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A Deep Dive Inside DREBIN: An Explorative Analysis
beyond Android Malware Detection Scores
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Machine learning advances have been extensively explored for implementing large-scale malware detection.

When reported in the literature, performance evaluation of machine learning based detectors generally fo-

cuses on highlighting the ratio of samples that are correctly or incorrectly classified, overlooking essential

questions on why/how the learned models can be demonstrated as reliable. In the Android ecosystem, sev-

eral recent studies have highlighted how evaluation setups can carry biases related to datasets or evaluation

methodologies. Nevertheless, there is little work attempting to dissect the produced model to provide some

understanding of its intrinsic characteristics. In this work, we fill this gap by performing a comprehensive

analysis of a state-of-the-art Android malware detector, namely DREBIN, which constitutes today a key ref-

erence in the literature. Our study mainly targets an in-depth understanding of the classifier characteristics

in terms of (1) which features actually matter among the hundreds of thousands that DREBIN extracts, (2)

whether the high scores of the classifier are dependent on the dataset age, and (3) whether DREBIN’s explana-

tions are consistent within malware families, among others. Overall, our tentative analysis provides insights

into the discriminatory power of the feature set used by DREBIN to detect malware. We expect our findings

to bring about a systematisation of knowledge for the community.
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1 INTRODUCTION

Machine learning (ML) has been widely proposed as a promising technique to address the
proliferation of Android malware through rapid, systematic, and large-scale identification of

This work was partly supported by the Luxembourg National Research Fund (FNR), under the project CHARACTERIZE

C17/IS/11693861, by the SPARTA project, which has received funding from the European Union’s Horizon 2020 research

and innovation program under grant agreement No 830892, by the University of Luxembourg, under the internal project

HitDroid, and by the Luxembourg Ministry of Foreign and European Aairs through their Digital4Development (D4D)

portfolio under project LuxWAyS.

Authors’ address: N. Daoudi, K. Allix, T. F. Bissyandé, and J. Klein, SnT, University of Luxembourg, 29, Avenue J.F Kennedy,

Luxembourg, Luxembourg, L-1359; emails: {nadia.daoudi, kevin.allix, tegawende.bissyande, jacques.klein}@uni.lu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).

2471-2566/2022/05-ART13 $15.00

https://doi.org/10.1145/3503463

ACM Transactions on Privacy and Security, Vol. 25, No. 2, Article 13. Publication date: May 2022.

https://orcid.org/0000-0002-1437-667X
https://doi.org/10.1145/3503463
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3503463


13:2 N. Daoudi et al.

malicious samples and their variants. Several approaches [7, 8, 16, 28, 30, 33, 52] have then been
presented in the literature, where authors explore static, dynamic or hybrid analysis methods to
extract features, as well as a variety of classification algorithms. Although the malicious char-
acteristic of a sample is derived from the app behaviour, many approaches rely only on static
analysis to produce features that are then assumed to be a proxy representation of the app’s
entire code (and hence its behaviour). Such features unfortunately capture only a small prede-
fined portion of information about the app behaviour: features select only a finite set of code
attributes, may leave out native code, and so forth. Therefore, extracted features for ML-based
malware detection offer an imprecise representation of an incomplete view of the app that is fur-
ther used as a proxy of application behaviour. Consequently, there is an assumption that this proxy
representation still contains enough of the relevant information for discriminating malware. Fea-
ture engineering is thus the essential step in malware detection that implements the intelligence
of the malware detection approach, beyond the off-the-shelf classification algorithms that are
employed.

In the literature of malware detection, state-of-the-art approaches mainly differ by the feature
sets that are proposed. For example, DREBIN [7] is a key reference in the literature that builds on
a standard SVM algorithm but was novel in proposing a large and domain-specific feature set that
was manually engineered for the problem of Android malware detection. Interestingly, the contri-
butions that stand out in most of the ML-based malware detection approaches are associated to
the feature set. These key contributions, however, are rarely evaluated through in-depth ablation
studies, where the feature set value is assessed thoroughly. Instead, the literature provides assess-
ment results by reporting detection performance measurements of the overall approach. The state
of the practice thus considers that good performance indicators offer sufficient validation on the
value of the feature set.

Evaluation of ML-based malware detection approaches have been scrutinised in recent studies.
Allix et al. [3] have demonstrated that the performance of a malware detector may drop drastically
when it is evaluated in the wild. Spatial and temporal biases have also been pointed out in two
independent research works [4, 35]. Although these works attempt initial analyses of whether

models can fail to generalise, they do not provide in-depth investigations into how or why. We
propose to fill this gap in our work by conducting a tentative analysis of the feature set that is fed
to the learners.

Analysing a classifier is an open problem [27]. Our work engages in building a roadmap in this di-
rection for ML-based malware detection. We propose a dissection study that overviews the perfor-
mance of a classifier from different points of views. Our work builds on a reproduction study [11]
that has considered Android malware detectors from 16 major venues on Software engineering,
security, and ML. Specifically, we focus on the state-of-the-art malware detector DREBIN, which
is a the most cited approach that has been successfully replicated. Typically, our investigation
attempts to go beyond the quantitative measurements of precision and recall detection metrics,
to highlight other qualitative dimensions of the approach. In particular, we seek answers to the
following questions:

• What are the key app features that guarantee to DREBIN its high-performing detection
scores?
• Are all the features needed to achieve state-of-the-art detection performance?
• Does DREBIN learn the concept of malware family?

To support that the classification decisions are dependable, beyond the high performance
scores, DREBIN outputs some explanations which show that the model has reasonably captured
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information that is relevant to the accuracy of the decision. We propose to dissect these explana-
tions further through various analyses:

• To what extent are explanations given by DREBIN indicative of the classification decision?
• How consistent are the DREBIN explanations across samples of the same malware family?

Our study explores DREBIN along with its initial dataset but also considered three other datasets
that were carefully collected to assess the generalisability of the findings. Our insights with this
study will serve the community for better understanding the strengths and limitation of the
DREBIN contribution, and thus offer a systematisation of knowledge around DREBIN. We expect
this study to better drive the exploitation of DREBIN as a key contribution in the literature to-
wards opening novel research directions and producing reliable and effective models for malware
detection.

Among other findings, the study yields that:

❶ The feature set of DREBIN is sufficiently generic to capture enough concepts that are relevant
to a diverse set of malware samples across time.

❷ The feature set of DREBIN contains a huge number of id-features (e.g., features such as com-
ponent names). However, the relevance and importance of each feature remains challenging
to quantify w.r.t. the overall performance of DREBIN.

❸ Most features in DREBIN are at best redundant and at worst useless. Indeed, a subset of
DREBIN features, smaller than the whole set by three orders of magnitude, is enough to
provide similar performance with the whole feature set.

❹ DREBIN includes some features which, singlely, can offer a surprisingly high detection rates
on some datasets.

❺ DREBIN explanations do not reflect how much the features contribute to the prediction.
❻ DREBIN explanations are often inconsistent across samples from a specific malware family.

1.1 Background on DREBIN

DREBIN is an Android malware detector that makes use of static analysis and ML techniques to
decide if a given Android application is likely to be malware or goodware. This approach has
been developed and validated using 5,560 malware samples and 123,453 goodware apps whose
compilation dates are all within the period from August 2010 to October 2012.

Leveraging the Manifest file1 which is included in each Android app package, DREBIN extracts
four sets of string features from this file using the Android Asset Packaging Tool: Hardware com-
ponents, Requested permissions, App components, and Filtered intents. DREBIN further consid-
ers the information contained in the disassembled code of the apps to extract four additional
sets of string features: Restricted API calls, Used permissions, Suspicious API calls, and Network
addresses.

To feed the extracted sets of features to the classifier, a multi-dimensional vector space has to
be created, using the combination of all the features, from the eight categories, that are extracted
from the training apps. DREBIN feeds the multi-dimensional vectors of the training apps to a
Linear SVM classifier to make it learn the relationship between the inputs (features vectors) and the
outputs (samples are either malware or goodware). The trained classifier is then used to predict the
class of new and unseen Android apps (i.e., the test set). In DREBIN’s paper, the authors state that
this classifier detects malware apps with a recall of 0.94. The ML algorithm used by DREBIN, SVM,
has already been used by many prior works on Android malware detection. Therefore, we assume

1https://developer.android.com/guide/topics/manifest/manifest-intro.
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that the defining contribution that gave DREBIN its performance are attributable to DREBIN’s
selection of feature rather than to its choice of algorithm.

Besides its effectiveness in detecting malware apps, DREBIN has made a breakthrough in the
field by providing explanations of its decisions. DREBIN relies on the weights of the Linear SVM
classifier to determine the features that contributed the most to the prediction. The notion of
explainability is extended to malware families, where DREBIN explains a family based on the
explanations given to the malware samples of that family.

2 DATASET AND STATISTICAL ANALYSIS OF DREBIN FEATURES

2.1 Dataset

To collect our dataset, we have mainly relied on AndroZoo, which is a large collection of more than
16 million Android apps and regularly growing [5]. Our dataset is built by considering malware
and goodware samples that span several years (2017, 2018, and 2019), allowing to ensure that the
insights that we draw are related to the properties of DREBIN, not the properties of a given dataset.

AndroZoo makes available, for each app it stores, the number vt_detection that represents the
number of VirusTotal2-hosted antivirus that have detected this app as malware. Our goodware
samples are defined as the apps that have vt_detection = 0, to ensure that they have not been
flagged by any antivirus engine. Following on past studies, we have set the vt_detection value to
6, which means that our malware apps have been detected by at least six antivirus engines from
VirusTotal.

At the time of the experiments, we were able to collect 15,892 malware apps for the 2019 dataset.
The same number of malware apps (i.e., 15,892) was collected for the 2018 and 2017 datasets to have
comparable settings. As for the goodware, we have considered all the apps that meet our criteria
(i.e., the apps that have vt_detection = 0). Consequently, we have collected 175,327, 297,272, and
276,750 apps for 2019, 2018, and 2017 datasets, respectively.

We name 2019_data, 2018_data, and 2017_data the collection of malware and goodware sam-
ples that have been collected for 2019, 2018, and 2017 datasets, respectively.

In addition to the three recent datasets we collect (2019_data, 2018_data, and 2017_data), we
also conduct our analysis on DREBIN’s original dataset to verify that our results are generic and
stable across the time. To this end, we have leveraged DREBIN’s malware dataset, which consists
of 5,560 malware apps provided by the original authors upon request. As for the goodware dataset,
the raw apps are not provided directly by the authors. We have searched them in AndroZoo using
the list of the APKs’ SHA256 hashes provided by the authors. Consequently, we were able to collect
57,307 apps (i.e., only 46.42% of the total number of goodware samples used in DREBIN’s paper).
To have a dataset that is similar to the one used in the original paper, we have complemented the
goodware samples with 66,146 apps from the same period (i.e., August 2010 to October 2012), and
having vt_detection = 0. This dataset is denoted as DREBIN_Like_data. We note that 81 out of
5,560 malware applications have failed in the features extraction process. Table 1 summarises the
number of applications in our collected datasets.

2.2 DREBIN Replication

To conduct our experiments, we replicated the DREBIN approach [11] and checked its performance
using our datasets. We aim to assess DREBIN’s performance as described in the original publication
to compare our analysis with the results of this implementation.

2VirusTotal (https://www.virustotal.com) is an online service that allows to collect antivirus reports on uploaded samples.
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Table 1. Number of Collected Malware and
Goodware Apps in Our Datasets

Dataset Malware Goodware

2019_data 15,892 175,327
2018_data 15,892 297,272
2017_data 15,892 276,750

DREBIN_Like_data 5,560 123,453

Table 2. Number of Features and Performance Scores of Our Replication of DREBIN
on Each Dataset

2019_data 2018_data 2017_data DREBIN_Like_data
# Features 1,230,854 1,331,583 1,486,191 389,957

Recall 0.974 0.924 0.918 0.933
Precision 0.983 0.926 0.938 0.955
F1-score 0.979 0.925 0.928 0.944

Hypothesis 1

DREBIN effectiveness is not specifically tied to its original dataset.

We split each of our four datasets into subsets (80% for training and 20% for testing). We then
fit Linear SVM classifiers on the training datasets and calculate the performance scores on the
test subsets. We note that all our experiments are performed using the well-known ML framework
Scikit-learn.3 We report in Table 2 the number of features that are used to perform the classification
for our four dataset, as well as the three performance measures: recall, precision, and F1-score.

As we can see from the table, the three performance measures for the four datasets are very high,
especially for 2019_data, which reports an F1-score of 0.979 on a test dataset of 58,529 Android
apps. These scores confirm that DREBIN performs very well, not only with the DREBIN_Like_data
but also when evaluated with our own collected samples. DREBIN was proposed in 2014 with a
dataset of malware and goodware samples that belong to the period from August 2010 to October
2012, and here it still performs very well with our recent collected datasets.

Finding 1

DREBIN provides excellent scores even when it is used with recent datasets (i.e., after
retraining). This suggests that the feature set is sufficiently generic to capture enough con-
cepts that are relevant to a large variety of malware along their variations across time, as
long as retraining is performed in the same time frame.

Evaluating the performance of malware classifiers—like all security systems—is not a straight-
forward task [44]. Some experiments may provide brilliant results, but still they do not reflect
how good the classifier is when it is deployed in realistic settings. The results presented in Table 2
show the performance of DREBIN when the training and test datasets belong to the same year.
However, when DREBIN is evaluated with training apps that are temporally precedent to testing
apps, TESSERACT [35] has reported that the performance of this classifier drops remarkably. The

3https://scikit-learn.org.
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realistic setting of using Android malware detectors showed the limitation of DREBIN, which ques-
tions the way it works and to what extent it captures the behaviour of Android apps. Inspired by
the results of TESSERACT [35], we aim to perform an in-depth study on DREBIN to have a better
understanding of its learning.

2.3 Statistical Analysis of the Features

Based on the results presented in Table 2, we can see that the four classifiers use a large number of
features to perform the classification. If we take the example of 2017_data, DREBIN uses 1,486,191
features, and hence for each sample it creates a 1,486,191-dimensional vector as part of its learn-
ing/predicting process. This huge number of features is explained by the fact that DREBIN extracts
as much features as it finds in the apps, and it does not make any cleaning nor evaluation of the
importance nor the relevance of these features. In practice, not every feature in a dataset carries in-
formation useful for discriminating samples; some features might be redundant or irrelevant, and
they may add randomness to the results. Given that DREBIN trains an SVM classifier with more
than 1 million features, it is unclear what exact features are responsible for making SVM decide
how to classify a given Android app, nor how many features (out of 1 million) are actually needed
to enable it to make this decision.

Finding 2

DREBIN relies on a huge number of features. The relevance and importance of each feature,
however, remains challenging to quantify w.r.t. the overall performance of DREBIN.

Another issue that needs to be discussed is related to the quality of some features used
by DREBIN. As we have presented earlier, DREBIN uses string features that belong to App
components and Network addresses categories. For instance, the names of Android components4

are extracted from the apps. Since these components names are defined and attributed by the devel-
opers of the app, using them as features increases the possibility of DREBIN to overfit the dataset
and decreases its capability to generalise. Malware developers can easily change the names of app
components they use in their applications (such as with simple obfuscation techniques). Conse-
quently, if DREBIN relies on these features to classify the malware, attackers can easily bypass
its detection. The same applies for the Network addresses category. Note that in their paper,
DREBIN’s authors stated that collecting the components’ names may help identify the well-known
components of malware. Although this may reveal relevancy within a specific time frame, we are
concerned that changes in component names within variants will affect the classifier performance.

Analysing the features used in the previous section reveals that in our four datasets, at least
88.9% of the features belong to the App components and Network addresses categories. These
are string features that are chosen by the developer (e.g., a class name) and identify elements that
do not necessarily hold any semantic meaning beyond the scope of the sample. We refer to them
as “id-features”. Id-features are extracted from components (Activity, Service, Content Provider,
Broadcast Receiver) names and Network addresses. Since these features are extracted from the
apps of a specific dataset, they are ad hoc to that dataset. Indeed, an id-feature that is present in a
dataset may not appear in another one, especially when malware evolves. In addition, id-features
can be changed without affecting the behaviour of the apps. Consequently, a DREBIN classifier
that considers id-features of a given dataset is likely to perform poorly outside this dataset.

4We recall that there are four types of components defined by the Android framework: Activity, Service, Broadcast Receiver,

and Content Provider.
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Table 3. Number of Id-Features Used in Our Replication of DREBIN

2019_data 2018_data 2017_data DREBIN_Like_data
# Features 1,230,854 1,331,583 1,486,191 389,957
# Id-Features 1,160,420 1,197,831 1,326,301 347,007
% Id-Features 94.28% 89.95% 89.24% 88.98%

We present in Table 3 the exact number of id-features in 2019_data, 2018_data, 2017_data,
and DREBIN_Like_data.

Finding 3

DREBIN’s set of features contains a huge number of id-features. This raises a concern of
generalisability if malware samples are identified based on learning non-generic features.

3 DISCRIMINATORY POWER OF DREBIN’S FEATURES

As we have established in the previous section, DREBIN uses a huge number of features to perform
its task of prediction. Consequently, it is difficult to get insights about what DREBIN learns and
on what basis it performs the prediction. Specifically, we cannot tell if DREBIN needs all these
features for its task of detection nor what its main decisive features are. For a given Android app,
we are curious to know to what extent DREBIN has captured its malware/benign behaviour using
its set of features. This problem is our main motivation for this section, where we aim to reduce
the number of features of our four classifiers while preserving a comparable performance.

3.1 What Are the Key Features That Enable the Prediction?

In this section, we conduct several experiments to analyse what the DREBIN classifier learns. Our
aim is to create variations of DREBIN classifiers that use a small subset of the initial features and
still perform well on the dataset. Analysing these features will make it possible to understand what
this classifier captures, as well as the key features that direct its predictions.

Hypothesis 2

Some features can be removed with little to no loss in performance.

3.1.1 Method. We have developed our own custom feature selection approach to identify the
smallest set of features that still yields reasonably high classification scores. Our feature selection
technique unfolds the following four steps:

(1) We split each of our four datasets into subsets (80% for training and 20% for testing), and
we train a DREBIN classifier using all the features (i.e., exactly what we have done in the
previous section).

(2) With the feature ranking given by SVM, we train classifiers using the features that contribute
the most in the prediction, starting with the most important feature and adding gradually
the other features. Each time we add a feature, we compute the F1-score. This procedure is
repeated until a subset of features yields a reasonably high F1-score. In our experimental
setup, we consider an F1-score ≥ 0.8 to be reasonably high.

(3) We repeat steps (1) and (2) K-times, where we vary, each time, the training and testing sets.
This step is necessary given that the feature set is dependent on the training set. At the
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Table 4. Number of Red1 Features Sets and the Performance Scores

2019_data 2018_data 2017_data DREBIN_Like_data
# Features 19 156 158 188

Recall 0.928 0.764 0.782 0.725
Precision 0.888 0.877 0.921 0.948
F1-score 0.908 0.816 0.846 0.822

end of this step, we have K subsets of features, with each subset offering reasonably high
performance.

(4) The union of the K sets of top features is further reduced by iteratively discarding features
that can be removed without any loss in the performance. Therefore, at the end of this step,
we have the minimal set of features that can achieve the same performance as the reference
classifier trained with the whole union of the K sets.

We note that with our wrapper customised method, we do not aim to improve the prediction
performance nor to optimise DREBIN’s approach. Our aim is to create a classifier that reports good
performance and uses a small number of features.

3.1.2 Results. We have applied our features reduction method from the previous section on
the four datasets using K = 10. For each dataset, we have evaluated the performance of DREBIN
using our reduced sets of features that we denote as Red1. Our evaluation is conducted using the
5-fold cross-validation technique. We present in Table 4 the number of features in Red1, for the
four datasets, and the results of predictions: recall, precision, and F1-score.

As can be seen in Table 4, we were able to build DREBIN classifiers that, unlike DREBIN’s
replication, use only a small number of features with 2019_data, 2018_data, 2017_data, and
DREBIN_Like_data datasets. These classifiers have been created in such a way that even if they
use a small number of features, they still perform well and report high scores.

For 2019_data, we have been able to use 19 features to get a good F1-score (0.908), whereas
with DREBIN replication, SVM uses 1,230,854 features to achieve an F1-score of 0.979.

For 2018_data, 156 features that represent again a very small subset of the features used in
DREBIN replication (0.01%) are needed to recover 88.22% of the F1-score. Similar results have
been achieved with 2017_data, where 158 features (0.01% of the initial features) have enabled
the reporting of good scores (e.g., F1-score = 0.846), which recovers 91.16% of the initial F1-score.
As for the DREBIN_Like_data, we were able to recover 87.08% of the F1-score using 0.048% of the
initial features.

Finding 4

A significantly smaller subset of DREBIN features is enough to provide reasonable perfor-
mance compared to the whole set of features. This suggests that most features in DREBIN
are at best redundant and at worst useless.

We now assess to what extent the reduced sets of features are indeed relevant for the DREBIN
classifier by investigating their information gain. The information gain of a feature represents the
amount of information gained about the predicted class when observing this feature itself. The
information gain can be used to verify if the reduced features sets indeed capture an important
amount of information.

For each dataset, we have calculated the information gain of all the features, and we have ranked
the features by their information gain. If a feature has a good ranking, it means that it captures more
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Fig. 1. Distribution of the rank of the features selected in the reduced features sets. Features are ranked
according to their information gain for the four datasets. Numbers at the top of each distribution represent
the median values.

information (than the other features). Consequently, the highly ranked features are important to
the prediction. We present in Figure 1 the distribution of rankings (based on info gain values) of
features included in the reduced features sets, and we represent their median values in blue colour.
The distribution of rankings highlights that the features in the reduced sets are among those having
the highest information gain.

3.1.3 Analysis. As shown previously, we were able to collect sets of features that not only are
the most relevant features for the DREBIN classifier but also enable to report good prediction
performance when they are used “alone” to train the classifier. Examining these features can lead
to further insights about DREBIN’s discriminative features.

Specifically, studying the distribution of the features in the dataset and their malicious/benign
character is a potential lead to understand how the classifier works. In addition, analysing the
features helps to validate DREBIN’s capabilities, especially to confirm whether or not it learns
general characteristics of goodware and malware apps.

We list in the following the 19 features present in the reduced features sets Red1 of the
2019_data dataset:

(1) activitylist_com.silverbat.knightage.temmidlet
(2) activitylist_com.stub.stub08.appupdateactivity
(3) activitylist_com.twofloorhousedesign.lukoni.adsactivity
(4) activitylist_com.e4a.runtime.android.mainactivity
(5) restrictedapilist_android.telephony.telephonymanager.getline1number
(6) restrictedapilist_android.support.v4.view.

accessibility.accessibilitynodeprovidercompat.performaction
(7) usedpermissionslist_android.permission.wake_lock
(8) suspiciousapilist_ljava/lang/runtime;->exec
(9) usedpermissionslist_android.permission.read_phone_state

(10) restrictedapilist_android.provider.settings$system.putstring
(11) usedpermissionslist_android.permission.get_accounts
(12) suspiciousapilist_landroid/telephony/telephonymanager.getsubscriberid
(13) restrictedapilist_android.media.mediaplayer.stop
(14) restrictedapilist_android.os.vibrator.cancel
(15) restrictedapilist_android.net.connectivitymanager.isactivenetworkmetered

ACM Transactions on Privacy and Security, Vol. 25, No. 2, Article 13. Publication date: May 2022.
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(16) requestedpermissionlist_android.permission.read_phone_state
(17) restrictedapilist_android.accounts.accountmanager.getaccounts
(18) suspiciousapilist_landroid/view/keyevent.getdeviceid
(19) restrictedapilist_android.media.audiorecord.<init>

For 2019_data, we can see that the reduced features sets contain four id-features (from the
App components category), which are features numbers 1, 2, 3, and 4. The other features are not
id-features, and they can give insights about some activities the app performs.

As for the reduced features sets of 2018_data, 2017_data, and DREBIN_Like_data, they also
contain id-features that belong to both App components and Network addresses categories.
Specifically, the id-features represent 61%, 60%, and 77% of Red1 for 2018_data, 2017_data , and
DREBIN_Like_data, respectively. We remind that Red1 is the selection of the most important fea-
tures of DREBIN.

The good results of DREBIN may be explained by code reuse among malware, coupled to the
significant presence of id-features that excel at capturing elements shared across apps. Specifically,
when the code of a malware app is reused, the attacker may not change the app components
features set (i.e., activity names for example), which results in DREBIN predicting an application
as malware because it contains the same component name of the app from which the code is reused
(but also because of the presence of other relevant features when they are present in the app).

To illustrate the impact of id-features on the prediction, we have examined a malware APK5 that
contains one id-feature from Red1 (i.e., activitylist_com.silverbat.knightage.temmidlet).
This application is predicted by DREBIN as malware. However, when we make a slight modifica-
tion in the app by changing the name of this activity to another arbitrary name, the app escapes
the detection of DREBIN. Note that changing the name of this id-feature does not impact the actual
functioning of the app. It is a simple name that is chosen by the developer (or the attacker). Con-
sequently, malware apps can easily evade the detection by changing the names of the id-features
that are considered relevant by DREBIN, which raises a concern of generalisability.

Finding 5

A significant part of DREBIN’s most relevant features are id-features.

Our method allows to identify the most important features that are related to the dataset at hand.
The number and the composition of the features that we have collected differ from one dataset to
another. This situation makes the reduction of feature sets dependent to the datasets, as we have
noted with the four datasets (cf. Table 4).

3.2 Are All the Features Needed to Achieve Similar Results?

The performance achieved using our proposed reduced set of features is inferior to the full DREBIN.
We are curious to know how many features are effectively needed to achieve similar performance.

Hypothesis 3

Only a subset of the features is needed to reach the performance reported when all the
features are used.

56013EDCCE42F8B0548AD750682BCB08C.
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Table 5. Number of Optimised Features for Red2 and the Performance Scores

2019_data 2018_data 2017_data DREBIN_Like_data

Red2

# Features 73 1,183 241 296
Recall 0.969 0.92 0.892 0.894

Precision 0.975 0.929 0.945 0.978
F1-score 0.972 0.925 0.918 0.934

DREBIN Replication F1-score 0.979 0.925 0.928 0.944
(cf. Table 2)

# of Features 1,230,854 1,331,583 1,486,191 389,957

Red2 % Features Reduction 99.99% 99.91% 99.98% 99.92%

3.2.1 Method. For this experiment, we select the features based on the information gain as
follows:

(1) We split each of our four datasets into subsets (80% for training and 20% for testing), and we
calculate the F1-score using all the features (the ones constructed based on the training set).

(2) We calculate the information gain of all the features and rank them in descending order.
(3) We train SVM classifiers with these features starting with the one feature that has the highest

rank and adding gradually the other features. Each time we add a feature, we calculate the
F1-score. This procedure is repeated until the difference between this F1-score and the one
obtained in step (1) is smaller than 0.01.

(4) The features from the previous step are further reduced by iteratively discarding features
that can be removed without any loss in the performance. At the end of this step, we have
the minimal set of features that can achieve the same performance as our replicated DREBIN.
The resulted features are denoted as Red2.

3.2.2 Results. We apply the previous method to our four datasets, and we report the results in
Table 5. We note that in this setup, it is not possible to use the cross-validation technique since we
aim to compare the features and the scores of two dependent classifiers: one uses all the features
(that are specific and depend on the training data), and the other classifier is trained with features
that are an optimisation of the first classifier’s features.

Specifically, our results in Table 5 are compared to the results in Table 2.
Overall, the results demonstrate that only a small set of features is needed to report scores

that are as high as the scores achieved with all the features. We were able to reduce the initial
features set by at least 99.9% for 2019_data, 2017_data, and DREBIN_Like_data, respectively. As
for 2018_data, we observe that the number of features in Red2 is higher. This can be explained by
the diversity and the composition of this dataset (i.e., it contains the highest number of goodware
apps).

Finding 6

Only a small sets of features are needed to achieve results that are as excellent as the results
reported when all the features are used.

We remind the reader that our aim through this investigation is not to replace DREBIN’s features
with those that we collect. Instead, we aim to identify DREBIN’s most relevant features—that is,
those that are necessary to its predictions. Such features can be further analysed to get insights
about DREBIN’s capabilities.
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Table 6. Performance Scores of ONE-Feature DREBIN (i.e., the Feature That Has the
Highest Info Gain)

2019_data 2018_data 2017_data DREBIN_Like_data
# Features 1 1 1 1

Recall 0.827 0.614 0 0
Precision 0.765 0.622 0 0
F1-score 0.795 0.618 0 0

3.2.3 The Impact of DREBIN’s Features on the Learning Process. To get insights about how the
performance of DREBIN evolves with the number of features, we provide in Figure 2 the plots
that show the impact of adding gradually the features ranked with the information gain on the
prediction. Each dataset is split into two subsets (80% for training and 20% for testing). We calculate
the recall, the precision, and the F1-score starting with the most important feature and adding
gradually the other features based on their information gain rank. For each dataset, the first graph
represents the plots of recall, precision, and F1-score as a function of the number of ranked features
used in the prediction. The plots in the right are a zoom of the first plots on recall, precision, and
F1-score using the first 4,000 features.

As we can see from the first plots, the performance of prediction is generally stable after the first
highly ranked features for the four datasets. The recall and the precision may increase at a certain
time (after adding more features), but they evolve inversely. The F1-score metric that captures
both the recall and the precision is almost stable when adding more features. The zoom plots
confirm this statement since with the top 4,000 highly ranked features, the performance metrics
are generally high and they are close to the recall_all, precision_all, and f1_all that we present in
the plots with straight lines. These metrics are calculated using all the features from the training
datasets.

These results suggest that DREBIN is notably impacted by a small number of dominant features
that have the highest info gain. However, it is hardly affected by a huge number of features that
have less information gain. We also observe that the detection performance does not monotonically
increase with the addition of features. Indeed, for three of our datasets, there is actually a drop
in performance after a number of features are included, and it can take up to 1 million additional
features to come back to and marginally improve the performance obtained with the Red2 features.

Finding 7

A huge number of features have a minor influence on the prediction. Furthermore, adding
subsets of features can even result in a performance decrease.

3.2.4 ONE-Feature DREBIN. In the previous section, we have seen that many features have a
minor impact on DREBIN’s prediction. Based on Figure 2, we also observe that a single feature (i.e.,
the first feature that has the highest information gain) enables DREBIN to yield a high detection
performance for 2019_data and 2018_data. As for 2017_data and DREBIN_Like_data, the detec-
tion performance of DREBIN using the single feature is null. We present in Table 6 the prediction
scores of DREBIN trained using the first feature that has the highest info gain and evaluated with
5-fold cross validation.

We observe that the overall performance of DREBIN using this ONE feature is surprisingly good
for 2019_data and 2018_data. For both of these two datasets, the ONE feature is from DREBIN’s
“Suspicious API Calls” features set, which contains API calls that have access to sensitive data or
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Fig. 2. The performance of DREBIN using the cumulated features ranked with info gain.
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resources. This feature is landroid/content/context.getsystemservice. After inspecting this
feature’s presence in 2019_data apps, we found that it is present in 17.3% of the malware and
97.7% of the benign apps. In 2018_data, this feature exists in 38.6% malware and 98% benign apps.
In these two datasets, the ONE feature is present in a large majority of the benign apps, and it is
less frequent in malware apps (i.e., it is present in less than 50% of the apps).

Concerning 2017_data and DREBIN_Like_data, their ONE feature is restrictedapilist
_android.support.v4.view.accessibility.accessibilitynodeprovidercompat.perform-
action and requestedpermissionlist_android.permission.send_sms, respectively. The
ONE feature of 2017_data is present in 8.8% of malware and 69.6% of goodware. As for
DREBIN_Like_data ONE feature, it exists in 53.4% of malware and 4.3% of benign apps. For these
two datasets, the performance of DREBIN using the ONE feature is null.

We have also tested the ONE feature of 2019_data and 2018_data on both 2017_data and
DREBIN_Like_data, but the detection performance is again null. The examination of this feature’s
presence in 2017_data and DREBIN_Like_data reveals that it is present in 75.1% and 81.6% of their
malware apps and in 96.9% and 72% of their benign apps, respectively. This observation suggests
that when DREBIN is trained using a feature that is predominant in goodware apps (or malware
apps), it tends to associate its presence with the benign class (or the malware class).

Finding 8

A single feature can offer a surprisingly high detection rate.
An analysis of features is therefore necessary to assess their genericity (for detecting a variety

of malware variants), as well as their discriminative power (for leading to accurate prediction).

4 ANALYSIS OF DREBIN CLASSIFIER EXPLANATIONS

In this section, we aim to perform an in-depth analysis of DREBIN’s explanations to assess how
well this approach explains the prediction (Section 4.2), and how consistent the explanations given
by DREBIN are to malware samples of the same family (Section 4.3). Before diving into the analysis,
in Section 4.1 we first present an overview of the malware families present in our datasets.

4.1 An Overview of Malware Families

In this section, we present and study the distribution of malware families in our four datasets. For
each malware sample, we collected from VirusTotal the detection reports provided by the hosted
antivirus engines. Then, we leveraged AVCLASS [40] to infer a unique malware family label for
each sample. We present in Figure 3 the distribution of malware families in 2019_data, 2018_data,
2017_data, and DREBIN_Like_data as provided by AVCLASS.

We notice that we have a dominant malware family in three datasets. The family (jiagu)
represents 78.6%, 50.24%, and 28.29% of the malware in 2019_data, 2018_data, and 2017_data,
respectively. The difference of the distribution of this malware family in the three datasets can ex-
plain the very good results we were able to achieve for 2019_data. Indeed, in this specific dataset,
around 80% of malware samples are from the same family. We postulate that by classifying these
samples correctly, DREBIN can exhibit a very good recall. With this dataset, we were also able to
retrieve a small number of features either to get insights about DREBIN’s learning or to report
similar scores as when all the features are used. The other datasets required more features to per-
form similar performance, potentially due to the diversity of apps in these datasets. For our next
experiments, we will limit ourselves to DREBIN_Like_data malware since this dataset is the most
diverse in terms of represented malware families.
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Fig. 3. The distribution of malware families in the datasets.

4.2 How Informative Are the Explanations Given by DREBIN?

In this section, we aim to assess the quality of the explanations provided by the DREBIN classifier.
Specifically, we examine whether the information contained in these explanations is complete and
adequately explains the prediction. We use “positive features” to refer to the features that have a
positive SVM weight. DREBIN suggests that the top k positive features can be used to explain the
prediction of malware applications. We formulate the following hypothesis.

Hypothesis 4

DREBIN’s top positive features are sufficiently informative.

To verify our hypothesis, we examine two components:

(1) The contribution of the top positive features represented by their SVM weights;
(2) The number of the top positive features to use in the explanation.

4.2.1 The Contribution of DREBIN Top Positive Features. One key contribution of DREBIN is its
ability to explain the detection by outputting the features that have the highest SVM weights after
applying its linear transformation.

An example of DREBIN’s top positive feature of a malware app that belongs to “droid-
kungfu” family in DREBIN_Like_data is (0.966, ’intentfilterlist_android.intent.action.sig_str’).
In this example, 0.966 represents the SVM weight associated with the feature
’intentfilterlist_android.intent.action.sig_str’.

DREBIN provides top k (with k = 5 in the experiments of the original paper) features that
are relevant to the prediction, with their weight values. However, this information may actu-
ally not be sufficient to infer to what extent each feature was actually important (in terms
of overall contribution for the detection, in comparison with all other features). Indeed, the
contribution of the top five features may still be lower than the contribution of all other fea-
tures combined. For instance, the value of 0.966 in this example does not reflect how powerful
’intentfilterlist_android.intent.action.sig_str’ is compared to the other positive fea-
tures. The raw SVM weights suggested by DREBIN do not then quantify the importance of each
individual feature to the prediction.

Finding 9

DREBIN’s explanation does not reflect how much the features contribute to the prediction.
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Fig. 4. The distribution of the number of positive features in the malware of the top 10 families of
DREBIN_Like_data.

4.2.2 The Number of DREBIN’s Top Positive Features. Another aspect we aim to investigate
about DREBIN’s explainability is how many top positive features are needed to explain the
prediction. DREBIN’s publication suggests that Android apps can be explained using the top k
features, but it does not specify how to choose this number. Nonetheless, its evaluation experi-
ments have been conducted using k = 5 top positive features for each family.

To verify if a specific number of the top positive features can be fixed to explain the prediction
of the apps, we examine the distribution of the positive features in the apps of the top 10 malware
families of DREBIN_Like_data.

Specifically, if the number of the positive features varies remarkably between the apps in general
and between samples of the same family in particular, it would be difficult to decide about the
threshold to fix for this number.

We provide in Figure 4 the number of all the positive features in the malware of the top 10
families of DREBIN_Like_data.

We notice that the number of all positive features differs remarkably from one app to another,
and it is even different between apps that belong to the same family. This number ranges from
4 to more than 100 features in the malware of the DREBIN_Like_data test set. If this number is
fixed at 5, we are confident that the top five features adequately explain the apps containing a
small number of positive features. However, the top five features might fail to capture the primary
features that manipulate the prediction of the apps that contain a large number of positive features,
especially if the positive features have similar contributions. This problem is accentuated by the
fact that the contribution of the features is not determined. For instance, if an application contains
many positive features, each with a small contribution, we will not be able to decide about the
threshold to fix for k to explain the prediction.

Finding 10

The number of positive features differs from one app to another and within apps of the
same family, making it difficult to fix a threshold for the top positive features that explain
the prediction.

4.3 How Consistent Are the Explanations Given to Samples of the Same Malware
Family?

After showing that the number of positive features differs between samples of the same malware
family, we seek to investigate the consistency of the top positive features within the same family
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using DREBIN_Like_data. In our experiments, we use top five positive features to explain the
prediction of the apps as it is suggested in DREBIN’s paper.

Hypothesis 5

Malware samples of the same family are generally explained with the same features.

To verify our hypothesis, we visualise the distribution of the explanations in each of the top 10
families of DREBIN_Like_data. We plot for each malware sample the top 5 positive features that
explain its prediction. Figure 5 shows the distribution of these explanations. For each malware
sample, we plot the top five positive features with different colours to distinguish their rank (in
explaining the prediction of the app). The interpretation of the five colours is explained in the
figure. Each row represents a positive feature that has been used to explain at least one app that
belongs to the family, and each column represents a malware sample. Ideally, we should see five
straight lines with the following ordering of colours from top to bottom: red, blue, green, pink,
and brown. This ideal graph reflects that the same five features are used to explain malware apps
that belong to the same family. A line of the same colour shows that a feature have the same
importance in the prediction of all the malware that belong to the family. The visual lecture of
Figure 5 suggests that some families use the same features to explain most of their apps (e.g.,
“droidkungfu” and “plankton” families). However, the overlapping colours in the sub-graphs show
inconsistency of explanations.

We have also calculated the overlap between the top five positive features in the malware sam-
ples of the 10 families. We provide in Figure 6 the distribution of the results.

We notice that for some families (e.g., basebridge and batterydoctor), there is a significant over-
lap of top features across samples in the family: there is a consistency of explanations for the
majority of samples in the family. In some other families (e.g., fakeinst and opfake), however, the
top features are not consistent across family samples. These findings suggest that top features that
are used for explanations are not systematically sufficient to characterise a malware family.

We further report in Table 7 the total number of distinct top five features used in the top 10 mal-
ware families of DREBIN_Like_data. For each family, we provide the number of samples (found in
the test set) and the total number of distinct features used to explain its malware samples (number
of rows in Figure 5 visualisations). We notice that the number of distinct top five features used to
explain the families’ samples clearly exceeds five features. This number is generally higher when
there are more samples in the malware family. The numbers in Table 7 suggest that DREBIN refers
to a variety of features to “explain” samples within the same family.

Finding 11

Not all malware families can be characterised by the explanations provided by DREBIN.

5 ASSESSMENT OF DREBIN’S LEARNING POTENTIAL

In this section, we aim to evaluate DREBIN’s ability to capture the concept of malware families,
both within the family (i.e., if it is able to assemble malware samples that belong to the same
family), and across families (i.e., if it separates malware that belong to different families).

5.1 Does DREBIN Capture the Concept of Malware Family (within the Family)?

To answer our question, we represent malware samples in DREBIN_Like_data by their embedded
vectors, and we make the following hypothesis.
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Fig. 5. The distribution of the top five features in the top 10 families of DREBIN_Like_data.
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Table 7. Total Number of Distinct Top Features in the Top 10
Malware Families of DREBIN_Like_data

Families No. of Samples No. of Features

droidkungfu 142 48
plankton 118 32
fakeinst 98 48
opfake 97 35
boxer 69 25

ginmaster 57 39
basebridge 48 30
iconosys 38 20
kmin 27 11

batterydoctor 30 9

Fig. 6. The distribution of the overlapping top five features in the top 10 families of DREBIN_Like_data.

Hypothesis 6

In the n-dimensional space, DREBIN assembles malware samples of the same family.

To verify our hypothesis, we rely on the Euclidean distance between feature vectors to examine
if DREBIN’s features allow assembling of malware samples that belong to the same family in the
n-dimensional space. Our aim is to compare the distribution of the distances and verify if malware
samples that belong to the same family have smaller distances (i.e., they are close to each other in
the n-dimensional space) compared to those from the 10 families combined. Specifically, for each
family, we compare the Euclidean distance within the family and within the top 10 families of
DREBIN_Like_data combined.

We plot in Figure 7 the distribution of the distances within the top 10 families combined,
which we denote as “all”, and the distribution of the distance within each of the 10 families from
DREBIN_Like_data, which we denote as “family”.

As we can see in Figure 7, the average Euclidean distances within a family are always smaller
than the distances calculated using malware from the 10 families combined.

We have further compared the distribution of the distances within a family and within the top
10 families combined using the Mann-Whitney-Wilcoxon test [29, 46]. This test is used to verify
whether two data distributions are identical.

For each of the top 10 families, we calculate the p-value of the Mann-Whitney-Wilcoxon test
using the distances within the family and the distances within the 10 families combined. In the 10

ACM Transactions on Privacy and Security, Vol. 25, No. 2, Article 13. Publication date: May 2022.



13:20 N. Daoudi et al.

Fig. 7. The distribution of the distances within a family versus the distribution of the distances within all 10
families of DREBIN_Like_data combined.

Mann-Whitney-Wilcoxon tests, the p-value6 is smaller than 9.42e−59. This result indicates that
the null hypothesis is rejected and the difference between the data distributions is statistically
significant. Therefore, we can conclude that the distributions of the distances within a family and
within the 10 families combined are different.

Finding 12

DREBIN’s features indeed offer a representation of apps that allows grouping together
malware apps that belong to the same family.

5.2 Does DREBIN Capture the Concept of Malware Family (across Families)?

After evaluating DREBIN’s ability to assemble malware samples within the same family, we seek
to investigate if, in its feature space, DREBIN separates samples from different families.

Hypothesis 7

In the n-dimensional space, DREBIN separates malware apps of different families.

To verify our hypothesis, we compute, for each of the top 10 malware families in
DREBIN_Like_data, the Euclidean distance within the family (similarly to Section 5.1) and across
families. We denote (Fi – Fj ) as the distances across family i and family j for (1 ≤ i ≤ 10) and
(1 ≤ j ≤ 10). Similarly to the previous section, we also calculate the distances within all top 10
families combined that we denote as “all”. We provide in Figure 8 the distribution of these distances
in the top 10 families. We draw the median of the distances within the family with a straight blue
line to facilitate the comparison. Overall, the average distances within a family are smaller than
the distances across families.

For each of the 10 top families, we have also compared the distribution of the distances within
a family and across families using the Mann-Whitney-Wilcoxon test. We have conducted the test
as explained in Section 5.1. For all the families, the p-value is smaller than 1.29e−10. The null
hypothesis is then rejected, which indicates that the difference between the distributions of the
distances within families and across families is statistically significant.

6The null hypothesis under this test assumes that the two distributions are indeed identical, and it is rejected if the p-value
is smaller than α = 0.05.
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Fig. 8. The distribution of the Euclidean distances within families versus the distances across families in the
top 10 families of DREBIN_Like_data.
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Finding 13

DREBIN’s representation enables the separation of samples that belong to different mal-
ware families.

6 DISCUSSION

Today, in the literature, a malware detection approach is considered to “work” when its assess-
ment exhibits high detection scores. However, these scores have been proven to be biased by
datasets [35] or evaluation methodology [3, 4]. In reality, practitioners expect more in-depth anal-
ysis that provides confidence or guarantees that approaches work. An example first step in this
direction was implemented by DREBIN, which proposes explanations for its predictions, towards
facilitating manual validation by analysts.

Given the importance of DREBIN as a literature milestone, we proposed to dive deep into its
inner working to perform an investigation around its features, its explanations, and so on. Unfor-
tunately, in the absence of guidelines in the literature, our explorations were guided by our past
experiences and intuitions. Overall, our study findings are somewhat inconclusive, which high-
lights that the problem of answering “why it works” is a fundamentally difficult and unresolved
problem.

6.1 Answering “Why It Works”

A large body of malware detection literature reports high performance scores using ML. Our in-
depth analysis in this work revealed that it is hard to comprehensively characterise the reasons
behind the good performance of a state-of-the-art classifier: (1) a substantial number of used fea-
tures appear to be redundant, and (2) the detection explanations are not always consistent for
samples in the same family.

Our first tentative to understand “why a classifier works” calls for a more focused research ini-
tiative around a framework that would provide tools and techniques to thoroughly assess malware
detectors beyond detection scores. Such a framework would define the axes of analysis that each
new malware detector needs to investigate beyond ML detection scores. The framework would sug-
gest requirements and analyses that are crucial to gain insights into Android malware approaches’
inner-workings, scope their properties, highlight their strengths, and uncover their limitations (or
even pitfalls). The overall ambition is thus to ensure that researchers can associate their reported
performance with specific key design choices in their contributions.

6.2 Implications of Our Findings

Our study revealed that many features which are sufficient to provide reasonable performance for
the DREBIN classifier are actually id-features. We postulate that this may pose a generalisation
problem. Our study further showed that many of the relevant features that contributed to the
performance of DREBIN are indeed id-features.

We noted that a large proportion of malware can be detected using a single feature for two of
our datasets, which further highlights both (1) the fundamental importance of evaluation datasets
(in particular, of the diversity in these datasets), and (2) the necessity to assess whether features
capture actual indicators of maliciousness or spurious correlations instead.

The consistency, or lack thereof, of top features for predicting samples in a same family raises
questions on the relevance of DREBIN explanations.
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7 RELATED WORK

Our selection of DREBIN is motivated by its notable impact on many research works that have com-
pared against it (Section 7.1). Other studies have raised concern about the evaluation challenges
(Section 7.2) and the biases that may affect ML-based malware experiments (Section 7.3).

7.1 The Impact of DREBIN

DREBIN is a well-known Android malware detector that has attracted researchers’ attention since
its publication in 2014. To evaluate their approaches, several authors have provided an experi-
mental comparison with DREBIN. CASANDRA [33] is an online learning-based malware detector
that has been evaluated against DREBIN, and a malware detector that relies on static analysis
of the apps control flow graph [3]. CASANDRA’s effectiveness is demonstrated using DREBIN’s
malware dataset and 5,000 randomly collected goodware applications. SIGPID [26] is a malware de-
tector that is based on significant permissions features. Its authors have proposed an experimental
comparison against DREBIN’s approach and the PERMISSION-INDUCED RISK malware detec-
tor [45]. Many researchers have adopted a similar strategy by comparing against DREBIN (e.g.,
DroidOL [34], MalScan [47], RevealDroid [15], ASTROID [14], RepassDroid [48], TinyDroid [10],
CDGDroid [49], DexRay [12], and a malware detector that relies on control flow graph and data
flow graph of Android apps [50]).

Other researchers have chosen to develop their approaches by relying on DREBIN’s malware
dataset. DySign [23] is a fingerprinting technique for Android malware’s dynamic behaviours that
has been evaluated using malware samples from DREBIN dataset. APK Auditor [42] is a static
analysis-based technique that characterises and classifies Android applications. Its authors have
collected their evaluation dataset from DREBIN, Malware Genome Project [55], and Contagio mo-
bile.7 DREBIN’s malware dataset has extensively contributed in the development of numerous
research due to its availability (EC2 [9], AOMDroid [22], AspectDroid [2], a mobile botnet classifi-
cation technique [53], StackDroid [37], a malware detector based on a Factorization Machine [24],
and an Android malware family classifier [31]). Moreover, some researchers [17, 21] have studied
the dataset itself.

DREBIN’s approach has also been widely used in the context of adversarial attacks research. In
2017, DREBIN’s approach was used to study the impact of adversarial attacks on linear and non-
linear classifiers [1]. In this study, the authors have demonstrated that a blind adversary can make
DREBIN’s performance drop by 88% when perturbing only 25% of the features. Another work [13]
has proposed a learning algorithm to enhance linear models’ security after showing that DREBIN’s
performance can deteriorate if skilled attackers manipulate it. Similarly, DREBIN has contributed
to many other adversarial attacks research works [18–20, 25, 36, 43, 51], which proves that this
classifier has a significant impact on the research community.

7.2 Evaluation Challenges

The evaluation of security systems has become a major concern in recent years. A recent study [44]
has argued that the performance evaluation involves many operations and can never be fully ex-
pressed with a single number. Another study [41] has discussed the challenges in the intrusion
detection approaches that rely on ML. Its authors argue that it is important to understand what
the system is doing and what its capabilities and limitations are, insisting on the fact that the com-
munity does not benefit from trying some other combinations of ML algorithms and features sets
with some known dataset.

7http://contagiodump.blogspot.com.
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In malware experiments, researchers [38] have stressed the importance of performing prudent
experimental evaluations to objectively assess the results. They have identified shortcomings after
surveying papers from top-tier and less prominent venues, and they have proposed guidelines
based on transparency, realism, correctness, and safety for prudent malware experiments.

Another work [39] has studied the impact of different factors on ML-based Android malware de-
tectors’ performance using their own ML approach. To study whether using more features always
provides better results, the authors have investigated DREBIN’s set of features (and the Droid-
SIFT [54] features set), and they have concluded that when removing the id-features, the perfor-
mance of the classifier increases. Although the authors have not relied on the original implemen-
tation of DREBIN (i.e., DREBIN’s features set + the K-NN algorithm), both their work and ours
demonstrate that only a small subset of DREBIN’s features set is needed to report a high detection
performance. Moreover, we show that when the original set of features is used (i.e., id-features are
included), DREBIN’s most relevant features contain id-features.

7.3 Biases in ML-Based Malware Detection

In ML-based Android malware detection, many factors can influence or bias the results reported
by the system, which makes its performance drop drastically when used in a real-world setting.
Researchers [4, 35] have identified sources of experimental bias and proposed constraints to have a
realistic evaluation. TESSERACT’s authors [35] have used DREBIN and MaMaDroid [30] classifiers
to motivate their finding, and showed that their performance drops significantly when evaluated
with a real-world setting. They have also developed a framework that can be used to reveal the
realistic performance of malware classifiers and eliminate the spatial and temporal biases.

Malware researchers widely rely on the cross-validation technique to evaluate the learning of
the classifiers. However, it has been shown that although the performance of the classifier seems
to be high when using this technique, the malware classifier performs poorly when used in the
real-world setting [3]. Similarly, another study [32] has demonstrated that using the most recent
training labels (e.g., the most recent reports from VirusTotal) that are in practice unavailable in
real-world situations can inflate the performance of malware detectors by around 20%. Thus, the
authors have introduced the temporal label consistency constraint that requires the training labels
to be temporally precedent to the evaluation samples.

Recently, researchers [6] have determined 10 pitfalls that can introduce biases in the results
reported by ML-based computer and network security systems. These pitfalls are related to dataset
collection and labelling, system design and learning, performance assessment, and deployment.
After studying the presence of these pitfalls in 30 papers from top-tier security venues, the authors
have proposed a set of recommendations to develop sound ML-based security systems.

8 CONCLUSION

We have presented an exploratory analysis of the DREBIN malware detector with the aim to un-
cover insights about “how/why it works”. Our study has extensively investigated the discrimi-
natory power of the huge number of features that are used by DREBIN. We have thus identified
DREBIN’s most important features and showed that its discriminatory features contain id-features.
We have also proposed a set of experiments both to evaluate the consistency of the explanations
provided by DREBIN for malware samples of the same family and to assess DREBIN’s ability to
capture the concept of malware families.

Overall:

• DREBIN, given the stability of its performance across datasets, is a strong reference
that researchers should consider when assessing the performance of malware detection
approaches.
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• Id-features are predominant within the feature set of DREBIN. Their importance in the deci-
sions suggests that more research is needed on feature engineering that captures malicious-
ness in a more abstract (hence generalised) way. In the meantime, researchers should provide
analysis on the presence of id-features and their impact on the reported performance. Fur-
ther research should also investigate techniques for exploring id-features while mitigating
their generalisation issues.
• The shortcomings of our first-step analyses suggest that the community needs further re-

search on the design of quality metrics for classifiers beyond classical quantitative metrics
of precision and recall.

Our work thus calls for more research into techniques and tools for analysing the performance
of malware detection approaches. Although it is important to report high performance scores for
state-of-the-art classifiers, the literature should also provide a principle-based systematic assess-
ment into the inner-workings of the approach.

Malware detection today has become a critical concern that creates a challenge for managers,
developers, and end users. Having tools that can demonstrate that a malware detector has a sound
inner-working is thus paramount. Consequently, developing black-box systems with 100% perfor-
mance scores in the lab does not inspire confidence anymore. Instead, more attention should be
given to understanding how the systems work, and to what extent they are able to capture the
malicious character of the apps so they can be trusted and deployed in real-world settings. Our
work is an initial step for initiating a research roadmap into the assessment of malware detection
classifiers. We hope that this research direction will be embraced by the community.
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