
The Devil is in the Details: Unwrapping the
Cryptojacking Malware Ecosystem on Android
Boladji Vinny Adjibi∗, Fatou Ndiaye Mbodji∗, Tegawendé F. Bissyandé∗, Kevin Allix∗, Jacques Klein∗

∗SnT – University of Luxembourg
Luxembourg, Luxembourg

Email: {vinny.adjibi, fatou.mbodji, tegawende.bissyande, kevin.allix, jacques.klein}@uni.lu

Abstract—This paper investigates the various technical and
non-technical tools and techniques that software developers use
to build and disseminate crypto mining apps on Android devices.
Our study of 346 potential Android mining apps, collected
between April 2019 and May 2022, has revealed the presence of
more than ten mining apps on the Google Play Store, with at least
half of those still available at the time of writing this (June 2022).
We observed that many of those mining apps do not conceal their
usage of the device’s resource for mining which is considered a
violation of the store’s policies for developers. We estimate that
more than ten thousand users have run mining apps downloaded
directly from the Google Play Store, which puts the supposedly
”stringent” vetting process into question. Furthermore, we prove
that covert mining apps tend to be embedded into supposedly
free versions of premium apps or pose as utility apps that provide
valuable features to users. Finally, we empirically demonstrate
that cryptojacking apps’ resource consumption and malicious
behavior could be insignificant. We presume that typical users,
even though they might be running a mobile antivirus solution,
could execute a mining app for an extended period without
being alerted. We expect our results to inform the various actors
involved in the security of Android devices against the lingering
threat of cryptojacking and help them better assess the problem.

Index Terms—android, cryptojacking, malware, manual anal-
ysis, google play store

I. INTRODUCTION

The increased demand for cryptocurrencies following
2017’s boom drove a burgeoning interest in mining [1]. The
induced competition strengthened the need for miners to join
mining pools to expect to make a profit. The introduction
of services such as Coinhive, which made it possible to
spread mining code across the web with minimal effort,
further increased the attractiveness of the activity. It soon led
to malicious entities covertly participating in mining pools
using abused devices. This activity, known as cryptojacking,
affects every type of device, from personal computers to
smaller devices such as Android-powered devices. Despite
their relatively low computing power, Android devices are
an attractive target to hackers who can target more than four
billion devices at once [2], [3].

Previous research has, for instance, identified that devel-
opers produced more than seven hundred Android mining
apps between 2017 and 2019 [4]. The findings from this
investigation were confirmed by another study highlighting the
active use of the Google Play Store to distribute those apps [5].
The results from those studies attest that understanding the

cryptojacking phenomenon on Android devices is paramount.
Unfortunately, there exist no other studies of mining apps
on Android besides those mentioned above. Moreover, the
datasets used in those studies do not contain any mining
app beyond 2019. Considering that two majors events hap-
pened around that time, namely (1) the Google Play Store’s
policy to ban apps that mine using the device’s resources
starting from July 2018 [6], [7] and (2) the discontinuation
of Coinhive, which alone contributed to more than half of the
mining apps in the studied period [8], the lack of research
on the subject appears to us as a counter-intuitive outcome.
In comparison, many recent studies of web-based [9], [10],
[11], and general-purpose miners [12], [13], [14] have been
conducted. The prevalence of the cryptojacking problem on
Android devices and its expected damaging effects make
it essential to understand the various mechanisms currently
used to mine cryptocurrencies on Android devices [15]. More
specifically, we are interested in answering the following
research questions:

• RQ1: What are the methods and techniques used by
developers to insert crypto mining code into Android
apps, and how effective are existing detection techniques
against those threats?

• RQ2: What processes are put in place by developers
to ensure that their mining apps are downloaded and
executed by as many users as they want?

• RQ3: To what extent does mining activity affect the
behavior of an Android device, and how likely is an
average user to suspect such action on their device?

Novelty: We investigate those questions with the intent of
inspiring the research community into building a more effec-
tive defense mechanism against mining apps. Our attempt at
addressing those questions consisted of an empirical study of
10 430 681 Android apps collected from various marketplaces
between April 2019 and May 2022. To the best of our knowl-
edge, this is the first study that focuses on Android mining
apps in this timeframe. It allowed us to unveil an evasion
technique based on assigning an audio filename to a gzipped
archive containing a mining binary, which the program extracts
at runtime. Those results, along with the decreased propor-
tion of Javascript-based miners and the appearance of new
crypto coins (Veruscoin, RPCoin, uPlexa), supplement prior
findings [4] to provide a complete mapping of the mining

phenomenon on Android. To the best of our knowledge, this is
the first study that aims to explain the marketing structure that
sustains the mining ecosystem on Android. Our investigation
resembles the study by Kotzias et al. [16] which discussed
the topic of the sources from which users typically download
malware. Unlike this study, our focus is on understanding
what could get users off their guard to let apps stealthily
mine coins on their devices. Earlier research works suggest
the prevalence of gaming, streaming, application download,
and adult content platforms with illicit mining [17], [18] on
the web, but there is little scholarly work documenting illegal
mining on the Android platform. We intend to fill this gap
through the present study. Finally, our evaluation of the impact
of mining activity, whether covert or overt, provides an up-to-
date complement to the work conducted by Clay et al. [15]
which estimated a five-fold increase in power consumption
due to the execution of web-based miners. Besides the novelty
factor, our study extends to binary-based miners and further
considers the potential concealment of the mining activity.
Our evaluation captures more diversity in the mining apps on
Android.

Contributions: Overall, through our study of the suspected
mining apps from a technical and non-technical standpoint,
we make the following contributions:
1) We identified and duly notified the Google Play Store of the

presence of at least five mining apps on their marketplace,
which is a blatant violation of the applicable developer
policies.

2) We discuss the case of some so-called wallet apps that
hide malicious code into gzip archives renamed to have
misleading extensions. We postulate that this is a technique
likely to be used by evil entities.

3) We demonstrate the prevalence of hacks and cracks of
premium Android apps as placeholders for mining code
in cryptojacking apps.

4) We establish through various tests that, despite mining
apps consuming more resources than regular apps, a social
media app such as Facebook is twice as greedy as an
evasive miner.

The remaining of this paper is structured as follows. In
Section II, we present our methodology used in the study. Sec-
tion III then discusses the findings from the manual analysis
of the source code and static artifacts of the suspected mining
apps. Next, our results from analyzing the non-technical as-
pects of the mining apps are described in Section IV. We then
present our findings from profiling the resource consumption
of mining apps in Section V before a brief discussion on the
possible shortcomings of our study in Section VI.

II. STUDY DESIGN

A. Data collection

The ban imposed by Google on mining apps on the Google
Play Store in July 2018, along with the suspension of Coinhive
late in March 2019 are both critical events that previous
research has noted [4]. This study that leveraged apps collected
from various companies’ security advisories is arguably the

only one to be aiming at understanding the crypto mining
phenomenon on Android devices; a data collection process
used in recent Android malware research [19]. Besides this
data collection strategy, researchers have also relied on An-
droid marketplaces such as Google Play Store [20], [21],
[22] or a combination of both [4]. The dissemination of the
compiled apps has contributed to the availability of a wide
range of Android malware data sets usable for numerous
studies. Unfortunately, those datasets are limited due to their
age or specificity to a research problem. The lack of diversity
in the datasets renders them inappropriate for our work which
we wanted to represent the current state of the ecosystem
of crypto mining on Android. To this effect, we turned our
focus on AndroZoo, arguably the most extensive dataset of
Android apps for research [23]. The versatility and up-to-date
nature of the dataset, which contains more than 19 million
(in May 2022) Android apps collected from various sources,
make it a good source of information to feed our research
effort. Moreover, the apps available in the dataset are already
scanned on VT (Virus Total), providing researchers with an
initial set of information to spearhead their works.

Consequently, we rely our study on information collected
from AndroZoo. More specifically, we combined the list of
hashes with VT API’s results to identify all the apps that
1) had not been submitted to VT before April 2019 and 2)
have been assigned a label related to mining by at least two
antivirus solutions. Our approach prevented an intersection of
our dataset with that of Dashevskyi et al. [4] and enabled us
to discard most of the non-relevant apps. The resultant initial
dataset that we built with this strategy contains 346 SHA-256
corresponding to one or more versions of 92 different apps. In
this work, an app refers to a unique pair of a package name
and the marketplace of origin. For each app, we only consider
the latest version in our data set for the study.

B. Manual analysis of apps

Through our manual, systematic and rigorous manual analy-
sis of the apps in our dataset, we want to answer the following
questions to establish their connection with the mining activity.
1) Does the app mine cryptocurrencies? To answer the

question, we look for pieces of evidence that validate
that the app embeds and uses some mining procedures.
Based on the findings reported in previous research, we
focus our search on the app/src/main/assets and
app/src/main/res/raw folders where the developers
usually put their mining artifacts [4]. Upon localizing the
said file, we analyze the source code to confirm that the
program exploits the identified mining procedure. This step
allows us to identify some false positives, some miners,
and a few apps for which we could not confirm beyond
the point of doubt that the app is mining.

2) How is the mining implemented into the app? At
this stage, we try to explain the specific technique the
developers leveraged to insert the mining logic into the
app. Besides distinguishing between web and binary-based

2

miners, we look at the programming languages and other
relevant elements that made the implementation possible.

3) Is the device’s user aware of the mining activity? At this
stage, we look at various information, such as the listing of
the marketplace app when available, the source code, and
layouts, to verify whether the user is aware that mining
activity is occurring on their device.

4) Who benefits from the mining activity? This is to
check who is the final beneficiary of the mining. The
beneficiary is either the user or the developer. It could also
be both when a donation wallet is specified. This question
is answered by looking for wallet addresses, configuration
files, and similar elements that allow making an informed
decision.

5) What triggers the mining activity? This question is
to explain under which conditions the mining activity is
started. The trigger could vary from a system event to an
action from the user.

6) How is the mining activity concealed? This step is to
identify strategies that developers use to evade static and
dynamic detection of the mining activity.

Considering the high reliance of our approach on having
access to the apps’ source code, we downloaded the APKs
using the AndroZoo API and further decompiled them using
the JADX tool1, one of the many available tool to extract the
Java source code and the static resources bundled into apps.
We also leveraged the detailed VT reports to clear up doubts
when faced with uncertainty.

C. Understanding how developers distribute the mining apps

Our objective in this regard is to understand the various
processes that the developers put in place to attract users and
get them to install the mining apps. More specifically, we are
interested in answering the following questions:
1) In what type of apps do developer often insert their

mining code? Previous research has highlighted the use
of piggybacked and repackaged apps to distribute Android
malware in the wild [24], [25]. Based on those insights, we
try to evaluate the prevalence of a particular type of app in
our corpus of mining apps. We leveraged the Androguard
tool2 to retrieve each app’s package name and label. We
searched for those names on Google to find similar words
to identify links with apps from other marketplaces.

2) Are ratings and comments of the apps manipulated
to increase adoption by the users? This question stems
from the findings of Harris et al. suggesting a strong
link between an app’s popularity and its attractiveness to
users [26]. To assess that, we analyzed the ratings and
comments of the mining apps in our dataset that present
specific characteristics and suggest some manipulation. We
leveraged the Google Play Scraper 3 tool’s review API to
collect the said information for the apps still available in the
store while doing our work. We used the default settings of

1https://github.com/skylot/jadx
2https://github.com/androguard/androguard
3https://pypi.org/project/google-play-scraper/

the package (i.e., country set to the USA and the language
to English)

We present the results of those investigations in Section IV.

D. Evaluation of the impact on users

Thus far, the literature only assumed that mining applica-
tions are greedy in terms of resources. Even though there
have been some estimates that clearly showed that those
apps consume an enormous amount of energy4, those reports
are mainly related to the period when Coinhive still existed
and was used with the intent of abusing resources. Still,
the research community lacks a systematic measure of those
values in the context of Android apps. In this work, we
benchmark the resource consumption of 3 mining apps against
some commonly used legitimate apps. The results presented
in Section V suggest that mining applications may not be as
greedy as is often assumed.

In the subsequent sections, we describe the findings of our
investigations for answering the outlined research questions.

III. RQ1: UNDERSTANDING THE IMPLEMENTATION OF
THE MINING LOGIC INTO ANDROID APPS

Our manual analysis of the potential mining apps consisted
in looking into the external dependencies or Java packages
used in the project, the assets directory that often contains
HTML resources used by web-based miners on Android, the
res/raw folder that is often used for binary files, and the
lib directory where shared libraries are put to be loaded
with the System.loadLibrary() method. Our analysis
of those artifacts and how they are used allowed us to identify
many apps that could be wrongly believed to perform mining
and some other mining apps about which we provided more
explanation on how they perform.

A. False positives and possibly unconfirmed miners

From our investigations, there were a number of apps for
which our manual analysis did not allow us to conclude that
they were mining. We report on those apps in the following
sections.

1) The apps wrongly identified as miners: Upon analyzing
the suspected mining apps from our data set, we identified that
most were mining apps. Those false positives amount to 76%
(70/92) of the entire data set. In this entire corpus, three main
types of apps can be observed:

a) The com.kaching.kingforaday based packages:
Those represent half of the entire false positives in our
data set (35/70) and were all downloaded from VirusShare
into AndroZoo. The sparkling similarity in those apps starts
with their naming convention which is done by appending
the string .hack to the name of some apps with paid sub-
scriptions (e.g., com.imangi.templerun.hack). Furthermore, the
analysis of the source code shows the presence of a pack-
age named com.kaching.kingofaday which declares a
service as seen in Listing 1 which is in charge of starting
the mining activity. For this, it depends on a package named

4https://www.kaspersky.com/blog/loapi-trojan/20510/

3

com.coinhiveminer.CoinHive which uses an HTML
file that instantiates the Coinhive miner.

1 p u b l i c c l a s s S t a r t A d s R e c e i v e r ex tends
B r o a d c a s t R e c e i v e r {

2 @Override / / a n d r o i d . c o n t e n t . B r o a d c a s t R e c e i v e r
3 p u b l i c vo id onRece ive (C o n t e x t c o n t e x t , I n t e n t

i n t e n t) {
4 c o n t e x t . s t a r t S e r v i c e (new KingForADay (c o n t e x t

) . M i n e r I n t e n t ()) ;
5 }
6 }

Listing 1: Mining receiver code embedded into the
com.kaching.kingforaday package.

However, though this logic is well implemented, it appears
to not be instantiated anywhere in the code. We further ran
a full string search in the folder to verify whether it was
called anywhere but we could not get evidence for this at
all. Moreover, the fact that the service was not declared in the
Manifest means that it could not be called anyway. Thus, we
hypothesize that the app had been an active miner during the
rise of Coinhive but then, since the service was later shutdown,
the developers just removed the initialization code from it. Our
attempt to validate that hypothesis by finding earlier versions
of any of the concerned app was not successful unfortunately.

b) The apps with the unused mining files: Very similar
to the previous apps, the apps in this category embed either
directly or through a third-party service, the mining code as a
Javascript dependency or through the use of a binary. Among
the 10 such apps, half of them have the mining code in them
because of the inclusion of the Hextrix game5 which is a
game that clearly states its intention of mining. Despite that,
the mining code was commented out in each of the relevant
files. This is similar to the other half of the apps which used
various mining services including Coinhive and CryptoLoot. In
Listing 2, we show how the mining code was commented out
in those apps. Here again, a full string search was performed
in the directory to find and analyze all the code loading the
webview, searching for instances where the comments might
have been removed prior to loading the files but no activity of
such kind was noticed.

1 <!−− <s c r i p t s r c =”<LINK TO SCRIPT>”>< / s c r i p t> −−>
2 <!−− <s c r i p t> −−>
3 <!−− var miner = new CoinHive . Anonymous (<SITE KEY> ,

{ −−>
4 <!−− t h r o t t l e : 0 . 7 −−>
5 <!−− }) ; −−>
6 <!−− miner . s t a r t () ; −−>
7 <!−− < / s c r i p t> −−>

Listing 2: Initialization code of Coinhive mining that is
commented out in application

c) The wallets: Our data set is comprised of 17 crypto
wallets that were considered as miners by at least two antivirus
solutions. Our analysis of the binaries embedded in those apps
shows that they indeed contain the mining logic, as evidenced
by the parameters to set the type of algorithm, donation
address, etc. Moreover, some of those apps download entire

5https://hextris.github.io

copies of the blockchain in order to track the transactions
related to the users’ wallet. One notable case among the wallets
however is that of the app io.scalaproject.vault still
available on the Play Store, which presents a mining interface
through which the user is redirected to download the actual
mining app from a Github repository6. By analyzing the source
code and various parameters used to call the suspicious binary,
we confirmed that the apps are not exploiting the mining
capabilities of the software.

d) The outliers: 8 apps fall into this category which from
our investigation, have no clear link to mining activity other
than the appearance of strings such as miner or mining in the
assets. One special case in this category has a list of links that
it uses to serve as a firewall, preventing the user from accessing
those links. And among those links, some look like mining
pools address (e.g. 0.0.0.0rpd.cryptopool.eu) in a subfolder of
the corresponding assets folder. Some of the other apps have
no suspicious binary or JavaScript file that leads to thinking
about a mining activity.

The high proportion of false positives and that count up to
25 detection by antivirus solutions can be explained by the
fact that most of those tools are signature based and do not
actually check whether the code is being run or not. This in
itself is not a good practice but we suggest a better attempt at
finding whether the code is being run or not.

2) The ambiguous cases: Besides the apps that we were
able to confirm were not doing any mining activity, for 7 of
the remaining apps, we could not ascertain the presence of
the mining code. The information collected about those apps
is summarized below:
1) 2 apps presented as movie downloader and viewer based

on the use of torrents. In one of those apps, there is
the presence of the xmrig binary that can be used for
mining. Surprisingly, the binary is not called anywhere in
the code as confirmed by our search in all the relevant
files. However, we noticed that those two apps at a point
during the bootstrap try to download and install an app
from the link7. We presume that the actual miner is installed
from that link and further exploits the binaries already
embedded in the current package. Unfortunately, at the time
of running our analysis, the link was no longer available
making it impossible for us to validate our hypothesis.
A third app with a different purpose redirects the user
to dynamically queried links which we could not verify
because the link were no longer accessible.

2) 3 other apps, all retrieved from the anzhi marketplace
include the libjiagu binary which serves as a packer
meant to dissimulate source code and prevent their inves-
tigation by manual analysis. Our attempt at unpacking the
binaries were unsuccessful so we could not justify whether
those apps are mining or not.

3) A further duo of apps from the same developer which are
presented as wallets and expose a great similarity in the

6https://github.com/scala-network/MobileMiner/releases/
7http://b3.ge.tt/gett/9JtX8Kp2/com.opera.mini.native.pdf?index=0&pdf

4

source code. The most interesting bit of those apps is the
fact that they hide a compressed archive under a file name
private.mp3 and placed under the assets folder. The
file which is uncompressed at runtime contains Python files
that allow to run a node of the Electrum coin. Adding to
this deceptive and misleading approach to installing the
binaries on the device, we identified from the source code
the use of a config.json file that determines the mode
in which the node is ran. Unfortunately, we could not
find any information about the said file which hampered
our ability to identify whether the mining activity was
occurring or not.

As a summary, our investigation have pointed out a number
of apps (74/87) for which we could not find any evidence of
the execution of a mining activity. Thus, for the remaining
of this paper, only the remaining 13 unique apps amounting
to 27 different APKs will be put in focus for us to try to
understand how the miners work and explain the processes
that are engaged into their creation and mass distribution to
users.

B. Inspection of the mining apps
As a logical conclusion to our investigation, the 13 re-

maining apps are considered and verified as mining one or
multiple crypto currencies. Among those apps, there is a
preponderance of apps originating from Google Play Store
with such apps amounting to 11 out of the 13 apps, the
remainder coming from VirusShare. This impressive ratio of
mining apps downloaded from Google Play Store in our time-
frame betrays our initial intuition to have more miners from
alternative markets. Our surprise is further reinforced by the
fact that 6 of such apps were still present on the store at the
time of writing. We postulate that some developers manage to
bypass the controls made to prevent those apps from being
flagged during the verification process. Understanding the
process through which they successfully get those apps on
the store are out of scope of this work. Since the store’s
regulations ban mining apps, all the 13 apps in our data are
considered illicit. Nonetheless, we will distinguish between the
apps according to whether the mining activity is known to the
user or not.

Above any consideration to the awareness of the user on
the mining activity, a general view to the mining apps shows a
consistency with the results from previous works that identified
the web and binary-based techniques as the means of inserting
mining code in Android apps [4]. In our case only a small
proportion of the apps are web-based (4/13). This rapid change
when compared to the period before April 2019 where web-
based miners amounted to almost 75% of all apps can be
explained by the shutdown of the Coinhive service which was
the main driver of the mobile mining ecosystem on Android.
As far as the alternatives to Coinhive are concerned, we have
identified the use of CryptoLoot and other proprietary scripts8.

Another point of variation in the implementations of the
mining apps lie in the use of various programming languages

8https://www.craftyourserv.net/mineur

Fig. 1: Screenshot of the com.sunderapps.brahtopus app’s
interface through which the user grants permission to mine
cryptocurrency.

to support the code. As such, we have identified apps using
JavaScript-based hybrid mobile developments toolkit such as
Ionic, but also those developed using Kotlin and obviously the
Java language which powers most of those. This evaluation
was performed by looking at the source code of the assets
for instance (presence of the ¡ion-app¿ tags in Ionic) and the
included packages which can inform on the tool used to build
the app. This diversity in techniques and procedures suggests
that the development of mining apps for Android devices is
possible for virtually every programming language supported
on Android.

Our analysis of the scan reports collected from VT has
shown that the number of tools that have detected a certain
miner varies from 2 to 25 suggesting that the threshold of ten
used in related works is not appropriate [27]. Our findings
suggest that for categorical malware such as mining apps, a
threshold of 2 seems sufficient.

In order to discriminate the between legitimate and illicit
miners, we used information such as the package name,
description of the app where available (collected from the
store), the layouts in the decompiled file and also the source
code. This has allowed to identify 6 legitimate miners among
which one specifically sets all the rewards to the developers
while the others get only a portion of the gains, with the
other part being left to the user’s address. The former’s screen
through which the user’s approval is granted is visible in Fig. 1
and declines its intention to monetize their website visits by
leveraging the users’ CPU for mining crypto currencies.

The next section of this paper describes the underlying
functioning and evasion techniques pertaining to the illicit
miners in our data set.

5

TABLE I: Top 10 permissions requested by the cryptojacking
apps.

Permission # Apps (%)

android.permission.INTERNET 7 (100.0%)
android.permission.ACCESS NETWORK STATE 5 (71.43%)
android.permission.WRITE EXTERNAL STORAGE 5 (71.43%)
android.permission.READ EXTERNAL STORAGE 4 (57.14%)
android.permission.READ PHONE STATE 4 (57.14%)
android.permission.VIBRATE 4 (57.14%)
android.permission.WAKE LOCK 4 (57.14%)
android.permission.ACCESS COARSE LOCATION 3 (42.86%)
android.permission.ACCESS FINE LOCATION 3 (42.86%)
android.permission.ACCESS WIFI STATE 3 (42.86%)

C. Functioning and evasion techniques of the crypto jacking
apps

The balance in the type of implementation used in the
list of crypto jacking apps (3 web vs 4 binary based), the
mined coins vary in nature with Monero, uPlexa and RP-
Coin all being represented in our data set. This describes a
diversity in the available tools to embed illicit mining activity
into apps. We further analyzed the permissions requested by
the mining apps which, as presented in Table I, are quite
similar to those identified by Dashevskyi et al [4]. When
compared with legitimate apps, three permissions appear to
be peculiar to the mining apps namely those related to the
device’s location (ACCESS COARSE LOCATION and AC-
CESS FINE LOCATION), and the one related to the phone
state (READ PHONE STATE) [28]. Those three permissions
have been identified as being used in up to 68% Android apps
according to a study of dangerous Android permissions [29].
As far as the system events are concerned, the mining apps
in our dataset subscribe to a few events that do not appear in
the list of events identified in Cao et al.’s study of Android
malware [19]. Those events are related to the charging status
of the device and to the presence or not of the user by the
telephone. They are used in mining apps to find the best
moment to mine without raising any suspicions from the user.

In the later sections of the paper, we will leverage those
information as a means to talk about the triggers for the mining
activity, the various sophistication put in place and also the
evasion techniques that we identified in the various apps. The
apps can therefore be declined into the following categories:

1) The watchers: Those apps amounting to 3 exploit the
possibility of running JavaScript on the web view interfaces of
the apps. In a general sense, the script is executed immediately,
as soon as the user navigates into the page which is loaded
either through a web view or using a language such as Ionic.
Then, the mining keeps running as long as the activity is
alive. We were able to confirm the malicious intent of the
apps through the presence of developer (or site keys) that are
used internally by the mining service providers to distribute
the gains back to the developers. In order to avoid detection,
we have observed two main techniques: 1) the obfuscation of
the JavaScript file which is also loaded from random links, and
2) the inclusion of the mining initialization code into larger
files combined with the use of variables to dissimulate the
mining activity. An example of initialization code can be seen

in Listing 3 two different site keys are used in the same app
based on the domain name from which the user is visiting.
f u n c t i o n D() {

var e=”<SITE KEY 1>”
i f (−1!= l o c a t i o n . h r e f . indexOf (”<LINK>”) | | − 1 ! =

l o c a t i o n . h r e f . indexOf (”<LINK>”))
re turn vo id (e=”<SITE KEY 2>”) ;

var n=new CoinHive . Anonymous (e) ;
n . s e t T h r o t t l e (. 5) , n . s t a r t ()

}

Listing 3: Initialization code of a web based miner

The use of those techniques ensures that a static detection
tool which is for instance based on the length of the site key
would be fooled and not able to detect the app as doing mining.

2) The zombie miners: Those ones are a group of 2 apps
seemingly from the same developer that use the Monero miner
file in order to launch the mining activity. After loading
the system libraries, the apps connect to a mining pool and
instantiate a service that keeps restarting each time there is
a failure. This allows the mining process to continue running
even if the user is not interacting with the app thus making
up for a zombie like functioning. In order to not letting the
user being aware of such activity, the apps listen to events
related to the battery and stop the mining activity as soon as
a threshold is reached. The apps download the configuration
files for the mining from a link9 which was no longer available
during our analysis. We were also unable to run the app which
kept crashing on the test device.

3) The fetchers: We denote by this, a set of apps that only
download the mining binary at run time, or receive the task
through another file. For the two apps in this category, the
mining activity is started automatically when the device is
powered on. Besides this first layer of obfuscation, we have
observed in one of those apps that the SharedPreferences were
used to store the commands and parameters to be executed to
run the mining. This is then later used to launch the mining.
And since the two apps in those categories offer services that
are not supposed to consume too much memory, they make
sure that the mining activity is running only when the user is
away by subscribing to the USER PRESENT system’s event.
This complex scheme has further been complicated by one
of the apps that inserted the mining code under a Google’s
package name (com.google.ads) in an attempt to fool detection
tools.

IV. RQ2: HOW ARE USERS ATTRACTED TO DOWNLOADING
AND INSTALLING THOSE APPLICATIONS?

In the Android ecosystem of mining apps, the development
of the apps is just one part of the equation. Upon producing the
software artifacts, the developer needs to find the appropriate
ways in which they can distribute those apps to as many users
as possible. In the current section, we look at two factors that
we presume to positively impact the adoption of mining apps
by Android users. We refer specifically to (1) the kind of app
used and (2) its popularity. We identify the kind of app by

9http://flowcount.eidon.top:10085

6

TABLE II: Top 10 system events subscribed to by the cryp-
tojacking apps.

Event # Apps (%)

BOOT COMPLETED 3 (42.86%)
MEDIA MOUNTED 3 (42.86%)
USER PRESENT 3 (42.86%)
net.conn.CONNECTIVITY CHANGE 3 (42.86%)
WEB SEARCH 2 (28.57%)
ACTION POWER CONNECTED 2 (28.57%)
ACTION POWER DISCONNECTED 2 (28.57%)
com.android.vending.INSTALL REFERRER 2 (28.57%)
TIME SET 1 (14.29%)
service.notification.NotificationListenerService 1 (14.29%)

TABLE III: Categories of the mining apps and their source.
Package name Category Source

com.pangzlab.verus box play.google.com
de.ludddetis.monerominer

Blockchain
related apps

play.google.com
dev.waterhole play.google.com
free.bitcoin.mining.crypto play.google.com
io.waterhole play.google.com
info.bitcoinunlimited.voting play.google.com
com.karameesh.app

Game and
entertainment
apps

play.google.com
com.sunderapps.brahctopus play.google.com
com.games.tecdroid.freddynightmario play.google.com
com.sunderapps.recaptureorganics play.google.com
net.craftyourserv.www play.google.com
mikado.bizcalpro The cracks VirusShare
com.dust.clear.ola Utility apps VirusShare

grouping the apps based on the features that they claim to
propose. As far as popularity is concerned, we investigate the
manipulation of reviews to increase an app’s attractiveness.

A. Type of apps containing mining logic

Our analysis allowed us to group the mining apps in our
dataset into the following categories that are summarized in
Table III.

1) Blockchain-related apps: The most represented category
in our dataset with six unique apps, this category contains
three apps that state their intent of mining, two wallet apps,
and one other app that leverages the blockchain to facilitate
the organization of polls (info.bitcoinunlimited.voting). In their
official listing on the marketplace, all those apps appear to
be associated with the Finance category. This denotes the
attractiveness of such apps to users who can fall prey to
malicious developers who abuse their devices for mining as for
two apps in this corpus (i.e., dev.waterhole and io.waterhole),
published on Google Play Store by the same developer.

2) Game and entertainment apps: Five apps in our
dataset fall under this category, including games, mu-
sic, and advice content. Among all those apps, only two
(com.sunderapps.brahctopus, net.craftyourserv.www) inform
the user of the mining intent on the first usage of the app,
as seen in Fig. 1 and Fig. 2a respectively. The relatively
high proportion of those apps (5/13) denotes the interest of
developers in maintaining users in the app for a long time
to generate the most profit, as previously demonstrated by
Tekiner et al. [30]. Furthermore, all the miners in this category
use the web-based strategy that works better when the user is
present.

3) The cracks: In an attempt to generate revenues from
their production, developers often require users to pay before
downloading or enabling the premium features of an app.
Often unable to use the apps because of those limitations, users
tend to resort to cracked apps help them bypass the verification
mechanisms put in place by the developers. Despite posing as
free software, the cracked apps have been proven to often
contain malware [25]. Our sample of mining apps contains
one cracked app carrying illicit mining codes. One of those
apps posed as a free version to a paid calendar app available
in the Google Play Store10. As soon as the user installs the
app, it proceeds with its stealthy mining activity.

We can further extend our list of cracks with the false
positives that we discussed in Section III-A1a. The naming
convention of those apps suggests that they all pretend to help
users bypass the subscription controls of dozens of games and
entertainment apps. We can therefore presume that they were
indeed cracks shared through alternative Android marketplaces
with the intent of distributing illicit mining codes.

4) Utility apps: Only one app (i.e. com.dust.clear.ola) falls
into this category. From the search results available in Google
and translated from Chinese to English11, the app promises
the user to clean their device’s memory but also remove water
droplets. The user willingly grants it many abusive permissions
used by the app to conceal its mining activity. We expect that
many similar apps carry mining code or related malware.

5) Interpretation: Despite the presence of two dominant
types of apps that mining apps can be associated with the
high diversity in such a small sample shows that mining apps
can be found in any category of app. The small size of our
dataset does not allow us to determine any specific category
that developers prefer to distribute mining code.

B. Manipulation of comments and ratings to attract users

Our review of the ratings and comments associated with
the apps still available on the Google Play Store during our
study was based on the Google’s policy for user reviews12 that
defines a helpful review as one that provides clear information
to the reader, and present both the strong and weak points of
their experience with the app. As such, we focus our analysis
on the various reviews of the apps looking for elements that
pinpoint to a manipulation.

In total, we collected 67 reviews in English and French for
eight different apps presented in Table IV. We performed a
manual analysis of the metadata with two authors, both fluent
in English and French actively involved in the process. The
results were presented to other researchers in our group who
agreed with our conclusions.

From our analysis, we made the following observations.
1) Useless and uninformative comments: Around five apps

in our dataset have at most three reviews from users. In those
specific cases, we hardly noticed any informative comments,
with some reviews being as simple as ”I like this style and feel

10https://play.google.com/store/apps/details?id=mikado.bizcalpro
11https://app.mi.com/details?id=com.dust.clear.ola
12https://play.google.com/intl/en us/about/comment-posting-policy/

7

TABLE IV: Summary of review information collected on
Google Play Store about the mining apps.
Package Name Average Min. Num. # of

rating of Installs reviews

net.craftyourserv.www 3.7 1000 32
com.pangzlab.verus box 4.3 5000 14
io.waterhole - - 13
de.ludddetis.monerominer - - 3
dev.waterhole 4.2 100 2
info.bitcoinunlimited.voting 5.0 10 1
com.games.tecdroid.freddynightmario - - 1
com.karameesh.app - - 1

safe”. Moreover, the comments in this style are all submitted
by users who gave five stars to the app. This goes against
the fact that a user satisfied with an app that provides clear
benefits would find many things to say to motivate others to
download the app.

2) Untrustworthy comments: This specific case applies to
the app io.waterhole for which a five-star rating was attributed
after being available for less than five days. Even though we
could not prove this practically, we believe that five days
remains a tiny amount of time to provide objective feedback
on an app without any prior bias. Moreover, the same comment
only talks about the user feeling safe with the app, which does
not have any link with the app’s features.

3) Interpretation: Even though we could not prove our
hypothesis beyond the point of doubt, we have observed in
our case study of eight mining apps available on Google Play
Store between April 2019 and May 2022 that the comments
tend to be uninformative and intentionally submitted with high
ratings to increase the popularity of the apps. We believe that
this has contributed to the popularity of some of those apps.

V. RQ3: HOW NOTICEABLE IS THE EXECUTION OF A
CRYPTOJACKING APP TO THE DEVICE’S USER

Due to the extensive computations needed to solve the
proof-of-work algorithms, mining apps are expected to deplete
devices’ battery and resources. In this section, we quantify
the values for various mining apps to estimate their impact
on users. More specifically, we are interested in those apps’
battery, CPU, and RAM consumption. .

To provide such information, we decided to run two sets
of experiments on one Android device powered with An-
droid 11 with a 1.8 GB RAM powered with a Mediatek
MT8766B13 CPU running with four cores and sustained with
a Lithium Polymer Battery 7.7V/3500mAh. On those devices,
we installed and gathered metrics about various Android apps’
battery, CPU, and RAM usage. We more specifically attempt
to quantify those values for three main categories of apps: 1)
benign apps that perform background tasks, 2) legit mining
apps that users install in complete awareness, and 3) the apps
that mine on the back of the users. Despite our initial intention
of profiling licit and illicit miners from the web and binary-
based families in our study, all the illegal web-based miners in
our dataset were no longer functioning. Similarly, we could not
successfully install any binary-based miners on our devices.

13https://www.mediatek.com/products/tablets/mt8766b

Fortunately for that one, we were able to find an open-source
mining app for Android that we used for those tests. Below
is a list of the apps that we used for our analysis.
1) com.facebook.katana (139e0831...42ad3ba5), the official

app for the Facebook social media users on Android was
used as the benign app. We made this choice because of 1)
the popularity of the app which was downloaded at least
five billion users across the world [31]; and 2) the fact that
it is pre-installed on many Android devices with sometimes
limited possibility of users to uninstall them [32], [33].
Those facts suggest that this is one of the most common
apps that Android devices owners ran on a daily basis. The
ability of the app to execute background tasks in order to
keep users atop of their community news renders day-to-
day usage possible outside of the main screens of the app.
Consequently, we measured the values for this app while
it was executing in the background.

2) net.craftyourserv.www (5464fa82...b531c76e) as the licit
web-based miner. This app provides an interface (Fig. 2a)
where users can simultaneously visualize ads and mine the
RUBY cryptocurrency. Therefore, we measured the average
impact of the advertisement feature, which we subtracted
from the values collected while the mining process was on.
The resultant values are considered the impact of mining.

3) mikado.bizcalpro (b6001aa8...ece1ed41) as the binary-
based cryptojacking app for which we collected the values
while the app was executing in the background. This app
being the only illicit miner that we studied, we consider its
performance representative of illicit mining apps.

4) com.uplexa.androidminer (2b4cee1d8...1f86f43c)14, the
fully-fledged binary-based miner. After launching the min-
ing process, the interface presents the user with stats about
the mining activity, as seen in Fig. 2b. It then allows the
user to leave the app while the mining continues in the
background. We collected the various metrics during a
period when the app was running in the background.

For each of the four applications, we further ran two sets
of experiments described in the following sections.

A. Estimation of the CPU and RAM usage

For an uninterrupted duration of 1500 seconds (25 minutes),
we ran each of the apps and collected data about the CPU
and RAM usage from the Snapdragon Profiler tool15 .The tool
leverages the Android Debug Bridge (ADB) interface to pro-
vide real-time measurement of various metrics for an Android
app. After collecting and processing the collected values for all
the apps, it appears that only the com.uplexa.androidminer app
uses more than twice the amount of CPU used by any other
app. The Facebook app comes right behind and consumes
slightly more than any other miner in our test set. Moreover,
those results summarized in Fig. 3 show that the illicit miner
does consume the least amount of CPU.

14https://github.com/uPlexa/upx-android-miner/releases/download/v0.4.1/
upx-android-miner-v4.1.apk

15https://developer.qualcomm.com/software/snapdragon-profiler

8

(a) Screenshot of the
net.craftyourserv.www app
with the red area serving the ads
and the green being used for
mining.

(b) Screenshot of the
com.uplexa.androidminer app
showing the ongoing mining
process.

Fig. 3: Comparison of the CPU usage of three mining apps
compared to the Facebook app.

We observed the same pattern in the case of RAM usage.
Here, the com.uplexa.androidminer app alone uses up to 75%
of the available memory, which is almost 300x the closest
value observed on Facebook (0.26%). Due to that significant
disparity, we decided not to report this app’s consumption in
Fig. 4. Nevertheless, the graph shows that Facebook consumes
at least 2.5x more RAM than all the other mining apps, with
the web-based mining app being the less greedy. On the other
side, the illicit miner does seem to use quite a constant amount
of RAM throughout the experiment. Because it uses a proof-
of-work algorithm that does not require too much information,
one can assume that the CPU is constantly needed leading to
the observed irregular pattern.

Fig. 4: Comparison of the RAM usage of two mining apps
and the Facebook app.

B. Estimation of the battery usage
For the battery usage of the apps, we leverage the features

of ADB to generate and download bug reports and battery
statistics summaries. Then, the files were analyzed using the
Battery Historian tool16. The values presented in Table V are
collected based on five series of five minutes execution of
each app. We have reset the battery stats between each run to
prevent data overlapping.
TABLE V: Battery consumption of the various apps in a five-
minute time frame (in percentage).

Package Mean Est. discharge time

com.uplexa.androidminer 0.196± 0.028 1 day, 10 hours
net.craftyourserv.www 0.096± 0.009 3 days, 14 hours
com.facebook.katana 0.060± 0.007 5 days, 18 hours
mikado.bizcalpro 0.032± 0.004 10 days, 20 hours

As evidenced in the results, the cryptojacking app surpris-
ingly consumes less battery than all the other apps, including
Facebook. From our estimate, it would take roughly ten days
of execution for that app to deplete the battery. On the other
hand, we also notice that legit mining apps use more battery
than any other app. We explain this significant difference
in resource consumption because illicit miners attempt to go
stealthy by purposefully limiting their usage of the available
resources.

C. Interpretation
The results obtained from the profiling of the sample apps

lead to the conclusion that while mining apps can deplete
users’ batteries daily, illicit miners seem to be diligent with
their consumption. Moreover, compared with some popular
apps such as Facebook, the impact of illegal miners seems
negligible. Such a fact suggests that the average user is likely
not to observe severe deviance from normal behavior when
an app covertly mines on their device. Therefore, we can
assume that many users might be running mining apps in total
ignorance.

Even though the user could not notice the malware execu-
tion on their own, it is customary to assume that they could

16https://github.com/google/battery-historian

9

TABLE VI: Summary of the detection performed by some free
antivirus solutions after scanning the device with the mining
apps installed.

Antivirus # of malwares # of miners

com.sophos.smsec 5 0
com.bitdefender.antivirus 3 1
com.drweb 1 1

potentially install an antivirus that would let them know that a
mining app is running on their device. Therefore, we decided
to execute a set of free antivirus solutions alongside the mining
apps to ascertain this. We justify our decision to only test free
antiviruses by the fact that there are more accessible to users
than the paid alternatives. We executed our tests using three
antiviruses identified on Google Play Store after we searched
for ”antivirus.” We summarized the results of those tests in
Table VI.

From the corresponding results, it appears that only one
app was simultaneously detected by all the antivirus at once
(mikado.bizcalpro), with one not associating the actual label
to it to let the user know that the app is mining. At most, five
mining apps were detecting, accounting for less than half of
the ground truth. The probability that an antivirus reports a
mining app to the user remains critically low.

VI. LIMITATIONS AND DISCUSSION

Given our reliance on AndroZoo as our only data collection
point, it is evident that we could not provide an accurate
measurement of the mining ecosystem. The first reason is that
AndroZoo does not collect any apps besides those running
on smartphones leaving out many other less capable devices
such as wearables, TVs, and smart appliances. The incredi-
ble three-fold growth in the population of those devices in
2022 [3] makes us believe that it is an attractive target to
malicious developers as much as the other IoT devices [34].
The exclusion of those devices means we are missing out on
some possibly intriguing trends related to them. Similarly,
the mere possibility of some apps not being included in
AndroZoo for one reason or another could have impacted the
scope of our data. However, the lack of any mining family
in Cao et al.’s dataset collected using security advisories from
respected security companies [19] suggest that a search on
security blogs was unlikely to extend our dataset any further.
Consequently, we argue that our results provide the best
possible understanding of the mining phenomenon on Android.

The same applies to the use of VirusTotal on which we
relied to identify the set of apps to manually analyze. Despite
the presence of several tools in VirusTotal, it is obvious that
the tool is prone to errors which would lead to false and
missed detection. Even though our manual analysis nullifies
the likelihood of false detection in our final dataset, we are
however likely to miss an important number of apps due to our
strategy. Unfortunately, we are not able to provide an estimate
to the number of miners that we potentially missed through
this exercise. Nonetheless, VirusTotal remains the best existing
tool for crowd-sourced malware analysis and has been used in
research that is very similar to ours [19], [4].

Another potential threat to the validity of our work lies
in the manual analysis performed on the malware samples.
Though there might be some errors, we adopted the same
technique as Dashevskyi et al. [4] to identify the mining logic.
Moreover, we searched every project file in case of doubt
regarding the mining activity. Our systematic approach to the
problem has allowed us to identify some mining apps and
present those for which we could not ascertain the presence
of the mining code due to a lack of evidence. The absence
of a programmable logic that can be used to reproduce our
research constitutes on its own, a valid point on which scientist
can doubt our results. However, proposing such a technique
would have led to building a new detection mechanism which
is out of scope of this paper. Furthermore, we used a public
dataset which can be exploited to verify the veracity of our
conclusions. We believe that our efforts could help researchers
in building effective detection mechanisms against mining
apps on Android.

VII. CONCLUSION

Our study of 346 Android apps suspected of mining cryp-
tocurrencies on the devices provides a first-of-its-kind review
of the advances in the cryptojacking phenomenon on Android
since April 2019. Though our study confirms the results
from studies covering an earlier period, it sheds light on a
few problems: (1) the high-rate of false positives detection
from many antivirus solutions, (2) the popularity of hacks
and cracks as means of carrying the illicit mining logic, (3)
the relatively low-resource consumption of cryptojacking apps
on Android, and (4) the availability of mining apps in the
Google Play Store. Those findings reveal a misfit prevention
and fight system that leads to hundreds of thousands of users
downloading mining apps that the developers successfully
uploaded to the Google Play Store a breach of the developers’
policy in place. The upfront notice from some developers of
their intent to mine on the device leads us to question the
verification process put in place by Google to prevent such
apps from being present. The mere fact that more than 70% of
users put great trust in the store [35] explains the high number
of installs for each of those apps. We believe that Google
should put in place better controls to increase the safety of its
platform from malicious apps, including mining ones.

We resort to the research community to investigate the
problem of how developers get through the verification pro-
cess and further lure users into downloading malicious and
unwanted apps on their devices. It would also be interesting to
understand what happens to users who had previously installed
those apps after Google removes them from the store. The
underlying results would help make the process more reliable
and would significantly increase the confidence and security
of Android users against various sorts of abuse.

REFERENCES

[1] N. Tovanich, N. Soulié, N. Heulot, and P. Isenberg, “The evolution of
mining pools and miners’ behaviors in the Bitcoin blockchain,” IEEE
Trans. Netw. Service Manage., vol. 19, no. 3, pp. 1–12, Mar. 2022, early
access.

10

[2] Google, “Google keynote (Google I/O ‘21) - American sign
language,” May 2021, accessed June 2022. [Online]. Available:
https://www.youtube.com/watch?v=Mlk888FiI8A

[3] ——, “Google keynote (Google I/O ‘22),” May 2022, accessed
June 2022. [Online]. Available: https://www.youtube.com/watch?v=
nP-nMZpLM1A

[4] S. Dashevskyi, Y. Zhauniarovich, O. Gadyatskaya, A. Pilgun, and
H. Ouhssain, “Dissecting Android cryptocurrency miners,” in Proc. 10th
ACM Conf. Data Appl. Secur. Privacy, ser. CODASPY ’20, SIGSAC.
New York, NY, USA: Association for Computing Machinery, Mar. 2020,
pp. 191–202.

[5] Z. Li, W. Liu, H. Chen, X. Wang, X. Liao, L. Xing, M. Zha, H. Jin,
and D. Zou, “Robbery on DevOps: Understanding and mitigating illicit
cryptomining on continuous integration service platforms,” in IEEE
Symp. Secur. Privacy, ser. SP ’22. Los Alamitos, CA, USA: IEEE
Computer Society, May 2022, pp. 363–378.

[6] Google, “Financial services: Play console help,” 2022, accessed
June 2022. [Online]. Available: https://support.google.com/googleplay/
android-developer/answer/9876821?hl=en

[7] BBC News, “Google bans crypto-mining apps from Play Store,”
Jul. 2018, accessed in June 2022. [Online]. Available: https:
//www.bbc.com/news/technology-44980936

[8] S. Varlioglu, B. Gonen, M. Ozer, and M. Bastug, “Is cryptojacking dead
after coinhive shutdown?” in 3rd Int. Conf. Inf. Comput. Techn., ser.
ICICT ’20, San Jose, CA, USA, Mar. 2020, pp. 385–389.

[9] F. Tommasi, C. Catalano, U. Corvaglia, and I. Taurino, “MinerAlert:
An hybrid approach for web mining detection,” J. Comput. Virol. Hack.
Techn., pp. 1–14, Mar. 2022.

[10] F. Naseem, A. Aris, L. Babun, E. Tekiner, and A. S. Uluagac, “MI-
NOS: A lightweight real-time cryptojacking detection system,” in Netw.
Distrib. Syst. Secur. Symp., ser. NDSS ’21, no. 28. Virtual: Internet
Society, Feb. 2021, pp. 244–259.

[11] M. Caprolu, S. Raponi, G. Oligeri, and R. Di Pietro, “Cryptomining
makes noise: Detecting cryptojacking via machine learning,” Comput.
Commun., vol. 171, pp. 126–139, Feb. 2021.

[12] S. Varlioglu, N. Elsayed, Z. ElSayed, and M. Ozer, “The dangerous
combo: Fileless malware and cryptojacking,” in SoutheastCon 2022.
IEEE, Mar. 2022, pp. 125–132.

[13] H. Badih and Y. Alagrash, “Crypto-jacking threat detection based on
blockchain framework and deception techniques,” Amer. J. Sci. Eng.,
vol. 2, no. 1, pp. 1–10, Jul. 2021.

[14] N. Lachtar, A. A. Elkhail, A. Bacha, and H. Malik, “An application
agnostic defense against the dark arts of cryptojacking,” in 51st Annu.
Int. Conf. Dependable Syst. Netw., ser. DSN ’21, IEEE/IFIP. Taipei,
Taiwan: IEEE, Jun. 2021, pp. 314–325.

[15] J. Clay, A. Hargrave, and R. Sridhar, “A power analysis of cryp-
tocurrency mining: A mobile device perspective,” in 16th Annu. Conf.
Privacy, Secur. Trust, ser. PST ’18. Belfast, Ireland: IEEE, Aug. 2018,
pp. 1–5.

[16] P. Kotzias, J. Caballero, and L. Bilge, “How did that get in my phone?
unwanted app distribution on Android devices,” in IEEE Symp. Secur.
Privacy, ser. SP ’21. San Francisco, CA, USA: IEEE, May 2021, pp.
53–69.

[17] A. Kharraz, Z. Ma, P. Murley, C. Lever, J. Mason, A. Miller, N. Borisov,
M. Antonakakis, and M. Bailey, “Outguard: Detecting in-browser covert
cryptocurrency mining in the wild,” in World Wide Web Conf., ser.
WWW ’19. New York, NY, USA: Association for Computing Ma-
chinery, 2019, pp. 840–852.

[18] M. Russo, N. Šrndić, and P. Laskov, “Detection of illicit cryptomining
using network metadata,” EURASIP J. Inf. Secur., vol. 1, no. 11, pp.
1–20, Dec. 2021.

[19] M. Cao, K. Ahmed, and J. Rubin, “Rotten apples spoil the bunch:
An anatomy of Google Play malware,” in Proc. 44th Int. Conf. Softw.
Eng., ser. ICSE ’22. New York, NY, USA: Association for Computing
Machinery, May 2022, pp. 1919–1931.

[20] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization
and evolution,” in Symp. Secur. Privacy, ser. SP ’12. San Francisco,
CA, USA: IEEE, May 2012, pp. 95–109.

[21] H. Wang, J. Si, H. Li, and Y. Guo, “RmvDroid: Towards a reliable
Android malware dataset with app metadata,” in IEEE/ACM 16th Int.
Conf. Mining Softw. Repositories, ser. MSR ’19. Montreal, QC, Canada:
IEEE, May 2019, pp. 404–408.

[22] D. Arp, Michael, Spreitzenbarth, M. Huebner, and H. G. K. Rieck,
“DREBIN: effective and explainable detection of Android malware in

your pocket,” in 21th Annu. Netw. Distrib. Syst. Secur. Symp., ser. NDSS
’14, San Diego, Carlifornia, USA, Feb. 2014. [Online]. Available: https:
//www.ndss-symposium.org/wp-content/uploads/2017/09/11 3 1.pdf

[23] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
Collecting millions of Android apps for the research community,” in
Proc. 13th Int. Conf. Mining Softw. Repositories, ser. MSR ’16. New
York, NY, USA: Association for Computing Machinery, 2016, pp. 468–
471.

[24] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and
L. Cavallaro, “Understanding Android app piggybacking: A systematic
study of malicious code grafting,” IEEE Trans. Inf. Forensics Secur.,
vol. 12, no. 6, pp. 1269–1284, Jan. 2017.

[25] K. Khanmohammadi, N. Ebrahimi, A. Hamou-Lhadj, and R. Khoury,
“Empirical study of android repackaged applications,” Empirical Softw.
Eng., vol. 24, no. 6, pp. 3587–3629, Dec. 2019.

[26] M. A. Harris, R. Brookshire, and A. G. Chin, “Identifying factors
influencing consumers’ intent to install mobile applications,” Int. J. Inf.
Manage., vol. 36, no. 3, pp. 441–450, Jun. 2016.

[27] S. Pastrana and G. Suarez-Tangil, “A first look at the crypto-mining
malware ecosystem: A decade of unrestricted wealth,” in Proc. Internet
Meas. Conf., ser. IMC ’19. New York, NY, USA: Association for
Computing Machinery, Oct. 2019, pp. 73–86.

[28] A. Saif, H. AL-KILANI, M. Qasaimeh, and A. Al-Refai, “Analysis of
Android applications permissions,” in Int. Conf. Data Sci., E-Learn. Inf.
Syst., ser. DATA ’21. New York, NY, USA: Association for Computing
Machinery, Jun. 2021, pp. 243–249.

[29] A. Alshehri, P. Marcinek, A. Alzahrani, H. Alshahrani, and H. Fu, “Pure-
droid: Permission usage and risk estimation for android applications,” in
Proc. 3rd Int. Conf. Inf. Syst. Data Mining, ser. ICISDM ’19. Houston,
TX, USA: Association for Computing Machinery, Apr. 2019, pp. 179–
184.

[30] E. Tekiner, A. Acar, A. S. Uluagac, E. Kirda, and A. A. Selcuk, “SoK:
Cryptojacking malware,” in Eur. Symp. Secur. Privacy, ser. EuroS P ’21.
Vienna, Austria: IEEE, Sep. 2021, pp. 120–139.

[31] Meta Platforms, Inc., “Facebook - Apps on Google Play,” Aug.
2022, accessed on 2nd August 2022. [Online]. Available: https:
//play.google.com/store/apps/details?id=com.facebook.katana

[32] H. Liu, P. Patras, and D. J. Leith, “Android mobile OS snooping
by Samsung, Xiaomi, Huawei and Realme handsets,” techreport, Oct.
2021. [Online]. Available: https://www.scss.tcd.ie/doug.leith/Android
privacy report.pdf

[33] S. Frier, “Samsung phone users perturbed to find they can’t delete
Facebook,” Jan. 2019, accessed on 2nd August 2022. [Online].
Available: https://www.bloomberg.com/news/articles/2019-01-08/
samsung-phone-users-get-a-shock-they-can-t-delete-facebook#
xj4y7vzkg

[34] E. Tekiner, A. Acar, and A. S. Uluagac, “A lightweight IoT cryptojacking
detection mechanism in heterogeneous smart home networks,” in Netw.
Distrib. Syst. Secur. Symp., ser. NDSS ’22, no. 29. San Diego, CA,
USA: Internet Society, Apr. 2022, pp. 208–223.

[35] A. Mylonas, A. Kastania, and D. Gritzalis, “Delegate the smartphone
user? security awareness in smartphone platforms,” Comput, Secur.,
vol. 34, pp. 47–66, May 2013.

11

