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Much research on software engineering relies on experimental studies based on fault injection. Fault injection, however, is
not often relevant to emulate real-world software faults since it łblindlyž injects large numbers of faults. It remains indeed
challenging to inject few but realistic faults that target a particular functionality in a program. In this work, we introduce iBiR,
a fault injection tool that addresses this challenge by exploring change patterns associated to user-reported faults. To inject
realistic faults, we create mutants by re-targeting a bug report driven automated program repair system, i.e., reversing its code
transformation templates. iBiR is further appealing in practice since it requires deep knowledge of neither code nor tests, but
just of the program’s relevant bug reports. Thus, our approach focuses the fault injection on the feature targeted by the bug
report. We assess iBiR by considering the Defects4J dataset. Experimental results show that our approach outperforms the
fault injection performed by traditional mutation testing in terms of semantic similarity with the original bug, when applied
at either system or class levels of granularity, and provides better, statistically signiicant, estimations of test efectiveness
(fault detection). Additionally, when injecting 100 faults, iBiR injects faults that couple with the real ones in around 36% of
the cases, while mutation testing achieves less than 4%.
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1 INTRODUCTION

A key challenge of fault injection techniques (such as mutation analysis) is to emulate the efects of real faults. This
property of representativeness of the injected faults is of particular importance since fault injection techniques
are widely used by researchers when evaluating and comparing bug inding, testing and debugging techniques,
e.g., test generation, bug ixing, fault localisation, etc, [61]. This means that there is a high risk of mistakenly
asserting test efectiveness in case the injected faults are non-representative.
Typically, fault injection techniques introduce faults by making syntactic changes in the target programs’

code using a set of simple syntactic transformations [14, 33, 52], usually called mutation operators. These
transformations have been deined based on the language syntax [4] and are łblindlyž mutating the entire
codebase of the projects, injecting large numbers of mutants, with the hope to inject some realistic faults. This
means that there is a limited control on the fault types and the locations where to inject faults. In other words, the
appropriate łwhatž and łwherež to inject faults in order to make representative fault injection has been largely
ignored by existing research.

Fault injection techniques may also draw on recent research that mines fault patterns [8, 71] and demonstrate
some form of realism w.r.t. real faults. These results indicate that the injected faults may carry over the realism of

Authors’ addresses: Ahmed Khanir, ahmed.khanir@uni.lu, SnT, University of Luxembourg, 29 Avenue John F. Kennedy, Luxembourg,

Luxembourg, Luxembourg, 1855; Anil Koyuncu, anil.koyuncu@sabanciuniv.edu, Sabanci University, Üniversite Caddesi No:27, Istanbul,

Turkey, 34956; Mike Papadakis, michail.papadakis@uni.lu; Maxime Cordy, maxime.cordy@uni.lu; Tegawende F. Bissyandé, tegawende.

bissyande@uni.lu; Jacques Klein, jacques.klein@uni.lu; Yves Le Traon, Yves.LeTraon@uni.lu, SnT, University of Luxembourg, 29 Avenue

John F. Kennedy, Luxembourg, Luxembourg, Luxembourg, 1855.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

1049-331X/2022/6-ART

https://doi.org/10.1145/3542946

ACM Trans. Softw. Eng. Methodol.

HTTPS://ORCID.ORG/0000-0001-7471-6050
HTTPS://ORCID.ORG/0000-0001-6975-6752
HTTPS://ORCID.ORG/0000-0003-1852-2547
HTTPS://ORCID.ORG/0000-0001-8312-1358
HTTPS://ORCID.ORG/0000-0001-7270-9869
HTTPS://ORCID.ORG/0000-0003-4052-475X
HTTPS://ORCID.ORG/0000-0002-1045-4861
HTTPS://ORCID.ORG/0000-0002-1045-4861
https://orcid.org/0000-0001-7471-6050
https://orcid.org/0000-0001-6975-6752
https://orcid.org/0000-0003-1852-2547
https://orcid.org/0000-0001-8312-1358
https://orcid.org/0000-0001-7270-9869
https://orcid.org/0000-0003-4052-475X
https://orcid.org/0000-0002-1045-4861
https://doi.org/10.1145/3542946


2 • Khanfir et al.

the patterns, fact that removes a potential validity threat. However, at the same time, they are limited as they
do not provide any control on the locations and target functionality, thus impacting fault representativeness
[9, 52, 63].
This is an important limitation especially for large real-world systems because of the following two reasons:

a) injecting faults everywhere escalates the application cost due to the large number of mutants introduced
and b) the results could be misleading since a tiny ratio of the injected faults are coupled to the real ones [63]
and the injected set of faults does not represent the likelihood of faults appearing in the ield [52]. Therefore,
representativeness of the injected faults in terms of fault types and locations is of utmost importance w.r.t. both
application cost and accuracy of the method.
To bypass these issues, one could use real faults (mined from the projects’ repositories) or directly apply the

testing approach to a set of programs and manually identify potential faults. While such a solution brings realism
into the evaluations, it is often limited to few fault instances (of limited diversity), requires an expensive manual
efort in identifying the faults and fails to ofer the experimental control required by many evaluation scenarios.
We advance in this research direction by bringing realism in the fault injection via leveraging information

from bug reports. Bug reports often include suicient information for debugging techniques in order to localise
[85], debug [62] and repair faults [30] that happened in the ield. Therefore, together with specially crafted defect
patterns (mined through systematic examination of real faults) such information can guide fault injection to target
critical functionality, mimic real faulty behaviour and make realistic fault injection. Perhaps more importantly,
the use of bug reports removes the need for knowledge of the targeted system or code.
Our method starts from the target project and a bug report (BR) written in natural language. It then applies

Information Retrieval (IR)-based fault localisation [85] in order to identify the relevant places where to inject
faults. It then injects recurrent fault instances (fault patterns) that were manually crafted using a systematic
analysis of frequent bug ixes, prioritized according to their position and type. This way our method performs
fault injection, using realistic fault patterns, by targeting the features described by the bug reports. Moreover, by
applying our method on many programs and BRs (injecting few bugs per BR), one gets fault pools to be used for
test and fault tolerance assessment.
We implemented our approach in a system called iBiR and evaluated its ability to imitate 280 real faults. In

particular we evaluated a) the semantic similarity of real and injected faults, b) the coupling1 relation between
injected and real faults, and c) the ability of the injected faults to indicate test efectiveness (fault detection) when
tested with diferent test suites. Our results show that iBiR manages to imitate the targeted faults, with a median
semantic similarity value of 0.577, which is signiicantly higher than the 0.134 achieved by using traditional
mutation testing, when injecting the same number of faults.
Interestingly, we found that iBiR injects faults that couple with the real ones in around 36% of the targeted

cases. This is achieved by injecting 100 faults per target (real) fault and it is approximately 9 times higher than
the coupled mutants produced by mutation testing. Fault coupling is one of the most important testing properties
[28, 58], here indicating that one can use the injected faults instead of the real ones.

Another key inding of our study is that the injected faults provide much better indication on test efectiveness
(fault detection) than mutation testing as their detection ratios discriminate between actual failing and passing
test suites, while mutant detection rates cannot. This implies that the use of iBiR yields more accurate results
than the use of traditional mutation testing.

1Injected faults couple with the real ones when injected faults are detected only by test cases that detect the real faults. This implies that the

injected faults provide good indications on whether tests are capable of detecting the coupled faults.
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2 SCOPE & MOTIVATION

iBiR aims at injecting realistic faults, i.e., faults imitating the behaviour of previously reported ones, to be used for
test and fault tolerance assessment. As such, it injects faults in a current stable (ixed) version of the same system
where test techniques are assessed with respect to a) fault revelation potential, in the case of test assessment,
and b) the reaction of the system under unexpected (faulty) behaviour to support controlled studies. This means,
that we assume the existence of relatively stable projects with Fixed/Closed bug reports. In principle, iBiR could
be use to guide testing towards open bug reports or to support the discovery of bugs that are similar to those
reported. However, these two use cases regard the fault revelation ability of the fault injection campaigns (the test
guidance provided by fault injection) and not the realistic fault injection problem (the ability of injecting faults to
imitate the behaviour of real ones) that we are aiming at. Therefore, we have left them open for future research.

2.1 Assessment of testing techniques

Fault injection is used extensively by researchers as a tool to evaluate the fault-revealing capability of auto-
mated test techniques such as automated test generation techniques. This approach was found to be used by
approximately 19% of all software testing studies published in major SE conference by a bibliometric analysis
performed in 2016 [60]. This is because real and diverse bug-datasets are hard to collect and make it hard to
perform controlled studies as they usually result in faulty versions including single faults. Fault injection is thus
a fast and convenient way to perform control studies since it avoids the costly and tedious work of creating
fault-datasets. In such cases, the realism of the injected faults is a major validity question that may impact the
results of the experiments. Recent studies [63] have shown that conventional mutation testing doesn’t perform
well in this regard as it introduces many faults that are unrealistic. To deal with such cases, we develop iBiR and
show that it injects more semantically similar faults than traditional mutation testing.

2.2 Fault tolerance assessment

Fault injection is also frequently used to evaluate the system’s performance under faulty test executions. In such a
case, the injected faults simulate the efects of real ones by performing arbitrary code changes everywhere. To this
end, iBiR guides the injection towards speciic error-prune targets/features and fault types. This is particularly
important in order to improve the realism of the analysis. Interestingly, previous research on fault tolerance
assessment [52] has shown that fault injection realism can be improved by appropriately controlling the locations
and types of the injected faults. We therefore, propose a way to do so by leveraging information from bug reports.

3 BACKGROUND

3.1 Fault Localisation

Fault localisation is the activity of identifying the suspected fault locations, which will be transformed to generate
patches. Several automated fault localisation techniques have been proposed [81], such as slice-based [80],
spectrum-based [2], statistics-based [37], mutation-based [62] and etc.

Fault localisation techniques based on Information Retrieval (IR) [12, 18, 45, 68] exploit textual bug reports to
identify code chunks relevant to the bug, without relying on test cases. IR-based fault localisation tools extract
tokens from the bug report to formulate a query to be matched with the collection of documents formed by the
source code iles [43, 66, 76, 78, 82, 85]. Then, they rank the documents based on their relevance to the query,
such that source iles ranked higher are more likely to contain the fault. Recently, automated program repair
methods have been designed on top of IR-based fault localisation [30]. They achieve comparable performance
to methods using spectrum-based fault localisation, yet without relying on the assumption that test cases are
available.

ACM Trans. Softw. Eng. Methodol.
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We leverage IR-based fault localisation to achieve a diferent goal; instead of localising the reported bug, we
aim at injecting faults at code locations that implement a functionality similar to the one described by the bug
report.

3.2 Mutation Testing

Mutation testing is a popular fault-based testing technique [61]. It operates by inserting artiicial faults into a
program under test, thereby creating many diferent versions (namedmutants) of the program. The artiicial faults
are injected through syntactic changes to all program locations in the original program, based on predeined rules
named mutation operators. Such operators can, for instance, invert relational operators (e.g., replacing ≥ with <).
Mutants can be used to indicate the strengths of test suites, based on their ability to distinguish the mutants

from the original program. If there exists a test case distinguishing the original program from a particular mutant,
then the mutant is said to be killed. Then, we term a mutant to be łcoupledž with respect to a particular fault if
the test cases that kill it are a subset of the test cases that can also detect that fault (make the program fail by
exerting the fault).

Previous research has shown that the choice of mutation operators and location can afect the fault-revealing
ability of the produced mutants [5, 35]. Thus, it is important to select appropriate mutation testing strategies.
Nevertheless, previous research has shown that random mutant sampling achieves comparable results with the
mutation testing state of the art [9, 32], making the random mutant sampling a natural baseline to compare with.

Another issue with mutation testing regards its application cost. The problem stems from the vast number of
faults that are injected, which need to be executedwith large test suites, thereby requiring expensive computational
resources [61]. Unfortunately, the mutant execution problem becomes intractable when test execution is expensive
or the test suites involve system level tests, thereby often limiting mutation testing application to unit level. This
is a major problem when performing fault tolerance [52], or large-scale testing campaigns. Recent studies aim
at reducing the computational demands of the mutant execution through a combination of static and dynamic
metrics [83] but these methods cannot be applied for fault tolerance assessment and do not identify which mutants
are realistic and which are not. Thus, it remains an open question to identify the few but realistic mutants.
We ill this gap, by using bug report-driven fault injection. In essence we leverage IR-based fault localisation

techniques to identify the locations where fault injection should happen, i.e., locations relevant to the targeted
functionality described in the bug report, and apply frequent fault patterns to produce mutants that behave
similar to real faults.

3.3 Fix Paterns

In automated program repair [22], a common way to generate patches is to apply ix patterns [26] (also named ix
templates [38] or program transformation schemes [23]) in suspicious program locations (detected by fault locali-
sation). Patterns used in the literature [15, 23, 26, 31, 38ś40, 47, 67] have been deined manually or automatically
(mined from bug ix datasets).

Instead of ix patterns, we use fault patterns that are ix patterns inverted. Since ix patterns were designed
using recurrent faults, their related fault patterns introduce them. This helps injecting faults that are similar to
those described in the bug reports. iBiR inverts and uses the patterns implemented by TBar [41] as we detail in
the following Section.

4 APPROACH

We propose iBiR, the irst fault injection approach that utilizes information extracted from bug reports to emulate
real faults. A high level view of the way iBiR works is shown in Figure 1 and a step by step overview of IBIR’s
approach is illustrated in the Algorithm 1. Our approach takes as input (1) the source code of the program of

ACM Trans. Softw. Eng. Methodol.
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Fig. 1. The iBiR fault injection workflow.

interest and (2) a bug report of that program, written in natural language. The objective is to inject artiicial faults
in the program (one by one, creating multiple faulty versions of the program) that imitate the original bug. To do
so, iBiR proceeds in three steps.

First step: iBiR identiies relevant locations to inject the faults. It applies IR-based fault localisation to determine,
from the bug report, the code locations (statements) that are likely to be relevant to the target fault. These locations
are ranked according to their likelihood to be the feature described by the bug report, hence are relevant to inject
faults.

Second step: iBiR applies fault patterns on the identiied code locations. We build our patterns by inverting ix
patterns used in automated program repair approaches [41]. Our intuition is that, since ix patterns are used to
ix bugs, inverted patterns may introduce a fault similar to the original bug. For each location, we apply only
patterns that are syntactically compatible with the code location. This step yields a set of faults to inject, i.e.,
pairs composed of a location and a pattern.
Third step: our method ranks the location-pattern pairs wrt. the location likelihood and priority order of

the patterns. Then iBiR takes each pair (in order) and applies the pattern to the location, injecting a fault in
the program. We repeat the process until the desired number of injected faults has been produced or until all
location-pattern pairs have been considered.

4.1 Bug Report driven Fault Localisation

IR-based fault localisation (IRFL) [64, 75] leverages potential similarity between the terms used in a bug report and
the program source code to identify relevant buggy code locations. It typically starts by extracting tokens from a
given bug report to formulate a query to be matched in a search space of documents formed by the collections of
source code iles and indexed through tokens extracted from source code [43, 66, 76, 78, 79, 85]. IRFL approaches
then rank the documents based on a probability of relevance. Top-ranked iles are likely to contain the buggy
code.
We follow the same principle to identify promising locations where to inject realistic faults. We rely on the

information contained in the bug report to localise the code location with the highest similarity score. Most IRFL
techniques have focused on ile-level localisation, which is too coarse-grained for our purpose of fault injecting.
Thus, we rather use a statement-level IRFL approach that has been successfully applied to support program
repair [30].

ACM Trans. Softw. Eng. Methodol.
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Algorithm 1 IBIR approach algorithm

Require: ���������, ��� ��������������, ������� � ������

1: �������� [] ← loadListOfPatterns()
2: ����ℎ�� [] ← []
3: ������ [] ← []
4: ��������������������� [] ← fileLevelIRFL(���������, ��� ��������������)
5: � ����20��������������������� [] ← head(���������������������, 20)
6: �������������������������� [] ← statementLevelIRFL(���������, � ����20��������������������� [])
7: for ��������� in �������������������������� [] do
8: � ���������� ← loadAstTree(��������� .��������������)
9: �������������� [] ← parseTree(����, ���������)
10: for ������� in �������������� [] do
11: for ������� in �������� [] do
12: if patternIsAppliableOnNode(�������, �������) then
13: ����ℎ ← createPatch(�������, �������, � ����������)
14: add(����ℎ, ����ℎ�� [])
15: end if

16: end for

17: end for

18: end for

19: for ����ℎ in ����ℎ�� [] do
20: � ������������ ← apply(����ℎ, ��� ��������������)
21: if isCompilable(� ������������) then
22: add(����ℎ, ������ [])
23: end if

24: if ������� � ������ == length(������ []) then
25: return ������ []
26: end if

27: end for

28: return ������ []

It is to be noted that, contrary to program repair, we do not aim to identify the exact bug location. We are
rather interested in locations that allow injecting realistic faults (similar to the bug). This means that IRFL may
pinpoint multiple locations of interest for fault injection even if those were not buggy code locations.

To identify fault injection locations that are relevant to the targeted bug-report, we leverage an existing IRFL
tool that was originally developed as part of the iFixR [30] tool. The IRFL works by matching words of a bug
report with source code ile(s) using 17 features. These features are extracted from the bug report (7 features) and
the source code git repository (10 features) and are listed in Table 1.
For every feature, the tokenizer applies a lexical analysis where (1) it extracts tokens from the retrieved

text, (2) then drops stopwords to reduce the noise, i.e., caused by the programming language keywords, and (3)
applies stemming on all tokens to create homogeneity with the root of the token. The tokens are extracted by
considering both white space and source code speciic separators, such as punctuation and camel case splitting, i.e.,
���������������� is split to ��������� and�������. The tokens are then checked against the WordNet [16]
dictionary to discard all unknown ones. An additional sanity check is then applied to detect stack-traces and
source code elements using speciic regular expressions.

ACM Trans. Softw. Eng. Methodol.
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Table 1. IR features collected from bug reports and source code files.

Bug Report Features

Feature Description

summary The summary/title part of the bug report

description The description part of the bug report

rawBugReport The whole bug report as in textual form

stackTraces The stack traces in the bug report

codeElements Code snippets in the bug reports

summaryHints Code-related terms in summary

descriptionHints Code-related terms found by parsing description text

Source Code Features

Feature Description

packageNames The parsed package names of the source code iles

classNames The parsed class names of the source code iles

methodNames The parsed method names of the source code iles

methodInvocations The parsed method invocation of the source code iles

formalParameters The parsed formal parameters of the source code iles

memberReferences The parsed member references of the source code iles

documentation The parsed class names of the source code iles

rawSource Source ile as a text

hunks The hunks from the commits on the ile

commitLogs The commit logs of the ile

The IRFL calculates then the similarity coeicient (������ [65]) between the bug report and a source code ile
using a revised Vector Space Model (rVSM) [86] based on the occurrences-frequency of the extracted tokens in
the preprocessing tokenization step (the vectors are calculated using � � − �� � [48]).
Next, an ensemble of classiication models provided by D&C [29] was used in order to rank the source code

iles according to their suspiciousness. This ensemble takes as input the calculated 7x10 weights of all pairs <bug
report, source code ile> and outputs their averaged prediction results. This ensemble was used as it has been
shown to work well on a diverse set of bug reports [29] since every classiier of the ensemble model was trained
on a diferent set of data.

In a last step, as iFixR [30], the IRFL localises suspicious statements from the 20 most suspicious iles based on
their rVSM cosine-similarity [65] with the given bug report (the vectors are calculated using � � − �� � [48]) and
outputs these statements in a list of statements ranked according to their suspiciousness. Further details on the
IRFL can be found in the D&C work [29] and our implementation [? ].

4.2 Fault paterns

We start from the ix patterns developed in TBar [41], a state of the art pattern-based program repair tool. Any
pattern is described by a context, i.e., an AST node type to which the pattern applies, and a recipe, a syntactical
modiication to be performed similar to program repair techniques [77]. For each pattern, we deine a related
fault injection pattern that represents the inverse of that pattern. For instance, inverting the ix pattern that
consists of adding an arbitrary statement yields a remove statement fault pattern. Interestingly, some ix patterns
are symmetric in the sense that their inverse pattern is also a ix pattern, e.g., inverting a Boolean connector.

ACM Trans. Softw. Eng. Methodol.
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Table 2. iBIr fault injection paterns.

Pattern context category Bug injection pattern example input example output

Insert Statement
Insert a method call,
before or after the localised statement.

someMethod(expression);
someMethod(expression);

method(expression);

Insert a return statement,
before or after the localised statement.

statement;
statement;

return VALUE;

Wrap a statement with a try-catch. statement;

try{

statement;

} catch (Exception e){ ... }

Insert an if checker: wrap a
statement with an if block.

statement;
if (conditional_exp) {

statement; }

Mutate Class Instance Creation
Replace an instance creation call by
a cast of the super.clone() method call.

... new T(); ... (T) super.clone();

Mutate Conditional Expression Remove a conditional expression. condExp1 && condExp2 condExp1

Insert a conditional expression. condExp1 condExp1 && condExp2

Change the conditional operator. condExp1 && condExp2 condExp1 | | condExp2
Mutate Data Type Change the declaration type of a variable. T1 var ...; T2 var ...;

Change the casting type of an expression. ... (T1) expression ...; ... (T2) expression ...;

Mutate loat or double Division Remove a loat or a double cast ... dividend / (loat) divisor ...; ... dividend / divisor ...;
from the divisor. ... intVarExp / 10d ...; ... intVarExp / 10 ...;

Remove a loat or a double cast ... (loat) dividend / divisor ...; ... dividend / divisor ...;

from the dividend. ... 1.0 / var ...; ... 1 / var ...;

Replace loat or double multiplication ... (1.0 / divisor) * dividend ... ... dividend / divisor ...;

by an int division. ... 0.5 * intVarExp ...; ... intVarExp / 2 ...;

Mutate Literal Expression

Change boolean, number or string
literals in a statement by another literal
or expression of the same type.

... string_literal1 ...

... int_literal ...

... string_literal2 ...

... int_expression ...

Mutate Method Invocation Replace a method call by another one. ... method1(args) ... ... method(args) ...

Replace a method call argument by another one. ... method(arg1, arg2) ... ... method(arg1, arg3) ...

Remove a method call argument. ... method(arg1, arg2) ... ... method(arg1) ...

Add an argument to a method call ... method(arg1) ... ... method(arg1, arg2) ...

Mutate Return Statement Replace a return experession by an other one. return expr1; return exp2;

Mutate Variable
Replace a variable by another variable
or an expression of the same type.

... var1 ...

... var1 ...

... var2 ...

... exp ...

Move Statement Move a statement to another position.
statement;

...

...

statement;

Remove Statement Remove a statement.
statement;

...
...

Remove a method. method(args){ statement; } ...

Mutate Operators Replace an Arithmetic operator. ... a + b ... ... a - b ...

Replace an Assignment operator. ... c += b ... ... c -= b ...

Replace a Relational operator. ... a <b ... ... a >b ...

Replace a Conditional operator. ... a && b ... ... a | | b ...
Replace a Bitwise or a Bit Shift operator. ... a & b ... ... a | b ...
Replace an Unary operator. a++ a--

Change arethmetic operations order. a + b * c c + b * a

ACM Trans. Softw. Eng. Methodol.
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These patterns can thus be used for both bug ixing and fault injection. Table 2 enumerates the resulting set of
fault injection patterns used by our approach.
Given a location (code statement) to inject a fault into, we identify the patterns that can be applied to the

statement. To do so, our method starts from the AST node of the statement and visits it exhaustively, in a
breadth-irst manner. Each time it meets an AST node that matches the context of a fault pattern, it memorizes
the node and the pattern for later application. Then the method continues until it has visited all AST nodes under
the statement node. This way, we enumerate all possible applications of all fault patterns onto the location.
Since more than one pattern may apply to a given location, we prioritize them by leveraging heuristic

priority rules previously deined in automated program repair methods (these were inferred from real-world bug
occurrences [41]). This means that every fault injection pattern gets the priority order of its inverse ix pattern.

4.3 Fault injection

The last step consists of applying, one by one, the fault patterns to inject faults at the program locations identiied
by IRFL. Locations of higher ranking are considered irst. Within a location, pattern applications are ordered
based on the pattern priority. By applying a pattern to a corresponding AST node of the location, we inject a
fault within the program before recompiling it. If the program does not compile, we discard the fault and restart
with the next one. We continue the process until it reaches the desired number of (compilable) injected faults or
all locations and patterns have been considered.

4.4 Demonstration Example

Figures 2 and 3 illustrate the execution steps of iBiR when injecting faults in commons-math project, based on
the content of the bug report MATH-3292.
iBiR starts by parsing the bug report and extracting its relevant information: the summary (1), the summary

hints (2), the description (3), the description hints (4), code elements (5) and the raw bug-report. This example
bug report does not contain any stack-trace as the corresponding bug causes a misbehavior but does not trigger
any crash or throw any exception.
iBiR loads also all the required information from the projects repository (6) then uses all of these features to

ind the code locations that are the most likely related to the input bug-report. This search happens in two steps -
ile-level then statement-level localisation - and ends by the output of a sorted list of source-code lines (7), as
detailed in subsection 4.1.

iBiR parses these lines one by one starting with the highest rank. In this example, the 1st rank is attributed to
the line number 303 of the ile src/main/java/org/apache/commons/math/stat/Frequency.java (8), which
corresponds to a return statement that invokes the method getPct with a variable v which is cast to the type
Comparable. iBiR selects all compatible fault patterns with this statement’s AST and applies them one by one on
the source-code, inducing multiple faults. In Figure 3 we illustrate the modiied source-code corresponding to 5
faults injected in the line 303 of the Frequency.java ile (9): Fault 1 and 2 are injected by invoking respectively
the methods getCumPct and getCumFreq instead of getPct. In fault 3, the method getPct is invoked with the
ield this.freqTable as variable instead of v. Fault 4 and 5 are injected by inserting additional method calls
before the return statement, respectively addValue(v); and clear();.

iBiR continues parsing the sorted source code locations by the IRFL until all of them are treated or the requested
number of faults has been injected.

2Bug report link: https://issues.apache.org/jira/browse/MATH-329
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5 RESEARCH QUESTIONS

Our approach aims at injecting faults that imitate real ones by leveraging the information included in bug reports.
Therefore, a natural question to ask is how well iBiR’s faults imitate the targeted (real) ones. Thus, we ask:

RQ1 (Imitating bugs): Are the iBiR faults capable of emulating, in terms of semantic similarity, the targeted
(real) ones? How they compare with mutation testing?

To answer this question, we check whether any of the injected faults imitate well the targeted ones. Following
the recommendations from the mutation testing literature [63] we approximate the program behaviour through
the project test suites and compare the behaviour similarity of the test cases w.r.t. their pass and failing status
using the Ochiai similarity coeicient. This is a typical way of computing the semantic similarity of mutants and
faults in mutation-based fault localisation [51, 62].

We then compare these results with the mutation testing ones by injecting mutants using the standard operators
employed by mutation testing tools [28] and measuring their semantic similarity with the targeted faults. To
make a fair comparison, we inject the same number of faults per target. For iBiR we selected the top-ranked
mutants while for mutation testing we randomly sampled mutants across the entire project code-base. Random
mutant sampling forms our baseline since it performs comparably to the alternative mutant selection methods
[9, 32]. Also, since we are interested in the relative diferences between the injected fault sets, we repeat our
experiments multiple times using the same number of faults (mutants).
Our approach identiies the locations where bugs should be injected through an IR-based fault localisation

method. This may give signiicant advantages when applied at the project level, but these may not carry on
individual classes. Such class level granularity may be well suited for some test evaluation tasks, such as automatic
test generation [20]. To account for this, we performed mutation testing (using the traditional mutation operators)
at the targeted classes (classes where the faults were ixed). To make a fair comparison we also restricted iBiR to
the same classes and compared the same number of mutants. This leads us to the following question:

RQ2 (Comparison at the target class): How does iBiR compare with mutation testing, in terms of semantic
similarity, when restricted to particular classes?

We answer this question by injecting faults in only the target classes using the iBiR bug patterns and the
traditional mutation operators. Then we compare the two approaches the same way as we did in RQ1.

Up to this point, the answers to the posed questions provide evidence that using our approach yields mutants
that are semantically similar to the targeted bugs. Although, this is important and demonstrates the potential
of our approach, it does not necessarily mean that the injected faults are strongly coupled with the real ones3.
Mutant and fault coupling is an important property for mutants that signiicantly helps testing [25]. Therefore,
we seek to investigate:

RQ3 (Mutant and fault coupling): How does iBiR compare with mutation testing with respect to mutant and
fault coupling?

To answer this question we check whether the faults that we inject are detected only by the failing tests, i.e.,
only by the tests that also reveal the target fault. Compared to similarity metrics, this coupling relation is stricter
and stronger.
After answering the above questions we turn our attention to the actual use of mutants in test efectiveness

evaluations. Therefore, we are interested in checking the correlations between the failure rates of the sets of the
injected faults we introduce and the real ones. To this end, we ask:

RQ4 (Failure estimates): Are the injected faults leading to failure estimates that are representative of the real
ones? How do these estimates compare with mutation testing?

3Mutants are coupled with real faults if they are killed only by test cases that also reveal the real faults
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The diference of RQ4 from the other RQs is that in RQ4, a set of injected faults is evaluated while, in the
previous RQs only isolated mutant instances.

6 EXPERIMENTAL SETUP

6.1 Dataset & Benchmark

To evaluate iBiRwe needed a set of benchmark programs, faults and bug reports. We decided to use Defects4J [24]
since it is a benchmark that includes real-world bugs and it is quite popular in software engineering literature.

6.1.1 Linking the bugs with their related reports. We used the bug-report to revision-id (commit) mapping provided
by the Defects4J dataset. Unfortunately, none of the provided revisions-ids for the projects Lang and Math were
pointing to the actual git repositories. As the projects have been migrated into GitHub but the revision-ids didn’t
get updated in the dataset. So for these two projects, to identify which bug report describes a given bug in the
Defects4J, we followed the same process as in the study of Koyuncu et al. [30]. We used the bug linking strategies
that are implemented in the Jira issue tracking software and used the approach of Fischer et al. [17] and Thomas
et al. [70] to map the sought bugs with the corresponding reports. Precisely, we crawled the relevant bug reports
and checked their links. We selected bug reports that were tagged as łBUGž and marked as łRESOLVEDž or
łFIXEDž and have a łCLOSEDž status. Then we searched the commit logs to identify related identiiers (IDs) that
link the commits with the corresponding bug.

Additionally, because of limitations in our current IRFL implementation, we included only the projects that are
using Jira as issue tracking software.

Our resulting bug dataset included the 316 faults of Defect4J related to the Cli (39), Codec (18), Collections (4),
Compress (47), Csv (16), JxPath (22), Lang (64) and Math (106) projects. We discarded 36 defects because they
were sharing the same bug report and we could not map the correct one with its related issue, or issues with the
buggy program versions such as missing iles from the repository, or execution issues, at the reporting time. This
leaves us with a total of 280 faults.

6.2 Experimental Procedure

To compare the fault injection techniques we need to set a common basis for comparison. We set this basis as
the number of injected faults since it forms a standard cost metric [54] that puts the studied methods under
the same cost level. We used sets of 5, 10, 30, and 100 injected faults since our aim is to equip researchers with
few representative faults, per targeted fault, in order to reach reasonable execution demands. To reduce the
arbitrariness due to the stochastic nature of mutation testing, we reproduced the injection 15 times, then we
sorted the executions by their average Ochiai coeicient (for every bug separately) and we reported the mean
execution. In the other hand, we run iBiR only once as its approach does not depend on random decisions.
To measure how well the injected faults imitate the real ones (answer RQ1 and RQ2) we use a semantic

similarity metric (Ochiai coeicient) between the test failures on the injected and real (targeted) faults. Precisely,
let � ��� and � ��� be the sets of failing tests when executing a test suite �� correspondingly on a mutant
� and a buggy project �, the Ochiai coeicient is 0 if any of � ��� or � ��� is empty, else is calculated as

��ℎ��� (�, �) = | � ���∩� ��� |√
| � ��� | . | � ��� |

, where |��� | denotes the set size. In our study, as we’re executing the ixed-version

test-suites provided by defects4j, every targeted bug breaks at least one test, thus, � ��� is never empty. This
coeicient quantiies the similarity level of the program behaviours exercised by the test suites and is often
used in mutation testing literature [63]. The metric takes values in the range [0, 1] with 0 indicating complete
diference and 1 exact match. We treated the injected faults that were not detected by any of the test suites as
equivalent mutants [6, 59]. This choice does not afect our results since we approximate the program behaviours
through the projects test suites, i.e., they are never killed.
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To measure whether the injected faults couple with the existing ones (answer RQ3), we followed the process
suggested by Just et al. [25] and identiied whether there were any injected faults that were killed by at least
one failing test (test that detects the real fault) and not by any passing test (test that does not detect the real
fault). In RQ4 we randomly sampled 50 test suites, random subsets of the accompanied test suites, that included
between 10% to 30% test cases of the original test suite (provided by defects4j). Thus, we ensure that the selected
samples (1) are smaller than the original test suite, (2) have diferent sizes and (3) diferent ratios of killing the
mutants and detecting the targeted bug. Then we recorded the ratios of the injected faults that are detected when
injecting 5, 10, 30 and 100 faults. We also recorded binary variables indicating whether or not each test suite
detects the targeted fault. This process simulates cases where test suites of diferent strengths are compared.
Based on these data, we computed two statistical correlation coeicients, the Kendall and Pearson.
To further validate whether the two approaches provide suicient indicators on the efectiveness of the test

suites, we check whether the detection ratios of the injected faults are statistically higher when test suites detect
the targeted faults than when they do not.
To reduce the inluence of stochastic efects we used the Wilcoxon test with a signiicance level of 0.05. This

helped deciding whether the diferences we observe can be characterised as statistically signiicant. Statistical

signiicance does not imply sizable diferences and thus, we also used the Vargha Delaney efect size Â12 [72]. In

essence, the Â12 values quantify the level of the diferences. For instance, a value Â12 = 0.5 can be interpreted

as a tendency of equal value of the two samples. Â12 > 0.5 suggest that the irst set has higher values, while

Â12 < 0.5 suggest the opposite.

6.3 Implementation

To perform our experiments, we implemented iBiR’s approach as described in Section 4: we have used the
IRFL implementation proposed in iFixR [30] and implemented the mutator component which is responsible of
injecting faults in speciic locations, as a java standalone application. Second, for the mutation testing, denoted as
łMutationž in our experiments, we used randomly sampled mutants from those produced by typical mutation
operators, coming from mutation testing literature. In particular we implemented the muJava intra-method
mutation operators [44], which are the most frequently used [28]. Third to reduce the noise from stillborn mutants,
i.e., mutants that do not compile, we discarded without taking into any consideration, i.e., prior to our experiment,
every mutant that did not compile or its execution with the test suite exceeded a timeout of 5 minutes. Fourth,
when answering the RQ1, we found out that there were many cases where iBiR injected less than 100 faults. To
perform a fair comparison, we discarded these cases (for both approaches). This means that we always report
results where both studied approaches manage to inject the same number of faults.

7 RESULTS

7.1 RQ1: Semantic similarity between iBiR injections and the targeted real faults

To check whether the injected faults imitate well the targeted ones, we measured their behaviour (semantic)
similarity w.r.t. the project test suites (please refer to Section 6 for details). Figure 4 shows the distribution of the
similarity coeicient values that were recorded in our study. As can be seen, iBiR injects hundreds of faults that
are similar to real ones, whereas mutation testing (denoted as Mutation in Figure 4) did not manage to generate
any. At the same time, as typically happens in mutation testing [63], a large number of injected faults have low
similarity. This is evident in our data, where mutations have 0 similarity.
To investigate whether iBiR successfully injects any fault that is similar (semantically) to the targeted ones,

we collected the best similarity coeicients, per targeted fault, when injecting 5, 10, 30 and 100 faults. Figure 5
shows the distribution of these results. For more than half of the targeted faults, iBiR yields a best similarity
value higher than 0.5, when injecting 100 faults, indicating that iBiR’s faults imitate relatively well the targeted
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ones. We also observe that in many faults the best similarity values are above 0 by injecting just 10 faults. This is
important since it indicates that iBiR successfully identiies relevant locations for fault injection.

To establish a baseline and better understand the value of iBiR, we need to contrast iBiR’s performance with
that of mutation testing when injecting the same number of faults. Mutation testing forms the current SoA of
fault injection and thus a related baseline. As can be seen from Figure 5, the similarity values of mutation testing
are signiicantly lower than those of iBiR.

iBiR injects faults that resemble those described in Bug Reports. iBiR injects a fault that imitates the real
targeted one, signiicantly better than traditional mutation testing.

Figure 6 shows the distribution of the semantic similarities, between real and injected faults, when injecting 5,
10, 30 and 100 faults. As can be seen from the boxplots, the trend is that a large portion of faults injected by iBiR
have positive similarity scores with the targeted ones.
Interestingly, in mutation testing, only outliers have their similarity above 0. In particular, mutation testing

injected faults with similarity values higher than 0 in 87, 112, 145, 189 of the targeted faults (when injecting 5, 10,
30, 100 faults), while iBiR injected in 130, 156, 190, 226 of the targeted faults, respectively.

To validate this inding, we performed a statistical test (Wilcoxon paired test) on the data of both igures 5 and
6 to check for signiicant diferences. Our results showed that the diferences are signiicant, indicating the low

probability of this efect to be happening by chance. The size of the diference is also big, with iBiR yielding Â12

values between 0.64 and 0.68 indicating that iBiR injects faults with higher semantic similarity to real ones in the
great majority of the cases. Due to the many cases with 0 similarity values, the average similarity values of iBiR’s
faults is 0.163, while for mutation it is 0.010, indicating the superiority of iBiR.

iBiR injects faults that better resemble real faults, than traditional mutation testing, in 64%-68% of the
cases.

7.2 RQ2: iBiR Vs Mutation Testing at particular classes

To check the performance of iBiR at the class level of granularity we repeated our analysis by discarding, from
our priority lists, every mutant that is not located on the targeted classes, i.e., classes where the targeted faults
have been ixed. Figure 7 shows the distribution of the semantic similarities when injecting 5, 10, 30 and 100
faults at a particular class. As expected, mutation testing scores are higher than those presented before, but still
mutation testing falls behind.

To validate this inding, we performed a statistical test and found that the diferences are signiicant. The size
of the diference is between 0.62 and 0.65, meaning that iBiR score more than 60% times higher than mutation
testing. The average similarity values of the iBiR faults is 0.217, while for mutation is 0.066, indicating that iBiR
is better.

iBiR outperforms traditional mutation testing, imitating real faults, even when restricted to a particular
(target) class. The diference is signiicant with iBiR scoring more than 60% of the time higher than
mutation testing.
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Table 3. Vargha and Deianey Â12 (iBiR VS Mutation) of Kendall and Pearson correlation coeficients.

Number of injected faults 5 10 30 100

Kendall 0.605 0.620 0.681 0.655

Pearson 0.580 0.612 0.627 0.652

7.3 RQ3: Fault Coupling

The coupling between the injected and the real faults forms a fundamental assumption of the fault-based testing
approaches [24]. An injected fault is coupled to a real one when a test case that reveals the injected fault also
reveals the real fault [24]. This implies that revealing these coupled injected faults results in revealing potential
real ones. We therefore, check this property in the faults we inject and contrast it with the baseline mutation
testing approach.
Figure 8 shows the percentage of targeted faults where there is at least one injected fault that is coupled to a

real one. This is shown for the scenarios where 5, 10, 30 and 100 faults, per target, are injected. As we can see
from these data, iBiR injects coupled faults for approximately 16% of the target faults when it aims at injecting 5
faults. This percentage increases to 36% when the number of injected faults is increased to 100.
Perhaps surprisingly, mutation testing did not perform well (it injected coupled faults for around 4% of the

targeted, when injecting 100 faults per target). These results difer from those reported by previous research
[25, 63], because a) previous research only injected faults at the faulty classes and not the entire project and b)
previous research injected all possible mutant instances and not 100 as we do.

iBiR injects coupled faults for approximately 16%-36% of the cases, while mutation testing does it in
around 4%. This is achieved by injecting 5-100 faults.

7.4 RQ4: Fault detection estimates

The results presented so far provide evidence that some of the injected faults imitate well the targeted ones.
Though, the question of whether the injections provide representative results of real faults remains, especially
since we observe a large number of faults with low similarity values. Therefore, we check the correlations between
the failure rates of the sets of injected faults and the real faults when executed with diferent test suites, (please
refer to section 6 for details).
Figure 9 shows the distribution of the correlation coeicients, when injecting diferent numbers of faults.

Interestingly, the results on both igures show a trend in favour of iBiR. This diference is statistically signiicant,

shown by a Wilcoxon test, with an efect size of approximately 0.6. Table 3 records the efect size values, Â12, for
the examined strategies. In essence, these efect sizes mean that iBiR outperforms the mutant injection in 60% of
the cases, suggesting that iBiR could be a much better choice than mutation testing, especially in cases of large
test suites with expensive test executions.

To further validate whether iBiR’s faults provide good indicators (estimates) of test efectiveness (fault detection)
we split our test suites between those that detect the targeted faults and those that do not. We then tested whether
detection ratios of the injected faults in the test suite group that detects the real faults are signiicantly (statistically)
higher than those in the group that does not detect it. In case this happens, we have evidence that our injected
faults favour test suites capable of detecting real faults. This is important when comparing test generation
techniques, where the aim is to identify the most efective (at detecting faults) technique.
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Table 4. Percentage of injected faults that are coupled to real ones when injecting 5 to 1000 faults.

Number of injected faults 5 10 30 100 200 500 1000

IBIR 5.93% 5.61% 5.78% 5.23% 4.57% 3.43% 2.57%
Mutation 0.29% 0.04% 0.05% 0.06% 0.06% 0.07% 0.07%

Figure 10 records the number of faults where (real) fault detecting test suites detect a statistically higher
number of injected faults than those test suites that do not detect them. As can be seen by these results, iBiR
has a big diference from mutation, i.e., it distinguishes between passing and failing test suites in 126 faults,

while Mutation in 55 faults. We also measured the Vargha and Delaney Â12 efect size values on the same data,
recorded in Figure 11. Of course it does not make sense to contrast insigniicant cases, so we only performed that
on the results where iBiR has statistically signiicant diference. Interestingly big diferences are recorded (in
approximately 80% of the cases) in favour of our approach.

iBiR injects faults that provided better fault detection estimates than traditional mutation testing in
approximately 80% of the cases.

8 DISCUSSION

The efectiveness of iBiR in generating faults that are similar to real ones is endorsed by its two main components:
the IRFL and the mutator. The IRFL indicates where the faults need to be injected and the mutator decides what
changes should be made, depending on the AST tree of each location.

Particularly, compared to conventional mutation testing, we can see that the IRFL is narrowing down the area
of injection to the source-code features described by the bug report, while the patterns-set of iBiR extends the
injection possibilities in that area. In the other hand, conventional mutation testing targets all the source code and
injects faults only in statements where their operators are applicable. For instance, applying the typical mutation
operators - the Mutate Operators and Remove Statement ones - on a speciic area of code would not induce
any fault, if no statement can be removed without breaking the compilation, or there is no operator to mutate.
While in such case, iBiR may inject faults by applying other patterns like mutating the method invocation or the
used parameters or inserting a statement, etc.

8.1 Injecting large number of faults

The Figure 8 shows that iBiR injects much more faults that couple with the real ones than conventional mutation
testing. In fact, it achieves a higher coupling percentage when injecting only 10 faults than the percentage
achieved by conventional mutation testing when injecting 1000 faults. We can see also that when injecting 1000
faults we achieve the coupling percentages of 61.1% and 18.2% for respectively iBiR and mutation testing. This
is obviously because the more faults we inject, the more chances we have to inject faults that couple with the
real ones. Considering that injecting more faults comes with a considerable consequent cost-increase, as the
practitioners will need more time to analyse the produced mutants, this option is often not favoured in practice,
where it is better to have few relevant faults than many.

To have a better understanding of the impact of injecting multiple faults, we illustrate in Table 4 the averaged
faults-coupling success-rates when injecting 5, 10, 30, 100, 200, 500 and 1000 faults with iBiR and mutation testing.
We deine the success rate as the percentage of coupled faults among all the injected ones. As an example, a
coupling success-rate of 5% corresponds to 5 coupled faults when injecting 100 ones. In our study, iBiR achieves
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a much higher success rate than mutation testing: 20, 87, 49 and 36.7 times higher when injecting 5, 100, 500 and
1000 faults. Even if the coupling percentage increases by injecting more faults (Figure 8), we can see that the
more we inject faults, the more the success rate decreases for iBiR. This is a direct consequence of the decrease of
the injection-locations likelihood to be related to the targeted bug-report. As we explain further in Section 4,
iBiR starts by injecting faults in the highly ranked code locations found by its IRFL then iterates further until all
locations are treated or the requested number of faults has been injected. So the higher the requested number
of injected faults is, the more faults in lower ranked locations are injected. In the other hand, we see that the
success rate of conventional mutation testing remains relatively low and far behind the one of iBiR. For instance,
it remains at 0.07% even when doubling the number of injected faults from 500 to 1000. In Table 4, we notice
that injecting 5 faults with mutation testing achieves a success rate of 0.29% which is much higher than the
ratios achieved when injecting more faults, by the same technique. This is caused by the randomness in the
conventional mutation testing results.

8.2 Distribution of the paterns inducing most efective injections

To understand better the impact of the used patterns in injecting faults that are similar to real ones, we grouped
the faults by their creating patterns and compared the sizes of each group. Figure 12 illustrates the proportion
of every pattern’ induced faults that have high Ochiai Coeicients (more than 0.8), when injecting 1000 faults
by IBIR in the current dataset. Clearly, more than 70% of the faults with high similarity coeicients have been
generated by patterns that are not commonly used in conventional mutation testing techniques: mainly by
adding conditional expressions (42.3%) or by mutating variables (29.5%). This is signiicantly higher than the
15.3% generated with the commonly used conventional mutation operators (10.4% by mutating operators and
4.9% by removing statements). This highlights the fact that iBiR’s patterns are bringing a clear advantage over
mutation-testing.

These percentages and the general performance of every pattern depends on the targeted bug-report and the
project nature. For instance, the low percentages of multiple patterns in Figure 12 can be the consequence of
multiple factors, such as: 1) the fact that some faults are occurring less frequently in the current dataset or 2)
the fact that some patterns are only applicable on few speciic statement-ASTs or 3) that some patterns produce
relatively more mutants in the same location, thus have higher percentages (i.e. the "Mutate Method Invocation"
which induced Fault 1 and Fault 2 in the same statement in Figure 3 in Section 4.4).

8.3 iBiR Vs typical mutation operators

Early research on mutation testing deined mutation operators based on all possible simple removals or re-
placements of programming language elements [3, 27]. This practice was then adopted when deining mutation
operators for other languages, such as Java, and in deining object oriented related mutants [44, 55]. To reduce
the number of mutants involved, many tool developers applied a restrictive set of mutation operators, usually
referred to as the 5-operator set, based on the selective mutation testing studies performed by Ofutt et al. [54, 56]
with the result that the majority of modern mutation testing tools implementing a version of this 5-operator set
together with some deletion operators [34, 61].

In view of the above all the iBiR injections that involve addition of code elements, i.e., łInsert Statementž and
łMutate Return Staementž categories of Table 2, are fundamentally diferent from what has been used in mutation
testing studies over the years. The łMutation Literal Expressionž category is also something that has not been
used by mutation testing studies. The rest of the operators have some similarities with operators used in some
studies overall difer signiicantly from the operators used by any single tool or study. In the following we provide
a detailed list of iBiR operators and their related similarities (or novelties) with respect to other studies.

Operators that have not been used by other studies:
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• Insert Statement : Insert a method call, Insert a return statement, Wrap a statement with a try-catch, Insert an

if checker.
• Mutate Conditional Expression : Insert a conditional expression.
• Mutate loat or double Division : Remove a loat or a double cast from the divisor, Remove a loat or a double

cast from the dividend, Replace loat or double multiplication by an int division.
• Mutate Literal Expression : Change boolean, number or string literals in a statement by another literal or

expression of the same type.
• Mutate Return Statement : Replace a return expression by an other one.

Operators that have similarities with those used by other studies:

• Mutate Class Instance Creation : Replace an instance creation call by a cast of the super.clone() method call.
Similar to the class mutation operators of MuJava [55].
• Mutate Data Type : Change the declaration type of a variable, Change the casting type of an expression.
Similar to the interface mutation in C [3, 13].
• Mutate Method Invocation : Replace a method call by another one, Replace a method call argument by another

one, Remove a method call argument, Add an argument to a method call. Similar to the interface mutation
[13].
• Mutate Variable : Replace a variable by another variable or an expression of the same type. Similar to the
variable mutations in C [3].
• Move Statement: Move a statement to another position. Similar to the move out of a loop operators in C
[3, 13].

Operators that are frequently used by other studies:

• Mutate Conditional Expression : Remove a conditional expression, Change the conditional operator [3, 27].
• Remove Statement : Remove a statement, Remove a method [5, 27, 34].
• Mutate Operators : Replace an Arithmetic operator, Replace an Assignment operator, Replace a Relational

operator, Replace a Conditional operator, Replace a Bitwise or a Bit Shift operator, Replace an Unary operator,

Change arithmetic operations order [5, 27, 34].

8.4 Project size and iBiR’s efectiveness

Considering the fault injection as a search task where the target is injecting faults similar to real ones and the
search space is the combination of the source-code locations and mutation possibilities, we were interested in
assessing iBiR’s performance for diferent project sizes. Figure 13a and Figure 13b show the scatter plots of
the semantic similarity by the project size in terms of number of classes. Figure 13a and Figure 13b consider
respectively all the injected faults and the faults having an Ochiai coeicient higher than zero. We can see that
the project size has no impact on the efectiveness of iBiR.

9 THREATS TO VALIDITY AND LIMITATIONS

The question of whether our indings generalise, forms a typical threat to validity of empirical studies. To
reduce this threat, we used real-world projects, developer test suites, real faults and their associated bug reports,
from an established and independently built benchmark. Still though, we have to acknowledge that these may
not be representative of projects from other domains. In addition, as the approach’s injection depends on the
input bug reports, its efectiveness may be impacted by the content of the reports, such as partial/incomplete
or vague descriptions. To reduce this threat, we have run our experiments with all available bug reports in the
studied dataset without any particular selection and got encouraging results. We acknowledge though that the
results may vary depending on the information provided in the reports. In practice, one should make a careful
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selection of bug reports based on which iBiR could be applied to avoid such cases. Nevertheless, the appropriate
selection of bug reports falls outside the scope of this work and has been left open for future research.

Other threats may also arise from the way we handled the injected faults and mutants that were not killed by
any test case. We believe that this validation process is suicient since the test suites are relatively strong and
somehow form the current state of practice, i.e., developers tend to use this particular level of testing. Though,
in case the approach is put into practice things might be diferent. We also applied our analysis on the ixed
program version provided by Defects4J. This was important in order to show that we actually inject the actual
targeted faults. Though, our results might not hold on the cases that the code has drastically changed since the
time of the bug report. We believe that this threat is not of actual importance as we are concerned with fault
injection at interesting program locations, which should be pinpointed by the fault localisation technique we use.
Still future research should shed some light on how useful these locations and faults are.

Furthermore, some implementation changes of iBiRmay improve its usability. For instance, adding an advanced
integrity check before applying the patterns would shorten the execution time of the tool. As currently, the
generated faulty programs are mainly validated via the compilation, only 52% of the mutants are compilable and
thus outputted, while the rest are discarded. Also, one can consider using the same approach with diferent IRFL
techniques. This would eliminate the training cost and reduce the eventual risk of threats that may be induced
by the machine-learning module currently used to rank the suspicious iles. In fact, some of the projects in our
evaluation set has been used during the training phase of this latter. Although, we did not notice any bias or
bad impact on our results, we are aware that this can be considered as an additional threat to validity. However,
these threats concern only the ile-level localisation of the IRFL and not the statement-level one, thus, they would
not impact its results. This is because the IRFL is performing a VSM cosine-similarity to rank the suspicious
statements without involving any machine learning technique in this step, as explained in Section 4.1.
Finally, our evaluation metrics may induce some additional threats. Our comparison basis measurement,

i.e., number of injected faults, approximates the execution cost of the techniques and their chances to provide
misleading guidance [63], while the fault couplings and semantic similarity metrics approximate the efectiveness
of the approaches. These are intuitive metrics, used by previous research [9, 32] and aim at providing a common
ground for comparison.

10 RELATED WORK

Software fault injection [74] has been widely studied since 1970s. Injected faults have been used for the purpose of
testing [61], debugging [42, 62], assessing fault tolerance [52], risk analysis [11, 73] and dependability evaluation
[7].

Despite the many years of research, the majority of previous research is focused on the fault types. In mutation
testing research, mutation operators (fault types) are usually designed based on the grammar of the targeted
language [4, 61], which are then reined through empirical analysis, aiming at reducing the redundancy between
the injected faults [46, 54]. The most prominent mutant selection approach is that of Ofutt et al. [54], which
proposed a set of 5 mutation operators. This set has been incorporated in most of the modern mutation testing
tools [28] and is the one that we use in our baseline.
Recently, Brown et al. [8] aimed at inferring fault patterns from bug ixes. Their results showed that a large

number of mutation operators could be inferred. Along the same lines Tufano et al. [71] developed a neural
machine translation tool that learns to mutate through bug ixes. A key assumptions of these methods are a)
the availability of a comprehensive number of clean bug ixing commits, and b) the absence of fault couplings
[53], which are often not met and can often be reduced to what simple mutations do. For instance, the study of
Brown et al. found that with few exceptions, almost all mutation operators designed based on the C language
grammar appeared in the inferred operator set. Perhaps more importantly, the studies of Natella et al. [52] and
Chekam et al. [9] found that the pair of mutant location and type are what makes mutants powerful and not
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the type itself. Nevertheless, iBiR goal is complementary to the above studies as it aims at injecting faults that
mimic speciically targeted faults, those described in bug reports. This way, one can inject the most important
and severe faults experienced.

Some studies attempt to identify the program locations where to inject faults. Sun et al. [69] suggested injecting
faults in diverse places within diferent program execution paths. Gong et al. [21] used graph analysis to inject
faults in diferent and diverse locations of the program spectra. Mirshokraie et al. [49] employed complexity
metrics together with actual program executions to inject faults at places with good observability. These strategies,
aim at reducing the number of injected faults and not to mimic any real fault as our approach. Moreover, their
results should be resembled by the random mutant sampling baseline that we use.
Random mutant sampling forms a natural cost-reduction method proposed since the early days of mutation

testing [14]. Despite that, most of the mutant selection methods fail to perform better than it. Recently, Kurtz et al.
[32] and Chekam et al. [9] demonstrated that selective mutation and random mutant sampling perform similarly.
From this, it should be clear that despite the advances in selective mutation, the simple random sampling is one of
the most efective fault injection techniques. This is the reason why we adopt it as a baseline in our experiments.
There are also attempts to combine random and selective mutation [84] but they are not relevant for us as they
inject numerous mutants.

Natella et al. [52] used complexity metrics as machine learning features and applied them on a set of examples
in order to identify (predict) which injected faults have the potential to emulate well the behaviour of real ones.
Chekam et al. [9] also used machine learning, with many static mutant-related features to select and rank mutants
that are likely fault revealing (have high chance to couple with a fault). These studies assume the availability of
historical faults and do not aim at injecting speciic faults as done by iBiR.

The relationship between injected and real faults has also received some attention [61]. The studies of Papadakis
et al. [63], Just et al. [25], Andrews et al. [6] investigated whether mutant kills and fault detection ratios follow
similar trends. The results show the existence of a correlation and, thus, that mutants can be used in controlled
experiments as alternatives to real faults. In the context of testing, i.e., using mutants to guide testing, injected
faults can help identifying corner cases and reveal existing faults. The studies of Frankl et al. [19], Li et al. [36]
and Chekam et al. [10] demonstrated that guidance from mutants leads to signiicantly higher fault revelation
than that of other test techniques (test criteria).

11 CONCLUSION

We presented iBiR; a bug-report driven fault injection tool. iBiR (1) equips researchers with faults (to inject)
targeting the critical functionality of the target systems, (2) mimics real faulty behaviour and (3) makes relevant
fault injection.
iBiR’s use case is simple; given a program and some bug reports, it injects faults emulating the related bugs,

i.e., iBiR generates few faults per target bug report. This allows constructing realistic fault pools to be used for
test or fault tolerance assessment.

This means that iBiR’s faults can be used as substitutes of real faults, in controlled studies. In a sense, iBiR can
bring the missing realism into fault injection and therefore support empirical research and controlled experiments.
This is important since a large number of empirical studies rely on artiicially-injected faults [60], the validity of
which is always in question.

While the use case of iBiR is in research studies, the use of the tool can have applications in a wide range
of software engineering tasks. It can, for instance, be used for asserting that future software releases do not
introduce the same (or similar) kind of faults. Such a situation occurs in large software projects [57], where iBiR
could help by checking for some of the most severe faults experienced. Testers could also use iBiR for testing all
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system areas that could lead to similar symptoms than the ones observed and resolved. This will bring beneits
when testing software clones [50] and similar functionality implementations.

Another potential application of iBiR is fault tolerance assessment, by injecting faults similar to previously
experienced ones and analysing the system responses and overall dependability. We hope that we will address
these points in the near future.

To support this research and enable reproducibility, we have made our data and code available [? ].
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Bug-report MATH-329

packages

packageName, classNames, methodNames, methodInvocations, 

formalParameters, memberReferences, documentation, rawSource

Classes

Commits (commit logs and hunks)

Git history

Commons-Math git repository

1

2

4

3

5

6

Fig. 2. Example of iBiR’s input: the bug report MATH-329 (1- the summary, 2- the summary hints, 3- the description, 4- the
description hints, 5- code elements) and the Commons-Math git repository (6-).
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IR-based fault 


localisation

Rank
Likeli-

hood
File

Line  

number

1 0,698
src/main/java/org/apache/commons/

math/stat/Frequency.java 303

2 0,642
src/main/java/org/apache/commons/

math/stat/Frequency.java 475

… … … …

Frequency.java

Fault injection Compatible fault 


pattern selection

Fault 4Frequency.java

Fault 5Frequency.java

Insert a new statement

Fault 1Frequency.java

Fault 2Frequency.java

Invoke another method

Fault 3Frequency.java

Invoke the method with another variable

MATH-329 

Bug-report

Commons-

Math git 

repository

78

8

9

Fig. 3. Example of iBiR’s execution on the bug report MATH-329: the IRFL extracts tokens from the bug-report and the
projects repository. Then, it outputs a list of statements ranked by their suspicioussness (7- the 2 first ranked statements by
iBiR). The mutator loads every statement in this list, parses its AST, selects the applicable paterns and apply them one by
one to inject faults (8- the statement with the highest suspicioussness, 9- faults injected when processing the first statement).
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(a) All injected faults.
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(b) Faults with an Ochiai coeficient higher than zero.

Fig. 4. Distribution of semantic similarities of 100 injected faults per targeted (real) fault.
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Fig. 5. Semantic similarity per targeted (real) fault, top values. iBiR injects faults with higher similarity coeficients than
mutation testing.
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Fig. 6. Semantic similarity of all injected faults. iBiR injects faults with higher similarity coeficients than mutation testing.
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Fig. 7. Semantic similarity of injected faults at particular classes. iBiR injects faults with higher similarity coeficients than
mutation testing (at class level granularity).
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Fig. 8. Percentage of real faults that are coupled to injected ones when injecting 5 to 1000 faults.
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(b) Pearson

Fig. 9. Correlation coeficients of test suites (samples from the original project test suite). The two related variables are a) the
percentage of injected faults that were detected by the sampled test suites and b) whether the targeted fault was detected or
not by the same test suites.
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Fig. 10. Number of (real) faults where injected faults provided good indications of fault detection. Particularly, number of
cases with statistically significant diference, in terms of ratios of injected faults detected, between failing and passing test
suites (wrt real faults).
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Fig. 11. Vargha and Delaney values for iBiR. Â12 values computed on the detection ratios of injected faults of the test suites
that detect and do not detect the (real) faults.
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42.3% Add Conditional Expression
29.5% Mutate Variable
10.4% Mutate Operators
4.9% Remove Statement
4.5% Insert Statement
4.0% Mutate Method Invocation or Class Instance Creation
3.0% Move Statement
0.9% Remove Conditional Expression
0.2% Mutate Literal Expression
0.2% Mutate Return Statement
0.1% Mutate Data Type

Fig. 12. Distribution of the paterns inducing mutants with an Ochiai coeficient higher than 0.8 for iBiR when injecting
1000 faults.
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(a) All injected faults.
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Fig. 13. Correlation between the semantic similarities and the project size (100 injected faults per targeted (real) fault).
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