ICC vulnerability to
perform malicious activities.

The following efforts are required to extend VAnDroid2 to support the analysis of this ICC attack scenario.

• Extend the transformation and integration phase. First, the Android Application Security Aspects metamodel
must be extended to address the concepts related to the URIs and data sharing mechanism. Since the Provider is respon-
sible for sharing data between app components, it has a complex security model.29 As depicted in Figure 19, according
to the metamodel (the part related to the ContentProvider element), ContentProvider needs to be extended to address
all scopes of provider permissions such as path-permission. Second, the ICC metamodel must be extended to extract

NIRUMAND et al. 37

F I G U R E 19 The extended part related to the ContentProvider element of Figure 5

all potential data sharing interactions between app components at intra- and inter-app levels. Finally, the M2M trans-
formations need to be extended to extract all ICC information from bundles of Android apps, which is needed for
analyzing data sharing communications between app components.

• Extend the analysis phase. The formal analysis process needs to be extended to identify the data leakage vulnerabil-
ities at intra- and inter-app communication levels.

7.5 Comparing with the original VAnDroid framework

Tables 11 and 12 present a comparison between VAnDroid2 and the original VAnDroid framework19 according to the
following dimensions.

- Approach Positioning (Research Problem). This dimension (the first part of Table 11) characterizes the objectives of
VAnDroid and VAnDroid2.

- Approach. The second part of Table 11 characterizes the approaches presented in VAnDroid and VAnDroid2.
- Tool support. The third part of Table 11 specifies the features of two tools, VAnDroid and VAnDroid2.
- Evaluation and results. The first part of Table 12 is about the evaluation of VAnDroid and VAnDroid2.
- Comparing with state-of-the-art analysis tools. The second part of Table 12 is about the comparison VAnDroid and

VAnDroid2 with state-of-the-art tools.

7.6 Limitations and threats to validity

7.6.1 Limitations

One limitation of VAnDroid2 is related to input Android applications. Since VAnDroid2 uses MoDisco to generate the Java
model, only apps with standard GUI widgets for Android API and without anonymous classes can currently be considered.
To overcome this limitation, we can improve MoDisco or consider another tool to generate the Java model. Another
limitation is related to the analysis of “strings” of intent values. Currently, VAnDroid2 can only perform simplified string
analysis to extract the intent values. Nevertheless, VAnDroid2 can be extended to perform more complex string analyses
of Android applications.

7.6.2 Threats to validity

One threat to the validity of our evaluation results is the generalization of obtained results to bundles outside of our study.
To overcome this threat, for 10 experiments, we considered a combination of benign apps, malicious apps, and vulnerable

38 NIRUMAND et al.

T
A

B
L

E
11

C
om

pa
ris

on
of

VA
nD

ro
id

2
w

ith
th

e
or

ig
in

al
VA

nD
ro

id
fr

am
ew

or
k

VA
nD

ro
id

19
VA

nD
ro

id
2

A
pp

ro
ac

h
po

si
tio

ni
ng

(r
es

ea
rc

h
pr

ob
le

m
)

Fo
cu

so
n

an
al

yz
in

g
a

si
ng

le
ap

p
co

m
po

ne
nt

in
is

ol
at

io
n

to
id

en
tif

y
in

te
nt

-b
as

ed
se

cu
rit

y
is

su
es

at
th

e
in

tr
a-

co
m

po
ne

nt
an

al
ys

is
le

ve
l.

Fo
cu

so
n

an
al

yz
in

g
m

ul
tip

le
ap

p
co

m
po

ne
nt

st
o

id
en

tif
y

in
te

nt
-b

as
ed

se
cu

rit
y

is
su

es
at

fo
ur

le
ve

ls
of

an
al

ys
is

:(
1)

in
tr

a-
co

m
po

ne
nt

,(
2)

in
te

r-
co

m
po

ne
nt

,(
3)

in
tr

a-
ap

p,
an

d
(4

)i
nt

er
-a

pp

A
pp

ro
ac

h
Pr

op
os

e
an

au
to

m
at

ed
an

d
m

od
el

-b
as

ed
ap

pr
oa

ch
to

co
nd

uc
ta

n
M

D
RE

pr
oc

es
s

fo
rs

up
po

rt
in

g
th

e
in

tr
a-

co
m

po
ne

nt
an

al
ys

is
.

Pr
op

os
e

an
au

to
m

at
ed

,i
nc

re
m

en
ta

l,
co

m
po

si
tio

na
l,

an
d

M
D

RE
ap

pr
oa

ch
to

an
al

yz
e

IC
C

sa
tf

ou
ra

na
ly

si
sl

ev
el

s.

VA
nD

ro
id

co
nt

ai
ns

th
re

e
ph

as
es

:
VA

nD
ro

id
2

co
nt

ai
ns

th
re

e
ph

as
es

:

M
od

el
di

sc
ov

er
y:

M
od

el
D

is
co

ve
ry

:

Pr
es

en
ta

m
od

el
-b

as
ed

st
at

ic
pr

og
ra

m
an

al
ys

is
fo

ra
si

ng
le

A
nd

ro
id

ap
p

to
ex

tr
ac

tt
he

IR
fr

om
th

e
ap

p.
Pr

es
en

ta
m

od
el

-b
as

ed
st

at
ic

pr
og

ra
m

an
al

ys
is

fo
rm

ul
tip

le
A

nd
ro

id
ap

ps
to

ex
tr

ac
tt

he
IR

fr
om

ap
ps

.

Tr
an

sf
or

m
at

io
n

an
d

in
te

gr
at

io
n:

Tr
an

sf
or

m
at

io
n

an
d

in
te

gr
at

io
n:

Pr
es

en
tt

he
A

nd
ro

id
ap

pl
ic

at
io

n
se

cu
rit

y
as

pe
ct

sm
et

am
od

el
to

ex
tr

ac
tt

he
hi

gh
-le

ve
lm

od
el

fr
om

th
e

ap
p.

1.
Pr

es
en

ta
n

ex
pa

nd
ed

ve
rs

io
n

of
A

nd
ro

id
A

pp
lic

at
io

n
Se

cu
rit

y
A

sp
ec

ts
M

et
am

od
el

to
ex

tr
ac

tt
he

hi
gh

-le
ve

lm
od

el
fr

om
ea

ch
ap

p
in

a
bu

nd
le

.

2.
Pr

es
en

ta
br

an
d

ne
w

m
et

am
od

el
ca

lle
d

IC
C

to
id

en
tif

y
al

li
nt

en
t-b

as
ed

IC
C

sa
tb

ot
h

in
tr

a
an

d
in

te
r-

ap
p

le
ve

ls
.

3.
Pr

es
en

ta
m

od
el

-b
as

ed
IC

C
ex

tr
ac

to
rf

or
A

nd
ro

id
at

in
tr

a
an

d
in

te
r-

ap
p

le
ve

ls
.

4.
Im

pl
em

en
ta

n
al

go
rit

hm
fo

rm
od

el
-b

as
ed

ap
p

co
m

po
ne

nt
an

al
ys

is
to

co
nd

uc
ta

m
od

el
-b

as
ed

pr
ec

is
e

in
te

nt
re

so
lu

tio
n

pr
oc

es
s.

A
na

ly
si

s:
A

na
ly

si
s:

Pr
es

en
tf

or
m

al
m

od
el

-b
as

ed
an

al
ys

is
pr

oc
es

se
sf

or
In

te
nt

Sp
oo

fin
g

an
d

U
na

ut
ho

riz
ed

In
te

nt
Re

ce
ip

td
et

ec
tio

n
at

on
e

an
al

ys
is

le
ve

l:
Pr

es
en

tf
or

m
al

m
od

el
-b

as
ed

an
al

ys
is

pr
oc

es
se

sf
or

In
te

nt
Sp

oo
fin

g
an

d
U

na
ut

ho
riz

ed
In

te
nt

Re
ce

ip
td

et
ec

tio
n

at
fo

ur
an

al
ys

is
le

ve
ls

:

-i
nt

ra
-c

om
po

ne
nt

in
tr

a-
co

m
po

ne
nt

-i
nt

er
-c

om
po

ne
nt

-i
nt

ra
-a

pp

-i
nt

er
-a

pp

To
ol

su
pp

or
t

Pr
op

os
e

an
Ec

lip
se

-b
as

ed
to

ol
to

re
ce

iv
e

a
si

ng
le

ap
p

an
d

an
al

yz
e

a
si

ng
le

co
m

po
ne

nt
in

is
ol

at
io

n
to

id
en

tif
y

in
te

nt
-b

as
ed

se
cu

rit
y

is
su

es
.

Pr
op

os
e

an
Ec

lip
se

-b
as

ed
to

ol
to

re
ce

iv
e

m
ul

tip
le

ap
ps

an
d

pe
rf

or
m

in
cr

em
en

ta
lI

CC
an

al
ys

is
at

fo
ur

an
al

ys
is

le
ve

ls
:

-i
nt

ra
-c

om
po

ne
nt

-i
nt

er
-c

om
po

ne
nt

-i
nt

ra
-a

pp

-i
nt

er
-a

pp

NIRUMAND et al. 39

T A B L E 12 Comparison of VAnDroid2 with the original VAnDroid framework (Cont.)

VAnDroid19 VAnDroid2

Evaluation and
results

Correctness Correctness:

1. Consider four apps evaluated by Peck and Northern61 1. Consider the six bundles of the Ghera repository

2. Apply the proposed tool to these apps 2. Apply VAnDroid2 to these six app bundles

3. Analyze the correctness of the analysis results

4. Compare the results of VAnDroid2 with the results of
COVERT and DIALDroid

Results: VAnDroid’s analysis results are reliable, and this
tool can correctly reveal the intra-component issues in
a single Android app.

Results: VAnDroid2’s analysis results are reliable, and
this tool can correctly reveal the inter-app ICC attacks
in Android app bundles.

Scalability: Scalability:

1. Apply VAnDroid to 20 apps from Google Play and 110
apps from the F-Droid repository

1. Construct a dataset of benign, malicious, and
vulnerable apps from various repositories

2. Evaluate the scalability of the analysis results
according to deal with the Large apps (code size) issue

2. Create 10 bundles of apps, each containing 35 apps,
from the provided dataset

3. Apply the VAnDroid2 to these app bundles

4. Evaluate the scalability of the analysis results
according to deal with the several issues (issues
introduced in Section 6.3)

Results: VAnDroid has supported the scalability
criterion (according to the code size) in performing
intra-component analysis of real-world Android
applications.

Results: VAnDroid2 has supported the scalability
criterion in performing inter-app ICC vulnerability
analysis.

Usability: Run-Time Performance:

The ability of VAnDroid in analyzing real-world Android
apps and detecting their vulnerabilities at the
intra-component analysis level is analyzed.

1. Without considering incremental ICC analysis: this
tool is able to analyze app bundles containing
hundreds of components in a few minutes.

2. With considering incremental ICC analysis: the effects
of VAnDroid2’s incremental ICC analysis capability
are visible when the size of the app bundles increases.

Comparing with the
state-of-the-art
analysis tools

Compare with IccTA, DroidGuard, FlowDroid, and
Amandroid:

1. Compare with IC3:

VAnDroid significantly outperforms compared with four
tools in performing intra-comment analysis.

VAnDroid2 significantly outperforms in terms of
extracting more comprehensive specifications as well
as execution time.

2. Compare with IccTA and Amandroid:

VAnDroid2 significantly outperforms the other tools and
achieves higher precision, recall, and F-measure at the
intra-app analysis level.

3. Compare with COVERT:

VAnDroid2 significantly outperforms COVERT and
reaches a precision of 100%, a recall of 100%, and an
F-measure of 100% at inter-app level.

40 NIRUMAND et al.

apps. For benign and malicious apps, AndroZoo,47 as a growing collection of apps from various popular marketplaces is
considered. For vulnerable apps, all known vulnerability benchmarks are used.

Another threat is related to the results of comparing the ability of VAnDroid2 in identifying ICC vulnerabilities with
other state-of-the-art tools. In this comparison, the reported accuracy of VAnDroid2, in terms of precision, recall, and
F-measure, depends on the quality of the dataset that we use as a ground truth with known security attacks. To overcome
this threat, we used the results of ReproDroid,16 as a framework to identify the ground truth for data leaks of each test
case in DroidBench and ICC-Bench. In the results of the ReproDroid framework, true positives and false positives are
identified for each test case. In fact, an ICC communication has been identified that can cause a security issue (i.e.,
ICC-based privacy leakage).

8 CONCLUSION

In this paper, a framework called VAnDroid2 was presented, as an extension to our previous work, to improve the detec-
tion of IAC security issues. VAnDroid2, based on MDRE, has three phases. At first, the comprehensive IR of each Android
application is created without losing information. Then, by collecting security information in the form of domain-specific
models from each app, the comprehension of the Android system is facilitated and all potential intent-based communi-
cations are extracted from a bundle of Android applications. Finally, by paying a one-time cost of modeling the security
structure and specification of Android apps, the inter-app security analysis is performed and the results are displayed to
the user using XMI models. VAnDroid2 is developed as an Eclipse-based tool. This tool has been applied to hundreds
of real-world Android apps, and the correctness, scalability, and run-time performance are examined. VAnDroid2 is also
compared with several existing state-of-the-art tools related to inter-component communication and inter-app communi-
cation analysis of Android apps. The evaluation results indicate that VAnDroid2 has been able to conduct a more effective
IAC security analysis and achieve higher precision, recall, and F-measure in inter-app vulnerability detection.

To create the bundles of real-world apps, we randomly selected the apps from the created dataset. Since these bundles
may not reflect the real bundles of installed Android applications on the users’ devices, as first future work, the infor-
mation provided by marketplaces, such as Bazaar, for each Android app can be considered. Bazaar, as a local app store,
provides the Users Also Installed section on the page of each Android app in the store. Based on this information, we can
specify the apps that exist together on the users’ devices. Violation of the least-privilege principle in Android can cause
serious security issues in Android ICC, including privilege escalation attacks. Hence, as second future work, the proposed
approach can be expanded to detect vulnerabilities that lead to privilege escalation attacks, as one of the major categories
of ICC vulnerabilities. Since VAnDroid2 focuses just on ICC analysis, as third future work, the proposed approach can be
developed to consider URIs to detect other inter-app vulnerabilities such as passive data leaks and content pollution.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in MDSE research group website at https://mdse.ui.
ac.ir/project/vandroid2/.

ORCID
Bahman Zamani https://orcid.org/0000-0001-6424-1442
Behrouz Tork-Ladani https://orcid.org/0000-0003-2280-8839
Jacques Klein https://orcid.org/0000-0003-4052-475X

REFERENCES
1. Ranganath VP, Mitra J. Are free android app security analysis tools effective in detecting known vulnerabilities? Empir Softw Eng.

2020;25(1):178-219. doi:10.1007/s10664-019-09749-y
2. Hurier M. Creating Better Ground Truth to Further Understand Android Malware: A Large Scale Mining Approach Based on Antivirus Labels

and Malicious Artifacts. PhD thesis, University of Luxembourg, Luxembourg; 2019.
3. Statista. Google play store: number of apps 2020; July 30; 2021. https://www.statista.com/statistics/266210/number-of-available-

applications-in-the-google-play-store/
4. Hammad M. Self-Protection of Android Systems from Inter-Component Communication Attacks. PhD thesis, University of California, Irvine;

2018.
5. Sadeghi A. Efficient Permission-Aware Analysis of Android Apps. PhD thesis. University of California, Irvine; 2017.

https://mdse.ui.ac.ir/project/vandroid2/
https://mdse.ui.ac.ir/project/vandroid2/
https://orcid.org/0000-0001-6424-1442
https://orcid.org/0000-0001-6424-1442
https://orcid.org/0000-0003-2280-8839
https://orcid.org/0000-0003-2280-8839
https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0003-4052-475X
info:doi/10.1007/s10664-019-09749-y
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/

NIRUMAND et al. 41

6. Li L, Bissyandé TF, Papadakis M, et al. Static analysis of android apps: a systematic literature review. Inf Softw Technol. 2017;88:67-95.
doi:10.1016/j.infsof.2017.04.001

7. Octeau D, McDaniel P, Jha S, et al. Effective inter-component communication mapping in android: an essential step towards holistic
security analysis. Proceedings of the 22nd USENIX Security Symposium (USENIX Security 13); 2013; Washington, DC; LA-UR-13-26794.

8. Arzt S, Rasthofer S, Fritz C, et al. Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. ACM SIGPLAN Not. 2014;49(6):259-269. doi:10.1145/2666356.2594299

9. Li L, Bartel A, Bissyandé TF, et al. IccTA: detecting inter-component privacy leaks in android apps. Proceedings of the 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering; 2015.

10. Bagheri H, Sadeghi A, Garcia J, Malek S. COVERT: compositional analysis of android inter-app permission leakage. IEEE Trans Softw
Eng. 2015;41(9):866-886. doi:10.1109/TSE.2015.2419611

11. Wei F, Roy S, Ou X. Amandroid: a precise and general inter-component data flow analysis framework for security vetting of android apps.
ACM Trans Priv Secur (TOPS). 2018;21(3):1-32. doi:10.1145/3183575

12. Wu T, Deng X, Yan J, Zhang J. Analyses for specific defects in android applications: a survey. Front Comput Sci. 2019;13:1210-1227. doi:10.
1007/s11704-018-7008-1

13. Sadeghi A, Bagheri H, Garcia J, Malek S. A taxonomy and qualitative comparison of program analysis techniques for security assessment
of android software. IEEE Trans Softw Eng. 2016;43(6):492-530. doi:10.1109/TSE.2016.2615307

14. Bagheri H, Wang J, Aerts J, Malek S. Efficient, evolutionary security analysis of interacting android apps. Proceedings of the 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME); 2018.

15. Reaves B, Bowers J, Gorski SA III, et al. Android: assessment and evaluation of android application analysis tools. ACM Comput Surv
(CSUR). 2016;49(3):1-30. doi:10.1145/2996358

16. Pauck F, Bodden E, Wehrheim H. Do android taint analysis tools keep their promises? Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering; 2018.

17. Bruneliere H. Generic Model-based Approaches for Software Reverse Engineering and Comprehension. PhD thesis. Nantes University; 2018.
18. Sabir U, Azam F, Haq SU, Anwar MW, Butt WH, Amjad A. A model driven reverse engineering framework for generating high level UML

models from java source code. IEEE Access. 2019;7:158931-158950. doi:10.1109/ACCESS.2019.2950884
19. Nirumand A, Zamani B, Tork LB. VAnDroid: a framework for vulnerability analysis of Android applications using a model-driven reverse

engineering technique. Softw Pract Exp. 2019;49(1):70-99. doi:10.1002/spe.2643
20. Octeau D, Luchaup D, Dering M, Jha S, McDaniel P. Composite constant propagation: application to android inter-component commu-

nication analysis. Proceedings of the 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering; 2015.
21. Statista. Mobile OS market share 2021. Accessed July 30, 2021. https://www.statista.com/statistics/272698/global-market-share-held-by-

mobile-operating-systems-since-2009/
22. Bhat P, Dutta K. A survey on various threats and current state of security in android platform. ACM Comput Surv. 2019;52(1):1-35. doi:10.

1145/3301285
23. Chin E, Felt AP, Greenwood K, Wagner D. Analyzing inter-application communication in Android. Proceedings of the 9th International

Conference on Mobile Systems, Applications, and Services; 2011:239-252.
24. Ma C, Wang T, Shen L, Liang D, Chen S, You D. Communication-based attacks detection in android applications. Tsinghua Sci Technol.

2019;24(5):596-614. doi:10.26599/TST.2018.9010133
25. Samhi J, Bartel A, Bissyandé TF, Klein J. RAICC: revealing atypical inter-component communication in android apps. Proceedings of the

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE); 2021.
26. Android Developers. Context. Accessed July 3, 2021. https://developer.android.com/reference/android/content/Context
27. Android Developers. Pendingintent. Accessed July 3, 2021. https://developer.android.com/reference/android/app/PendingIntent
28. Android Developers. IntentSender. Accessed July 30, 2021. https://developer.android.com/reference/android/content/IntentSender
29. Six J. Application Security for the Android Platform: Processes, Permissions, and Other Safeguards. O’Reilly Media, Inc; 2011.
30. Jouault F, Allilaire F, Bézivin J, Kurtev I. ATL: a model transformation tool. Sci Comput Program. 2008;72(1-2):31-39. doi:10.1016/j.scico.

2007.08.002
31. Eclipse Foundation. Eclipse Acceleo project. Accessed July 30, 2021. https://www.eclipse.org/acceleo/
32. Bruneliere H, Cabot J, Dupé G, Madiot F. MoDisco: a model driven reverse engineering framework. Inf Softw Technol.

2014;56(8):1012-1032. doi:10.1016/j.infsof.2014.04.007
33. Brambilla M, Cabot J, Wimmer M. Model-driven software engineering in practice. Synthesis lectures on software engineering; 2017.
34. Raibulet C, Fontana FA, Zanoni M. Model-driven reverse engineering approaches: a systematic literature review. IEEE Access.

2017;5:14516-14542. doi:10.1109/ACCESS.2017.2733518
35. Lu L, Li Z, Wu Z, Lee W, Jiang G. CHEX: statically vetting Android apps for component hijacking vulnerabilities. Proceedings of the 2012

ACM Conference on Computer and Communications Security; 2012:229-240.
36. Octeau D, Jha S, McDaniel P. Retargeting Android applications to Java bytecode. Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering; 2012:1-11.
37. Gordon MI, Kim D, Perkins JH, Gilham L, Nguyen N, Rinard MC. Information-flow analysis of android applications in DroidSafe.

Proceedings of the 22nd Annual Network and Distributed System Security Symposium (NDSS); 2015.
38. Tiwari A, Groß S, Hammer C. IIFA: modular inter-app intent information flow analysis of android applications. Proceedings of the

International Conference on Security and Privacy in Communication Systems; 2019:335-349.

info:doi/10.1016/j.infsof.2017.04.001
info:doi/10.1145/2666356.2594299
info:doi/10.1109/TSE.2015.2419611
info:doi/10.1145/3183575
info:doi/10.1007/s11704-018-7008-1
info:doi/10.1007/s11704-018-7008-1
info:doi/10.1109/TSE.2016.2615307
info:doi/10.1145/2996358
info:doi/10.1109/ACCESS.2019.2950884
info:doi/10.1002/spe.2643
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
info:doi/10.1145/3301285
info:doi/10.1145/3301285
info:doi/10.26599/TST.2018.9010133
https://developer.android.com/reference/android/content/Context
https://developer.android.com/reference/android/app/PendingIntent
https://developer.android.com/reference/android/content/IntentSender
info:doi/10.1016/j.scico.2007.08.002
info:doi/10.1016/j.scico.2007.08.002
https://www.eclipse.org/acceleo/
info:doi/10.1016/j.infsof.2014.04.007
info:doi/10.1109/ACCESS.2017.2733518

42 NIRUMAND et al.

39. Klieber W, Flynn L, Bhosale A, Jia L, Bauer L. Android taint flow analysis for app sets. Proceedings of the 3rd ACM SIGPLAN International
Workshop on the State of the Art in Java Program Analysis; 2014:1-6.

40. Jha AK, Lee S, Lee WJ. Modeling and test case generation of inter-component communication in android. Proceedings of the 2015 2nd
ACM International Conference on Mobile Software Engineering and Systems; 2015:113-116.

41. Biswas S, Sharif K, Li F, Liu Y. 3P framework: customizable permission architecture for mobile applications. Proceedings of the
International Conference on Wireless Algorithms, Systems, and Applications; 2017:445-456.

42. Biswas S, Haipeng W, Rashid J. Android permissions management at app installing. Int J Sec Appl. 2016;10(3):223-232. doi:10.14257/ijsia.
2016.10.3.21

43. Hammad M, Bagheri H, Malek S. DelDroid: an automated approach for determination and enforcement of least-privilege architecture in
android. J Syst Softw. 2019;149:83-100. doi:10.1016/j.jss.2018.11.049

44. Github. Jadx: Dex to Java decompiler. Accessed July 30,2021. https://github.com/skylot/jadx
45. Android Developers. Intent and intent filters. Accessed July 30, 2021. https://developer.androidcom/guide/components/intents-filters
46. Nirumand A, Zamani B, Tork L, et al. ATL rules and OCL queries implemented in VAnDroid2. Technical report, MDSE Research Group;

2022. https://mdse.ui.ac.ir/TR/UI-SE-MDSERG-2022-05.pdf.
47. Allix K, Bissyandé TF, Klein J, Le Traon Y. AndroZoo: collecting millions of android apps for the research community. Proceedings of the

2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR); 2016:468-471.
48. GitHub. Secure-software-engineering/DroidBench. Accessed July 30, 2021. https://github.com/secure-software-engineering/DroidBench
49. GitHub. fgwei/ICC-Bench. Date Accessed: July 30, 2021. fgwei/ICC-Bench.
50. Qiu L, Wang Y, Rubin J. Analyzing the analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe. Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis; 2018:176-186.
51. Statistics. 55+ jaw dropping app usage statistics in 2021. Accessed July 30, 2021. https://techjury.net/blog/app-usage-statistics/
52. Statistics. Mobile app download and usage statistics (2021); Accessed July 30, 2021. https://buildfire.com/app-statistics/
53. Statistics. Most popular Google play app categories as of 1st quarter 2022. Accessed May 12, 2022. https://www.statista.com/statistics/

279286/google-play-android-app-categories/
54. Pressman RS, Maxim BR. Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher Education; 2015.
55. Bosu A, Liu F, Yao D, Wang G. Collusive data leak and more: large-scale threat analysis of inter-app communications. Proceedings of the

2017 ACM on Asia Conference on Computer and Communications Security; 2017:71-85.
56. Bondi AB. Characteristics of scalability and their impact on performance. Proceedings of the 2nd International Workshop on Software

and Performance; 2000:195-203.
57. Clements PC. Software Architecture in Practice. Dissertation. Software Engineering Institute; 2002.
58. Bitbucket. Android-app-vulnerability-benchmarks. Accessed February 10, 2021. https://bitbucket.org/secure-it-i/may2018/src/master/

vulevals/
59. What are the most critical android application vulnerabilities of 2021? Accessed May 14, 2022. https://www.hackingloops.com/most-

critical-android-application-vulnerabilities/
60. OWASP. OWASP Top 10 – 2021. Accessed May 14, 2022. https://owasp.org/Top10/
61. Peck M, Northern C. Analyzing the effectiveness of app vetting tools in the enterprise. MITRE Corporation, Technical Report; 2016.

How to cite this article: Nirumand A, Zamani B, Tork-Ladani B, Klein J, Bissyandé TF. A model-based
framework for inter-app Vulnerability analysis of Android applications. Softw Pract Exper. 2022;1-42. doi:
10.1002/spe.3171

info:doi/10.14257/ijsia.2016.10.3.21
info:doi/10.14257/ijsia.2016.10.3.21
info:doi/10.1016/j.jss.2018.11.049
https://github.com/skylot/jadx
https://developer.androidcom/guide/components/intents-filters
https://mdse.ui.ac.ir/TR/UI-SE-MDSERG-2022-05.pdf
https://github.com/secure-software-engineering/DroidBench
https://techjury.net/blog/app-usage-statistics/
https://buildfire.com/app-statistics/
https://www.statista.com/statistics/279286/google-play-android-app-categories/
https://www.statista.com/statistics/279286/google-play-android-app-categories/
https://bitbucket.org/secure-it-i/may2018/src/master/vulevals/
https://bitbucket.org/secure-it-i/may2018/src/master/vulevals/
https://www.hackingloops.com/most-critical-android-application-vulnerabilities/
https://www.hackingloops.com/most-critical-android-application-vulnerabilities/
https://owasp.org/Top10/

	A model-based framework for inter-app Vulnerability analysis of Android applications
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Android applications
	2.2 Intercomponent communication
	2.3 Android access control model
	2.3.1 Intent spoofing
	2.3.2 Unauthorized intent receipt

	2.4 Model-driven reverse engineering

	3 RELATED WORK
	3.1 Program analysis of Android apps for security
	3.2 ICC analysis of Android apps for vulnerability detection

	4 MOTIVATING EXAMPLE
	5 THE PROPOSED APPROACH
	5.1 Android application security aspects metamodel
	5.1.1 ApplicationPolicyFile
	5.1.2 SDK
	5.1.3 UsesPermission
	5.1.4 AppPermission
	5.1.5 Component
	5.1.6 IntentFilter
	5.1.7 CompPermission
	5.1.8 Intent

	5.2 ICC metamodel
	5.3 Approach overview
	5.3.1 Model discovery phase
	5.3.2 Transformation and integration phase
	5.3.3 Extracting ICC model
	5.3.4 The intent resolution process
	5.3.5 Analysis phase

	5.4 Incremental ICC analysis feature
	5.5 Tool support

	6 EMPIRICAL EVALUATION
	6.1 The dataset of real-world Android apps
	6.2 RQ1 (Correctness)
	6.3 RQ2 (Scalability)
	6.4 RQ3 (run-time performance)
	6.4.1 Results for selected bundles
	6.4.2 Results for incremental ICC analysis

	7 DISCUSSION
	7.1 Breakdown of the discovered vulnerabilities
	7.2 Comparing with related work
	7.3 Comparing with existing tools
	7.3.1 Comparing with IC3
	7.3.2 Comparing with IccTA, Amandroid, and COVERT

	7.4 Other types of ICC vulnerabilities
	7.5 Comparing with the original VAnDroid framework
	7.6 Limitations and threats to validity
	7.6.1 Limitations
	7.6.2 Threats to validity

	8 CONCLUSION

	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

