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Jacques Klein2 · Li Li3 ·Yves Le Traon2

Accepted: 17 March 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Timely patching (i.e., the act of applying code changes to a program source code) is
paramount to safeguard users and maintainers against dire consequences of malicious
attacks. In practice, patching is prioritized following the nature of the code change that is
committed in the code repository. When such a change is labeled as being security-relevant,
i.e., as fixing a vulnerability, maintainers rapidly spread the change, and users are notified
about the need to update to a new version of the library or of the application. Unfortunately,
oftentimes, some security-relevant changes go unnoticed as they represent silent fixes of vul-
nerabilities. In this paper, we propose SSPCATCHER, a Co-Training-based approach to catch
security patches (i.e., patches that address vulnerable code) as part of an automatic moni-
toring service of code repositories. Leveraging different classes of features, we empirically
show that such automation is feasible and can yield a precision of over 80% in identifying
security patches, with an unprecedented recall of over 80%. Beyond such a benchmarking
with ground truth data which demonstrates an improvement over the state-of-the-art, we
confirmed that SSPCATCHER can help catch security patches that were not reported as such.

1 Introduction

Recently, our digital world was shaken by two of the most widespread malware outbreaks
to date, namely WannaCry and Petya. Interestingly, both leveraged a known exploit with an
available patch (Trend Micro 2017). Despite the availability of such a patch that could have
prevented an infection, a large number of systems around the globe were impacted, leading
to a loss of over 4 billion US dollars (Berr 2017). In a typical scenario of vulnerability
correction, a developer proposes changes bundled as a software patch by pushing a commit
(i.e., patch + description of changes) to the code repository, which is analyzed by the project
maintainer, or a chain of maintainers. The maintainers eventually reject or apply the changes
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to the master branch. When the patch is accepted and released, all users of the relevant
code must apply it to limit their exposure to attacks. In reality, for some organizations,
there is a time lag between the release of a patch and its application. While in the cases of
critical systems, maintainers are hesitant to deploy updates that will hinder operations with
downtime, in other cases, the lag can be due to the fact that the proposed change has not
been properly advertised as security-relevant, and is not thus viewed as critical.

Patching (i.e., the act of applying code changes to a program source code) is an abso-
lute necessity. Timely patching of vulnerabilities in software, however, mainly depends on
the tags associated to the change, such as the commit log message, or on the availability of
references in public vulnerability databases. For example, nowadays, developers and sys-
tem maintainers rely on information from the National Vulnerability Database (NIST 2018)
to react to all disclosed vulnerabilities. Unfortunately, a recent study on the state of open
source security (Snyk.io 2017) revealed that only 9% of maintainers file for a Common
Vulnerability Enumeration (CVE) ID after releasing a fix to a vulnerability. The study fur-
ther reports that 25% of open source software projects completely silently fix vulnerabilities
without disclosing them to any official repository.

Silent vulnerability fixes are a concern for third-party developers and users alike. Given
the low coverage of official vulnerability repositories, there are initiatives in the software
industry to automatically and systematically monitor source code repositories in real-time
for identifying security-relevant commits, for example by parsing the commit logs (Zhou
and Sharma 2017) or by mining the code of the components (Scandariato et al. 2014). Man-
ual analysis of code changes is indeed heavy in terms of manpower constraints, requires
expert knowledge, and can be error-prone. Some other existing works in this area also use
the code and logs of commits as inputs to train machine learning models for predicting
security-relevant commits. Sabetta et al. (Sabetta and Bezzi 2018) leveraged bag-of-words
model to identify security-relevant fixes. They achieved a high precision (at 80%) but face
two major problems that we attempt to solve: their features are not explicitly related to secu-
rity semantics; they do not address the unbalanced dataset problem in real-world scenarios.
It is further noteworthy that the literature has also proposed approaches (Zhou and Sharma
2017; Scandariato et al. 2014) for detecting code changes that introduce security vulnerabil-
ities. Conversely, we are focused on identifying whether a proposed patch is applying code
changes to fix an existing vulnerability.

In this paper, we investigate the possibility to apply machine learning techniques to auto-
mate the identification of source code changes that actually represent security patches (i.e.,
patches that address vulnerable code). To that end, we investigate three different classes of
features related to the change metadata (e.g., commit logs), the code change details (e.g.,
number of lines modified), as well as specific traits that are recurrent in vulnerabilities (e.g.,
array index change). We then build on the insight that analysts can independently rely either
on commit logs or on code change details to suspect a patch of addressing a vulnerabil-
ity. Thus, we propose to build a Co-Training based approach where two classifiers leverage
separately text features and code features to eventually learn an effective model. This semi-
supervised learning approach further accounts for the reality that the datasets available in
practice include a large portion of samples whose labels (i.e., “security-relevant” or not)
are unknown. We refer to our approach as SSPCATCHER (for “Security Sensitive Patch
Catcher”).
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Our work deals with the automation of the identification of security patches (i.e., patches
fixing vulnerabilities) once a code change is presented to be applied to a codebase. To align
with realistic constraintsa of practitioners, we only leverage the information available within
the commit.

aIn practice, identifying security patches must be done at commit time. An approach would be very
successful if it could leverage future comments of bug reports and advisories inputs (e.g., CVE). Such
information is however not available in reality when the commit is made.

Overall, we make the following contributions:

– We motivate and dissect the problem of identifying security-relevant code changes in
Section 2. In particular, we investigate the discriminative power of a variety of features
to clarify the possibility of a learning process.

– We propose a semi-supervised approach with Co-Training (Blum and Mitchell 1998)
which we demonstrate to yield high precision (95%) and recall (88%). This represents
a significant improvement over the state-of-the-art.

– Finally, we show that our approach can help flag patches that were unlabeled until now.
We have confirmed our findings by manual analysis, with the help of external expertise.

The implementation, dataset, and results of SSPCATCHER are publicly available for the
community as a replication package :

http://github.com/vulnCatcher/vulnCatcher
The remainder of this paper is organized as follows. We motivate our study in Section 2

and overview data collection in Section 3. Section 4 describes SSPCATCHER while
Section 5 presents the experimental study and results. Section 6 discusses threats to validity
and future work. We discuss related work in Section 7 and Section 8 concludes this work.

2 Motivation

The urgency of updating a software given a proposed change is assessed at different lev-
els of the software development cycle. We consider the cases of developer-maintainer and
maintainer-user communications.

(1) Patch processing delays by maintainers. We consider the case of the Linux kernel,
which is developed according to a hierarchical open source model referred to as Benevolent
dictator for life (BDFL) (van Rossum 2008). In this model, anyone can contribute, but ulti-
mately all contributions are integrated by a single person, Linus Torvalds, into the mainline
development tree. A Linux kernel maintainer receives patches related to a particular file or
subsystem from developers or more specialized maintainers. After evaluating and locally
committing them, he/she propagates them upwards in the maintainer hierarchy, eventually
up to Linus Torvalds. Since the number of maintainers is significantly lower than that of
contributors, there is a delay between a patch authoring date and its commit date. A recent
study, however, has shown that author patches for Linux are addressed in a timely manner
by maintainers (Koyuncu et al. 2017). Nevertheless, given the critical nature of a security
patch, we expect its processing to be even more speedy if the commit message contains
relevant information that attracts maintainers’ attention.
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Fig. 1 Delays for validating contributor patches in Linux based on explicit vulnerabilities

Figure 1 illustrates the delay computed on randomly sampled sets of 1 000 commits
where the log clearly contained a CVE reference, and 1 000 commits with no such refer-
ences. These 1 000 commits selected are a part of the negative dataset, identified by the
data collection process described in Section 3.1; therefore these commits do not involve
vulnerability fixes.

The delay is computed as the difference of time between the contribution date (i.e.,
Author date in git) and the date it was accepted in the repository (i.e., Commit date in git).
The boxplots show how patches that are explicitly related to vulnerabilities are validated
faster than other patches: on median average, security patches are validated fifteen hours
faster. We confirmed that the difference is statistically significant with MWW tests (Mann
and Whitney 1947).

Often, if proper notice is given, maintainers are likely to prioritize the validation of security
patches.

(2) Version release delays for users. In the development cycle of software, versioning
allows maintainers to fix milestones with regards to the addition of new features, or the
stabilization of a well-tested branch after the application of several bug fixes. However,
when a security patch is applied to the code base, it is common to see maintainers release a
new version early to protect users against potential attacks. These exceptional cases could
then change the versioning cycle to prioritize customer’s security and motivate the goal of
our paper: identifying silent vulnerability fixes.

We did a study to confirm this assumption. We consider the case of the OpenSSL library
and compare the delay between a given commit and the subsequent version release date
(which is inferred by checking commits with version tags). The delay was computed for all
the 1 550 OpenSSL commits (495 of which carry security patches) collected in our study
datasets.

Boxplot representations in Fig. 2 show that many OpenSSL versions are released just
after security patches. In contrast, the gap between any other commit and a version release
is bigger: releases are made on average seven days after a security patch, but about twenty
days after other types of patches.

To reduce user exposure, it is necessary to release new versions when vulnerabilities are
patched. To that end, it is critical to identify such security patches.
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Fig. 2 Comparative delays for OpenSSL release after an explicit security patch vs after any other patch

3 Data Collection

For much modern software, developers rely on the git version control system. Git makes
available the history of changes that have been made to the code base in the form of a series
of patches. Thus, a patch constitutes a thorough summary of a code change, describing
the modification that a developer has made to the source code at the time of a commit.
Typically, a patch as depicted in Fig. 3, includes two artifacts: a) the log message in which
the developer describes the change in natural language; b) the diff which represents the
changes that are to be applied. The illustrated vulnerability, as in many cases, is due to a
missing constraint that leaves a window for attackers to exploit.

Fig. 3 Example of a security patch in the OpenSSL library
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For our experiments, we consider three projects whose code is widespread among IT
systems: theLinux kernel development project, theOpenSSL library project, and theWire-
shark network protocol analyzer. We also consider the Secbench (Reis and Abreu 2017)
dataset, which includes a large number of vulnerability fixing commit samples from a
variety of projects using mixed programming languages.

For each of our study projects, we attempt to collect positive and negative data for the
classical binary classification task, as well as the unlabeled data for our semi-supervised
learning scenario:

– Positive data (i.e., security patches). We collect patches reported as part of security
advisories, and thus known to be addressing a known and reported vulnerability.

– Negative data (i.e., non-security patches). We use heuristics to build the dataset of
negative data. To ensure that it is unbiased and representative, we explicitly consider
different cases of non-security patches and transparently collect these sets separately
with a clear process to enable replication. Concretely, we consider:

– Pure bug fixing patches. We collect patches that are known to fix bugs in
project code, but that are not security-relevant.

– Code enhancement patches. We collect patches that are not about fixing bugs
or vulnerabilities. Such patches may be delivered by commits to perform code
cleaning, feature addition, performance enhancement, etc.

– Unlabeled data. We finally collect patches that are about fixing the code, but for which
we do not yet know whether it is about fixing a vulnerability or non-security bugs.

The creation of these datasets is summarized in Fig. 4 and detailed in the following
paragraphs.

3.1 Security patches (for positive datasets)

Security patches from study projects We leverage a recent framework proposed by
Jimenez et al. (Jimenez et al. 2018) for automated collection of vulnerability instances from
software archives. The framework builds upon the National Vulnerability Database infor-
mation and attempts to connect such information with other sources such as bug tracking
systems and git repositories. The data recovered include information, for each item, about
the CVE ID, the CVE description, the time of creation, the associated bug ids from the
project bug tracking system, the list of impacted software versions, and the list of com-
mits that fixed the vulnerability. Overall, as of July 2018, we managed to retrieve 1 398,

Fig. 4 Distinct subsets of the dataset built for our experiments
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986, and 495 security patches for Linux, Wireshark, and OpenSSL respectively for this part.
We call this part of the whole dataset C-projects dataset given the uniform nature of the
programming language used.

Security patches from Secbench We consider data from the Secbench (Reis and Abreu
2017) database, which contains 676 reported vulnerability patches from 238 projects. The
authors exploited the projects’ commits using regular expressions for each vulnerability and
then classified the vulnerabilities using the CWE taxonomy. Some vulnerabilities contain
score and severity information (CVE). However, some projects are no longer accessible.
Overall, we managed to collect a total of 648 security patches within 114 projects. Most
vulnerability samples are contributed by only a few number of projects as shown by the long
tail distribution in Secbench (cf. Fig. 5).

3.2 Pure bug fixing patches (for negative datasets)

To ensure that SSPCATCHER can effectively differentiate security-relevant fixes from other
fixes, we set to collect a dataset of non-security-relevant patches following conservative
heuristics. First, we consider patches that are not reported in a security advisory, and whose
commit logs do not include “vulnerability” or “security” keywords. Then, we focus on those
patches whose commits are linked to a bug reported in a bug tracking system.

Finally, we ensure that the bug report itself does not hint at a potential security issue.
For that, we follow the approach proposed by security analysts Zhou and Asankhaya (Zhou
and Sharma 2017). They proposed a regular expression that yields to catch security-
sensitive commits. It, therefore, looks for keywords and combinations of keywords in the
commits, for example: ”denial.of.service”, ”directory. traversal”, etc. We then applied this
approach and drop all cases where the bug report matches the regular expression provided
in Table 1. Overall, with this method, we managed to retrieve 1 934, 2 477 and 8 142 pure

Fig. 5 Secbench dataset distribution
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Table 1 Regular expression used to filter out security-related issues described in bug reports

(?i)(denial.of.service|\bXXE\b|remote.code.execution
|\bopen.redirect|OSVDB|\vuln|\CVE\b|\bXSS\b|\bReDoS\b
|\bNVD\b|malicious|x-frame-options|attack|cross.site
|exploit|directory.traversal|\bRCE\b|\bdos\b|\bXSRF\b
|clickjack|session.fixation|hijack|advisory|insecure

|security|\bcross-origin\b|unauthori[z|s]ed
|infinite.loop|authenticat(e|ion)|brute force|bypass

|constant.time|crack|credential|\bDoS\b|expos(e|ing)
|hack|harden|injection|lockout|overflow|password

|\bPoC\b|proof.of.concept|poison|privilege
|\b(in)?secur(e|ity)|(de)?serializ|spoof|timing|traversal)

bug fixing patches for Linux, Wireshark, and Secbench respectively. Our dataset does not
contain any pure bug-fix patches for OpenSSL due to missing links between commits and
bug reports of OpenSSL. Future work could consider using state-of-the-art bug linking
approaches (Nguyen et al. 2012; Wu et al. 2011; Bissyande et al. 2013).

3.3 Code enhancement patches (for negative datasets)

To ensure that our model will not be overfitted to the cases of fixing patches, we collect
noise dataset represented by commits that enhance the code base with new feature additions.
The model is aimed at recognizing security fixes vs all others altogether. Thus other types
of code enhancement patches are also discriminated against. We considered the case of
feature-addition more explicitly in the labeling of the negative set because they are easy to
label and also to increase the diversity of the negative set.

We thus set to build a parser of commit logs for identifying such commits. To that end,
we first manually investigate a small set of 500 commits over all the projects and attempt
to identify what keywords can be leveraged. Given the diversity of fixes and commit log
tokens, we eventually decide to focus on keywords recurrent in all commits that are not
about feature addition, in order to reduce the search space. These are: bug, fix, bugzilla,
resolve, remove, merge, branch, conflict, crash, debug. Excluding known security patches,
known bug fixes (whether pure or not), and those that match the previous keywords, we
consider the remaining patches as the sought noise for the learning process. Overall, we
collected 681, 658, 679, 2 527 code enhancement patches for Linux, Wireshark, OpenSSL,
and Secbench respectively.

3.4 Unlabeled patches

Ultimately, our goal is to provide researchers and practitioners with an approach for iden-
tifying silent security fixing patches. Thus, we hypothesize that some fixing patches are
actually unlabeled security patches. To build a dataset of unlabeled patches where security
patches may be included, we parse all remaining patches (i.e., patches that are not col-
lected in the previous datasets) and further hone in the subset of unlabeled patches that are
more relevant to be caught as security patches. To that end, we focus on commits whose
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Table 2 Statistics on the collected datasets

OpenSSL Wireshark Linux Secbench Total

Security patches 495 1 398 986 648 3 616

Pure bug fixing patches (–) 2 1 934 2 477 8 142 12 553

Code enhancement patches 618 681 658 2 527 4 483

Unlabeled patches 437 18 067 147 746 69 138 235 388

logs match the regular expression (?i)(bug|vuln1|fix). Eventually, we collected
147 746, 18 067,437 and 69 138 unlabeled patches for Linux, Wireshark, OpenSSL, and
Secbench respectively.

Table 2 summarizes the statistics on the collected datasets. We note that, as we postulated,
most patches are unlabeled. Security patches are mostly silent (Snyk.io 2017). Even in the
case where a patch is present in a security advisory (i.e., the NIST vulnerability database
in our case), the associated commit log may not explicitly use terms that hint to a security
issue. For example, with respect to the regular expression in Table 1, we note that 15.21%
of Wireshark security patches, 37.19% of Linux security patches, and up to 98.78% of
OpenSSL security patches do not match security-related tokens.

4 SSPCATCHER

Our work addresses a binary classification problem of distinguishing security patches
from other patches: we consider a combination of text analysis of commit logs and code
analysis of commit changes diff to catch security patches. To that end, we proceed to the
extraction of ”facts”(e.g. #Sizeof added, #Sizeof removed, etc.) from text and code, and
then perform a feature engineering that we demonstrate to be efficient for discriminating
security patches from other patches. Finally, we learn a prediction model using machine
learning classification techniques.

In a typical classification task, an appropriately labeled training dataset is available. In
our setting, however, this is not the case as introduced earlier: in our dataset, when a com-
mit is attached to a CVE, we can guarantee that it does provide a security patch; when
the commit does not mention a CVE, we cannot assume that it does not provide a security
patch. Therefore, for positive data, i.e., security patches, we can leverage the limited dataset
of patches that have been listed in vulnerability databases (e.g., the NVD). There is, how-
ever, no corresponding set of independently labeled negative data, i.e., non-security patches,
given that developers may silently fix their vulnerable code. This problem was raised in
previous work on the identification of bug fixing patches by Tian et al. (Tian et al. 2012).
Nevertheless, our setting requires even more refined analysis since security patches can be
easily confused with a mere non-security-relevant bug fix. To address the problem of hav-
ing a small set of labeled data and a large set of unlabeled data for security patches, we
consider a Co-Training (Blum and Mitchell 1998) approach where we combine two models,
each trained with features extracted from two disjoint aspects (commit message vs. code
diff) of our dataset. This process has been shown to be one of the most effective techniques
for semi-supervised learning (Nigam and Ghani 2000).

1Commits with logs matching keyword “vuln” cannot be directly considered to be security patches without
an audit of the full description and even of the code change.
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Concretely, SSPCATCHER considers commit logs, on the one hand, and code diffs, on the
other hand, as redundant views of the changes, given that the former describes the latter. Then
we train two separate classifiers, one for each view, that are iterated by exchanging labeled
data until they agree on classification decisions (cf. Section 4.3).

In this section, we first provide information on feature engineering (cf. Section 4.1) and
assessment (cf. Section 4.2). Then, we present the Co-Training approach (cf. Section 4.3).

4.1 Feature Extraction and Engineering

The objective of the feature extraction step is to transform the high-volume raw data that
we have previously collected into a reduced dataset that includes only the important facts
about the samples. The feature extraction then considers both the textual description of
the commits (i.e., the message describing the purpose of the change) and the code diff
(i.e., the actual modifications performed). The feature engineering step then deals with the
representation of the extracted facts into numerical vectors to be fed to machine learning
algorithms.

4.1.1 Commit Text Features

We extract text features by considering all commit logs as a bag of words, excluding stop
words (e.g., “as”, “is”, “would”, etc.) which are very frequently appearing in any English
document and will not hold any discriminative power. We then reduce each word to its
root form using Porter’ stemming (Porter 1980) algorithm. Finally, given the large number
of rooted words, and to limit the curse of dimensionality, we focus on the top 10 of the
most recurring words in commit logs of security patches for the feature engineering step.
This number is selected as a reasonable vector size to avoid having a too-sparse vector for
each commit, given that commit logs are generally short. We calculate the inverse document
frequency (idf ), whose formula is provided in the equation below. It is a measure of how
much information the word provides, that is, whether it is common or rare across all commit
logs. The feature value for each commit is then computed as the idfi = log

|D|
|{dj :ti∈dj }| with

|D| being the total number of documents in the corpus and |{dj : ti ∈ dj }| being the number
of documents where term ti appears.

4.1.2 Commit Code Features

Besides description logs, code change details are available in a commit and can contribute
to improve the efficiency of the model as demonstrated by Sabetta and Bezzi (Sabetta
and Bezzi 2018). Nevertheless in their work, these security researchers considered all code
change tokens as a bag of tokens for embedding. In our work, we propose to refine the
feature selection by selecting meaningful facts from code to produce an accurate and
explainable model. To that end, on the one hand, we are inspired by the classification
study of Tian et al. (Tian et al. 2012), and we extract code facts representing the spread
of the patch (e.g., the number of files/lines modified, etc.), the code units involved (e.g.,
the number of expressions, boolean operators, function calls, etc.). On the other hand, we
manually investigated a sample set of 300 security patches and noticed a few recurring
code facts: for example, sizeof is often called to fix buffer overflow vulnerabilities,
while goto, continue or break constructs are frequently involved in security fixes
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related to loops, etc. Thus, we engineer two sub-categories of features: code-fix features and
security-sensitive features.

Overall, Table 3 provides an enumeration of the exhaustive list of features used in this
study.

4.2 Feature Assessment

4.2.1 Statistical Analysis

Before leveraging the features that we have engineered based on manual analysis and intu-
itive facts, we propose to assess their fitness with respect to discriminating security patches
against other types of patches. To that end, we used the Mann-Whitney U test (Mann and
Whitney 1947)

in order to compare the distribution of a given feature within the set of security patches
against the combined set of pure bug fixing patches and code enhancement patches. The
null hypothesis states that the feature is distributed independently from whether the commit
fixes a vulnerability or not. If we can reject the null hypothesis, the feature is distributed
differently in each set and thus is a promising candidate as input for the machine learning
algorithms.

The Mann-Whitney U tests helped discover that a large majority (i.e., 53 out of 67) of
the computed features were not meaningful unless we rescaled the feature values according
to the size of the patches. Indeed, for example, code enhancement patches that can be huge
(e.g., the addition of a new program file) may include a number of loops and sizeof calls,

Table 3 Exhaustive list of features considered for learning

ID code-fix features ID security-sensitive features

F1 #files changed in a commit F1 #Sizeof added

F2 #Loops added F2 #Sizeof removed

F3 #Loops removed F3 F1 - F2

F4 F2 - F3 F4 F1 + F2

F5 F2 + F3 F5-F6 Similar to F1 to F2 for #continue

F6-F9 Similar to F2 to F5 for #ifs F7-F8 Similar to F1 to F2 for #break

F10-F13 Similar to F2 to F5 for #Lines F9-F10 Similar to F1 to F2 for #INTMAX

F14-F17 Similar to F2 to F5 F11-F12 Similar to F1 to F2 for #goto

for #Parenthesized expressions

F18-F21 Similar to F2 to F5 F13-F14 Similar to F1 to F2 for #define

for #Boolean operators

F22-F25 Similar to F2 to F5 F15-F18 Similar to F1 to F4 for #struct

for #Assignments

F26-F29 Similar to F2 to F5 F19-F20 Similar to F1 to F2 for #offset

for #Functions call

F30-F33 Similar to F2 to F5 for #Expression F21-F24 Similar to F1 to F4 for #void

ID text features

W1-W10 10 Most recurrent non-stop words
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Table 4 Statistical analysis results for top normalized features with highest discriminative potential

Code-fix features sec.-sensitive features Text features

F6 F16 F24 F11 F22 F24 W2 W4 W6

Mean for

security patches 0.120 0.038 0.110 0.004 0.006 0.350 0.360 0.360 0.350

Mean for

other patches 0.090 0.016 0.050 0.003 0.004 0.330 0.310 0.320 0.330

P-value (MWW) 5e−62 2e−40 4e−103 1e−13 1e−15 6e−47 2e−65 2e−66 7e−50

making related features meaningless, unless their numbers are normalized to the size of
code in the patch. We then applied, for each feature value per patch, the following formula:

Fnorm = F

#patch added lines + #patch removed lines
(1)

where the normalized value Fnorm of a feature is computed by taking into account the patch
size. Table 4 provides some example cases where the statistical tests were successful against
a strict significance level of α = 0.0005 for the p-value. Due to space limitations, we show
only top-3 features per feature group. For 52 out of 67 features engineered, the statistical
analysis shows a high potential of discriminative power. Nevertheless, in the rest of our
experiments, and following insights from previous studies (Perl et al. 2015), we keep all fea-
tures for the learning process as some combinations may contribute to yielding an efficient
classifier.

4.2.2 Classification Experiments

The previous statistical analysis assessed the discriminative power of engineered features
with respect to security patches and the combined set of bug fixing and code enhance-
ment patches. We propose to further assess the behaviour of one-class classification models
with these features applied to the unlabeled patches. Our experiments aim at answering two
questions:

– Can the features help effectively classify unlabeled patches? We attempt to assess to
what extent unlabeled patches that are flagged as security patches would constitute
noise or good samples to help augment the training data of a binary classifier.

– Are the feature categories independent and thus splittable for a Co-Training model
learning? The choice of Co-Training as an approach is based on the hypothesis that
the views are redundant. However, another constraint for the efficacy of Co-Training is
that the features must be independent (Nigam and Ghani 2000) (i.e., they do not lead to
exactly the same classifications).

Features efficiency. Various verification problems in machine learning involve identify-
ing a single class label as a ‘target’ class during the training process, and at prediction time
make a judgement as to whether or not an instance is a member of the target class (Hemp-
stalk and Frank 2008). In many cases, a one-class classifier is used in preference to a
multi-class classifiers, mainly because it is inappropriate or challenging to collect or use
non-target data for the given situation. In such cases, the one-class classifier is actually an
outlier detector since it attempts to differentiate between data that appears normal (i.e., from
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the target class) and abnormal with respect to a training data composed only of normal data.
Thus, if the features are not efficient to fully characterize the normal data in the training set,
many samples classified as normal will actually be false positives and thus constitute noise
in an augmented set of normal data.

Given the lack of ground truth (for unlabeled patches), we assess whether unlabeled
patches that are flagged as security patches by a one-class classifier are noise (i.e., false
positives), and thus deteriorate a binary classification performance when added to a training
dataset. The comparison is done following two experiments:

– First, we compute accuracy, precision and recall metrics of a classical SVM binary
classifier using the existing set of security patches as positive data and other sets of
non-security (i.e., bug-fix and code enhancement) patches as negative data.

– Second, we augment the existing set of security patches with automatically labeled
patches after applying a one-class classifier to the dataset of unlabeled patches. Then
we use this augmented set as the positive data and redo the first experiment. This
workflow is detailed in Fig. 6.

If the features are not efficient in characterizing security patches, the one-class classifier
will yield false positives and false negatives. Thus, when adding false positives to the ground
truth positive data, we will be introducing noise which will lead to performance degradation.
However, if the features are efficient, we will be increasing the training set and potentially
leading to a better classification performance.

Equations (2) and (3) provide the standard formulas for computing performance metrics,
where T P is the number of True Positives, T N that of True Negatives, FP that of False
Positives and FN that of False Negatives.

Precision = T P

T P + FP
; Accuracy = T P + T N

T P + T N + FP + FN
(2)

Recall = T P

T P + FN
; F1 = 2 ∗ Precision ∗ Recall

P recision + Recall
(3)

Our experiments are performed with 10-Fold cross validation and performance is mea-
sured for the target class of security patches and only on the initial ground truth samples.
Using only the initial set of security patches in the training dataset, we record an average
Accuracy of 58% (Recall = 56%, Precision= 71%). However, when we augment the train-
ing set with flagged unlabeled patches, we observe a clear improvement of the accuracy to
79% (Recall = 76%, Precision= 85%).

Fig. 6 Workflow for assessing the discriminative power of features
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Fig. 7 Euler diagrams representing the overlaps between sets of unlabeled patches that are classified as
security patches when using One-Class SVM model based on variants of feature sets

The engineered features are effective for characterizing security patches. They can be used to
collect patches for artificially augmenting a training dataset.

Features independence. The two most closely related work in the literature (Zhou and
Sharma 2017; Sabetta and Bezzi 2018) rely on commit text or/and code changes that they
treat as simple bags of words. Nevertheless, no experiments were performed to assess the
contribution and complementarity of the different information parts. We explore these con-
tributions by evaluating the overlap among the unlabeled patch subsets that are flagged
when using different feature sets. Figure 7 illustrates these overlaps with Euler diagrams
for the different projects considered in our study. We note that although there are overlaps,
a large portion of samples are detected exclusively with each feature set (e.g., in Linux,
99, 513+ 395 = 99, 908 patches out of 99, 513+ 395+ 1+ 37, 161 = 137, 070 patches –
73%– are exclusively detected by either code-fix features or text features). Nevertheless, we
note that security-sensitive features are more tightly related to code-fix features (except for
7 patches in OpenSSL, all flagged patches with security-sensitive features are also flagged
with code-fix features2, which was to be expected given that security-sensitive features are
also about “fixing” code).

We then conclude that code-fix features can be merged with security-sensitive features
to form code features, which constitute a feature set that is independent from the text
features set. As Krogel and Schefferd demonstrated, Co-Training is only beneficial if the
data sets used in classification are independent (Krogel and Scheffer 2004). This insight on
the sets of engineered features serves as the foundation for our model learning detailed in
the following paragraphs.

The engineered features are effective for characterizing security patches. They can be used to
collect patches for artificially augmenting a training dataset.

2This does not mean that security-sensitive features are useless or redundant. Patches flagged with code-fix
features are scarcely flagged with security-sensitive features.
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4.3 Co-TrainingModel Learning

Experimental results described above have established that the different features engineered
provide meaningful information for the identification of security patches. Nevertheless,
given the large number of these features, manual construction of detection rules is difficult.
We propose to apply techniques from the area of machine learning to automatically analyze
the code commits and flag those that are most likely to be delivering security patches.

In the construction of our learning-based classifier, we stress on the need for practical
usefulness to practitioners. Thus, following recommendations by authors (Perl et al. 2015)
proposing automatic machine-learning approaches to support security analysts, we strive to
build an approach towards addressing the following challenges:

– Generality: Our feature engineering mixes metadata information from commit logs,
which may or may not be explicit, with numerical code metrics. It is thus important
that the classifier effectively leverages those heterogeneous features to infer an accurate
combined detection model.

– Scalability: Given that most relevant software projects include thousands of commits
that must be analyzed, it is necessary for the approach to be able to operate on the large
amount of available features in a reasonable time frame.

– Transparency: In practice, to be helpful for analysts, a classifier must provide human-
comprehensible explanations with the classification decision. For example, instead of
requiring an analyst to blindly trust a black-box decision based on deep features, infor-
mation gain3 (InfoGain) scoring values of human-engineered features can be used as
hints for manual investigation.

4.3.1 Model Learning

Experiments with one-class classification have already demonstrated that it is possible to
build a classifier that fits with the labeled patches in the ground truth data. Unfortunately,
in our case, a major problem in building a discriminative classifier is the non-availability of
labeled data: the set of unlabeled patches is significantly larger than the limited dataset of
labeled patches that we could collect. A classification task for identifying security patches
requires examples of both security and security-irrelevant patches. In related work from
the security industry (Zhou and Sharma 2017), team members having relevant skills and
experience spent several months labeling closed-source data to support the model learn-
ing. Since their dataset was not publicly4 available, we propose to rely on the Co-Training
algorithm to solve the non-availability problem. The algorithm was proposed by Blum and
Mitchell (Blum and Mitchell 1998), for the problem of semi-supervised learning where
there are both labeled and unlabeled examples. The goal of Co-Training is to enhance the
performance of the learning algorithm when only a small set of labeled examples is avail-
able. The algorithm trains two classifiers separately on two sufficient and redundant views
of the examples and lets the two classifiers label unlabeled examples for each other.

Figure 8 illustrates the Co-Training process implemented in this work. It takes labeled
and unlabeled patches from a given project or a set of projects and learns a classification

3Information gain is a metric based on entropy that allows to tell how important a given attribute of the
feature set is.
4Our requests to obtain datasets from authors of (Zhou and Sharma 2017) and (Sabetta and Bezzi 2018)
remained unresponded.
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Fig. 8 Co-Training learning model (cf. details in Algorithm 1)

model for predicting patch security relevance. An important assumption in Co-Training is
that each view is conditionally independent given the class label. We have demonstrated in
Section 4.2.2 that this was the case for the different categories of features explored in this
work. Indeed, Co-Training is effective if one of the classifiers correctly labels a sample that
the other classifier previously misclassified. If both classifiers agree on all the unlabeled
patches, i.e. they are not independent, labeling the data does not create new information.

Concretely, given a training set comprising labeled patches and noted LP , and a set of
unlabeled patches UP , the algorithm randomly selects μ samples from UP to create a
smaller pool U ′, then executes the process described in Algorithm 1 during k iterations.

The overall idea behind the Co-Training algorithm steps is that the classifier h1 adds
examples to the labeled set which are in turn used by the classifier h2 in the next iter-
ation and vice versa. This process should make classifiers h1 and h2 to agree with each
other after k iterations. In this study, we selected Support Vector Machines (SVM) (Vap-
nik 2013) as the internal classification algorithm for the Co-Training. SVM indeed provides
tractable baseline performance for replication and comparisons against state-of-the-art
works.

4.3.2 Identification of Security Patches

Eventually, when the Co-Training is stabilized (i.e., the two internal classifiers agree), the
output classifier can be leveraged to classify unlabeled patches. Eventually, in this work, we
consider the classifier built on the code view (which has been constantly improved due to
the co-training) as the yielded classifier.
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5 Experimental Study and Results

Our experiments aim at assessing the performance of the overall approach, detailing
the impact of the Co-Training algorithm and comparing against the state-of-the-art. We
investigate the following research questions:

– [RQ-1.] What is the effectiveness of the proposed SSPCATCHER Co-Training
based patch classification approach?

To answer this research question, we perform binary classification experiments and
report on Precision, Recall and F-Measure performance metrics of the classifier when
discriminating security patches. We also evaluate performance in terms of execution
time.

– [RQ-2.] Can SSPCATCHER be trained to predict security-relevant patches across
projects?

We investigate the possibility of training a model by leveraging data from a given
project and remaining effective on another target project. Firstly, we consider the case
when the projects are written in the same programming language (C). Secondly, we
consider projects that are written in mixed programming languages.

– [RQ-3.] How does SSPCATCHER compare against the state-of-the-art?
First, we replicate the main components of the approach proposed by Sabetta et

al. (Sabetta and Bezzi 2018) (i.e., SVM binary classification with bag-of-words features
of code and log) and then compare this approach against SSPCATCHER on our datasets.
Second, we conduct dissection study experiments where we evaluate the contribution
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of our feature set and the choice of Co-Training by benchmarking against other design
choices.

– [RQ-4.] Can SSPCATCHER flag unlabeled patches in the wild?
In this research question, we go beyond in-the-lab experiments and propose to assess

the performance of SSPCATCHER on unseen samples. To that end we propose to split
the whole collected dataset based on timeline (instead of the classical ten-fold cross
validation). SSPCATCHER is trained on all samples except from the last year, and tested
only on the last year’s data, following experimental procedure by Allix et al. (Allix
et al. 2015). We consider the predictions of SSPCATCHER on the unlabeled patches in
the test set and manually confirm whether the prediction is correct.

5.1 RQ1: Effectiveness of SSPCATCHER

We perform binary classification experiments to assess the performance of classifiers in
discriminating between security patches (positive class) and non-security patches (negative
class). We remind that, as illustrated in Fig. 4, the non-security patches consist in the pure
bug-fix patches and code-enhancement patches. These experiments, similarly to past stud-
ies (Sabetta and Bezzi 2018; Zhou and Sharma 2017; Tian et al. 2012), report performance
based on the ground-truth data (i.e., unlabeled patches are not considered to compute the
performance score).

Our first experiment investigates the performance of the Co-Training approach when
varying the size of the unlabeled dataset in a uniform programming language environment
(C).

In this experiment, we randomly split the labeled patch sets into two equal size subsets:
one subset is used in conjunction with the unlabeled dataset for the Co-Training, while the
other is used for testing. Precision, Recall, and Accuracy are computed based on the test
set. Figure 9 presents the results, showing precision measurements above 90%, and recall
measurements between 74% and 91%. We do not show evaluation graphs for OpenSSL
dataset and Secbench since this dataset included only 436 unlabeled patches. With this

Fig. 9 Precision, Recall and Accuracy metrics in benchmark evaluation with varying sizes for the unlabeled
dataset
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quantity of unlabeled data, SSPCATCHER yields with OpenSSL the lowest Precision met-
rics at 74%, but the highest Recall at 93%. About the Secbench dataset, we do not consider
it in this experiment because of the mixed nature of the programming languages used. We
note that when using C-projects dataset (including Linux, OpenSSL, and Wireshark) the
performance remains high. The best performing state-of-the-art approach in the literature
for identifying security-relevant commits has reported Precision and Recall metrics at 80%
and 43% respectively (Sabetta and Bezzi 2018). Tian et al. have also reported F1-Measure
performance around 70% for identifying bug fixing commits (Tian et al. 2012), while the
F1-measure performance of SSPCATCHER is 89% on average.

In contrast with OpenSSL, Wireshark, and Linux datasets which represent only sam-
ples written in the same programming language (C), the Secbench dataset includes projects
whose code is written in various programming languages. Thus, with Secbench we evalu-
ate the possibility of using our feature set and the produced model to predict on any type of
project. The results are lower when we consider commits in any project (irrespective of the
programming language), but the results are higher (precision: 93%, recall: 89% F1 score:
90%) when we only focus on predicting commits on C files. This (better) performance on
C files is expected given that our feature set is partly inspired from the bug-fixing feature
set proposed by Tian et al. (Tian et al. 2012) who focused on the C programming language.

Our second experiment estimates the time consumption of the classification approach
to ensure that this approach can be executed in a reasonable time. We then evaluate here
the time needed for the two classifiers used in the co-training algorithm to label the whole
unlabeled dataset. The experiments were done with a computer with these descriptions:

– MacOS: version 10.14.6
– Processor: 2,4 GHz intel core i9
– Memory: 32 GB 2400 MHz-DDR4
– Graphics: Intel UHD Graphics 630 1536 MB

The time value was obtained with the time() function of the standard python library and the
value was 125 s for the whole set of unlabeled patches

5.2 RQ2: Cross-project Evaluation

In the wild of software development projects, as reflected by the case of OpenSSL, there
can be limitations in the available labeled data. Thus, it could be beneficial if practition-
ers can train a model by leveraging data from another project and still obtain reasonable
classification performance on a distinct target project. We investigate this possibility on our
datasets considering firstly projects that are written in the same programming language (C).
Secondly, we consider projects that are written in a mixed programming language (C).

5.2.1 Cross-project Classification on C-projects Dataset

Table 5 shows the classification performance results, in terms of Recall and Precision,
when training on one project and applying the model to another. We note that training on
Wireshark data yields reasonable (although not optimal) performance on OpenSSL patches,
while training on OpenSSL interestingly offers high performance on Linux patches. In both
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Table 5 Cross-project classification on projects using programming language C

Training on

OpenSSL Wireshark Linux

Testing on precision/recall precision/recall precision/recall

OpenSSL (0.93 /0.94) 0.71 / 0.48 0.42 / 0.88

Wireshark 0.53 / 0.88 (0.93 / 0.85) 0.50 / 0.95

Linux 0.89 / 0.78 0.45 / 0.93 (0.95 / 0.84)

cases, the converse is not true. Variations in cross-project performances may be explained
by factors such as coding styles differences, code base size, or different security patching
policies among projects. Future work will investigate the effects of these factors.

5.2.2 Cross-project Classification on Projects Using Mixed Programming Languages

Table 6 shows the classification performance results, in terms of Recall and Precision, when
training on one project and applying the model to another. We first consider the top five
projects in Secbench dataset that are written in mixed programming languages. We retain
Rails(95.4% Ruby), Php-src (23.8% php), Mantisbt,Curl (7.5% php), Server (61.5% php),
Mantisbt (76.9% php). To these projects, we add the three projects (Linux, OpenSSL,Wire-
shark) used in section 4.2.1. In particular, we note that training on OpenSSL data yields
reasonable performance on Php-src patches, while training on Wireshark offers relatively
high performance on Rails patches. Conversely, neither applies. The relatively weak results
of this cross-project experiment can be explained by the mixed nature of the projects’ pro-
gramming languages. However, these experiments show that SSPCATCHER allows us to
classify with relatively acceptable results given the difficulty of the task.

Table 7 illustrates the classification performance, considering Recall and Accuracy when
applying the model to all other projects after training on one project. We consider eight
projects: Linux, Wireshark, OpenSSL, Curl, Mantisbt, Php-src, Server, and Rails. These
projects are the result of adding the top five projects from the Secbench dataset and the
three projects obtained from the Jimenez et al. framework. The principle is to train on one
project in the batch and predict on all other projects. These experiments allow us to show
that training on Linux data yields medium performance on the other patches.

Table 6 Cross-project classification on projects using mixed programming language

Training on

OpenSSL Wireshark Linux

Testing on precision/recall precision/recall precision/recall

Rails 0.50 / 0.29 0.60 / 0.44 0.50 / 0.30

Curl 0.51 / 0.31 0.52 / 0.75 0.46 / 0.46

Mantisbt 0.53 / 0.43 0.50 / 0.38 0.56 / 0.36

php-src 0.77 / 0.68 0.50 / 0.62 0.51/0.51

Server 0.49 / 0.46 0.57/0.72 0.47/0.44
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Table 8 Comparison of F-Measure metrics

OpenSSL Wireshark Linux Secbench Whole data

Our Approach 0.93 0.89 0.94 0.76 0.83

Sabetta & Bezzi (Sabetta and Bezzi 2018) 0.45 0.45 0.67 0.44 0.57

5.3 RQ3: How does SSPCATCHER Compare Against the State-of-the-art?

While we report a F-Measure performance of around 90%, the most recent state-of-the-
art on security commit classification (i.e., (Sabetta and Bezzi 2018)) reports performance
metrics around 55%. Our experiments however are performed on different datasets because
the dataset used by Sabetta & Bezzi was not made available. Thus, we first replicate the
essential components of the best performing approach in their work (Sabetta and Bezzi
2018) (i.e., SVM bi-classification with bag-of-words features of code and log), and can
therefore compare5 their approach and ours in Table 8.

The second experiment assesses the contribution of the feature set on the one hand, and
of the choice of Co-Training as learning algorithm on the other hand. We replicate the SVM
binary classifier proposed by Sabetta and Bezzi (Sabetta and Bezzi 2018) and apply it on
our labeled patches. We also build a similar classifier, however using our own feature set.

We perform 10-fold cross validations for all classifiers and evaluate the performance
of the classifier in identifying labeled security patches in the whole dataset. Results in
Table 9 indicate that our feature set is more effective than those used by the state-of-the-
art, while the Co-Training semi-supervised model is more effective than the classical binary
classification model.

Given that our code-fix features overlap with features used by Tian et al. (Tian et al. 2012)
for classifying bug fix patches, we present performance comparisons with the different
feature sets. Results in Table 10 confirm that our extended feature set (with vulnerability-
sensitive features) allows to increase performance by up to 26 percentage points. The
performance differences between projects further confirm that the features of Tian et
al. (Tian et al. 2012) are indeed very specific to Linux.

5.4 RQ4: Can SSPCATCHER Flag Unlabeled Patches in theWild?

In these experiments, we only consider the C-projects dataset(Linux, OpenSSL, and
Wireshark).

Performance computation presented in previous subsections are based on cross valida-
tions where training and test data are randomly sampled. Such validations often suffer from

5Note that the recorded performance of the replicated approach on our dataset is in line with the performance
reported by the authors in their paper (Sabetta and Bezzi 2018).
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Table 9 Importance∗ of Classification method and feature set

Precision Recall F1-measure

SVM binary classification

(with features of Sabetta & Bezzi (Sabetta and Bezzi 2018)) 0.44 0.45 0.44

SVM binary classification

(with our feature set) 0.87 0.38 0.53

Co-Training + SVM

(with our feature set) 0.85 0.81 0.83

*Performance metrics are for classifying ‘security patches’. Due to space limitation, we refer the reader to
the replication package for all evaluation data.

the data leakage problem (Ribeiro et al. 2016), which leads to the construction overly opti-
mistic models that are practically useless and cannot be used in production. For example,
in our case, data leakage can happen if the training set includes security patches that should
actually only be available in the testing set (i.e., we would be learning from the future).
We thus propose to divide our whole dataset, with patches from all projects, following the
commits timeline, and select the last year’s commits as test set. The previous commits are
all used as training set. We then train a classifier using SSPCATCHER approach and apply
it to the 475 commits of the test set. To ensure confidence in our conclusions, we focus on
automatically measuring the performance based only on the last year patches for which the
labels are known (i.e., the patches coming from the security patches dataset, the pure bug fix
patches dataset, and the code enhancement patches dataset as illustrated in Fig. 4). Overall,
we recorded precision and recall metrics of 0.64 and 0.67 respectively.

In a final experiment, we propose to audit 10 unlabeled patches flagged as security
patches by a Co-Training classifier built by learning on the whole data. We focus on the
top-10 unlabeled patches that are flagged by the classifier with the highest prediction prob-
abilities. Two authors manually cross-examine the patches to assess the plausibility of the
classification. We further solicit the opinion of two researchers (who are not authors of this
paper) to audit the flagged security patches. For each presented patch, patch auditors must
indicate whether yes or no they accept it as a security patch. Auditors must further indicate
in a Likert scale to what extent the associated details on the features with highest Info-
Gain was relevant to the reason why they would confirm the classification. Among the 10
considered patches, 5 happen to be for Linux, 3 for OpenSSL and 2 are for Wireshark.

We compute Precision@10 following the formula :

Precision@k = 1

#auditors

#auditors∑

i=1

#conf irmed patches

k

Ideally, a security patch should be confirmed experimentally by attempting an exploit.
Nevertheless, this requires extremely high expertise for our subjects (Linux, OpenSSL and
Wireshark) and significant time. Instead, and to limit experimenter bias, auditors were asked
to check at least whether issues fixed by the patches have similar occurrences in line with
known potential vulnerabilities. For example, one of the flagged security patches is “fixing a
memory leak” in OpenSSL (cf. commit 9ee1c83). The literature indicates this as a known
category of vulnerability which is easily exploitable (Szekeres et al. 2013).

At the end of the auditing process, we record a Precision@10 metric of 0.55. Although
this performance in the wild may seem limited, it is actually comparable to the performance
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Fig. 10 Do the highlighted features provide relevant hints for manual review of flagged patches?

recorded in the lab by the state-of-the-art, and is a very significant improvement over a
random classifier that, given the small proportion of security patches (Ponta et al. 2019),
would almost always be wrong.

Figure 10 indicates the distribution of the Likert scale values for the satisfaction rates
indicated by the auditors for the usefulness of leveraging the features with highest InfoGain
to confirm the classification.

RQ4 The approach helps to catch some silent security patches. Features with high InfoGain
can be useful to guide auditors.

6 Insights, Threats to Validity, and Limitations

6.1 Discussion

The Deep learning panacea. Co-attention is an interesting deep-learning approach that could
actually be relevant for accurately classifying code changes. Unfortunately, neural network
based approaches have one constraint and one limitation in the context of our work: (1)
they require large datasets to train (when pre-trained models are unavailable as is the case
here). Datasets on security patches are not only scarce but also highly imbalanced; (2) they
are generally not sufficiently explainable, which is a strong limitation as we need a trade-
off between accuracy and interpretability of results (i.e., to provide hints to the analyst as
to why the patch is predicted as being security-related). Our focus in this work was to deal
with dataset imbalance, hence we did not aim for a deep learning approach. Future work
could investigate the possibility of leveraging models that were pre-trained for bug fixes and
fine-tune them for security fix detection.

Excluded features. During feature extraction, we have opted to ignore information related
to the author of a commit or the file where the commit occurs, as such information can lead
to an overfitted model. Furthermore, we expect our classifier to be useful across projects,
and thus we should not include project-specific features. In contrast, although we found that
some selected features have, individually, little discriminative power, we keep them for the
learning as, in combinations, they may help yield efficient classifiers.

Benefit of unlabeled data. Generally, labeling is expensive and time-consuming, while
unlabeled data is often freely available on large scales. Our Co-Training approach success-
fully leverages such data and turns a weakness in our problem setting into an essential part
of the solution. Furthermore, it should be noted that, by construction, our dataset is highly
imbalanced. Although some data balancing techniques (e.g., SMOTE (Chawla et al. 2002))
could be used, we chose to focus our experiments on validating the suitability of our feature
set with the Co-Training for semi-supervised learning. Future work could investigate other
optimizations.
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6.2 SSPCATCHER and the Practice of Software Development

SSPCATCHER was designed to be readily integrated into a real-world pipeline of collabora-
tive software development. First, in terms of inputs, we consider information that is readily
available and relevant for the purpose of security patch prediction. Second, the features for
representing patch samples are extracted only based on the sample patch, without leverag-
ing external information. This design choice contributes to reducing the computation time:
simple features are considered based on patch information, instead of building on complex
code features such as cyclomatic complexity metrics. Third, we envision SSPCATCHER to
be deployed in a typical code management system. In such systems which implement pre-
commit tasks such as with “Git hook”, it is possible to perform a set of processing actions
on a commit before adding it to the repository. Our approach is expected to be leveraged in
such scenarios where a security relevance warning can be made before the commit is made
publicly visible or even accepted.

On the other hand, SSPCATCHER was developed in python and written in the form
of a library so that it can be easily integrated into an existing pipeline. It could directly
incorporate inputs from a pipeline and produce the necessary outputs.

Finally, we note that SSPCATCHER performs very well on patches applied to C program
files but also reasonably well on patches for other programming languages. This opens the
door to the identification of security patches in large projects where code from different
programming languages co-exist

6.3 Threats to Validity

As with most empirical studies, our study carries some threats to validity. An important
threat to internal validity in our study is the experimenter bias when we personally labeled
code enhancement commits. However, we have indicated the systematic steps for making
the decisions in order to minimize bias. As a threat to external validity, the generalizability
of the results can be questioned since we could only manually assess a small sample set
of flagged unlabeled patches. Given that our ranking is based on prediction probability,
assessment of top results is highly indicative of the approach performance. Finally, threats
to construct validity concern our evaluation criteria. Nevertheless, we used standard metrics
such as Precision, Recall, F-Measure, and Likert scale to evaluate the effectiveness of the
SSPCATCHER approach.

6.4 Limitations

Our approach exhibits a number of limitations in terms of:

– Programming language support: SSPCATCHER applies to code changes, i.e., diffs.
While we do not require any programming language-specific parser to extract feature
values, our feature engineering is partly inspired from the bug-fix identification task
for C programs by Tian et al (Tian et al. 2012). Consequently, and as shown by the
performance results on Secbench, our approach works best on C language. Neverthe-
less, the results that we obtain overall, including other programming languages, remain
acceptable (i.e., largely over 50% Precision score).

– Expressiveness and interpretability of the feature set: our feature set is limited to our
manually engineering effort based on 300 vulnerability fixes. We acknowledge the lim-
itation that this feature set is not exhaustive and that they remain high-level hints that
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cannot systematically be used to explain the security relevance. This later limitation,
which we share with the state of the art, makes it necessary to rely on human expertise
to document the security aspect of the patch.

– Sensitiveness to project types: Our experimental results show that SSPCATCHER per-
formance differs across projects. The learned model is further influenced by coding
styles, dataset size, and security patching policies which affect the inter-project appli-
cation. Due to limitations in the collected dataset size, the produced model may not be
used in the wild without re-training.

– Exploitation of commit metadata: SSPCATCHER does not exploit commit metadata,
which is a relevant source of information for learning a more accurate model for secu-
rity patch identification. We have made such a design choice by considering that some
metadata, such as the commit author, may lead to overfitting due to the fact that some
projects have designated security maintainers.

6.5 FutureWork

We plan to apply SSPCATCHER to security patch identification to Java projects after collect-
ing the necessary training data (e.g., from (Ponta et al. 2019)). Such a classifier could then
help the open source community report more vulnerabilities and their patches (those address
vulnerabilities) to security advisories. Besides SVM, which was used to ensure tractable
performance comparisons with the state-of-the-art, we will investigate some Boosting algo-
rithms. Finally, we will consider adapting other security-sensitive features (e.g., stall ratio,
coupling propagation, etc. from (Chowdhury et al. 2008)) to the cases of code differences
to assess their impact on the classification performance.

7 RelatedWork

The identification of security-relevant commits has applications for various stakeholders in
software development. The literature includes a number of related works that we summarize
in this section.

Our work is related to several research directions in the literature, most notably studies
on 1) Security commit identification, 2) vulnerability management and 3) change analysis.

7.1 Security Commit Identification

Recently, researchers from the security industry (Zhou and Sharma 2017; Sabetta and Bezzi
2018) (from SourceClear, Inc., and SAP respectively)

have presented early investigations on the prediction of security issues in relation with
commit changes. Zhou and Asankhaya (Zhou and Sharma 2017) focus on commit logs,
commit metadata, and associated bug reports, and leverage regular expressions to identify
features for predicting security-relevant commits. The authors use embedding (word2vec)
to learn the features, which leads to an opaque decision-making system (Pontin 2018;
Knight 2017) when it comes to guiding a security analyst in his/her auditing tasks. The
approach is further limited since experimental data show that not all fixes are linked to
reported bugs, and not all developers know (or want to disclose in logs) that they are fixing
vulnerabilities. Sabetta and Bezzi (Sabetta and Bezzi 2018) improve over the work of Zhou
and Asankhaya by considering code changes as well. Their approach is fully-supervised
(thus, assuming that the labeled dataset is perfect and sufficient).
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Closely related work in identifying security patches is contributed so far by the industry.
Nevertheless, various academic works rely on scarce data to train machine learning models for
vulnerability detection, exploitation, or patching. Our work will enable the amplification of
such datasets (beyond the disclosed security patches), to include silent fixes, thus increasing
the coverage and reliability of the state-of-the-art.

7.2 Vulnerability Management

Recently, the topic of Autonomous Cyber Reasoning Systems (Ji et al. 2018) has attracted
extensive attention from both industry and academia, with the development of new tech-
niques to automate the detection, exploitation, and patching of software vulnerabilities in a
scalable and cost-effective way. Static analysis approaches such as the code property graph
by Yamaguchi et al. (Yamaguchi et al. 2014b) require a built model of vulnerabilities based
on expert knowledge. Dynamic approaches leverage fuzzing to test a software with inten-
tionally invalid inputs to discover unknown vulnerabilities (Godefroid et al. 2008; Sutton
et al. 2007), or exploit taint analyses to track marked information flow through a program
as it executes in order to detect most types of vulnerabilities (Newsome and Song 2005),
including leaks (Li et al. 2015). Such approaches, although very precise, are known to
be expensive, and achieve a limited code coverage (Brooks 2017). Recently, researchers
have been investigating concolic analysis (Cadar et al. 2008) tools for software security.
Mayhem (Cha et al. 2012) is an example of such a system.

The literature includes a number of approaches that use software metrics to highlight
code regions that are more likely to contain vulnerabilities. Metrics such as code churn
and code complexity along with organizational measures (e.g., team size, working hours)
allowed to achieve high precision in a large scale empirical study of vulnerabilities in Win-
dows Vista (Zimmermann et al. 2010). However, Jay et al. (Jay et al. 2009) have warned
that many of these metrics may be highly correlated with lines of code, suggesting that such
detection techniques are not helpful in reducing the amount of code to read to discover the
actual vulnerable piece of code.

Nowadays, researchers are exploring machine learning techniques to improve the per-
formance of automatic software vulnerability detection, exploitation, and patching (Ji et al.
2018; Li et al. 2018). For example, Scandariato et al. (Scandariato et al. 2014) have trained
a classifier on textual features extracted from source code to determine vulnerable soft-
ware components. Xiaoning Du et al. (Du et al. 2019) also propose an approach named
LEOPARD that uses code metrics features for the identification of vulnerable functions in
projects. Their feature extraction process was mainly based on code complexity instead of
Yang Xiao et al. (Xiao et al. 2020) work that used function signatures. These approaches
yield good predictions results with several machine learning algorithms. However, it’s chal-
lenging to train automatic learning models without an available and suitable vulnerable code
data set. Jimenez et al. proposed VulData7, an extensible framework and dataset of real vul-
nerabilities, automatically collected from software archives. VulData7 retrieves patches for
1,600 of the 2,800 reported vulnerabilities from the four systems available on GitHub for
analysis and predictive vulnerability studies.

Several unsupervised learning approaches have been presented to assist in the discov-
ery of vulnerabilities (Yamaguchi et al. 2013; Chang et al. 2008). We differ from these
approaches both in terms of objectives and in the use of a combination of features from
code and metadata. With respect to feature learning, new deep learning-based approaches

151   Page 28 of 32 Empir Software Eng (2022) 27: 151



(Li et al. 2018) are being proposed since they do not require expert intervention to gener-
ate features. The models are however mostly opaque (Pontin 2018) for analysts who require
explainability of decisions during audits. Capturing code semantics and properties for
feature engineering is one of the most effective approaches to unsupervised learning (Yam-
aguchi et al. 2014a). Yaqin Zhou et al. (Zhou et al. 2019) propose an automatic feature
extraction approach based on graph properties for accurate predictions of vulnerabilities.
Finally, it is noteworthy that the industry is starting to share with the research community
some datasets yielded by manual curation efforts of security experts (Ponta et al. 2019).

7.3 Change Analysis

Software change is a fundamental ingredient of software maintenance (Li et al. 2013). Soft-
ware changes are often applied to comply to new requirements, to fix bugs, to address
change requests, and so on. When such changes are made, inevitably, some expected and
unexpected effects may ensue, even beyond the software code. Software change impact
analysis has been studied in the literature as a collection of techniques for determining the
effects of the proposed changes on other parts of the software (Arnold 1996).

Researchers have further investigated a number of prediction approaches related to
software changes, including by analysing co-change patterns to predict source code
changes (Ying et al. 2004). Closely related to ours is the work of Tian et al. (Tian et al.
2012) who propose a learning model to identify Linux bug fixing patches. The motivation
of their work is to improve the propagation of fixes upwards the mainline tree.

SSPCATCHER, however, is substantially different regarding: (1) Objective:. (Tian et al.
2012) targets Linux development, and identifies bug fixes. We are focused on security
patches. (2) Method: (Tian et al. 2012) leverages the classification algorithm named Learn-
ing from Positive and Unlabeled Examples (LPU) (Li and Liu 2003). In contrast, we explore
Co-Training which requires two independent views of the data. We also include a more
security-sensitive set of features. We explore a combination of latent (e.g., #sizeof) and
explicit (e.g., keyword) features. (3) Evaluation: (Tian et al. 2012) was evaluated against
a keyword-based approach. We evaluate against the state-of-the-art and based on manual
audit. All data is released and made available for replication. Following up on the work of
Tian et al. (Tian et al. 2012), Hoang et al. have proposed a deep learning-based tool for
classifying bug fix commits (Hoang et al. 2018).

Security analysis of commits has been investigated by Perl et al. (Perl et al. 2015) who
presented VCCFinder for flagging suspicious commits by using an SVM classifier. In con-
trast to our work, VCCFinder aims at identifying vulnerability-introducing changes, while,
conversely, we aim for identifying those changes that fix vulnerabilities.

8 Conclusion

We have investigated the problem of identifying security patches, i.e., patches that address
security issues in a code base. Our study explores a Co-Training approach which we demon-
strate to be effective. Concretely, we proposed to consider the commit log and the code
change diff as two independent views of a patch. The Co-Training algorithm then iteratively
converges on a classifier that outperforms the state-of-the-art. We further show experi-
mentally that this performance is due to the suitability of our feature set as well as the
effectiveness of the Co-Training algorithm. Finally, experiments on unlabeled patches show
that our model can help uncover silent fixes of vulnerabilities.
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Data Availability We provide the dataset, scripts, and results as a replication package at http://github.
com/vulnCatcher/vulnCatcher. Our implementation of SSPCATCHER is further open sourced for the entire
research to build on our results.
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Koyuncu A, Bissyandé TF, Kim D, Klein J, Monperrus M, Le Traon Y (2017) Impact of tool support in patch
construction. In: Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ACM, pp 237–248

Krogel M-A, Scheffer T (2004) Multi-relational learning, text mining, and semi-supervised learning for
functional genomics. Mach Learn 57(1-2):61–81

Li B, Sun X, Leung H, Zhang S (2013) A survey of code-based change impact analysis techniques. Softw
Test Verification Reliab 23(8):613–646
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2 SnT, University of Luxembourg, 2 Av. de l’Universite, 4365 Esch-sur-Alzette, Luxembourg
3 Monash University, Melbourne, Victoria, Australia

151   Page 32 of 32 Empir Software Eng (2022) 27: 151

http://orcid.org/0000-0002-0592-788X
mailto: tegawende.f.bissyande@uni.lu
mailto: moha.naouel@uqam.ca
mailto: kevin.allix@uni.lu
mailto: jacques.klein@uni.lu
mailto: li.li@monash.edu
mailto: yves.le.traon@uni.lu

	SSPCatcher: Learning to catch security patches
	Abstract
	Introduction
	Motivation
	Data Collection
	Security patches (for positive datasets)
	Security patches from study projects
	Security patches from Secbench


	Pure bug fixing patches (for negative datasets)
	Code enhancement patches (for negative datasets)
	Unlabeled patches

	SSPCatcher
	Feature Extraction and Engineering
	Commit Text Features
	Commit Code Features

	Feature Assessment
	Statistical Analysis
	Classification Experiments

	Co-Training Model Learning
	Model Learning
	Identification of Security Patches


	Experimental Study and Results
	RQ1: Effectiveness of SSPCatcher
	RQ2: Cross-project Evaluation
	Cross-project Classification on C-projects Dataset
	Cross-project Classification on Projects Using Mixed Programming Languages

	RQ3: How does SSPCatcher Compare Against the State-of-the-art?
	RQ4: Can SSPCatcher Flag Unlabeled Patches in the Wild?

	Insights, Threats to Validity, and Limitations
	Discussion
	SSPCatcher and the Practice of Software Development
	Threats to Validity
	Limitations
	Future Work

	Related Work
	Security Commit Identification
	Vulnerability Management
	Change Analysis

	Conclusion
	References
	Affiliations


