
Vol.:(0123456789)

Automated Software Engineering (2023) 30:31
https://doi.org/10.1007/s10515-023-00392-y

1 3

Tips: towards automating patch suggestion for vulnerable
smart contracts

Qianguo Chen1 · Teng Zhou1 · Kui Liu1 · Li Li2 · Chunpeng Ge1 · Zhe Liu1 ·
Jacques Klein3 · Tegawendé F. Bissyandé3

Received: 19 March 2022 / Accepted: 25 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2023

Abstract
Smart contracts are slowly penetrating our society where they are leveraged to sup-
port critical business transactions of which financial stakes are high. Smart con-
tract programming is, however, in its infancy, and many failures due to program-
ming defects exploited by malicious attackers and have made the headlines. In
recent years, there has been an increasing effort in the literature to identify such
vulnerabilities early in smart contracts to reduce the threats to the security of the
accounts. Automatically patching smart contracts, however, is a much less inves-
tigated research topic. Yet, it can provide tools to help developers in fixing known
vulnerabilities more rapidly. In this paper, we propose to review smart contract
vulnerabilities and specify templates that will serve to automate patch generation.
We implement the TIPS pipeline with 12 fix templates and assess its effectiveness
on established smart contract datasets such as SmartBugs and ContractDefects. In
particular, we show that TIPS is competitive against the state-of-the-art automated
repair approach (SCRepair) in the literature. Finally, we evaluate the impact of the
code changes suggested by TIPS in terms of gas usage.

Keywords  Smart contract vulnerability · Automated repair · Fix template

1  Introduction

“Even the wisest man occasionally falls prey.”

Blockchain technology has attracted great interests from the research and
industry in the last decade due to its brought opportunities and challenges w.r.t.
anonymity, trust, immutability, etc. Beyond the largely covered application of
crypto-currencies, there are increasingly other applications that are sought-after,
such as decentralized databases and smart contracts. The latter are increasingly

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-023-00392-y&domain=pdf

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 2 of 28

deployed to blockchain and realize automated transactions in a traceable, trans-
parent, and irreversible way. Smart contracts are programmed in a specific lan-
guage, the most used being the Solidity programming language, which is sup-
ported by the Ethereum platform (Ethereum 2021).

Just like traditional programs, smart contract programs include defects that can
make them vulnerable to attacks. In the context of smart contracts, however, the
involved financial stakes entice attackers to be diligent in finding and exploiting
vulnerabilities. Because of the huge currency transactions, the vulnerable smart
contracts have been keenly perceived by attackers. In June 2016, a reentrancy vul-
nerability in the smart contract of the DAO project (for an investment fund) was
exploited in an attack that led investors to lose 3.5 million Ether (over 60 million
US dollars at that time) (del Castillo 2016). A year later, a critical code flaw on
the Parity Ethereum client software resulted in the freezing of $160 million worth
of Ether (O’Leary 2017). These examples are not isolated. A recent survey by
Wan et al. (2021) revealed that 40% of respondents admit facing vulnerability
problems with their smart contracts.

To address vulnerabilities in smart contracts, various approaches have been
proposed in the literature (Luu et al. 2016; Liu et al. 2018b; Jiang et al. 2018a; Li
et al. 2019; Gao et al. 2020; Brent et al. 2020). While these approaches provide
automated support for exposing vulnerabilities (i.e., what kinds of vulnerabilities
and their locations), fixing such vulnerabilities still requires substantial manual
effort. Indeed, smart contract programming is still not mature and developers
therefore often require help that is not yet available in online forums: at the time
of writing, among the ∼2100 questions on stack-overflow about Solidity smart
contract programming, half of them were not answered.

With the momentum in automated program repair (APR), the community is
now exploring approaches for repairing smart contracts. Recently, Yu et al.
(2020) proposed to investigate genetic programming search for the repair of smart
contracts. Nguyen et al. (2021) leveraged symbolic execution and run-time infor-
mation of smart contracts towards fixing four kinds of common vulnerabilities.

This paper. Our work investigates the possibility of fixing vulnerabilities
with a classical approach in the repair of programs written in general program-
ming languages: template-based patch generation. Templates have enabled recent
approaches such as FixMiner (Koyuncu et al. 2020) to produce state-of-the-art
results in the literature for Java programs. In the APR literature, template-based
approaches often serve as a baseline (Liu et al. 2019c) to discuss the improve-
ments that sophisticated approaches can bring. Therefore we explore an approach
where smart contract code represented at the abstract syntax tree (AST) level
is manipulated based on match and transform fix templates towards suggesting
patches for smart contracts. Our approach is inspired by the findings of Wan et al.
(2021): smart contract developers frequently reuse code from reliable sources
in smart contract development to address their vulnerabilities. Therefore, our
insight is that experts’ understanding (Chen et al. 2020; DASP 2021; Ethereum
Smart Contract Security Best Practices 2021) of smart contract vulnerabilities
can form a reliable source for deriving fix templates. The TIPS approach, there-
fore, aims at characterizing and instantiating actionable fix templates for a variety

1 3

Automated Software Engineering (2023) 30:31 	 Page 3 of 28  31

of well-known vulnerabilities in the literature. Overall, we manage to take into
account in our extensible TIPS finally eight types of smart contract vulnerabili-
ties, which are addressed by 12 crafted fix templates.

This paper makes the following contributions:

•	 We systematically analyze concrete vulnerable smart contract samples in online
blogs (DASP 2021; Ethereum Smart Contract Security Best Practices 2021) and
overview literature (Chen et al. 2020) on smart contract defects to characterize
the repair actions that are applied to fix them. Subsequently, we summarize the
repair templates.

•	 We develop TIPS: a template-based smart contract repair framework, where
match and transform operations at the AST level are encoded, finally taking into
account 12 repair templates for 8 common vulnerability types.

•	 We perform a series of experimental validations of TIPS. We apply TIPS on
samples from the SmartBugscurated (Durieux et al. 2020), ContractDefects (Chen
et al. 2020), and SCRepair (Yu et al. 2020) datasets. For our experiments, we use
well-known tools such as Slither and Mythril for defect detection. Overall, TIPS
exhibits excellent performance metrics not only in terms of repairability but also
in terms of effectiveness.

2 � Background

This section presents background information about smart contract vulnerabilities
and automated program repair.

2.1 � Smart contract vulnerabilities

The practical execution of smart contracts could be threatened by the vulnerabili-
ties from three aspects: the blockchain system, the virtual machine of the executing
platform, and the smart contract programs themselves. This work focuses on the vul-
nerabilities in smart contract programs. Vulnerabilities in smart contract programs
can be caused by flaws that are inherent to the used programming language or by
programming mistakes from smart contract developers. We further circumscribe our
study on the latter cases.

Figure 1 presents an example, in a single function, of the well-advertised reen-
trancy vulnerability. In the vulnerable code written in the Solidity programming lan-
guage, the user’s balance userBalances is not set to “0” until the very end of the
function (i.e., line 7). When the caller’s code at line 5 is executed by the attacker, it
can call the withdrawBalance function repeatedly in the fallback1 function of
the attacker’s contract before the first invocation of the withdrawBalance func-
tion is finished. Thus, eventually, the attacker is able to receive more tokens while

1  A fallback function in Solidity is executed when the function identifier does not match any of the avail-
able functions in a smart contract or if there was no data supplied at all.

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 4 of 28

his/her balance is not changed until the execution runs out of gas (see following)
or the call stack limit is reached. In the given example, the best way to prevent this
attack is to make sure that any external function will be called only after all the
needed internal work is done.

Due to the immutability of Blockchain, once a smart contract program is
deployed, it can no longer be modified. Discovering and fixing smart contract
vulnerabilities early is therefore a major concern in smart contract program-
ming. Towards coping with this concern, practitioners regularly characterize
and publicly share knowledge about smart contract vulnerabilities that Solid-
ity programmers must be aware of. Following up on the success of the OWASP
(Open Web App Security Project), DASP (Decentralized Application Security
Project), an open and collaborative project, has released the first enumeration
of its top-10 smart contract vulnerabilities in 2010, providing hints to how to
resolve them (DASP 2021). There are also smart contract solution providers
or auditing firms which, just like anti-virus providers, showcase in their blogs
some sampled discovered vulnerabilities to demonstrate their expertise. Such
one firm2 is maintaining an online forum (Ethereum Smart Contract Security
Best Practices 2021) maintains a blog on “Ethereum Smart Contract Best Prac-
tices” where some known smart contract attacks (as well as proposed solutions)
are discussed. In the peer-reviewed literature, Chen et al. (2020) have recently
presented the findings of their empirical study on the characteristics of smart
contract defects based on a deep dive into smart-contract-related posts within
Ethereum StackExchange3 and real-world smart contracts. Their study summa-
rized 20 types of smart contract defects that were validated based on practition-
ers’ opinions. Overall this study provides a rich source of information on smart
contract defects based on the practitioner’s understanding.

Fig. 1   Example of code fragment with the reentrancy vulnerability in a single function

2  ConsenSys Diligence - https://​conse​nsys.​net/​dilig​ence/.
3  https://​ether​eum.​stack​excha​nge.​com.

https://consensys.net/diligence/
https://ethereum.stackexchange.com

1 3

Automated Software Engineering (2023) 30:31 	 Page 5 of 28  31

2.2 � Automated program repair

Automated program repair (APR) (Goues et al. 2019; Monperrus 2018; Gazzola
et al. 2017) is a research field that develops techniques for automatically gener-
ating corrective changes (on source code Liu et al. 2020 or bytecode Ghanbari
et al. 2019) to address bugs in programs. It holds the ambition and promise of
alleviating the manual effort involved in program debugging (Liu et al. 2021)
by reducing the time-to-fix delays and the downtime caused by program bugs.
Since smart contracts must be repaired in development settings before they are
deployed on immutable blockchain networks, their repair should be performed
on source code.

In general APR, the basic requirement of repair is that the generated patch
should fix the targeted bug and must not introduce any new issue. Smart con-
tract repair has similar constraints. We consider the following validation criteria
as minimal: the generated patches can resolve the related vulnerability and do
not introduce new (known) vulnerabilities. Furthermore, it should be noted that
the normal execution of smart contracts on the widely-used Ethereum block-
chain platform involves gas consumption: it refers to the fee or pricing value
required to successfully conduct a transaction or execute a contract on the plat-
form. Therefore, an extra (but important) validation criterion for smart contract
patches is to take potential changes in the gas consumption by the execution of
the patched smart contract into consideration (Yu et al. 2020).

In the community of automated program repair, various automated program
repair approaches have been studied, which can be summarized into four catego-
ries: heuristic-based approaches, constraint-based approaches, learning-based
approaches, and template-based approaches (Liu et al. 2021). In 2013, Kim et al.
(2013) found that fix templates summarized from human-written patches can be
used to fix program bugs automatically, which built a milestone of automatically
fixing bugs with fix templates. Since then, various automated program repair
tools based on fix templates have been proposed (Koyuncu et al. 2019, 2020;
Liu et al. 2019b, c; Le et al. 2016; Saha et al. 2017, 2019; Wen et al. 2018;
Jiang et al. 2018b; Yuan and Banzhaf 2018). Liu et al. (2020) systematically
investigated the efficiency of different automated program repair approaches, of
which results show that template-based APR approaches present overwhelming
performances than heuristic-based APR approaches and constraint-based ones.
More recently, Liu et al. (2022) also reported that templated-based APR tools
can achieve comparing results against learning-based APR tools relying on a
big number of bug-fixing data for training, templated-based APR tools even can
fix some bugs that cannot be solved by learning-based APR tools. In addition,
fix templates can help practitioners understand the code issue of bugs and the
related fixing behavior at the level of code (Liu et al. 2019c). Therefore, in this
work, we propose to investigate the possibility of fixing smart contract vulner-
abilities with fix templates. To this end, we summarized fix templates from prac-
titioners’ knowledge shared in the community.

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 6 of 28

3 � Towards a fix template taxonomy

For this study, we systematically review the community (cf. the third paragraph in
Sect. 2.1) to identify approaches that leverage fix patterns to carefully understande
code samples available in the literature and datasets (cf. Sect. 2). With the charac-
teristics of smart contract vulnerabilities and the given potential solutions that are
released in the community by experts (Chen et al. 2020; DASP 2021; Ethereum
Smart Contract Security Best Practices 2021), we manually summarized 12 fix
templates of eight common vulnerability categories with respect to the vulnerable
code of Solidity smart contracts. Note that, we reference the knowledge of smart
contract defects defined by Chen et al. (2020) to summarize fix templates for smart
contract vulnerabilities. In addition, it is worth mentioning that these templates are
not always correct, but their correctness is further verified in experiments in Sect. 5.
Below, we initiate a fix template taxonomy with 12 fix templates (FT) described in
terms of simplified GNU diff format for easy understanding, which is the first con-
tribution of this work.

FT-1: Fixing unchecked external calls. Inserting a Boolean value check for the
unchecked external calls in smart contracts, or replacing the external calls with the
function address.transfer().

where “external_calls” represents the unchecked external calls, i.e.,
address.send(), address.call() and address.delegatecall().
In Solidity smart contracts, the external calls for raw addresses could fail to execute
because of network errors, out-of-gas error, etc. The call that fails during execu-
tion returns a Boolean value (i.e., false) without handling any exception. If their
return values are not checked, the correctness of the executing code logic cannot be
guaranteed. When they return false value, while the remaining code will still be
executed, which would lead to unexpected outcomes. For example, when the code at
line 3 in Fig. 2 returns the boolean false value, line 4 will still be executed and the
value of the variable valuePaid will be changed. Therefore, the fix template FT-
1.1 is to check the return value of the external calls, and throw an exception when
the return value is false, while the other fix template FT-1.2 tries to replace the
external calls with the transfer function, which will throw an exception while
failing to execute.

1 3

Automated Software Engineering (2023) 30:31 	 Page 7 of 28  31

FT-2: Fixing reentrancy. Replacing the vulnerable reentrancy call with the func-
tion send or transfer in smart contracts, or moving the statements of changing
state variables to the position before external calls.

A reentrancy attack happens when the external contract calls can make new calls
to the called contract before completing the initial execution. It means that the state
of the contract may change in the middle of the function call due to an untrusted
external call that leads to the repeated balance withdrawal. Therefore, the fix tem-
plate FT-2.1 uses the function send or transfer to make a transfer within the
limited gas cost. In such a case, the attack can be interrupted because of the gas
limitation. The fix template FT-2.2 prevents this attack by setting contract states
changes (like the user’s balance here) before the Ether transfer to make sure that an
external function won’t be called until all needed internal work is done.

FT-3: Fixing access control. The access control vulnerability can be intro-
duced by three kinds of issues that should be addressed in three different ways:
(1) Replacing the authenticating valuable tx.origin with msg.sender, (2)
Replacing the incorrect function name with the corresponding constructor func-
tion, and (3) Inserting the missing protection before the caller accesses the high
authority.

Fig. 2   Example of the unchecked external call vulnerability (https://​github.​com/​kiera​nelby/​KingO​fTheE​
therT​hrone/​blob/​v0.4.​0/​contr​acts/​KingO​fTheE​therT​hrone.​sol)

https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 8 of 28

In smart contracts, the execution of some code requires a the high level of
autorization through private or internal functions. While the straightforward way
for attackers to dominate the owner’s account and balance is opened due to the
negligence of authenticating the insecure visibility. When contracts use the dep-
recated tx.origin (a global variable in the smart contract that represents the
original address the transaction initiate) to validate callers, it will make the con-
tracts suffer from phishing attacks like Fig. 3. If the attacker invokes the function
sendTo of MyContract in his contract, the owner of MyContract could be
phished to transfer Ether to the attacker until exhausting the balance in MyCon-
tract account. Thus, the fix template FT-3.1 prevents this attack by replacing
the vulnerable tx.origin with msg.sender.

In smart contracts, the constructor function can be used to initialize the global
variables. The correct constructor will be executed when the contract is deployed on
the blockchain and cannot be called anyway in the next life cycle. In some versions
of Solidity, developers could be recklessly misled by the function names that are
similar to constructors. It will degenerate the constructor into an externally callable
function, which could be attacked to take control of the contract account by call-
ing such a fake constructor function. In Fig. 4, the function missing is to initial-
ize the state variable owner. Actually, this function is an external function that can

Fig. 3   Example of the tx.origin access control vulnerability (https://​conse​nsys.​github.​io/​smart-​contr​act-​
best-​pract​ices/​recom​menda​tions/#​avoid-​using-​txori​gin)

https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-using-txorigin
https://consensys.github.io/smart-contract-best-practices/recommendations/#avoid-using-txorigin

1 3

Automated Software Engineering (2023) 30:31 	 Page 9 of 28  31

be invoked and the value of owner can be modified by everyone. So, the fix tem-
plate FT-3.2 fixes the attack by replacing the wrong-used function with the correct
constructor.

In smart contracts, code statements could include the authority-sensitive opera-
tions of which execution requires that the contract owner is the executor. Once
developers neglect the needed protection, it will make the contract vulnerable. The
contract shown in Fig. 5 can be destroyed by anyone since it is lack of protection.
Thus, the fix template FT-3.3 adds the missing protection to validate that the msg.
sender is the contract owner contractOwner.

FT-4: Fixing arithmetic issue. Inserting the missing protection before/after the
arithmetic operation.

Arithmetic overflows and underflows are dangerous in smart contracts, where
unsigned integers are prevalent and most developers usually use simple uint types. If
overflows occur, many benign-seeming codepaths become vectors for theft or denial
of service, such as the careless programming BEC4 token with the arithmetic over-
flow vulnerability. To resolve the arithmetic overflow/underflow issues, the fix tem-
plates add the related protection for each specific arithmetic operation.

Fig. 4   Example of the access control vulnerability (https://​smart​contr​actse​curity.​github.​io/​SWC-​regis​try/​
docs/​SWC-​118#​incor​rect-​const​ructor-​name1​sol)

Fig. 5   Example of the lack of protection (https://​github.​com/​Smart​Contr​actSe​curity/​SWC-​regis​try/​blob/​
master/​test_​cases/​unpro​tected_​criti​cal_​funct​ions/​simple_​suici​de.​sol)

4  https://​ether​scan.​io/​addre​ss/​0xc5d​105e6​37113​98af9​bbff0​92d4b​6769c​82f79​3d#​code

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118#incorrect-constructor-name1sol
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118#incorrect-constructor-name1sol
https://github.com/SmartContractSecurity/SWC-registry/blob/master/test_cases/unprotected_critical_functions/simple_suicide.sol
https://github.com/SmartContractSecurity/SWC-registry/blob/master/test_cases/unprotected_critical_functions/simple_suicide.sol
https://etherscan.io/address/0xc5d105e63711398af9bbff092d4b6769c82f793d#code

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 10 of 28

FT-5: Fixing strict balance equality. Replacing the strict equal comparison of
balance value with the range check for the related variable.

Normally, developers are used to writing the strict balance equality (i.e., this.
balance == var) when the contract code requires checking the balance value.
It could be attacked by forcibly sending Ethers to the contract with the selfdestruct
(victim address) instruction.5 In this case, the fallback function will not be triggered,
and the victim contract cannot reject the Ethers. Therefore, the logic of checking
equal balance will fail to work due to the unexpected ethers send by attackers, which
leads the code in the logic will not be executed. The fix template replaces the strict
balance equality with the range check (inner one Ether) of the balance.

FT-6: Fixing unmatched type assignment. Replacing the int-related data type
with uint or uint256.

5  http://​solid​ity.​readt​hedocs.​io

http://solidity.readthedocs.io

1 3

Automated Software Engineering (2023) 30:31 	 Page 11 of 28  31

Solidity has different types for integer numbers (e.g. uint8, uint256). The inte-
ger type supports a smaller ranger, it takes less memory. However, when an integer
value exceeds the maximum value of the related integer type, Solidity will lead to
overflow without throwing any exception that will affect the normal execution of
smart contracts. Checking the range of integer value will increase the gas assump-
tion, the fix template simply replaces the integer type with uint or uint256.

FT-7: Inserting a suicide function. This fix template is designed for the missing
interrupter and the greedy issue in smart contracts.

If a vulnerable contract is deployed in the blockchain, the developers cannot mod-
ify the code anymore, but watch the attacking until out-of-gas when it is attacked.
To reduce the economic losses, developers can find a way to stop these contracts and
deploy a new one. The fix template adds a suicide function for such contracts. With
such a suicide function, ethers on the contracts can be withdrawn and the contracts
are destroyed when attacks happen with the missing interrupter of the greedy issue.

A contract can withdraw Ethers by sending Ethers to another address or using
self-destruct function. Without these withdraw-related functions, Ethers in contracts
can never be withdrawn and will be locked forever. Such contracts are defined as
greedy contracts (Chen et al. 2020). One example of greedy contracts is Parity con-
tract (O’Leary 2017), after the Parity library contracts are killed, the wallet con-
tracts could no longer access the library. Finally this defect resulted in the locking
of 200 M dollars indefinitely. The fix template adds a suicide function to prevent
ether locking.

FT-8: Fixing hard coded address. Removing the hard coded addresses and set-
ting the addresses as function parameters.

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 12 of 28

The security and scalability of smart contracts could be impacted by the address
variables hard coded in them. For example, if an address variable is an illegal address
hard coded by a mistake, it can cause that the amount of the contract cannot be with-
drawn by anyone. For the other example, if an address variable is a hard coded suicide
address, the Ether will be lost forever when others send Ether to the suicide contracts.
Thus, the fix template removes the hard coded address and use function parameters to
replace the addresses, so makes the hard coded addresses flexible (Fig. 6).

4 � Setup for smart contract repair

To investigate the effectiveness of our fix templates set (from the initial taxonomy
presented in Sect. 3), we design experiments of fixing smart contract vulnerabili-
ties using the fix templates. The produced smart contract repair tool, TIPS, is then
assessed on three datasets of smart contract vulnerabilities to allow the feasible
investigation of repairing smart contract and the reliable comparison against the
state-of-the-art smart contract repair tools.

4.1 � TIPS: a baseline smart contract repair tool

We implement a smart contract repair pipeline TIPS with the identified fix templates.
Given a vulnerable smart contract, TIPS leverages vulnerability detection tools (i.e.,
Mythril Mueller 2018 and Slither Feist et al. 2019) to identify the vulnerability and its
position in the code. TIPS generates patches for vulnerable smart contracts by modi-
fying code at the AST level. To this end, the smart contract will be parsed into AST
before the patch generation with the solidity compiler solc (Solidity 2021) in nodejs. It
then selects the adequate fix template with the identified vulnerability category identi-
fied by vulnerability detection tools, and heuristically generates patches with the code
change actions specified by the selected fix template. Finally, the generated patch is val-
idated with the compiling process, vulnerability detection tools, and manual checking.

Patch generation: To generate patch candidates for fixing the detected vulner-
abilities, TIPS leverages the information provided by the related detection tools and
code change actions of fix templates to guide the automated process of synthesiz-
ing patch candidates. More specifically, given a vulnerability detected by the detec-
tion tools, TIPS can automatically select the adequate fix template for it with its
category identified mainly by Slither Feist et al. (2019) and the related vulnerability

Fig. 6   Example of a hard encode address and the related fix

1 3

Automated Software Engineering (2023) 30:31 	 Page 13 of 28  31

information supplemented by Mythril Mueller (2018) appropriately. If there are sev-
eral fix templates defined for one vulnerability category (i.e., FT-1, FT-2, FT-3, and
FT-4), we follow the defined sort of those templates in Sect. 3 to generate patch
candidates for the given vulnerability one by one. In other words, for the FT-1 vul-
nerability, TIPS will first generate patch candidates with FT-1.1, then with FT-1.2.

Note that, the positions of vulnerabilities are defected at the function level, TIPS
thus automatically figures out the vulnerable code with the context information of
the vulnerability specified in the related fix template in a heuristic way. Once the
vulnerable code is identified, and then heuristically modifies the vulnerable code
with the code change actions to generate patches. It follows the prior implementa-
tions done in general template-based program repair (Liu et al. 2019b, c). As shown
in Sect. 3, for fixing some vulnerabilities, TIPS needs the adequate donor code to
synthesize the patch. For example, with FT3.3 and FT8, TIPS needs the donor code
(i.e., a variable of the contract owner) to synthesize the patch. TIPS searches all var-
iables from the contract that has the same context with the required donor code (i.e.,
a state variable). These variables will be prioritized based on the semantic similarity
between their names and the required context. For FT3.3 and FT8, variables named
with “owner”, “creator” or “admin” will be prioritized over other variables. If TIPS
fails to find the related variable, it will randomly use an address variable. For exam-
ple, Fig. 7 shows a vulnerability fixed by TIPS. The code at Line 5 is generated by
heuristically finding the owner variable from the Token’s state variable.

Patch validation: In the normal program repair, patches are validated with the
regression test. However, the smart contracts in the dataset do not contain such tests.
To validate the patches for vulnerable smart contracts, each patch is first validated
with Remix (Remix 2021), an open-sourced Solidity smart contract IDE. If the
patched contract cannot be successfully compiled by Remix, it is considered as a
failure case. When the patched contract passes the compiling process, we further
leverage Mythril (Mueller 2018) and Slither (Feist et al. 2019) to check whether any
above vulnerability can be detected in it. Mythril relies on analysis techniques such
as concolic analysis and taint analysis to detect vulnerabilities. It will search for the
real values that can exploit vulnerabilities to reduce the false positive of the detected
vulnerabilities. Slither is a static analysis framework that uses various detectors to
detect different types of vulnerabilities. Durieux et al.’s empirical study shows that
the combination of Mythril and Slither is the best trade-off between accuracy and

Fig. 7   Example of fixing the access control vulnerability

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 14 of 28

execution costs (Durieux et al. 2020). Thus, Mythril and Slither are selected to vali-
date the vulnerable smart contracts patched by TIPS. Besides these two techniques,
we also consider a machine learning based tool SmartEmbed (Gao et al. 2020) to
validate the patched smart contracts. Finally, the patched smart contracts without
any detected vulnerabilities are further validated by authors manually. With the
aforementioned steps, if a correct patch is generated, other patch candidates will not
validated any more. In the practical process of automated program repair (Xiong
et al. 2017), once a correct patch is generated, the automated program repair will
stop generating and validating any other patch candidates. Therefore, in this work,
we follow it for the patch validation of fixing smart contract vulnerabilities.

4.2 � Environment and dataset

Our experiment was carried on Ubuntu 18.04 with 32GB memory and four cores.
TIPS is implemented using Python 3.6 and nodejs 12.18. In the experiments of this
work, three datasets of vulnerable smart contracts (i.e., SmartBugscuratedDurieux et al.
2020, ContractDefects Chen et al. 2020, and the contracts used by SCRepair Yu et al.
2020) are used to assess the patch suggestion ability of TIPS. Table 1 illustrates the
number of vulnerable smart contracts and vulnerabilities in each dataset that are used
in the evaluation of this study. For more information about the three datasets, please
reference the related works (Durieux et al. 2017; Chen et al. 2020; Yu et al. 2020).

SmartBugscurated is a dataset of vulnerable smart contracts collected from Github
repositories (e.g., not-so-smart-contracts Smart Contracts 2021), SWC Registry
(SWC-registry 2021), and the blog such as Positive.com (ICO Security 2021) that
analyzes the contract and the Ethereum network, which has been used to empiri-
cally review the automated analysis tools for smart contracts (Durieux et al. 2020).
ContractDefects contains 20 kinds of smart contract defects defined in Chen et al.
(2020), which stresses smart contract security and emphasizes the availability, per-
formance, maintainability and reusability of smart contracts. The two datasets con-
tain the vulnerabilities related to smart contracts. TIPS however focuses on resolving
vulnerable Solidity code of smart contracts (i.e., excluding others related to system,
etc.). Then, after also removing redundant vulnerability cases, 148 vulnerabilities in
113 smart contracts are selected from SmartBugscurated and 147 vulnerabilities in 54
smart contracts are selected from ContractDefects for the experiments in this study.
From the evaluation dataset of the SCRepair state of the art smart contract repair
tool, we considered all the 48 vulnerabilities in 17 smart contracts.

5 � Assessment

5.1 � Patch suggestion ability of TIPS

Our first experiment focuses on assessing the ability to suggest patches for vulnera-
ble smart contracts with TIPS, which is conducted on the vulnerable smart contracts

1 3

Automated Software Engineering (2023) 30:31 	 Page 15 of 28  31

of dataset SmartBugscurated (Durieux et al. 2020) and ContractDefects (Chen et al.
2020). The patch suggestion results are shown in Table 2.

In this experiment, we found that 148 vulnerabilities (5+2 Unchecked external
call vulnerabilities, 16 Access control vulnerabilities, all of the Arithmetic, Miss-
ing interrupter, Unmatched type assignment, and Hardcoded address vulnerabili-
ties) from 64 smart contracts cannot be detected by Mythril or Slither. To assess
the effectiveness of resolving these vulnerabilities for the related fix templates, we
manually check all smart contracts and identify the positions of these 148 vulner-
abilities. When only considering the detectable vulnerabilities, TIPS suggests cor-
rect patches for 95.4% (=104/109) vulnerable smart contracts and 96% (=144/150)
vulnerabilities. If considering all vulnerabilities, 89% (=154/173) vulnerable smart
contracts and 88.1% (=260/295) vulnerabilities are successfully suggested with cor-
rect patches. Additionally, none of the patched smart contracts were checked with
the above vulnerabilities by Mythril, Slither, and SmartEmbed. These results sug-
gest that the most vulnerable smart contracts can be suggested with correct patches
by TIPS.

Table 1   Dataset information

*The total number of smart contracts is not equal to the sum of
smart contracts in the corresponding column since some smart con-
tracts contains different types of vulnerabilities. “vul”: vulnerability

Vul type # Contracts #
Vul

SmartBugscurated (Durieux et al. 2020)
Unchecked external call 52 75
Reentrancy 31 32
Access control 16 18
Arithmetic 15 23
Total 113* 148
ContractDefects (Chen et al. 2020)
Unchecked external call 12 28
Reentrancy 4 10
Strict balance equality 4 4
Unmatched type assignment 20 38
Missing interrupter 41 41
Hard coded address 12 20
Greedy 6 6
Total 54* 147
SCRepair dataset (Yu et al. 2020)
ED (Unchecked external call) 14 28
Reentrancy 5 6
IO (Arithmetic) 3 12
Transaction order dependency 2 2
Total 17* 48

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 16 of 28

We further assess to what extent vulnerabilities can be fixed by each fix template
in TIPS. Experimental results are presented in Table 3. Three fix templates (FT-3.1,
FT-3.2, FT-5) can be used to fix all related vulnerabilities in the two datasets. FT-1.1
and FT-1.2 are two fix templates for the same vulnerable issue of unchecked exter-
nal call, where FT-1.1 fixed more cases than FT-1.2. One Unchecked external call
vulnerability is not fixed by FT-1.1 or FT-1.2 due to a character encoding problem.
29 vulnerabilities cannot be resolved by FT-1.2 because FT-1.2 cannot be applied to
them. It implies that adding the missed checking (FT-1.1) is more actionable than
replacing the call (FT-1.2) for Unchecked external call vulnerabilities.

For the Reentrancy vulnerabilities, FT-2.1 repaired 38 out of 42 vulnerabilities,
while FT-2.2 only successfully repaired 12 of them. FT-2.1 relies on the function
send or transfer to fix the Reentrancy vulnerable call.value function to
make a transaction, it can limit the gas usage for the patched smart contract to avoid
complex operations in the fallback functions. FT-2.2 moves the state statement with
respect to the related state variables before the statement of transferring Ether. One
vulnerability cannot be fixed because of the character encoding issue. Three unfixed
Reentrancy vulnerabilities are out of the scope of the summarized fix templates. In
addition, the Reentrancy vulnerable code of 29 vulnerabilities is not located with the
same code block of the statement with respect to the related state variables, TIPS
thus failed to find the statement with FT-2.2. So, FT-2.2 is not as actionable as FT-
2.1 for the Reentrancy vulnerabilities.

Table 2   Number of smart contracts and vulnerabilities in SmartBugscurated and ContractDefects fixed by
TIPS 

‘SB’ represents SmartBugs. ‘x/y’ represents the number of fixed/total smart contracts and vulnerabilities
∗The corresponding vulnerabilities cannot be detected by Mythril and Slither, so their positions are man-
ually identified by the authors of this paper

Dataset Defect type # Contracts # Vul

SB
curated Unchecked external call 51/52 69/70

Unchecked external call∗ 5/5 5/5
Reentrancy 29/31 29/32
Access control 2/2 2/2
Access control∗ 12/14 14/16
Arithmetic∗ 12/15 19/23

ContractDefects Unchecked external call 11/11 26/26
Unchecked external call∗ 2/2 2/2
Reentrancy 3/4 9/10
Strict Balance Equality 4/4 4/4
Unmatched type assignment∗ 14/20 28/38
Greedy 5/6 5/6
Missing interrupter∗ 37/41 37/41
Hard coded address∗ 9/12 11/20

Total detectable only detectable & Non-
detectable

104/109 144/150
154/173∗ 260/295∗

1 3

Automated Software Engineering (2023) 30:31 	 Page 17 of 28  31

For the fix templates FT-3.3, FT-4 and FT-7, eight unfixed vulnerabilities
(two access control vulnerabilities, four arithmetic issues, one greedy issue
and one missing interrupter vulnerability) cannot be fixed by them as these fix
templates indeed do not cover all cases of related vulnerabilities. The remain-
ing three missing interrupter vulnerabilities cannot be correctly repaired due to
the failed compile. The vulnerabilities patched with the fix template FT-7 are
disappeared, but adding a suicide function for a smart contract is a dangerous
operation. So more effective fixing approaches should be exploited for the cor-
responding vulnerabilities.

For the fix templates FT-6 and FT-8, eight Unmatched type assignment vul-
nerabilities and eight Hard coded address vulnerabilities cannot be suggested
with correct patches by TIPS as these patched smart contracts are failed to be
compiled, Different from other fix templates, FT-6 and FT-8 are arisen with the
context-aware problem (the context information should be considered for the
patch generation) when they are used to fix corresponding vulnerabilities. Two
Unmatched type assignment vulnerabilities and one Hard coded address vulner-
ability are not fixed because of the context-aware problem. Figure 8 shows an
example of unfixed Unmatched type assignment vulnerability due to the context-
aware problem. The function num returns an uint8 value of which data type
is consistent with the data type of the variable i in the vulnerable for state-
ment. The fix template FT-6 replaced the data type uint8 of the variable i
with uint, but ignored the return data type of the function num. It leads to the
patched smart contract cannot pass the compilation process. We infer that the
context-aware problem could be solved with a data-flow analysis for the context

Fig. 8   A patched smart contract that fails to compile

Table 3   Number of
vulnerabilities in
SmartBugscurated and
ContractDefects fixed by each
fix template

‘FT-7-MI’ and ‘FT-7-G’ represent the fix template FT-7 working on
Missing Interrupter and Greedy vulnerabilities, respectively

Fix template # Vul Fix template # Vul Fix template # Vul

FT-1.1 102/103 FT-3.2 6/6 FT-7-MI 37/41
FT-1.2 73/103 FT-3.3 9/11 FT-7-G 5/6
FT-2.1 38/42 FT-4 19/23 FT-8 11/20
FT-2.2 12/42 FT-5 4/4
FT-3.1 2/2 FT-6 28/38

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 18 of 28

information of the vulnerable code element before repairing the related vulner-
abilities. For the other instance, Fig. 9 presents the Hard coded address vulner-
ability unfixed by TIPS. An address is hard coded to the address variable owner
in the constructor of the smart contract. FT-8 generates a patch for it by refactor-
ing the constructor with a parameter that is used to transfer the address variable.
However, the original constructor is invoked at line 14, which leads the patched
smart contract cannot pass the compilation process.

In brief: TIPS is effective in fixing most vulnerabilities in smart contracts
with the fix templates summarized based on experts’ understanding of smart
contract vulnerabilities. TIPS presents the limitation of fix templates, the same
as template-based program repair (Liu et al. 2019c), which cannot help solve
the vulnerabilities that are not covered by them. In addition, TIPS suffers from
the character encoding problem for repairing some vulnerable smart contracts.
And TIPS ignores the analysis the context information of vulnerabilities for
generating related patches. These shortages should be explored in the future for
template-based smart contract repair to improve the performance of generating
correct patches for vulnerable smart contracts.

5.2 � Comparing against state‑of‑the‑art

Our second experiment compares the patch suggestion ability of TIPS against
the state-of-the-art smart contract repair tool, SCRepair (Yu et al. 2020). SCRe-
pair fails to execute with the dataset SmartBugscurated and ContractDefects. For
a fair comparison, we conduct this experiment with the dataset (collected from
Ethereum) used by SCRepair. To avoid potential bias related to the detection of
vulnerabilities (Liu et al. 2019a), TIPS leverages the same tools as SCRepair to
detect the vulnerabilities and their positions, namely Slither (Feist et al. 2019)
and Oyente (Luu et al. 2016). We originally planed to perform regression testing

Fig. 9   Context-aware problem in patched hard coded address vulnerability

1 3

Automated Software Engineering (2023) 30:31 	 Page 19 of 28  31

to perform the correctness of the patch like SCRepair. However, SCRepair did
not provide the corresponding regression test data, thus we just discuss the repair
ability of both. The comparison results on fixing vulnerable smart contracts
between SCRepair and TIPS are presented in Table 4.

Overall, SCRepair fixed 21 vulnerabilities while TIPS fixed 36 ones. The over-
lap between fix vulnerabilities is shown in Fig. 10. SCRepair fixed two vulner-
abilities that TIPS cannot fix, but TIPS fixed 17 vulnerabilities that SCRepair
cannot fix. SCRepair fully fixed six vulnerable smart contracts, while TIPS fully
fixed 11 out of 17 vulnerable smart contracts where one smart contract and four
smart contracts are unfixed/partially fixed by SCRepair. In addition, TIPS fixed
six integer overflow vulnerabilities that are not fixed by SCRepair.

Fig. 10   Number of vulnerabili-
ties fixed/unfixed by TIPS and
SCRepair

Table 4   Results of vulnerable smart contracts fixed by SCRepair and TIPS 

∗ ✗, (✓), and ✓ represent that the vulnerable contract is unfixed, partially fixed, and fully fixed, respec-
tively. “ED”, “RE”, “IO” and “TOD” represent the exception disorder(Unchecked external call), reen-
trancy, integer overflow(arithmatic), and transaction order dependence vulnerabilities, respectively

Contract Name Vul type (# Vul) # Vul fixed by SCRepair # Vul fixed by TIPS

Autonio ICO ED(1) ED(0) ✗ ED(0) ✗
Airdrop ED(4) ED(3) (✓) ED(4) ✓
Banana Coin ED(1), RE(1) ED(1), RE(1) ✓ ED(1), RE(1) ✓
XGold Coin ED(2) ED(2) ✓ ED(2) ✓
Hodbo Crowdsale ED(2) ED(2) ✓ ED(2) ✓
Lescoin Presale ED(2) ED(1) (✓) ED(2) ✓
Classy Coin ED(1), RE(1) ED(0), RE(0) ✗ ED(1), RE(1) ✓
Yobcoin Crowdsale ED(2), RE(1) ED(1), RE(1) (✓) ED(2), RE(0) (✓)
Classy Coin Airdrop ED(2) ED(1) (✓) ED(2) ✓
OKO Token ICO ED(4), RE(2) ED(1), RE(1) (✓) ED(4), RE(0) (✓)
ApplauseCash Crowdsale ED(2), RE(1) ED(1), RE(0) (✓) ED(2), RE(1) ✓
HDL Presale ED(3) ED(3) ✓ ED(3) ✓
Privatix Presale ED(1) ED(1) ✓ ED(1) ✓
MXToken Crowdsale ED(1) ED(1) ✓ ED(1) ✓
dgame IO(3), TOD(1) IO(0), TOD(0) ✗ IO(0), TOD(0) ✗
Easy Mine ICO IO(6), TOD(1) IO(0), TOD(0) ✗ IO(6), TOD(0) (✓)
Siring Clock Auction IO(3) IO(0) ✗ IO(0) ✗
Total ED(28), IO(12),

RE(6), TOD(2)
sum: 48

ED(18), IO(0), RE(3),
TOD(0) sum: 21

ED(27), IO(6), RE(3),
TOD(0) sum: 36

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 20 of 28

From the perspectives of fixed vulnerable smart contracts and vulnerabilities,
TIPS outperforms the state-of-the-art smart contract repair tool, SCRepair.

We also closely check the vulnerabilities that cannot be fixed by TIPS. The
Reentrancy and Integer overflow vulnerabilities are not fixed by TIPS since it does
not have the related fix templates. Similarly, TIPS does not have any fix template
for the transaction dependency vulnerabilities. It implies that experts’ knowledge
on resolving vulnerable smart contracts cannot catch up with the newly emerged
vulnerabilities.

Some vulnerable smart contracts include different types of vulnerabilities in the
same code line. To fix the ClassyCoin smart contract, TIPS faces conflicts among
the fix templates in the generation of patches. We made different trials to solve this
problem. Eventually, TIPS was able to generate correct patches by prioritizing the
reentrancy vulnerability over the exception disorder vulnerability, which is used in
the final experiment. This case study example suggests that the fixing order of differ-
ent vulnerabilities should be prioritized when they are located in the same code line.

5.3 � Efficiency of suggesting patches

5.3.1 � Gas variation of patched smart contracts

Different from the bug repair of traditional programs, patching smart contracts
should consider the gas usage (Yu et al. 2020). If the patched smart contract takes
more gas than the original one, it might trigger the out-of-gas exception. Neverthe-
less, the gas of executing a smart contract is given by the initiator of a transaction. In
theory, the patched smart contract should not spend too much gas causing the out-
of-gas exception. Moreover, if the patched smart contract needs more gas, the ini-
tiator of a transaction will spend more fee to finish the task. Therefore, the patched
smart contract should not cost too much gas compared with the original one. To
assess the gas variation of the patches smart contract against the original one, we
leverage the compiler solc, which can estimate the gas usage of a smart contract
when it compiles the smart contract. The gas variation is then calculated with the
following formula:

Table 5 presents results about the gas variation of 165 smart contracts from
the three datasets (i.e., SmartBugscurated , ContractDefects, and SCRepair_Data-
set) fixed by TIPS. Overall, the gas variation of 138 (83.6%) patched smart con-
tracts is negative or slightly positive (up to 5%) when compared with the vulner-
able smart contracts: 55 (33.3%) of patches increase the gas usage between 0 and
1%, while 14 patches do not induce any gas consumption variation. Finally, we
found that 33 patches led to the gas consumption decrease. The Mann-Whitney-
Wilcoxon tests (pvalue = 0.425 >0.05) confirm that the gas usage of patched

(1)Gas_Variation =
Gaspatched − Gasorigin

Gasorigin
× 100%

1 3

Automated Software Engineering (2023) 30:31 	 Page 21 of 28  31

smart contracts is not statistically significantly higher than the original ones, but
strongly similar to each other.

These results definitively suggest that the smart contracts patched by TIPS
will not spend much higher gas usage than the original ones.

5.3.2 � Time cost of fixing

The time cost is always one criterion for evaluating the performance of auto-
mated program repair in the community. Smart contracts are tuning-complete
simple programs without too much code. In theory, patch suggestions or auto-
mated repair of vulnerable smart contracts should not take too much time,
though the developers have difficulty in debugging vulnerable smart contracts
manually. We thus investigate the time cost of suggesting patches for vulnerable
smart contracts with TIPS, of which results are illustrated in Fig. 11.

As presented in Fig. 11, the time cost of suggesting patches with TIPS as a
whole is in proportion to the increased size (i.e., the number of characters) of
smart contract programs. SmartBugscurated dataset contains simpler smart con-
tract programs than the other two datasets, most of them are suggested with cor-
rect patches by TIPS within 15 ms. Compared with SmartBugscurated , the Con-
tractDefects, and SCRepair_Dataset smart contracts have higher complexity,
most of them can be suggested with correct patches with TIPS within 150 ms
and 200 ms, respectively.

These results indicate that TIPS can suggest patches for vulnerable smart con-
tracts in a short waiting time for developers.

6 � Threats to validity

The external threats include the objective addressed by this study, which limits
eight-category smart contract vulnerabilities at the source code level. The vulner-
abilities of smart contracts at the blockchain are not considered in the scope of
TIPS, and other vulnerabilities that existed in smart contract code are not cov-
ered by the eight categories. To alleviate this threat, this work thus considers the
common smart contract vulnerabilities collected from the industry and studied in
the community. The second external threat is from the smart contract vulnerabil-
ity detection tool, which cannot ensure that each vulnerability can be correctly
and precisely detected. To address this limitation, we consider two state-of-the-
art smart contract vulnerability detection tools (Mythril and Slither) to identify
vulnerabilities.

The first internal threat to validity is the fix templates summarized from
experts’ understanding of smart contract vulnerabilities, it highly relies on
experts’ knowledge. To address this threat, we systematically summarized the fix
templates from one published TSE paper, which defines lots of smart contract
defect patterns, and two forums of smart contract vulnerabilities that are publicly
maintained and contributed by practitioners. The other internal threat is from the

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 22 of 28

Fi
g.

 1
1  

D
ist

rib
ut

io
n

of
 th

e
tim

e
co

st
fo

r fi
xi

ng
 v

ul
ne

ra
bl

e
sm

ar
t c

on
tra

ct
s i

n
th

re
e

da
ta

se
ts

 w
ith

 T
IP
S 

1 3

Automated Software Engineering (2023) 30:31 	 Page 23 of 28  31

patch validation that is not conducted with regression tests since smart contracts
lack the related test cases. To address this threat, the patches generated by TIPS
are checked with several vulnerability detection tools and manually identified by
authors. As future work, automated tests should be integrated into the patch vali-
dation process. The construct threat to validity is that the context information for
patch generation is ignored by TIPS. To boost smart contract repair, contexts of
vulnerabilities are considered as a future task to improve TIPS.

7 � Related work

7.1 � Detecting and fixing smart contract vulnerabilities

Smart contracts are written in a domain-specific programming language, which
also face the same security problem as the programs written by traditional pro-
gramming language. Because smart contracts are immutable once deployed and
are related to economic transactions, a subtle defect may result in huge financial
losses. Therefore it is significant to solve defects before releasing. To enhance the
robustness of smart contracts, lots of approaches (Zhang et al. 2020a, b; Huang
et al. 2020; Hartel and Schumi 2020; Ashraf et al. 2020) have been proposed to
detect the vulnerabilities.

Oyente (Luu et al. 2016) is one of the first smart contract analysis tools. It
uses symbolic execution on EVM bytecode to detect the vulnerabilities. Maian
(Nikolić et al. 2018) and Osiris (Torres et al. 2018) borrowed its method to
enhance the effectiveness of such a detection. SmartCheck (Tikhomirov et al.
2018) uses static analysis(lexical and syntactical analysis) to search the vulner-
ability patterns. Mythril (Mueller 2018), developed by ConsenSys, relies on

Table 5   Gas variation for 165
patched smart contracts

Gas variation # Smart contracts Ratio

< 0% 33 20%
0% 14 8.5%
(0%, 1%] 55 33.3%
(1%, 2%] 21 12.7%
(2%, 3%] 5 3%
(3%, 4%] 6 3.6%
(4%, 5%] 4 2.4%
(5%, 6%] 5 3%
(6%, 7%] 2 1.2%
(7%, 8%] 2 1.2%
(8%, 9%] 6 3.6%
(9%, 10%] 0 0%
> 10% 12 7.3%

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 24 of 28

concolic analysis, taint analysis, and control flow to check the EVM bytecode
and look for values that can exploit vulnerabilities in the smart contracts. Jiang
et al. (2018a) proposed to use fuzzing to build seed inputs within the valid input
domain to test smart contracts. In this research line, tools like ReGuard (Liu
et al. 2018a), Harvey (Wüstholz 2019) and sFuzz (Nguyen et al. 2020) are all
proposed by leveraging the fuzzing approach to discover the vulnerabilities for
smart contracts.

These vulnerability detection tools can easily obtain the vulnerability infor-
mation of smart contracts. We can refer to the detection results of the above
tools to attempt automated repairs. However, there are a few ways to directly fix
these vulnerabilities automatically. SCRepair (Yu et al. 2020) is the first work of
fixing vulnerable smart contracts with genetic programming search. Contempo-
rary, Nguyen et al. (2021) leveraged the symbolic execution traces of the smart
contract and specific fix patterns to repair four kinds of smart contract vulner-
abilities. This work relies on the fix templates summarized from experts’ knowl-
edge of smart contract vulnerabilities to change the AST of smart contract code
to generate the related patches for vulnerabilities.

7.2 � Template‑based program repair

In the literature, template-based techniques have been widely studied to automat-
ically fix program bugs in traditional software, and achieved promising perfor-
mance in relieving developers from the heavy burden of manual debugging. Kim
et al. (2013) first proposed the automated program repair tool, PAR, with fix
templates that are manually summarized from human-written patches. At the top
of PAR, ELIXIR (Saha et al. 2017) is proposed with more fix templates based on
its authors’ knowledge about Java program bugs. NPEFix (Durieux et al. 2017)
is also an automated program repair proposed with its authors’ knowledge of
null pointer exception-related Java bugs.

Except for the manual summarization, statistics on recurrent code changes at
the AST level of bug fixes have been explored to automated program repair (e.g.,
CapGen Wen et al. 2018 and SimFix Jiang et al. 2018b). Long et al. (2017) pro-
posed Genesis to automatically infer fix templates from human-written patches
for repairing three kinds of bugs. Liu et al. (2019b) and Rolim et al. (2018) lev-
eraged the fix patterns for static analysis bugs to automatically fix the semantic
bugs failing to pass some test cases. Liu et al. (2018) explored to mine fix pat-
terns from Q &A posts in Stack Overflow for program repair. Koyuncu et al.
(2020) mined the fix templates at the AST level from patches. Liu et al. (2019c)
systematically summarized fix templates from the literature to build a baseline
program repair system TBar to boost program repair. In this work, we leverage
the experts’ knowledge to repair vulnerable smart contracts, thus improving the
robustness of smart contracts before releasing them.

1 3

Automated Software Engineering (2023) 30:31 	 Page 25 of 28  31

8 � Conclusion

With the ambition of steering research towards ensuring the robustness of smart
contracts, we propose a baseline approach for automatically patching vulnerable
smart contracts. TIPS is a template-based system that employs an automatic pro-
gram repair scenario that is now mature in the literature. TIPS leverages 12 fix
templates (addressing 8 vulnerability types) that are summarized from experts’
knowledge of smart contract vulnerabilities. The patch suggestion ability of TIPS
is evaluated on three datasets (i.e., SmartBugscurated , ContractDefects, and SCRe-
pair dataset) of smart contract vulnerabilities collected from the real world. The
experimental results show that the basic pipeline by TIPS can effectively generate
patches for vulnerable smart contracts and outperform the state-of-the-art smart
contract repair tool SCRepair. Our replication package of TIPS is publicly avail-
able at: https://​github.​com/​CVblu​ecat/​TIPS.

References

Ashraf, I., Ma, X., Jiang, B., Chan, W.K.: GasFuzzer: fuzzing ethereum smart contract binaries to
expose gas-oriented exception security vulnerabilities. IEEE Access 8, 99552–99564 (2020).
https://​doi.​org/​10.​1109/​ACCESS.​2020.​29951​83

Brent, L., Grech, N., Lagouvardos, S., Scholz, B., Smaragdakis, Y.: Ethainter: a smart contract secu-
rity analyzer for composite vulnerabilities. In: Proceedings of the 41st ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, pp. 454–469. ACM
(2020). https://​doi.​org/​10.​1145/​33854​12.​33859​90

Chen, J., Xia, X., Lo, D., Grundy, J., Luo, X., Chen, T.: Defining smart contract defects on ethereum.
IEEE Trans. Softw. Eng. (2020)

del Castillo, M.: The DAO attacked: code issue leads to \$60 million ether theft (2016)
Durieux, T., Cornu, B., Seinturier, L., Monperrus, M.: Dynamic patch generation for null pointer

exceptions using metaprogramming. In: Proceedings of the 24th International Conference on
Software Analysis, Evolution and Reengineering, pp. 349–358 (2017)

Durieux, T., Ferreira, J.F., Abreu, R., Cruz, P.: Empirical review of automated analysis tools on
47,587 ethereum smart contracts. In: Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, pp. 530–541 (2020)

Ethereum smart contract security best practices. https://​conse​nsys.​github.​io/​smart-​contr​act-​best-​pract​
ices/ (Last Accessed: July 2021)

Ethereum. https://​ether​eum.​org/ (Last Accessed: July 2021)
Feist, J., Grieco, G., Groce, A.: Slither: a static analysis framework for smart contracts. In: 2019 IEEE/

ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pp. 8–15 (2019)

Gao, Z., Jiang, L., Xia, X., Lo, D., Grundy, J.C.: Checking smart contracts with structural code
embedding. IEEE Trans. Softw. Eng. 1–1 (2020)

Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE Trans. Softw. Eng.
45(1), 34–67 (2017)

Ghanbari, A., Benton, S., Zhang, L.: Practical program repair via bytecode mutation. In: Proceedings
of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp.
19–30. ACM (2019). https://​doi.​org/​10.​1145/​32938​82.​33305​59

Goues, C.L., Pradel, M., Roychoudhury, A.: Automated program repair. Commun. ACM 62(12),
56–65 (2019)

https://github.com/CVbluecat/TIPS
https://doi.org/10.1109/ACCESS.2020.2995183
https://doi.org/10.1145/3385412.3385990
https://consensys.github.io/smart-contract-best-practices/
https://consensys.github.io/smart-contract-best-practices/
https://ethereum.org/
https://doi.org/10.1145/3293882.3330559

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 26 of 28

Hartel, P.H., Schumi, R.: Mutation testing of smart contracts at scale. In: Proceedings of the 14th
International Conference on Tests and Proofs. Lecture Notes in Computer Science, vol. 12165,
pp. 23–42 (2020). https://​doi.​org/​10.​1007/​978-3-​030-​50995-8_2

Huang, Y., Jiang, B., Chan, W.K.: EOSFuzze: fuzzing EOSIO smart contracts for vulnerability detection.
CoRR (2020) arXiv:​2007.​14903

ICO Security. https://​blog.​posit​ive.​com (Last Accessed: July 2021)
Jiang, B., Liu, Y., Chan, W.K.: ContractFuzzer: fuzzing smart contracts for vulnerability detection. In: Pro-

ceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering, pp.
259–269. ACM (2018a). https://​doi.​org/​10.​1145/​32381​47.​32381​77

Jiang, J., Xiong, Y., Zhang, H., Gao, Q., Chen, X.: Shaping program repair space with existing patches and
similar code. In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, pp. 298–309. ACM, (2018b)

Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written patches. In:
2013 35th International Conference on Software Engineering (ICSE), pp. 802–811 (2013)

Koyuncu, A., Liu, K., Bissyandé, T.F., Kim, D., Monperrus, M., Klein, J., Le Traon, Y.: ifixr: bug report
driven program repair. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 314–325
(2019)

Koyuncu, A., Liu, K., Bissyandé, T.F., Kim, D., Monperrus, M., Klein, J., Le Traon, Y.: FixMiner: min-
ing relevant fix patterns for automated program repair. Empir. Softw. Eng. 25(3), 1980–2024 (2020).
https://​doi.​org/​10.​1007/​s10664-​019-​09780-z

Le, X.B.D., Lo, D., Le Goues, C.: History driven program repair. In: 2016 IEEE 23rd International Confer-
ence on Software Analysis, Evolution, and Reengineering (SANER), vol. 1, pp. 213–224. IEEE (2016)

Li, Z., Wu, H., Xu, J., Wang, X., Zhang, L., Chen, Z.: Musc: a tool for mutation testing of ethereum smart
contract. In: Proceedings of the 34th IEEE/ACM International Conference on Automated Software
Engineering, pp. 1198–1201. IEEE (2019). https://​doi.​org/​10.​1109/​ASE.​2019.​00136

Liu, X., Zhong, H.: Mining stackoverflow for program repair. In: Proceedings of the 25th International Con-
ference on Software Analysis, Evolution and Reengineering, pp. 118–129 (2018)

Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B.: ReGuard: finding reentrancy bugs in smart con-
tracts. In: Proceedings of the 40th International Conference on Software Engineering: Companion Pro-
ceeedings, pp. 65–68. ACM, (2018a). https://​doi.​org/​10.​1145/​31834​40.​31834​95

Liu, H., Liu, C., Zhao, W., Jiang, Y., Sun, J.: S-gram: towards semantic-aware security auditing for ethereum
smart contracts. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Soft-
ware Engineering, pp. 814–819. ACM (2018b). https://​doi.​org/​10.​1145/​32381​47.​32407​28

Liu, K., Koyuncu, A., Bissyandé, T.F., Kim, D., Klein, J., Le Traon, Y.: You cannot fix what you cannot find!
an investigation of fault localization bias in benchmarking automated program repair systems. In: 2019
12th IEEE Conference on Software Testing, Validation and Verification (ICST), pp. 102–113 (2019a)

Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: Avatar: Fixing semantic bugs with fix patterns of static
analysis violations. In: 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 1–12 (2019b)

Liu, K., Koyuncu, A., Kim, D., Bissyandé, T.F.: TBar: revisiting template-based automated program repair.
In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analy-
sis, pp. 31–42 (2019c). https://​doi.​org/​10.​1145/​32938​82.​33305​77

Liu, K., Wang, S., Koyuncu, A., Kim, K., Bissyandé, T.F., Kim, D., Wu, P., Klein, J., Mao, X., Traon, Y.L.:
On the efficiency of test suite based program repair: a systematic assessment of 16 automated repair
systems for java programs. In: Proceedings of the 42nd International Conference on Software Engineer-
ing, pp. 615–627. ACM (2020). https://​doi.​org/​10.​1145/​33778​11.​33803​38

Liu, K., Li, L., Koyuncu, A., Kim, D., Liu, Z., Klein, J., Bissyandé, T.F.: A critical review on the evaluation
of automated program repair systems. J. Syst. Softw. 171, 110817 (2021). https://​doi.​org/​10.​1016/j.​jss.​
2020.​110817

Liu, K., Zhang, J., Li, L., Koyuncu, A., Kim, D., Ge, C., Liu, Z., Klein, J., Bissyandé, T.F.: Reliable fix pat-
terns inferred from static checkers for automated program repair. ACM Trans. Softw. Eng. Methodol.
(2022). https://​doi.​org/​10.​1145/​35796​37

Long, F., Amidon, P., Rinard, M.: Automatic inference of code transforms for patch generation. In: Proceed-
ings of the 11th Joint Meeting on Foundations of Software Engineering, pp. 727–739 (2017)

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 254–269. ACM
(2016)

https://doi.org/10.1007/978-3-030-50995-8_2
http://arxiv.org/abs/2007.14903
https://blog.positive.com
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1007/s10664-019-09780-z
https://doi.org/10.1109/ASE.2019.00136
https://doi.org/10.1145/3183440.3183495
https://doi.org/10.1145/3238147.3240728
https://doi.org/10.1145/3293882.3330577
https://doi.org/10.1145/3377811.3380338
https://doi.org/10.1016/j.jss.2020.110817
https://doi.org/10.1016/j.jss.2020.110817
https://doi.org/10.1145/3579637

1 3

Automated Software Engineering (2023) 30:31 	 Page 27 of 28  31

Monperrus, M.: Automatic software repair: a bibliography. ACM Comput. Surv. 51(1), 17–11724 (2018)
Mueller, B.: Smashing ethereum smart contracts for fun and real profit. In: 9th Annual HITB Security Con-

ference (HITBSecConf), p. 54 (2018)
Nguyen, T.D., Pham, L.H., Sun, J., Lin, Y., Minh, Q.T.: sFuzz: an efficient adaptive fuzzer for solidity smart

contracts. CoRR (2020). arXiv:​2004.​08563
Nguyen, T.D., Pham, L.H., Sun, J.: sGUARD: towards fixing vulnerable smart contracts automatically

(2021). arXiv preprint arXiv:​2101.​01917
Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodigal, and suicidal contracts

at scale. In: Proceedings of the 34th Annual Computer Security Applications Conference, pp. 653–663
(2018)

(Not So) Smart Contracts. https://​github.​com/​crytic/​not-​so-​smart-​contr​acts (Last Accessed: July 2021)
O’Leary, R.-R.: Parity team publishes postmortem on $160 million ether freeze (2017)
Remix. https://​remix.​ether​eum.​org/ (Last Accessed: July 2021)
Rolim, R., Soares, G., Gheyi, R., D’Antoni, L.: Learning quick fixes from code repositories (2018). arXiv

preprint arXiv:​1803.​03806
Saha, R.K., Lyu, Y., Yoshida, H., Prasad, M.R.: ELIXIR: effective object-oriented program repair. In: Pro-

ceedings of the 32nd IEEE/ACM International Conference on Automated Software Engineering, pp.
648–659 (2017)

Saha, S., Saha, R.K., Prasad, M.R.: Harnessing evolution for multi-hunk program repair. In: Proceedings of
the 41st International Conference on Software Engineering, pp. 13–24. IEEE (2019). https://​doi.​org/​10.​
1109/​ICSE.​2019.​00020

Solidity. https://​github.​com/​ether​eum/​solid​ity (Last Accessed: July 2021)
SWC-registry. https://​smart​contr​actse​curity.​github.​io/​SWC-​regis​try (Last Accessed: July 2021)
This is the very first iteration of the Decentralized Application Security Project (or DASP) Top 10 of 2018.

https://​dasp.​co/ (Last Accessed: July 2021)
Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E., Alexandrov, Y.: Smartch-

eck: static analysis of ethereum smart contracts. In: Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain, pp. 9–16 (2018)

Torres, C.F., Schütte, J., State, R.: Osiris: Hunting for integer bugs in ethereum smart contracts. In: Pro-
ceedings of the 34th Annual Computer Security Applications Conference, pp. 664–676. ACM (2018).
https://​doi.​org/​10.​1145/​32746​94.​32747​37

Wan, Z., Xia, X., Lo, D., Chen, J., Luo, X., Yang, X.: Smart contract security: a practitioners’ perspective
(2021). arXiv preprint arXiv:​2102.​10963

Wen, M., Chen, J., Wu, R., Hao, D., Cheung, S.-C.: Context-aware patch generation for better automated
program repair. In: Proceedings of the 40th IEEE/ACM International Conference on Software Engi-
neering, pp. 1–11 (2018)

Wüstholz, V., Christakis, M.: Harvey: a greybox fuzzer for smart contracts. CoRR (2019). arXiv:​1905.​06944
Xiong, Y., Wang, J., Yan, R., Zhang, J., Han, S., Huang, G., Zhang, L.: Precise condition synthesis for pro-

gram repair. In: Proceedings of the 39th IEEE/ACM International Conference on Software Engineer-
ing, pp. 416–426. IEEE (2017). https://​doi.​org/​10.​1109/​ICSE.​2017.​45

Yu, X.L., Al-Bataineh, O., Lo, D., Roychoudhury, A.: Smart contract repair. ACM Trans. Softw. Eng. Meth-
odol. 29(4), 1–32 (2020)

Yuan, Y., Banzhaf, W.: ARJA: automated repair of java programs via multi-objective genetic programming.
IEEE Trans. Softw. Eng. (2018). https://​doi.​org/​10.​1109/​TSE.​2018.​28746​48

Zhang, Q., Wang, Y., Li, J., Ma, S.: EthPloit: from fuzzing to efficient exploit generation against smart con-
tracts. In: Proceedings of the 27th IEEE International Conference on Software Analysis, Evolution and
Reengineering, pp. 116–126 (2020a). https://​doi.​org/​10.​1109/​SANER​48275.​2020.​90548​22

Zhang, P., Yu, J., Ji, S.: ADF-GA: data flow criterion based test case generation for ethereum smart contracts.
CoRR abs/2003.00257 (2020b). arXiv:​2003.​00257

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/2004.08563
http://arxiv.org/abs/2101.01917
https://github.com/crytic/not-so-smart-contracts
https://remix.ethereum.org/
http://arxiv.org/abs/1803.03806
https://doi.org/10.1109/ICSE.2019.00020
https://doi.org/10.1109/ICSE.2019.00020
https://github.com/ethereum/solidity
https://smartcontractsecurity.github.io/SWC-registry
https://dasp.co/
https://doi.org/10.1145/3274694.3274737
http://arxiv.org/abs/2102.10963
http://arxiv.org/abs/1905.06944
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1109/TSE.2018.2874648
https://doi.org/10.1109/SANER48275.2020.9054822
http://arxiv.org/abs/2003.00257

	 Automated Software Engineering (2023) 30:31

1 3

 31   Page 28 of 28

Authors and Affiliations

Qianguo Chen1 · Teng Zhou1 · Kui Liu1 · Li Li2 · Chunpeng Ge1 · Zhe Liu1 ·
Jacques Klein3 · Tegawendé F. Bissyandé3

 *	 Kui Liu
	 kui.liu@nuaa.edu.cn

	 Qianguo Chen
	 cqgboy@163.com

	 Teng Zhou
	 tengzhou@nuaa.edu.cn

	 Li Li
	 li.li@monash.edu

	 Chunpeng Ge
	 gecp@nuaa.edu.cn

	 Zhe Liu
	 zhe.liu@nuaa.edu.cn

	 Jacques Klein
	 jacques.klein@uni.lu

	 Tegawendé F. Bissyandé
	 tegawende.bissyande@uni.lu

1	 Nanjing University of Aeronautics and Astronautics, Nanjing, China
2	 Monash University, Melbourne, Australia
3	 University of Luxembourg, Luxembourg City, Luxembourg

	Tips: towards automating patch suggestion for vulnerable smart contracts
	Abstract
	1 Introduction
	2 Background
	2.1 Smart contract vulnerabilities
	2.2 Automated program repair

	3 Towards a fix template taxonomy
	4 Setup for smart contract repair
	4.1 TIPS: a baseline smart contract repair tool
	4.2 Environment and dataset

	5 Assessment
	5.1 Patch suggestion ability of TIPS
	5.2 Comparing against state-of-the-art
	5.3 Efficiency of suggesting patches
	5.3.1 Gas variation of patched smart contracts
	5.3.2 Time cost of fixing

	6 Threats to validity
	7 Related work
	7.1 Detecting and fixing smart contract vulnerabilities
	7.2 Template-based program repair

	8 Conclusion
	References

