
GraphPrior: Mutation-based Test Input Prioritization for Graph

Neural Networks

XUEQI DANG, University of Luxembourg, Luxembourg

YINGHUA LI∗, University of Luxembourg, Luxembourg

MIKE PAPADAKIS, University of Luxembourg, Luxembourg

JACQUES KLEIN, University of Luxembourg, Luxembourg

TEGAWENDÉ F. BISSYANDÉ, University of Luxembourg, Luxembourg

YVES LE TRAON, University of Luxembourg, Luxembourg

Graph Neural Networks (GNNs) have achieved promising performance in a variety of practical applications. Similar to

traditional DNNs, GNNs could exhibit incorrect behavior that may lead to severe consequences, and thus testing is necessary

and crucial. However, labeling all the test inputs for GNNs can be costly and time-consuming, especially when dealing

with large and complex graphs, which seriously afects the eiciency of GNN testing. Existing studies have focused on test

prioritization for DNNs, which aims to identify and prioritize fault-revealing tests (i.e., test inputs that are more likely to

be misclassiied) to detect system bugs earlier in a limited time. Although some DNN prioritization approaches have been

demonstrated efective, there is a signiicant problem when applying them to GNNs: they do not take into account the

connections (edges) between GNN test inputs (nodes), which play a signiicant role in GNN inference. In general, DNN test

inputs are independent of each other, while GNN test inputs are usually represented as a graph with complex relationships

between each test. In this paper, we propose GraphPrior (GNN-oriented Test Prioritization), a set of approaches to prioritize

test inputs speciically for GNNs via mutation analysis. Inspired by mutation testing in traditional software engineering,

in which test suites are evaluated based on the mutants they kill, GraphPrior generates mutated models for GNNs and

regards test inputs that kill many mutated models as more likely to be misclassiied. Then, GraphPrior leverages the mutation

results in two ways, killing-based and feature-based methods. When scoring a test input, the killing-based method considers

each mutated model equally important, while feature-based methods learn diferent importance for each mutated model

through ranking models. Finally, GraphPrior ranks all the test inputs based on their scores. We conducted an extensive

study based on 604 subjects to evaluate GraphPrior on both natural and adversarial test inputs. The results demonstrate that

KMGP, the killing-based GraphPrior approach, outperforms the compared approaches in a majority of cases, with an average

improvement of 4.76%~49.60% in terms of APFD. Furthermore, the feature-based GraphPrior approach, RFGP, performs the

best among all the GraphPrior approaches. On adversarial test inputs, RFGP outperforms the compared approaches across

diferent adversarial attacks, with the average improvement of 2.95%~46.69%.

CCS Concepts: · Software and its engineering → Software testing and debugging; · Computer systems organization

→ Neural networks.

Additional Key Words and Phrases: Test Input Prioritization, Graph Neural Networks, Mutation, Labelling

∗Corresponding author.

Authors’ addresses: Xueqi Dang, xueqi.dang@uni.lu, University of Luxembourg, Luxembourg; Yinghua Li, yinghua.li@uni.lu, University of

Luxembourg, Luxembourg; Mike PAPADAKIS, michail.papadakis@uni.lu, University of Luxembourg, Luxembourg; Jacques Klein, jacques.

klein@uni.lu, University of Luxembourg, Luxembourg; Tegawendé F. Bissyandé, tegawende.bissyande@uni.lu, University of Luxembourg,

Luxembourg; Yves LE TRAON, yves.letraon@uni.lu, University of Luxembourg, Luxembourg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

1049-331X/2023/7-ART

https://doi.org/10.1145/3607191

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3607191
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3607191&domain=pdf&date_stamp=2023-07-04


2 • Dang and Li et al.

1 INTRODUCTION

In recent years, graph machine learning [27, 38] has been widely adopted for modeling graph-structured data. In

this realm, the emergence of graph neural networks (GNNs) [71] has ofered promising results in diverse domains,

such as recommendation systems [25, 85, 91], social network analysis [47, 84, 93], and drug discovery [4, 73].

GNNs, like typical neural networks [45] [75], are abstractions of the underlying data. Thus, their inference can

sufer from faults [28] [53] [58], which can lead to severe prediction failures, especially in security-critical use

cases. Testing is considered to be a fundamental practice that is widely adopted to ensure the performance of

neural networks, including GNNs. However, like traditional deep neural networks (DNNs), GNN testing also

sufers from the lack of automated testing oracles, which necessitates the manual labeling of test inputs. However,

this labeling process can require signiicant human efort, especially for large and complex graphs. Moreover, in

certain specialized domains, such as the protein interface prediction [62] of drug discovery, labeling intensively

relies on domain-speciic knowledge, further increasing its costs.

Prior works [6, 26, 44, 81] have focused on test prioritization to relieve the labeling-cost problem for DNNs. Test

prioritization approaches aim to prioritize test inputs that are more likely to be misclassiied (i.e., fault-revealing

test inputs) so that such inputs can be identiied earlier to reveal system bugs. Existing approaches are mainly

divided into two categories: coverage-based and conidence-based test prioritization approaches. Coverage-based

approaches prioritize test inputs based on neuron coverage through adapting coverage-based prioritization

methods from traditional software testing [51, 92]. Conidence-based approaches assume that test inputs for

which the model is less conident are more likely to be misclassiied and thus should be prioritized higher. Feng et

al. [26] proposed the state-of-the-art conidence-based approach DeepGini, which considers that a test input is

more likely to be misclassiied by a DNN model if the model outputs similar prediction probabilities for each

class. More recently, Wang et al. [81] proposed PRIMA, which leveraged mutation analysis and learning-to-rank

methods to prioritize test inputs for DNNs. However, despite its efectiveness in DNN test prioritization, PRIMA

cannot be directly applied to GNNs since their mutation operators are not adapted to graph-structured data and

GNN models.

Furthermore, existing studies [36] have focused on metrics for data selection (e.g., margin and least conidence),

which can also be used to detect possibly-misclassiied test data. Although the aforementioned approaches have

been demonstrated to be efective for DNN models in some cases, they have the following limitations when

applied to GNN models:

• First, to the best of our knowledge, current coverage-based approaches do not provide interfaces for GNNmodels

and thus cannot be directly applied. Moreover, existing research [26] has demonstrated that coverage-based

approaches are not efective compared to conidence-based approaches.

• Second, despite the efectiveness of conidence-based approaches on traditional DNNs, they do not take into

account the interdependencies between test inputs of GNNs, which are particularly crucial for GNN inference. In

other words, GNN test inputs are typically represented as graph-structured data consisting of nodes and edges,

while conidence-based prioritization approaches usually deal with test sets in which each test is independent

and has no connections with others.

• Third, the efectiveness of uncertainty-based metrics can be limited when facing some speciic adversarial

attacks. If the aim of an attack is to generate test inputs that maximize the probability of incorrect classiication,

then the utility of uncertainty metrics can be limited. This is because the underlying assumption of uncertainty-

based metrics is that: if a model is more uncertain about classifying a test, this test is more likely to be

misclassiied. However, in such scenarios, even if a model is conident on a test, this test can still have a high

probability of being misclassiied.

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 3

To overcome the aforementioned problems, in this paper, we propose GraphPrior (GNN-oriented Test

Prioritization), a set of test prioritization approaches speciically for GNNs. GraphPrior identiies and pri-

oritizes possibly-misclassiied test inputs via mutation analysis. Given a test set for a GNN model, GraphPrior

regards a test input that kills more mutated models (i.e., variants of the original GNN model that is slightly

changed) of the original GNN model as more likely to be misclassiied. Here, killing means the prediction result to

the test input via the GNNmodel and the mutated model is diferent. To this end, we design a set of mutation rules

to generate mutated models speciically for GNNs by slightly changing the training parameters of the original

model. After obtaining the mutation results of each test input, GraphPrior introduces several ranking models

(ML/DL models) [5, 42, 83] to rank the test set. The working principle of GraphPrior is inspired by mutation

testing research as this has been realized for both model-based [1, 18, 63] and code-based [2, 17, 64] testing. The

key underlying principle in all cases is that test cases that distinguish the behavior of mutants from that of the

original artifact are useful and more likely to detect other underlying faults [1, 9, 63].

While both the GraphPrior and PRIMA (i.e., the state-of-the-art DNN test prioritization approach) use mutation

analysis, GraphPrior difers from PRIMA in terms of its mutation rules, feature generation, and ranking models:

1) GraphPrior’s mutation rules can directly or indirectly afect the message passing between nodes in graph

data. In contrast, the mutation rules of PRIMA are designed for traditional DNNs, where the test inputs are

independent, and therefore, the mutation rules do not afect the relationships between tests; 2) GraphPrior

generates a mutation feature vector for each test input based on its mutation results, where the ��ℎ element in

the vector denotes whether the ��ℎ mutated model is killed by this input. This feature generation strategy is

intuitive and reproducible. In addition to this, the generation method exhibits several other advantages. First,

by using binary indicators (1 or 0) as elements of the mutation feature vector, the information is transformed

into a concise vector representation. Second, the ine-grained nature of the mutation feature vector allows for a

detailed analysis of the efects of individual mutations. In particular, further analysis can be conducted to assess

the contributions of each mutated model to GraphPrior. By tracing back to the corresponding mutation rules for

the top critical mutated models, we can gain insights into which mutation rules made higher contributions to

GraphPrior. The experimental results demonstrate its efectiveness; 3) GraphPrior employs ive ranking models

and compares their efectiveness in utilizing mutation features for test prioritization, while PRIMA only uses

a single ranking model. By comparing multiple ranking models, GraphPrior can identify the optimal ranking

model for learning mutation features in test prioritization.

GraphPrior has broad applicability across a wide range of contexts, including software development, scientiic

research, and inancial systems. For instance, GraphPrior can be employed to gain insights into the vulnerabilities

of GNN models used in inancial transaction fraud detection. In this speciic context, where nodes represent

accounts and edges represent transaction transfers, the irst step is to utilize the GNN model under test to

identify a group of potentially fraudulent accounts. Subsequently, these identiied accounts serve as test inputs

for GraphPrior. By prioritizing accounts that are more likely to be misclassiied by the model (i.e., accounts falsely

classiied as fraudulent), GraphPrior places them at the top of the recommendation list. Consequently, by labelling

and analyzing these bug-revealing tests earlier, the fraud analysis team can unveil the bugs and vulnerabilities of

the GNN model more eiciently.

It is important to note that, GraphPrior is speciically designed for GNNs, and its impact on DNNs has not been

evaluated. This is because in graph datasets, nodes are interconnected, and the mutation rules of GraphPrior

can directly or indirectly afect the message passing between nodes in the prediction process. In contrast, in

traditional DNNs, each sample in a dataset is typically independent, and as a result, such mutation rules are

unlikely to afect the transmission of information between tests. Therefore, the efectiveness of GraphPrior’s

mutation rules for DNNs remains uncertain, as no related experiments have been conducted to evaluate it.

We conducted an extensive study to evaluate the performance of GraphPrior based on 604 subjects. Here,

a subject refers to a pair of graph dataset and GNN model. We compare GraphPrior with 6 uncertainty-based

ACM Trans. Softw. Eng. Methodol.



4 • Dang and Li et al.

metrics [82] [26] [80] that can be used to prioritize possibly-misclassiied test inputs and adopt random selection

as the baseline method. Our experimental results demonstrate that GraphPrior performs well across all subjects

and outperforms the compared approaches on average.

As mentioned before, one essential problem of conidence-based approaches is that adversarial attacks may lead

to a model being more conident in the incorrect prediction, resulting in the failure of the approach. Therefore, we

also evaluate GraphPrior on test inputs generated from graph adversarial attacks of existing studies [3, 48, 86, 100].

Furthermore, since the efectiveness of test prioritization methods may vary depending on the degree of the

adversarial attack, we set diferent attack levels to generate adversarial data and compared GraphPrior with the

compared approaches. In addition to the evaluation of GraphPrior, we compare the efectiveness of diferent

mutation rules in generating top contributing mutated models, aiming to identify which mutated rules contribute

more to each GNN model. In the last step, we investigate whether GraphPrior and the uncertainty-based metrics

can select informative retraining tests to improve a GNN model. Our experimental results demonstrate that

GraphPrior achieved better efectiveness compared with the uncertainty-based test prioritization methods. We

publish our dataset, results, and tools to the community on Github1.

Our work has the following major contributions:

• Approach. We propose GraphPrior, a set of mutation-based test prioritization approaches for GNNs. To this

end, we design a set of mutation rules that mutate GNN models by slightly changing their training parameters.

We carefully select ranking models to analyze the mutation results for efective test prioritization.

• StudyWe conduct an extensive study based on 604 GNN subjects involving natural and adversarial test sets.

We compare GraphPrior with existing DNN approaches that could detect possibly misclassiied test inputs.

Our experimental results demonstrate the efectiveness of GraphPrior.

• Mutation rule analysisWe compare the efectiveness of the GNNmutation rules in generating top contributing

mutated models, observing that the mutation rule HC (i.e., mutating Hidden Channels) makes top contributions

to most GNN models in test input prioritization.

2 BACKGROUND

In this section, we introduce the key domain concepts for our work, including Graph Neural Networks and Test

Input Prioritization for DNNs.

2.1 Graph Neural Networks

Graph neural networks (GNNs) have achieved great success in handling machine learning problems on graph-

structured data [98] [25] [76]. Unlike traditional neural networks running on ixed-sized vectors, GNNs deal with

graphs of varying sizes and structures. Therefore, GNNs can capture complex relationships between data points

and make more accurate predictions. GNNs have been used in a wide range of tasks, including recommendation

system [25, 85, 90], protein-protein interaction (PPI) prediction [40, 62, 97] and traic forecasting [10, 41, 95].

Graphs A graph is a data structure consisting of two components: nodes (vertices) and edges. A graph � can

be deined as � = (� , �), where � is the set of nodes, and � are the edges between them. In a graph, nodes

can represent entities (e.g., persons, places, or things), while the edges deine the relationships between nodes.

The edges can be either directed or undirected based on the directional dependencies that exist between nodes.

Graphs can be utilized to model complex systems such as social media networks, molecular structures, and

citation networks. For example, in the context of citation networks, publications can be represented as nodes, and

the citations between them can be represented as edges. Graph datasets are collections of graph data that can

be used to train and evaluate GNNs. Some benchmark graph datasets [79] include Cora, CiteSeer, and PubMed.

1https://github.com/yinghuali/GraphPrior

ACM Trans. Softw. Eng. Methodol.

https://github.com/yinghuali/GraphPrior


GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 5

In this paper, we evaluated GraphPrior and the compared approaches on several graph datasets obtained from

existing studies [88] [70].

Graph Embeddings Graph embedding [7] is an approach used to transform nodes, edges, and their associated

features into lower dimensional representation while maximally preserving the graph structural information and

graph properties. Graph analytics methods usually sufer from high computational and storage costs, limiting

their applicability in real-world scenarios. The use of graph embedding has shown promising results as an eicient

and efective way to address the graph analytics problem.

Message Passing Scheme In GNNs, the message-passing scheme is commonly employed [29], whereby nodes

aggregate and transform the information from their neighbors in each layer. Through stacking multiple GNN

layers, this mechanism facilitates the propagation of information across the entire graph structure, allowing

for the efective embedding of nodes into low-dimensional representations. These node representations may

subsequently be leveraged by a diferentiable prediction layer, thereby enabling end-to-end training of the

complete model.

GNN models A graph neural network (GNN) model is a type of neural network designed to operate on graph

data structures. Typically, a GNN model contains two crucial parts: a graph convolution layer [45] to capture

the relationship between nodes in the graph and a classiier [87] to make predictions based on the captured

relationship. In general, a GNN model takes graph-structured data as inputs and produces outputs based on its

corresponding task. For example, the output for a GNN model that deals with node-level tasks (i.e., GNN tasks

that are concerned with predicting the identity or role of each node within a graph) is typically a prediction for

nodes in the input graph. In this paper, we evaluated our proposed test prioritization approach, GraphPrior, and

the compared approaches on various GNN models [21, 30, 45, 79] that deal with node classiication tasks.

Graph Adversarial Attacks Graph adversarial attacks [3] [16] [77] [99] involve the manipulation of graph

structure or node features to generate graph adversarial perturbations that can fool GNNmodels. This vulnerability

of GNNs has raised serious concerns regarding their reliability and safety, particularly in safety-critical applications

such as inancial systems and risk management. For instance, in a credit scoring system, attackers can exploit the

vulnerability of GNNs to create fake connections with high-credit customers to evade fraud detection models. In

this paper, we applied eight graph adversarial attacks from existing studies [3, 48, 86, 100] to generate adversarial

inputs for the evaluation of GraphPrior.

2.2 Test Input Prioritization for DNNs

In DNN testing, test input prioritization aims to prioritize tests that are more likely to be misclassiied (i.e.,

bug-revealing test inputs) by the DNN model. In this way, more important test inputs can be labeled earlier in a

limited time, which can improve the eiciency of DNN testing. In the literature, several prioritization approaches

have been proposed to deal with the labeling-cost issues [6, 26, 81, 94].

The majority of approaches for prioritizing tests in Deep Neural Networks (DNNs) can be classiied into two

categories, coverage-based and conidence-based [81]. Conidence-based approaches, such as DeepGini [26],

prioritize test inputs based on the model’s conidence. Speciically, these methods identify inputs that are likely

to be incorrectly predicted by the DNN model, given that the model outputs similar probabilities for each class. In

contrast, coverage-based approaches, such as CTM [92], simply extend traditional software system testingmethods

to DNN testing, and have been shown to underperform compared to conidence-based approaches [26]. Weiss

et al. [82] conducted a comprehensive investigation of the capabilities of various DNN test input prioritization

techniques, including some notable uncertainty-based metrics such as Vanilla Softmax, Prediction-Conidence

Score (PCS), and Entropy. The Vanilla Softmax metric is calculated as the highest activation in the output

softmax layer for a classiication problem, subtracted from 1. PCS, on the other hand, is deined as the diference

in softmax likelihood between the predicted class and the second runner-up class. Additionally, Entropy is

ACM Trans. Softw. Eng. Methodol.



6 • Dang and Li et al.

considered as an alternative metric in the softmax layer proposed by the authors of DeepGini. These metrics

have been demonstrated to be efective in identifying possibly-misclassiied test inputs, and can aid in guiding

test prioritization eforts.

The aforementioned uncertainty-based test prioritization can be adapted for test input prioritization for

GNNs. GraphPrior difers from these approaches in that GraphPrior leverages mutation analysis to perform

test prioritization. The mutation analysis of GraphPrior exploits the speciic properties of GNNs. Speciically,

GraphPrior’s mutation rules can directly or indirectly afect the message passing between nodes in a graph. In

contrast, uncertainty-based approaches rely on the prediction uncertainty of the DNN model to prioritize test

inputs without accounting for the interdependence between nodes.

Currently, the state-of-the-art technique for DNN test prioritization is PRIMA, which prioritizes fault-revealing

test inputs based on mutation analysis. However, PRIMA is not suitable for GNN test prioritization because: 1) its

input mutation rules are speciically designed for DNN testing datasets where each sample is independent of each

other. In contrast, graph datasets have complex interdependence between nodes, making PRIMA unsuitable for

test prioritization in this context; 2) GNNs employ graph operations andmessage passingmechanisms to aggregate

and update information from neighboring nodes, thereby facilitating improved representation and learning

within graph structures. The model mutation rules employed in PRIMA are not suitable for accommodating the

graph operation mechanisms intrinsic to GNNs.

In addition to the aforementioned test prioritization techniques, several active learning [80] methods can also

be adapted to prioritize DNN tests, such as Least Conidence and Margin. Active learning aim to selects the most

informative samples to be labeled by a human expert. When applied to test prioritization, active learning can be

used to identify the most critical and informative test cases that can reveal bugs in the system.

3 APPROACH

3.1 Overview

In this paper, we propose GraphPrior, a set of test prioritization approaches for GNNs to prioritize test inputs.

GraphPrior consists of six mutation-based test prioritization approaches: KMGP, LRGP, RFGP, LGGP, DNGP and

XGGP. These approaches are discussed later in this Section. We present the overview of GraphPrior in Figure 1,

in which the input of GraphPrior is a GNN test set, and the output is the test set that has been prioritized. Given

a test set � for a GNN model � , the implementation process of GraphPrior is presented as follows.

Generating mutants for the GNN model � First, GraphPrior generates mutated models (i.e., mutants) for the

GNN model � based on carefully designed mutation rules (cf. Section 3.2).

Obtainingmutation results through killingmutants For each test input, GraphPrior identiies which mutated

models it kills. Here, a mutated model is killed by a test input if the prediction results of this input via the mutated

model and the original model � are diferent. In this way, GraphPrior obtains the mutation result of each test

input.

Generating feature vectors from the mutation results For each test input, GraphPrior generates a mutation

feature vector for it based on its mutation results. The ��ℎ element of this feature vector denotes whether this

input kills the ��ℎ mutated model. More speciically, given a test input � ∈ � , if � kills a mutated model�� , then

the ��ℎ element of � ’s mutation feature vector is set to 1. Otherwise, the ��ℎ element is set to 0.

Ranking test input based on mutation feature vectors via ranking models GraphPrior utilizes ranking

models [5, 42, 83] to calculate a misclassiication score for each test input based on its feature vector. This score

can indicate how likely a test input will be misclassiied by the GNN model. Finally, GraphPrior ranks them based

on their misclassiication scores in descending order and outputs the prioritized test set � ′.

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 7

A

B

C

D

D A B C

Original GNN model

Original GNN model

Graph test set

to be labeled

Mutation rules

Mutated GNN models

Features
Feature

extraction
Ranking models

Prioritized

graph test set

labeling

Developers

Fig. 1. Overview of GraphPrior

3.2 Mutation Rules

In GraphPrior, mutation rules are employed to generate mutated models of a GNN model by making slight

changes to its training parameters. We select the following parameters because they can impact the message

passing in the GNN prediction process. More speciically, in the mutated GNN model, the manner in which nodes

acquire information from their neighboring nodes is slightly diferent from that of the original GNN model.

Although variations of GNNs can be obtained even without changing training parameters, the resulting model

mutants cannot produce meaningful diferences in the GNN model’s behavior. By changing the selected training

parameters to generate mutants, we can intentionally introduce meaningful modiications to the model’s behavior

in terms of the interdependencies between nodes during the prediction process. We present all the mutation rules

of GraphPrior as follows.

• Self Loops (SL) [45, 79] SL is a Boolean parameter, which controls whether to add self-loops to the input graph.

When the SL parameter is set to True, self-loops are introduced to each node in the graph. By incorporating

self-loops, the inherent information of nodes can be efectively aggregated into their representation vectors,

leading to a change in the weighting of their neighboring nodes, and thus afecting the interdependence of

nodes in the prediction process.

• Bias (BIA) [30, 45, 79] BIA is a Boolean parameter, which determines whether to introduce a predetermined

ofset to the representation vectors of nodes. When the BIA parameter is enabled (set to True), each node will

be assigned a corresponding bias parameter to its representation vector, allowing the GNN model to better

capture the inherent properties of the graph and improve the interdependence between nodes in the prediction

process.

• Cached (CA) [45] CA is a Boolean parameter that controls whether to cache the computation of node

embeddings during the forward pass. When the CA parameter is set to True, the node embeddings are cached

and reused during the backward pass to save computation time. Caching the computation of node embeddings

can afect the interdependence between nodes by altering the order and eiciency of message passing.

• Improved (IMP) [45] IMP is a Boolean parameter that controls whether to use the improved message passing

strategy, thus afecting the interdependence between nodes in the prediction process.

• Normalize (NOR) [21, 30] NOR is a Boolean parameter, which determines whether to normalize the messages

passed between nodes in the prediction process. When this parameter is set to "True," the messages are

normalized by the number of neighbors that a node has before being passed to the next layer. This normalization

can impact the contribution of each neighbor to the node’s inal representation, thus afecting the message

passing between nodes in the prediction process.

• Concat (CON) [79] CON is a Boolean parameter, which controls how the representations of neighboring

nodes are combined during message passing. When it is set to True, the representations of neighboring nodes

are concatenated before being passed, resulting in a more expressive representation of the nodes, enabling the

GNN to capture more nuanced interdependencies between them.

ACM Trans. Softw. Eng. Methodol.



8 • Dang and Li et al.

• Heads (HDS) [79] HDS is an integer parameter that determines the number of attention heads used in multi-

head attention. Increasing the number of heads allows the model to capture more complex interdependence

among nodes in the graph. Each attention head can focus on a diferent aspect of the node neighborhood,

enabling the model to learn diferent representations of the graph.

• Epoch (EP) [21, 30, 79] EP is an integer parameter that controls the number of times a GNN model iterates over

the training dataset. By increasing the number of epochs, a GNN model can better capture the interdependence

between nodes for model inference.

• Hidden Channel (HC) [21, 30, 45, 79] HC is an integer parameter, which controls the dimensionality of

the hidden representation in each layer of the GNN. Therefore, changing this parameter can impact the

interdependence between nodes in a graph by enabling the GNN to learn more expressive node embeddings.

• Negative Slope (NS) [79] NP is a loat parameter, which controls the slope of the negative part of the activation

function used in the Gated Linear Unit (GLU) operation. GLU is a common non-linear function used in GNNs for

message passing. Speciically, the GLU operation is used to combine the node features with the weighted sum

of their neighboring nodes’ features, which is the message passed between nodes in the graph. The negative

slope parameter determines the slope of the activation function for negative input values in the GLU operation,

thus impacting the message passing between nodes.

Based on the above mutation rules, for a given test set and a GNN model, GraphPrior generates � mutated

models of the original model. We consider that a test input kills a mutated model if the predictions for this input

via the mutated models and the original GNN model are diferent. Based on it, GraphPrior obtains the mutation

results of all the test inputs.

Considering that the primary objective of generating mutated models is to obtain informative features for

test prioritization, a statistical analysis is employed to validate their efectiveness. To achieve this, a series of

repeated experiments are conducted, as outlined in Section 5. The results of these experiments demonstrate that

GraphPrior’s efectiveness is statistically signiicant, thereby conirming the statistical validity of the generated

mutated models for the purpose of test prioritization.

3.3 Killing-based GraphPrior

This section presents the worklow of KMGP, the Killing Mutants-based GNN Test Prioritization approach.

Notably, KMGP operates on a "killing-based" principle, where test inputs that can kill more mutated models are

considered as more likely to be misclassiied and will be prioritized higher. It is worth noting that KMGP assigns

equal importance to each mutated model in the process of test prioritization, a distinct feature that distinguishes

it from feature-based approaches, which will be elaborated upon in subsequent sections. Given a GNN model

� , and a test input set � = {�1, �2, . . . , ��}, the detailed execution of KMGP can be divided into three key stages:

mutation generation, killing-based mutation analysis, and test prioritization.

Mutation generation In the mutation generation stage, a group of mutated models {� ′
1,�

′
2, . . . ,�

′
�
} are gener-

ated for the original GNN model � .

Killing-based mutation analysis This stage involves obtaining the mutation results of each test input � ∈ �

using the process outlined in Section 3.2. Subsequently, KMGP counts the number of mutants killed by each test

input based on their mutation results.

Test prioritization In the third stage, KMGP prioritizes all the test inputs in � based on the number of mutated

models they killed, with those that kill more mutants being prioritized higher in the test sequence.

3.4 Feature-based GraphPrior

In comparison to the killing-based GraphPrior approach, the feature-based approaches are characterized by

automatic mutation feature analysis. This process involves the generation of mutated feature vectors based on

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 9

the execution of mutated models, followed by the use of ranking models (ML/DL models), which assign diferent

importance to each mutated model for test prioritization.

Overall, the feature-based approaches’ worklow entails three key stages: mutated model generation, mutation

feature generation, and learning-to-rank.

❶ Mutated model generation Given a GNN model � and a test set � , during the irst stage, the feature-based

approaches generate a group of mutated models (denoted as {� ′
1,�

′
2, . . . ,�

′
�
}) of the GNN model � based on

the mutation rules speciied in Section 3.2.

❷ Mutation feature generation Subsequently, the feature-based approaches associate a feature vector �� of

size � with each test input � , where � represents the number of mutated models, and �� (= �� [�]) maps to the

execution output for the mutated model � ′
�
. If � kills the mutated model � ′

�
(i.e., the prediction results for � via

the mutated models � ′
�
and the original model � are diferent), �� is set to 1. Otherwise, it is set to 0.

❸ Learning-to-rank In the inal stage, the feature-based approaches input the mutation features of each test

input to the ranking model (ML/DL models) [5] [15] [42] [78] [83]. The ranking models can automatically learn

diferent importance for each mutation feature to output misclassiication scores. Here, each mutation feature

corresponds to the execution result of a mutated model so that we can consider that the ranking models learn

the importance of each mutated model for test prioritization. Finally, the feature-based approaches rank all the

test inputs based on their misclassiication scores in descending order.

In our study, we propose ive feature-based GraphPrior approaches, which follow the similar worklow

described above, but leverage diferent ranking models. These ive approaches are XGGP (XGBoost-based GNN

Test Prioritization), LRGP (Logistic Regression-based GNN Test Prioritization), LGGP (LightGBM-based GNN

Test Prioritization), RFGP (Random Forest-based GNN Test Prioritization) and DNGP (DNN-based GNN Test

Prioritization). We briely introduce the basic principle of the ranking models of these approaches as follows.

1) XGGP leverages the XGBoost algorithm [15] as the ranking model. XGBoost is a highly efective gradient

boosting algorithm that combines decision trees to enhance the accuracy of predictions. XGGP utilizes the

XGBoost algorithm to predict the misclassiication score for a given test input based on its mutation features.

This score relects the likelihood that the input will be misclassiied by a GNN model.

2) LRGP leverages the Logistic Regression algorithm [83] as the ranking model. Logistic regression leverages a

logistic function to model the association between a categorical dependent variable and one or more independent

variables.

3) LGGP leverages the LightGBM algorithm [42] as the ranking model. LightGBM is a gradient boosting

framework that employs tree-based learning algorithms. The fundamental principle of LightGBM is similar to

XGBoost, which employs decision trees based on learning algorithms. However, LightGBM introduces a novel

optimization in the framework, with a primary focus on enhancing the speed of model training.

4) RFGP leverages the random forest algorithm [5] as the ranking model. Random Forest is an ensemble learning

algorithm that constructs multiple decision trees using random subsets of the training data and input features.

The predictions from individual trees are combined to produce the inal prediction using averaging or voting.

5) DNGP leverages a DNN model [78] as the ranking model. The DNN model can learn to rank test inputs based

on their mutation features. After training, the DNN model can generate a score that relects their misclassiication

probability. This score can then be used to rank test inputs in a test set.

Compared to the mutation features of PRIMA, the distinctive aspect of GraphPrior’s mutation features lies in

their utilized mutation rules, which are speciically designed for GNNs. These mutation rules have the potential

to directly or indirectly impact the message passing mechanism between nodes in graph data. Our experiment

results in Section 5 demonstrate the efectiveness of the feature-based GraphPrior approaches. The observed

efectiveness can be attributed, in part, to the selection of mutation rules and ranking models. Speciically, our

mutation rules have been designed to generate informative mutation features by changing the massage passing

ACM Trans. Softw. Eng. Methodol.



10 • Dang and Li et al.

between nodes in the GNN prediction process. Furthermore, our ranking models are able to utilize these mutation

features for test prioritization efectively. After suicient training, ranking models can output a misclassiication

score that indicates how likely a sample would be misclassiied based on its mutation features. A score closer

to 1 indicates a higher probability of misclassiication. By sorting the misclassiication scores of test inputs in

descending order, the feature-based GraphPrior approaches can efectively prioritize tests that are more likely to

be misclassiied.

3.5 Usage of GraphPrior

By utilizing ranking models, GraphPrior predicts a misclassiication score for each test input within a given

test set. These predicted scores are then utilized for test prioritization, whereby test inputs with higher scores

are prioritized higher. Particularly, the ranking models are pre-trained before the execution of GraphPrior. The

training process is standardized across all the diferent ranking models and follows a consistent set of procedures,

which are presented in detail below.

❶ Splitting datasets Given a GNN model � with dataset � . First, we split the dataset � into two partitions: the

training set � and the test set, in a 7:3 ratio [61]. The test set remains untouched for the purpose of evaluating

GraphPrior.

❷ Constructing the training set for ranking models Based on the training set �, we aim to build a training

set �′ for training the ranking models. First, we generate a group of mutated models for each input �� ∈ �.

Then, we obtain the mutation feature vector �� of �� (i.e., a one-dimensional vector in which the ��ℎ element

denotes whether the ��ℎ mutated model is killed by this input). The mutation feature vector of �� is used to

build the training set �′ (i.e., the training set of the ranking models). Second, we let the original GNN model �

classify each input �� ∈ � and compare it with the ground truth of �� . In this way, we can identify whether �� is

misclassiied by the GNN model� . If �� is misclassiied by� , we label it as 1. Otherwise, we label it as 0. In this

way, we have built the ranking model training set �′.

❸ Training ranking models Based on �′, we train the ranking models. Upon the completion of the training

process, the ranking model is capable of receiving the mutation feature vector of a test input as an input and

producing a misclassiication score as an output. This score serves as an indicator of the probability of the test

input being incorrectly classiied by the GNN model.

It is worth noting that the original labels of the training set �′ are binary (i.e., 1 or 0), but the ranking models

that are well trained can output values (i.e., the misclassiication scores). To achieve this, we make some

adaptations to implement the adopted ranking algorithms (e.g., random forest and XGBoost). First, although

the ranking algorithms we adopted initially deal with classiication tasks, an intermediate value is calculated

for the classiications. For example, if the intermediate value exceeds 0.5 (default value which can be adjusted),

input will be classiied into the irst category; otherwise, the other category. Here, after training, we let the

ranking models directly output the intermediate value, as this value can indicate the likelihood of a test input

being misclassiied by the GNN model, where a higher value implies a greater likelihood of misclassiication.

We call this intermediate value "misclassiication scores" and leverage the scores of test inputs to rank them.

4 STUDY DESIGN

4.1 Research uestions

Our experimental evaluation answers the research questions below.

• RQ1: How does the killing-based GraphPrior approach perform in prioritizing test inputs for GNNs?

In terms of test prioritization for GNNs, existing prioritization approaches usually do not take into account the

interdependencies between nodes (tests) in a graph (test set). To ill the gap, we propose GraphPrior, which

contains six GNN-oriented test prioritization approaches. Among them, KMGP is a killing-based approach,

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 11

which regards a test input that kills more mutants as more likely to be misclassiied. In this research question,

we evaluate the efectiveness of the killing-based KMGP by comparing it with existing approaches that have

been demonstrated as efective in detecting possibly-misclassiied test inputs.

• RQ2: How do the feature-based GraphPrior approaches perform in GNN test prioritization?

In addition to the killing-based KMGP, GraphPrior involves ive feature-based approaches. The core diference is

that, the killing-based approach regards the importance of each mutated model as equal, while the feature-based

approaches learn diferent importance for each mutated model for test prioritization. More speciically, feature-

based approaches extract features from mutation results and adopt ranking models [5, 42, 83] to utilize the

mutation features for test prioritization. In this research question, we compare the efectiveness of killing-based

and feature-based approaches to investigate the efect of ranking models in leveraging mutation results.

• RQ3: How does GraphPrior perform on test inputs generated from graph adversarial attacks?

When faced with graph adversarial attacks, conidence-based test prioritization approaches may be fooled,

thus becoming more conident in incorrect predictions. Therefore, we evaluate to what extent the efective-

ness of GraphPrior is afected by graph adversarial attacks. We compare GraphPrior and conidence-based

approaches [26, 36] on test inputs generated from graph adversarial attacks of existing studies [3, 48, 86, 100]

to demonstrate its efectiveness.

• RQ4: How does GraphPrior perform against diferent levels of graph adversarial attacks?

In this research question, we investigate the efectiveness of GraphPrior against diferent levels of graph

adversarial attacks. To answer this research question, we set diferent levels of attacks to generate test inputs

and compare GraphPrior with existing approaches to demonstrate its efectiveness.

• RQ5: Which mutation rules generate more top contributing GNN mutants?

We investigate the contributions of each mutation rule in generating efective mutants of GNNs. For each GNN

model, we select the top contributing mutation features to it through the XGBoost ranking algorithm [15],

which is an optimized ML algorithm for ranking tasks based on the implementation of gradient boosting. We

match each selected feature with the corresponding GNN mutant and identify the mutation rule that generates

it. In this way, we obtain which mutation rules generate more top contributing mutants for test prioritization.

• RQ6: Can GraphPrior and the uncertainty-based metrics be used in active learning scenarios to

improve a GNN model by retraining?

In the face of a large number of unlabeled inputs and a limited time budget, it is not feasible to manually

label all the inputs and use them to retrain a GNN. One established solution to reduce data labeling costs is

active learning [67], which involves selecting informative subsets of training samples to improve the model

performance. In this research question, we investigate the efectiveness of GraphPrior and the uncertainty-based

metrics in selecting informative retraining inputs to improve the quality of a GNN model.

4.2 GNN models and Datasets

In our study, we totally adopt 604 subjects to evaluate the efectiveness of GraphPrior and the compared

approaches [26, 36]. Table 1 exhibits their basic information. Among the 604 subjects considered in this study, 16

subjects were utilized in the experiments of RQ1, 16 subjects in RQ2, 108 subjects in RQ3, 432 subjects in RQ4,

16 subjects in RQ5 and 16 subjects in RQ6. It is worth noting that, among these subjects, a total of 64 subjects

(which were utilized in RQ1, RQ5, and RQ6) were associated with clean datasets, while the remaining 540 subjects

(which were utilized in RQ3 and RQ4) were associated with adversarial datasets.

Our study involves four GNN models: GCN (Graph Convolutional Networks) [45], GAT (Graph Attention

Networks) [79], GraphSAGE (Graph SAmple and aggreGatE) [30] and TAGCN (Topology Adaptive Graph

Convolutional Network) [21], tested by four datasets, namely the Cora [88], CiteSeer [88], PubMed [88] and

LastFM [70]. We present their descriptions as follows.

ACM Trans. Softw. Eng. Methodol.



12 • Dang and Li et al.

Table 1. GNN models and datasets

ID Dataset #Nodes #Edges Model Type

1 CiteSeer 3327 4732 GCN Original, DICE, MMA, PGD, RAA, RAF, RAR

2 CiteSeer 3327 4732 GAT Original, DICE, MMA, PGD, RAA, RAF, RAR

3 CiteSeer 3327 4732 TAGCN Original, DICE, MMA, PGD, RAA, RAF, RAR

4 CiteSeer 3327 4732 GraphSAGE Original, DICE, MMA, PGD, RAA, RAF, RAR

5 Cora 2708 5429 GCN Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA

6 Cora 2708 5429 GAT Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA

7 Cora 2708 5429 TAGCN Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA

8 Cora 2708 5429 GraphSAGE Original, DICE, MMA, PGD, RAA, RAF, RAR, NEAR, NEAA

9 LastFM 7624 27806 GCN Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA

10 LastFM 7624 27806 GAT Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA

11 LastFM 7624 27806 TAGCN Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA

12 LastFM 7624 27806 GraphSAGE Original, DICE, PGD, RAA, RAF, RAR, NEAR, NEAA

13 PubMed 19717 44338 GCN Original, DICE, RAA, RAF, RAR, NEAR, NEAA

14 PubMed 19717 44338 GAT Original, DICE, RAA, RAF, RAR, NEAR, NEAA

15 PubMed 19717 44338 TAGCN Original, DICE, RAA, RAF, RAR, NEAR, NEAA

16 PubMed 19717 44338 GraphSAGE Original, DICE, RAA, RAF, RAR, NEAR, NEAA

4.2.1 GNN Models .

• GCN [45] GCN is a class of convolutional neural networks that can work directly on the graph. It solves the

problem of classifying nodes (such as documents) in graphs (such as citation networks), of which only a small

number of nodes are labeled. The core idea of GCN is to use the edge information of a graph to aggregate node

information to generate new node representations. GCN has been used in several existing studies [31, 35, 89].

• GAT [79] GAT introduces a self-attention mechanism in the propagation process. Compared to GCN, which

regards all neighbors of a node equally, the attention mechanism assigns diferent attention scores to each

neighbor, thereby identifying more important neighbors.

• GraphSAGE [30] GraphSAGE is a generalized inductive framework that generates node embeddings by

sampling and aggregating features of neighbor nodes.

• TAGCN [21] TAGCN introduces a systematic approach to design a set of ixed-size learnable ilters to perform

convolutions on graphs. These ilters are topology-it to the topology of the graph as they scan the graph for

convolution.

4.2.2 Datasets .

• Cora [88] The Cora dataset is a citation graph composed of 2,708 scientiic publications (nodes) and 5,429 links

(edges) between them. Nodes represent ML papers, and edges represent citations between pairs of papers. Each

paper is classiied into one of seven classes, such as reinforcement learning and neural networks.

• CiteSeer [88] The CiteSeer dataset consists of 3,327 scientiic publications (nodes) and 4,732 links (edges). Each

paper belongs to one of six categories such as AI and ML.

• PubMed [88] The PubMed dataset contains 19,717 diabetes-related scientiic publications (nodes) and 44,338

links (edges). Publications are classiied into three classes such as Cancer and AIDS (i.e., Acquired Immune

Deiciency Syndrome).

• LastFM Asia Social Network [70] The dataset LastFM Asia Social Network was collected from the social

network of users on the Last.fm music platform in Asia. Nodes are LastFM users, and edges are mutual follower

relationships between them. LastFM contains 7,624 nodes and 27,806 edges. The classiication task of the

LastFM dataset is to predict the home country of a user (e.g., Philippines, Malaysia, Singapore).

Notably, we evaluate GraphPrior on diferent types of test inputs (i.e., both natural test inputs and adversarial

test inputs. We adopted eight graph adversarial attacks, presented in Section 4.4.

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 13

4.3 Compared Approaches

In our study, we considered 7 compared approaches in total, including one baseline (i.e., random selection), four

DNN test prioritization approaches and two active learning approaches. We select these approaches due to the

following reasons: 1) These approaches can be adapted for GNN test prioritization; 2) The selected approaches

have been demonstrated as efective for DNNs in existing studies [26] [36] [82]; 3) The implementations of these

approaches have been released by the authors.

• DeepGini DeepGini [26] prioritizes test inputs based on model conidence. DeepGini leverages the Gini

coeicient to measure the likelihood of a test input being misclassiied. DeepGini leverages Formula 1 to

calculate the ranking scores.

� (�) = 1 −

�︁

�=1

(�� (�))
2 (1)

where � (�) refers to the likelihood of the test input � being misclassiied. �� (�) refers to the probability that

the test input � is predicted to be label � . � refers to the number of labels.

• Margin Margin [80] regards a test input with less diference between the top two most conidence predictions

as more likely to be misclassiied. Margin score is calculated by Formula 2.

� (�) = �� (�) − � � (�) (2)

where� (�) refers to the margin score. �� (�) refers to the most conident prediction probability. � � (�) refers

to the second most conident prediction probability.

• Least Conidence Least Conidence [80] regards test inputs for which the model has the least conidence as

more likely to be misclassiied. Least conidence is calculated by Formula 3.

�(�) = max
�=1:�

�� (�) (3)

where �(�) refers to the conidence score. �� (�) refers to the probability that the test input � is predicted to be

label � via a model� .

• Vanilla Softmax Vanilla Softmax [82] is computed by subtracting the highest activation probability in the

output softmax layer from 1, resulting in a metric that is positively correlated with the misclassiication

probability. Formula 4 presents the calculation of the Vanilla Softmax metric.

V(�) = 1 −
�

max
�=1

�� (�) (4)

where �� (�) belongs to a valid softmax array in which all values are between 0 and 1, and their sum is 1.

• Prediction-Conidence Score (PCS) PCS [82] calculates the diference between the predicted class and the

second most conident class in softmax likelihood.

• Entropy Entropy [82] calculates the entropy of the softmax likelihood.

• Random selection [22] In random selection, the execution order of the test inputs is determined randomly.

4.4 Graph Adversarial Atacks

In RQ3 and RQ4, we evaluate the efectiveness of GraphPrior on test inputs generated through diverse graph

adversarial attacks, in which attackers aim to generate graph adversarial perturbations by manipulating the graph

structure or node features to fool the GNN models. We introduce all the attacks we applied in our experiments as

follows.

• Disconnect Internally, Connect Externally (DICE) [100] The DICE attack is a type of white-box attack

whereby the adversary has access to all information about the targeted GNN model, including its parameters,

training data, labels, and predictions. Speciically, the DICE attack randomly adds edges between nodes with

ACM Trans. Softw. Eng. Methodol.



14 • Dang and Li et al.

diferent labels or removes edges between nodes sharing the same label. Through this, the attack can generate

adversarial perturbations that can fool the targeted GNN model.

• PGD attack [86] The PGD attack leverages the Projected Gradient Descent (PGD) algorithm to search for

optimal structural perturbations to attack GNNs.

• Min-max attack (MMA) [86] The min-max attack is a type of untargeted white-box GNN attack. The attack

problem is formulated as a min-max problem, where the inner maximization is designed to update the model’s

parameters (� ) by maximizing the attack loss, and it can be solved using gradient ascent. On the other hand,

the outer minimization can be achieved by using Projected Gradient Descent (PGD) [59].

• Node Embedding Attack-Add (NEAA) [3] In node embedding attack-add, the attackers are capable of

modifying the original graph structure by adding new edges while adhering to a predeined budget constraint.

• Node Embedding Attack-Remove (NEAR) [3] In node embedding attack-remove, the attackers modify the

original graph structure by removing edges.

• Random Attack-Add (RAA) [48] The Random Attack-Add approach randomly adds edges to the input graph

to fool the targeted GNN model.

• Random Attack-Flip (RAF) [48] The Random Attack-Flip approach randomly lips edges to the input graph

to fool the targeted GNN model.

• Random Attack-Remove (RAR) [48] The Random Attack-Add approach randomly removes edges to the

input graph to fool the targeted GNN model.

4.5 Evaluation of mutation rules (RQ5)

In RQ5, we investigated the contribution of diferent mutation rules in generating top contributing mutated

models. First, for each GNN model, we utilize the cover metric in XGBoost [15] to evaluate the importance of its

mutation features and rank them according to the descending order of the importance scores. The cover metric

can evaluate the importance of mutation features by quantifying the average coverage of each instance by the

leaf nodes in a decision tree. Speciically, it calculates the number of times a particular feature is used to split

the data across all trees in the ensemble and then sums up the coverage values for each feature over all trees.

This coverage value is then normalized by the total number of instances to obtain the average coverage of each

instance by the leaf nodes. The importance of a feature is then calculated based on its coverage value, and features

with higher coverage values are considered more important.

Upon obtaining the importance of each mutation feature, which corresponds to a speciic mutated model, we

proceed to match and determine the importance of the respective mutated models. Subsequently, we select the

top N critical mutated models and identify the speciic mutated rules employed in their generation. This enables

a comparative analysis of the contributions of various mutation rules.

4.6 Implementation and Configuration

We implemented GraphPrior in Python based on the PyTorch 1.11.0 framework [65]. We also integrate the

available implementations of the compared approaches [26, 57, 80, 82] into our experimental pipeline to adapt to

the GNN prioritization problem. Regarding our mutation rules, we set the number of mutated models as 80~240

across diferent subjects. Balancing the trade-of between execution time and the efectiveness of GraphPrior is a

critical consideration in determining the number of mutants. Building on relevant literature [81], we identiied a

suitable range of mutants. Our preliminary investigations on multiple subjects demonstrate that these settings

efectively maintain the efectiveness of GraphPrior while controlling the runtime within a reasonable range.

In the case of subjects associated with longer mutant generation times, we choose to generate a comparatively

smaller number of mutants compared to other subjects. Additionally, the range was achieved through the full

execution of all pre-deined mutation rules. It is worth noting that the total number of mutation rules was

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 15

predetermined and ixed. Thus, even with the addition of new mutants, the impact on the performancethe

trade-of between excessive computational time and the preservation of method efectiveness of GraphPrior is

minor, as the new mutants are created based on the existing mutation rules.

With regard to the speciic mutation rules that change the integer/loat training parameters, we deine a

parameter range close to the original parameter values, in order to achieve slight mutations. We conducted a

preliminary study using multiple subjects, demonstrating the efectiveness of such settings. Moreover, to obtain

parameter values from the speciied range, we adopt uniform sampling [56] as the sampling methodology. This

technique ensures an equitable probability of selecting each value within the parameter range and has been

widely adopted across the ML testing ield [56, 60, 96].

More speciically, we set the hidden channel parameter in the range of [15-20), epochs parameter as <= 50,

heads parameter as <= 5, and negative slope parameter as <= 0.2. For the mutation rules that change the Boolean

type parameters, if the parameter value of the original model is true, we set it to false. If the original value is

false, we set it to true. The parameter ranges for our mutation rules are carefully selected to ensure the change to

the original GNN model is slight.

With respect to the coniguration of the ranking models utilized in GraphPrior, we made several parameter

selections: for the random forest, XGBoost, and LightGBM ranking algorithms, we set the n_estimators parameter

to 100. For the DNN ranking model, we set the learning_rate parameter to 0.01. Finally, for the logistic regression

ranking algorithm, we set the max_iter parameter to 100.

We conducted the following experiments on a high-performance computer cluster, and each cluster node runs

a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA Tesla V100 16G SXM2 GPU. For the data process, we

conducted corresponding experiments on a MacBook Pro laptop with Mac OS Big Sur 11.6, Intel Core i9 CPU,

and 64 GB RAM.

4.7 Measurements

Following the existing study [26], we leverage Average Percentage of Fault-Detection (APFD) [92] to evaluate

the prioritization efectiveness of GraphPrior and the compared approaches. APFD is a standard metric for

prioritization evaluation. Typically, higher APFD values indicate faster misclassiication detection rates. We

calculate the APFD values by Formula 5

���� = 1 −

∑�
�=1 ��

��
+

1

2�
(5)

where n is the number of test inputs in the test set � . k is the number of test inputs in � that will be misclassiied

by the GNN model� . �� is the index of the ��ℎ misclassiied tests in the prioritized test set. More speciically, �� is

an integer that represents the position of the ��ℎ misclassiied tests in the test set that has been prioritized. When∑�
�=1 �� is small (i.e., the total index sum of the misclassiied tests within the prioritized list is small), indicating

that that the misclassiied tests are prioritized higher, the APFD will be large according to Formula 5. Therefore,

large APFD indicates better prioritization efectiveness. Following the existing study [26], we normalize the APFD

values to [0,1]. We consider a prioritization approach better when the APFD value is closer to 1. We present the

comparison results in tables.

For more detailed analysis, we utilize PFD (Percentage of Fault Detected) [26] to evaluate the fault detection

rate of each approach on diferent ratios of prioritized test inputs. High PFD values refer to high efectiveness in

detecting misclassiied test inputs.

��� =

��

��
(6)

ACM Trans. Softw. Eng. Methodol.



16 • Dang and Li et al.

where �� is the number of faults (i.e., misclassiied test inputs) correctly detected. �� is the total number of faults.

More speciically, we evaluate the fault detection rate of GraphPrior against diferent ratios of prioritized tests.

We use PFD-n to represent the irst n% prioritized test inputs.

5 RESULTS AND ANALYSIS

5.1 RQ1: Efectiveness of the killing-based GraphPrior approach (KMGP)

Objectives:We investigate the efectiveness of the killing-based GraphPrior approach, KMGP (cf. Section 3.3),

comparing it with existing approaches that can be used to identify possibly-misclassiied test inputs.

Experimental design: We used 16 pairs of datasets and GNN models as subjects to evaluate the efectiveness of

GraphPrior. Table 1 exhibits their basic information. We carefully selected 7 compared approaches (i.e., DeepGini,

least conidence, margin, Vanilla SM, PCS, entropy, and random selection), which can be adapted for GNN test

prioritization. Random selection is considered the baseline. We adopt two metrics to measure the efectiveness

of GraphPrior and the compared approaches: Average Percentage of Fault-Detection (APFD) and Percentage of

Fault Detected (PFD), which are explained in Section 4.7.

Due to the randomness of the training process of a GNN model, we conduct a statistical analysis by repeating

all the experiments 10 times. More speciically, for each subject (a dataset with a GNN model), 10 diferent GNN

models are generated through separate training processes.

Results: The GraphPrior approach KMGP outperforms all the compared approaches (i.e., DeepGini,

Least Conidence, Margin, Vanilla SM, PCS, Entropy, and Random) in GNN test prioritization. Table 2

presents the comparison results of the killing-based GraphPrior approach (KMGP) and a set of compared

approaches using the APFD metric. We highlight the approach with the highest efectiveness for each case in grey.

The results demonstrate that KMGP outperforms the other approaches in the majority of cases, speciically in

87.5% (14 out of 16) subjects. Vanilla SM, on the other hand, performs the best in only 12.5% of cases. Additionally,

the average APFD value achieved by KMGP was 0.748, which is higher than that of the compared techniques,

with improvements of 4.76%~49.6%. These results suggest that KMGP ofers a promising solution for prioritizing

GNN test inputs.

Table 3 exhibits the comparison results among the test prioritization techniques with respect to PFD. We

highlight the approach with the highest efectiveness for each case in grey. The indings indicate that, for 68.75%

(11 out of 16) of the subjects, KMGP performs best when prioritizing less than 50% of tests. Furthermore, for a

majority of the subjects, speciically 87.5% (14 out of 16), KMGP exhibits the best performance when prioritizing

less than 30% of tests. Furthermore, Table 4 exhibits the overall comparison results in terms of PFD. We can see

that when prioritizing 10%~30% test inputs, the average efectiveness of KMGP outperforms that of the compared

approaches in 100% cases. When prioritizing 10%~50% test inputs, the average efectiveness of KMGP outperforms

that of the compared approaches in 90% cases. Figure 2 plots the ratio of detected misclassiied tests against the

prioritized tests. We see that GraphPrior achieves a higher APFD value in comparison to DeepGini, entropy, least

conidence, margin, Vanilla SM, PCS, and random. These results conirm the efectiveness of KMGP in GNN test

input prioritization.

To demonstrate the stability of our indings, a statistical analysis is performed. Speciically, all the experiments

are repeated ten times for each subject, resulting in 10 distinct GNN model instances obtained through separate

training processes for a given original GNN model. Based on the statistical analysis of the resulting data, the

p-value was found to be lower than 10−05, indicating that the KMGP approach can consistently outperform the

compared approaches in terms of test prioritization.

Answer to RQ1: The GraphPrior approach KMGP outperforms all the compared approaches (i.e., DeepGini,

Least Conidence, Margin, Vanilla SM, PCS, Entropy and Random) in GNN test prioritization.

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 17

Table 2. Efectiveness comparison among KMGP and the compared approaches in terms of APFD

Approaches
Data Model

KMGP DeepGini Least Conidence Margin Vanilla SM PCS Entropy Random

GAT 0.708 0.671 0.691 0.694 0.691 0.694 0.646 0.508

GCN 0.701 0.641 0.677 0.682 0.677 0.682 0.638 0.502

GraphSAGE 0.739 0.663 0.684 0.684 0.684 0.684 0.659 0.497
CiteSeer

TAGCN 0.712 0.658 0.691 0.694 0.691 0.694 0.620 0.499

GAT 0.841 0.742 0.770 0.763 0.770 0.763 0.733 0.487

GCN 0.812 0.690 0.736 0.739 0.736 0.739 0.684 0.495

GraphSAGE 0.792 0.727 0.781 0.784 0.781 0.784 0.704 0.515
Cora

TAGCN 0.782 0.701 0.739 0.738 0.739 0.738 0.690 0.498

GAT 0.801 0.633 0.695 0.713 0.695 0.713 0.534 0.498

GCN 0.761 0.713 0.758 0.746 0.758 0.746 0.603 0.497

GraphSAGE 0.702 0.734 0.761 0.754 0.761 0.754 0.626 0.502
LastFM

TAGCN 0.673 0.719 0.741 0.730 0.741 0.730 0.657 0.498

GAT 0.735 0.642 0.670 0.661 0.670 0.661 0.645 0.502

GCN 0.748 0.645 0.680 0.670 0.680 0.670 0.647 0.501

GraphSAGE 0.747 0.631 0.685 0.675 0.685 0.675 0.634 0.498
PubMed

TAGCN 0.720 0.613 0.663 0.672 0.663 0.672 0.615 0.497

Average 0.748 0.677 0.714 0.712 0.714 0.712 0.646 0.500

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

���

���

�
�
�

����

��������

�������

����������������

������

���������

���

������

(a) CiteSeer, GraphSAGE

��� ��� ��� ��� ��� ��� ���

���

���

���

���

�
�
�

����

��������

�������

����������������

������

���������

���

������

(b) LastFM, GAT

Fig. 2. Test prioritization efectiveness among KMGP and the compared approaches for CiteSeer with GraphSAGE and
LastFM with GAT. X-Axis: the percentage of prioritized tests; Y-Axis: the percentage of detected miscalssified tests.

5.2 RQ2: Efectiveness of the feature-based GraphPrior approaches

Objectives: We investigate the efectiveness of feature-based approaches in GraphPrior, including XGGP, LRGP,

RFGP, LGGP, and DNGP, compared with the killing-based approach KMGP.

Experimental design: We evaluated the efectiveness of feature-based GraphPrior approaches with the killing-

based approach KMGP on 16 subjects (four graph datasets × four GNN models). Due to the randomness of the

training process of a GNN model, we repeat all the experiments ten times and calculate the average results. For

each subject (a dataset with a GNN model), 10 diferent GNN models are generated through separate training

processes. For evaluation, we calculated the APFD (Average Percentage of Fault-Detection) values of all the

approaches on each subject, which can relect the misclassiication detection rate. Moreover, we calculated the

ACM Trans. Softw. Eng. Methodol.



18 • Dang and Li et al.

Table 3. Efectiveness comparison among KMGP and the compared approaches in terms of PFD
Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70 Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

KMGP 0.264 0.464 0.629 0.750 0.812 0.841 0.875 KMGP 0.389 0.683 0.810 0.869 0.902 0.927 0.945

DeepGini 0.211 0.382 0.521 0.646 0.748 0.828 0.895 DeepGini 0.201 0.363 0.495 0.603 0.695 0.770 0.839

Entropy 0.203 0.373 0.506 0.621 0.716 0.788 0.844 Entropy 0.191 0.323 0.422 0.494 0.553 0.607 0.675

Least Conidence 0.231 0.409 0.550 0.680 0.777 0.861 0.913 Least Conidence 0.237 0.429 0.585 0.706 0.791 0.856 0.908

Margin 0.228 0.401 0.547 0.688 0.794 0.864 0.914 Margin 0.262 0.466 0.623 0.734 0.814 0.868 0.916

Vanilla SM 0.231 0.409 0.550 0.680 0.777 0.861 0.913 Vanilla SM 0.237 0.429 0.585 0.706 0.791 0.856 0.908

PCS 0.228 0.401 0.547 0.688 0.794 0.864 0.914 PCS 0.262 0.466 0.623 0.734 0.814 0.868 0.916

GAT

Random 0.099 0.192 0.296 0.391 0.493 0.591 0.689

GAT

Random 0.101 0.201 0.300 0.401 0.495 0.589 0.695

KMGP 0.278 0.492 0.652 0.723 0.771 0.811 0.865 KMGP 0.403 0.648 0.728 0.770 0.830 0.868 0.915

DeepGini 0.200 0.355 0.490 0.600 0.697 0.783 0.858 DeepGini 0.267 0.467 0.600 0.715 0.799 0.875 0.928

Entropy 0.201 0.354 0.487 0.595 0.692 0.779 0.856 Entropy 0.254 0.411 0.501 0.570 0.627 0.685 0.755

Least Conidence 0.229 0.406 0.544 0.661 0.748 0.827 0.889 Least Conidence 0.298 0.530 0.691 0.799 0.880 0.927 0.956

Margin 0.214 0.399 0.556 0.674 0.776 0.844 0.895 Margin 0.278 0.499 0.661 0.783 0.865 0.920 0.951

Vanilla SM 0.229 0.406 0.544 0.661 0.748 0.827 0.889 Vanilla SM 0.298 0.530 0.691 0.799 0.880 0.927 0.956

PCS 0.214 0.399 0.556 0.674 0.776 0.844 0.895 PCS 0.278 0.499 0.661 0.783 0.865 0.920 0.951

GCN

Random 0.098 0.197 0.292 0.388 0.488 0.587 0.690

GCN

Random 0.098 0.199 0.302 0.397 0.503 0.600 0.704

KMGP 0.306 0.525 0.679 0.774 0.835 0.879 0.910 KMGP 0.302 0.482 0.580 0.668 0.800 0.842 0.902

DeepGini 0.208 0.374 0.513 0.626 0.738 0.823 0.885 DeepGini 0.285 0.501 0.655 0.765 0.836 0.893 0.929

Entropy 0.207 0.371 0.510 0.622 0.727 0.816 0.877 Entropy 0.283 0.443 0.520 0.587 0.649 0.708 0.775

Least Conidence 0.223 0.405 0.545 0.670 0.769 0.850 0.904 Least Conidence 0.294 0.527 0.709 0.825 0.892 0.922 0.946

Margin 0.214 0.398 0.549 0.672 0.769 0.851 0.908 Margin 0.276 0.525 0.700 0.819 0.883 0.913 0.944

Vanilla SM 0.223 0.405 0.545 0.670 0.769 0.850 0.904 Vanilla SM 0.294 0.527 0.709 0.825 0.892 0.922 0.946

PCS 0.214 0.398 0.549 0.672 0.769 0.851 0.908 PCS 0.276 0.525 0.700 0.819 0.883 0.913 0.944

GraphSAGE

Random 0.101 0.206 0.311 0.417 0.515 0.609 0.693

GraphSAGE

Random 0.095 0.194 0.298 0.398 0.498 0.596 0.697

KMGP 0.295 0.490 0.617 0.723 0.795 0.845 0.888 KMGP 0.250 0.431 0.544 0.644 0.706 0.819 0.892

DeepGini 0.216 0.375 0.512 0.622 0.719 0.808 0.877 DeepGini 0.260 0.461 0.615 0.731 0.821 0.885 0.934

Entropy 0.214 0.366 0.492 0.592 0.693 0.749 0.801 Entropy 0.258 0.451 0.577 0.653 0.720 0.769 0.816

Least Conidence 0.246 0.427 0.570 0.678 0.772 0.845 0.905 Least Conidence 0.260 0.475 0.642 0.769 0.865 0.928 0.966

Margin 0.234 0.430 0.578 0.688 0.776 0.850 0.907 Margin 0.238 0.450 0.616 0.755 0.856 0.922 0.962

Vanilla SM 0.246 0.427 0.570 0.678 0.772 0.845 0.905 Vanilla SM 0.260 0.475 0.642 0.769 0.865 0.928 0.966

PCS 0.234 0.430 0.578 0.688 0.776 0.850 0.907 PCS 0.238 0.450 0.616 0.755 0.856 0.922 0.962

CiteSeer

TAGCN

Random 0.101 0.196 0.297 0.383 0.482 0.586 0.684

LastFM

TAGCN

Random 0.100 0.203 0.299 0.401 0.497 0.596 0.697

KMGP 0.454 0.759 0.884 0.919 0.939 0.954 0.975 KMGP 0.336 0.588 0.697 0.754 0.813 0.859 0.893

DeepGini 0.295 0.509 0.669 0.781 0.852 0.892 0.928 DeepGini 0.205 0.359 0.495 0.607 0.702 0.782 0.856

Entropy 0.293 0.503 0.658 0.766 0.842 0.886 0.918 Entropy 0.205 0.360 0.496 0.609 0.707 0.788 0.864

Least Conidence 0.296 0.539 0.724 0.830 0.899 0.932 0.962 Least Conidence 0.213 0.384 0.532 0.657 0.758 0.841 0.895

Margin 0.282 0.525 0.708 0.815 0.879 0.934 0.970 Margin 0.215 0.388 0.532 0.656 0.750 0.817 0.871

Vanilla SM 0.296 0.539 0.724 0.830 0.899 0.932 0.962 Vanilla SM 0.213 0.384 0.532 0.657 0.758 0.841 0.895

PCS 0.282 0.525 0.708 0.815 0.879 0.934 0.970 PCS 0.215 0.388 0.532 0.656 0.750 0.817 0.871

GAT

Random 0.099 0.192 0.294 0.392 0.478 0.578 0.679

GAT

Random 0.101 0.201 0.298 0.396 0.497 0.595 0.696

KMGP 0.384 0.704 0.854 0.884 0.909 0.933 0.952 KMGP 0.347 0.607 0.743 0.788 0.826 0.860 0.894

DeepGini 0.249 0.418 0.569 0.682 0.776 0.853 0.908 DeepGini 0.215 0.395 0.534 0.624 0.698 0.771 0.838

Entropy 0.245 0.411 0.559 0.676 0.763 0.840 0.897 Entropy 0.216 0.395 0.535 0.626 0.701 0.774 0.842

Least Conidence 0.265 0.480 0.643 0.770 0.848 0.906 0.954 Least Conidence 0.223 0.407 0.560 0.686 0.782 0.844 0.890

Margin 0.254 0.469 0.653 0.781 0.860 0.912 0.956 Margin 0.211 0.397 0.550 0.679 0.768 0.832 0.876

Vanilla SM 0.265 0.480 0.643 0.770 0.848 0.906 0.954 Vanilla SM 0.223 0.407 0.560 0.686 0.782 0.844 0.890

PCS 0.254 0.469 0.653 0.781 0.860 0.912 0.956 PCS 0.211 0.397 0.550 0.679 0.768 0.832 0.876

GCN

Random 0.097 0.197 0.291 0.398 0.505 0.596 0.695

GCN

Random 0.098 0.202 0.302 0.403 0.503 0.602 0.704

KMGP 0.489 0.705 0.777 0.820 0.848 0.886 0.919 KMGP 0.396 0.635 0.713 0.757 0.808 0.850 0.889

DeepGini 0.323 0.498 0.623 0.736 0.829 0.878 0.922 DeepGini 0.214 0.364 0.488 0.589 0.676 0.756 0.829

Entropy 0.318 0.482 0.604 0.710 0.792 0.846 0.885 Entropy 0.215 0.365 0.490 0.591 0.680 0.761 0.834

Least Conidence 0.356 0.584 0.723 0.833 0.903 0.940 0.962 Least Conidence 0.229 0.407 0.561 0.682 0.774 0.846 0.901

Margin 0.363 0.604 0.735 0.830 0.897 0.939 0.964 Margin 0.229 0.412 0.555 0.668 0.756 0.832 0.884

Vanilla SM 0.356 0.584 0.723 0.833 0.903 0.940 0.962 Vanilla SM 0.229 0.407 0.561 0.682 0.774 0.846 0.901

PCS 0.363 0.604 0.735 0.830 0.897 0.939 0.964 PCS 0.229 0.412 0.555 0.668 0.756 0.832 0.884

GraphSAGE

Random 0.107 0.205 0.306 0.403 0.500 0.596 0.691

GraphSAGE

Random 0.096 0.200 0.303 0.400 0.505 0.606 0.704

KMGP 0.372 0.668 0.788 0.841 0.863 0.888 0.914 KMGP 0.379 0.545 0.610 0.722 0.791 0.844 0.885

DeepGini 0.249 0.450 0.586 0.696 0.783 0.857 0.914 DeepGini 0.210 0.352 0.468 0.553 0.644 0.732 0.811

Entropy 0.246 0.442 0.578 0.689 0.771 0.838 0.895 Entropy 0.211 0.354 0.470 0.557 0.650 0.736 0.814

Least Conidence 0.273 0.481 0.638 0.762 0.850 0.913 0.954 Least Conidence 0.223 0.397 0.541 0.658 0.744 0.815 0.867

Margin 0.255 0.466 0.638 0.764 0.861 0.922 0.964 Margin 0.232 0.414 0.566 0.675 0.761 0.822 0.868

Vanilla SM 0.273 0.481 0.638 0.762 0.850 0.913 0.954 Vanilla SM 0.223 0.397 0.541 0.658 0.744 0.815 0.867

PCS 0.255 0.466 0.638 0.764 0.861 0.922 0.964 PCS 0.232 0.414 0.566 0.675 0.761 0.822 0.868

Cora

TAGCN

Random 0.102 0.204 0.309 0.403 0.507 0.592 0.699

PubMed

TAGCN

Random 0.099 0.196 0.297 0.398 0.499 0.601 0.700

PFD (Percentage of Fault Detected) values of all the approaches on diferent ratios of prioritized tests to further

investigate the efectiveness of feature-based approaches.

Results: The experimental results of this research question are exhibited in Table 5, Table 6 and Table 7. Table 5

presents the comparison results in terms of APFD, while Table 6 and Table 7 present the comparison results in

terms of PFD.

Among all the GraphPrior approaches, RFGP demonstrates the highest level of efectiveness in most

cases. Table 5 exhibits the comparison results among KMGP (i.e., the killing-based GraphPrior approach) and

the feature-based GraphPrior approaches in terms of APFD. The results demonstrate RFGP outperforms other

GraphPrior approaches on average. Moreover, the average APFD values of RFGP exceed that of KMGP by around

0.02. Additionally, across diferent subjects, RFGP outperforms other GraphPrior approaches in the majority of

cases. To provide a more detailed analysis, Table 6 and Table 7 exhibit the comparison results of all GraphPrior

approaches in terms of PFD. The indings also conirm that RFGP is the most efective GraphPrior approach.

Furthermore, Table 7 indicates that, on average, RFGP is consistently more efective than other GraphPrior

approaches across diferent test prioritization ratios. Figure 3 presents some examples aimed at providing a more

visually intuitive understanding of the performance of the various GraphPrior approaches. Collectively, these

results suggest that RFGP is the most efective GraphPrior approach for the evaluated datasets.

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 19

Table 4. Average comparison results among KMGP and the compared approaches in terms of PFD
#Best case in PFD Average PFD

Data Approaches
PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70 PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

KMGP 4 4 4 4 3 1 1 0.285 0.492 0.644 0.742 0.803 0.844 0.884

DeepGini 0 0 0 0 0 0 0 0.208 0.371 0.509 0.623 0.725 0.810 0.878

Entropy 0 0 0 0 0 0 0 0.206 0.366 0.498 0.607 0.707 0.783 0.844

Least Conidence 0 0 0 0 0 0 0 0.232 0.411 0.552 0.672 0.766 0.845 0.902

Margin 0 0 0 0 0 0 0 0.222 0.407 0.557 0.680 0.778 0.852 0.906

Vanilla SM 0 0 0 0 0 0 0 0.232 0.411 0.552 0.672 0.766 0.845 0.902

PCS 0 0 0 0 1 3 3 0.222 0.407 0.557 0.680 0.778 0.852 0.906

CiteSeer

Random 0 0 0 0 0 0 0 0.099 0.197 0.299 0.394 0.494 0.593 0.689

KMGP 4 4 4 3 3 2 1 0.424 0.709 0.825 0.866 0.889 0.915 0.940

DeepGini 0 0 0 0 0 0 0 0.279 0.468 0.611 0.723 0.810 0.870 0.918

Entropy 0 0 0 0 0 0 0 0.275 0.459 0.599 0.710 0.792 0.852 0.898

Least Conidence 0 0 0 0 0 0 0 0.297 0.521 0.681 0.798 0.875 0.922 0.958

Margin 0 0 0 0 0 0 0 0.288 0.516 0.683 0.797 0.874 0.926 0.963

Vanilla SM 0 0 0 1 1 1 0 0.297 0.521 0.681 0.798 0.875 0.922 0.958

PCS 0 0 0 0 1 3 0.288 0.516 0.683 0.797 0.874 0.926 0.963

Cora

Random 0 0 0 0 0 0 0 0.101 0.199 0.300 0.399 0.497 0.590 0.691

KMGP 3 2 2 1 1 1 1 0.336 0.561 0.665 0.737 0.809 0.864 0.913

DeepGini 0 0 0 0 0 0 0 0.253 0.448 0.591 0.703 0.787 0.855 0.907

Entropy 0 0 0 0 0 0 0 0.246 0.407 0.505 0.576 0.637 0.692 0.755

Least Conidence 0 0 0 0 0 0 0 0.272 0.490 0.656 0.774 0.857 0.908 0.944

Margin 0 0 0 0 0 0 0 0.263 0.485 0.650 0.772 0.854 0.905 0.943

Vanilla SM 1 2 2 3 3 3 3 0.272 0.490 0.656 0.774 0.857 0.908 0.944

PCS 0 0 0 0 0 0 0 0.263 0.485 0.65 0.772 0.854 0.905 0.943

LastFM

Random 0 0 0 0 0 0 0 0.098 0.199 0.299 0.399 0.498 0.595 0.698

KMGP 4 4 4 4 4 4 2 0.364 0.593 0.690 0.755 0.809 0.853 0.890

DeepGini 0 0 0 0 0 0 0 0.211 0.367 0.496 0.593 0.679 0.760 0.833

Entropy 0 0 0 0 0 0 0 0.211 0.368 0.497 0.595 0.684 0.764 0.838

Least Conidence 0 0 0 0 0 0 0 0.222 0.398 0.548 0.670 0.764 0.836 0.888

Margin 0 0 0 0 0 0 2 0.221 0.402 0.550 0.669 0.758 0.825 0.874

Vanilla SM 0 0 0 0 0 0 0 0.222 0.398 0.548 0.670 0.764 0.836 0.888

PCS 0 0 0 0 0 0 0 0.221 0.402 0.550 0.669 0.758 0.825 0.874

PubMed

Random 0 0 0 0 0 0 0 0.098 0.199 0.300 0.399 0.501 0.601 0.701

Additionally, although the killing-based GraphPrior approach, KMGP, shows good efectiveness in some speciic

datasets, its average efectiveness is lower than several feature-based GraphPrior approaches, such as RFGP,

LGGP, and XGGP. This result suggests that KMGP is less stable compared to some feature-based approaches. For

example, in Figure 3(b), we can see that KMGP (represented by the red line) is less efective than other GraphPrior

approaches. In fact, the main diference between KMGP and feature-based GraphPrior approaches lies in their

strategy for utilizing mutation results. Speciically, KMGP treats all mutated models as having equal importance,

whereas feature-based GraphPrior approaches, such as RFGP, employ ranking models to assign higher weights to

the more important mutated models, thereby better utilizing mutation results for test prioritization. The superior

performance of RFGP indicates that the random forest algorithm it utilizes can efectively identify important

mutated models and assign them high weights.

The eiciency of GraphPrior (all the six approaches) is acceptable. Table 8 illustrates the eiciency of

GraphPrior in comparison with other approaches. The time cost of GraphPrior can be decomposed into three

phases, namely mutant generation, training, and execution. Mutant generation involves the production of mutated

models based on retraining the original GNN model. The training time represents the average duration needed for

training a ranking model. Finally, execution time denotes the average duration expended on test prioritization. By

decomposing the time cost into these distinct phases, we provide a more detailed understanding of the eiciency

of GraphPrior in contrast to other approaches. As evident from Table 8, the average execution time of GraphPrior

for test prioritization is 40 seconds, with the most time-consuming phase being mutant generation, which takes

around 35 minutes. In contrast, the average execution time of the compared approaches is less than one second.

Although GraphPrior is not as eicient as the compared approaches, it provides a viable alternative to costly and

time-consuming manual labeling, and its total time cost remains acceptable in real-world scenarios.

Answer to RQ2: Among all the GraphPrior approaches, RFGP demonstrates the highest level of efectiveness in

most cases. The eiciency of GraphPrior (all the six approaches) is acceptable.

ACM Trans. Softw. Eng. Methodol.



20 • Dang and Li et al.

Table 5. Efectiveness comparison among KMGP and the feature-based GraphPrior approaches in terms of APFD

Approaches
Data Model

DGGP LGGP XGGP LRGP RFGP KMGP

GAT 0.633 0.678 0.669 0.651 0.675 0.708

GCN 0.682 0.695 0.690 0.678 0.694 0.701

GraphSAGE 0.656 0.694 0.699 0.682 0.710 0.739
CiteSeer

TAGCN 0.652 0.681 0.694 0.660 0.696 0.712

GAT 0.749 0.785 0.795 0.767 0.811 0.841

GCN 0.778 0.791 0.791 0.784 0.806 0.812

GraphSAGE 0.764 0.791 0.793 0.784 0.794 0.792
Cora

TAGCN 0.777 0.785 0.785 0.778 0.800 0.782

GAT 0.799 0.814 0.812 0.802 0.826 0.801

GCN 0.796 0.811 0.809 0.802 0.816 0.761

GraphSAGE 0.771 0.785 0.780 0.778 0.789 0.702
LastFM

TAGCN 0.763 0.781 0.776 0.770 0.779 0.673

GAT 0.740 0.774 0.768 0.763 0.773 0.735

GCN 0.743 0.749 0.745 0.746 0.750 0.748

GraphSAGE 0.743 0.776 0.767 0.768 0.774 0.747
PubMed

TAGCN 0.701 0.780 0.773 0.765 0.768 0.720

Average 0.734 0.761 0.759 0.749 0.766 0.748

Table 6. Efectiveness comparison among KMGP and the feature-based GraphPrior approaches in terms of PFD
Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70 Data Model Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

KMGP 0.264 0.464 0.629 0.750 0.812 0.841 0.875 KMGP 0.389 0.683 0.810 0.869 0.902 0.927 0.945

DNGP 0.252 0.460 0.596 0.647 0.693 0.722 0.753 DNGP 0.382 0.728 0.848 0.863 0.883 0.905 0.926

LGGP 0.251 0.465 0.621 0.715 0.759 0.791 0.833 LGGP 0.397 0.740 0.861 0.889 0.904 0.924 0.942

LRGP 0.244 0.467 0.611 0.683 0.721 0.750 0.788 LRGP 0.389 0.729 0.848 0.876 0.892 0.910 0.929

RFGP 0.257 0.470 0.619 0.697 0.743 0.781 0.827 RFGP 0.404 0.746 0.874 0.906 0.927 0.944 0.960

GAT

XGGP 0.256 0.464 0.618 0.702 0.740 0.771 0.817

GAT

XGGP 0.393 0.737 0.856 0.886 0.901 0.921 0.942

KMGP 0.278 0.492 0.652 0.723 0.771 0.811 0.865 KMGP 0.403 0.648 0.728 0.770 0.830 0.868 0.915

DNGP 0.248 0.479 0.643 0.699 0.748 0.794 0.843 DNGP 0.412 0.717 0.814 0.849 0.877 0.906 0.93

LGGP 0.273 0.483 0.651 0.717 0.764 0.803 0.856 LGGP 0.428 0.730 0.830 0.873 0.898 0.921 0.945

LRGP 0.251 0.484 0.643 0.698 0.745 0.787 0.832 LRGP 0.424 0.717 0.817 0.859 0.886 0.912 0.937

RFGP 0.272 0.486 0.653 0.716 0.762 0.807 0.852 RFGP 0.431 0.735 0.842 0.881 0.906 0.927 0.949

GCN

XGGP 0.265 0.481 0.650 0.711 0.760 0.804 0.848

GCN

XGGP 0.424 0.724 0.826 0.869 0.895 0.918 0.942

KMGP 0.306 0.525 0.679 0.774 0.835 0.879 0.910 KMGP 0.302 0.482 0.580 0.668 0.800 0.842 0.902

DNGP 0.271 0.511 0.635 0.670 0.695 0.729 0.771 DNGP 0.335 0.622 0.766 0.837 0.871 0.899 0.924

LGGP 0.287 0.515 0.680 0.733 0.767 0.797 0.831 LGGP 0.344 0.634 0.784 0.858 0.890 0.918 0.946

LRGP 0.273 0.512 0.671 0.708 0.737 0.767 0.806 LRGP 0.342 0.626 0.773 0.848 0.881 0.907 0.936

RFGP 0.287 0.515 0.684 0.730 0.775 0.816 0.865 RFGP 0.348 0.636 0.787 0.865 0.898 0.925 0.947

GraphSAGE

XGGP 0.283 0.516 0.661 0.703 0.753 0.800 0.851

GraphSAGE

XGGP 0.343 0.630 0.774 0.848 0.881 0.910 0.941

KMGP 0.295 0.490 0.617 0.723 0.795 0.845 0.888 KMGP 0.250 0.431 0.544 0.644 0.706 0.819 0.892

DNGP 0.285 0.504 0.578 0.628 0.682 0.740 0.784 DNGP 0.294 0.552 0.742 0.840 0.884 0.915 0.936

LGGP 0.298 0.513 0.651 0.700 0.737 0.773 0.811 LGGP 0.299 0.562 0.758 0.865 0.914 0.944 0.964

LRGP 0.292 0.507 0.587 0.640 0.692 0.749 0.799 LRGP 0.295 0.555 0.747 0.846 0.896 0.927 0.950

RFGP 0.294 0.511 0.662 0.694 0.747 0.793 0.845 RFGP 0.300 0.561 0.756 0.867 0.915 0.942 0.961

CiteSeer

TAGCN

XGGP 0.297 0.510 0.636 0.695 0.748 0.801 0.849

LastFM

TAGCN

XGGP 0.297 0.558 0.751 0.860 0.911 0.936 0.960

KMGP 0.454 0.759 0.884 0.919 0.939 0.954 0.975 KMGP 0.336 0.588 0.697 0.754 0.813 0.859 0.893

DNGP 0.383 0.722 0.791 0.800 0.814 0.827 0.848 DNGP 0.334 0.631 0.730 0.767 0.803 0.843 0.883

LGGP 0.427 0.724 0.823 0.836 0.848 0.867 0.894 LGGP 0.363 0.643 0.763 0.816 0.853 0.893 0.932

LRGP 0.361 0.725 0.826 0.834 0.845 0.858 0.871 LRGP 0.354 0.632 0.746 0.803 0.841 0.881 0.919

RFGP 0.428 0.730 0.869 0.882 0.894 0.909 0.928 RFGP 0.362 0.639 0.763 0.815 0.853 0.894 0.929

GAT

XGGP 0.375 0.729 0.849 0.870 0.885 0.902 0.916

GAT

XGGP 0.360 0.640 0.756 0.806 0.844 0.886 0.921

KMGP 0.384 0.704 0.854 0.884 0.909 0.933 0.952 KMGP 0.347 0.607 0.743 0.788 0.826 0.860 0.894

DNGP 0.359 0.691 0.814 0.844 0.870 0.893 0.914 DNGP 0.347 0.629 0.739 0.779 0.816 0.851 0.885

LGGP 0.357 0.678 0.831 0.862 0.889 0.913 0.932 LGGP 0.355 0.634 0.746 0.785 0.823 0.857 0.891

LRGP 0.359 0.687 0.823 0.853 0.880 0.902 0.920 LRGP 0.353 0.629 0.741 0.782 0.818 0.854 0.888

RFGP 0.379 0.691 0.848 0.876 0.900 0.928 0.947 RFGP 0.354 0.629 0.745 0.787 0.824 0.858 0.892

GCN

XGGP 0.365 0.682 0.830 0.861 0.885 0.911 0.930

GCN

XGGP 0.348 0.629 0.740 0.780 0.818 0.853 0.886

KMGP 0.489 0.705 0.777 0.820 0.848 0.886 0.919 KMGP 0.396 0.635 0.713 0.757 0.808 0.850 0.889

DNGP 0.480 0.705 0.736 0.776 0.805 0.845 0.879 DNGP 0.396 0.670 0.717 0.753 0.791 0.833 0.872

LGGP 0.475 0.721 0.772 0.818 0.857 0.895 0.924 LGGP 0.409 0.684 0.758 0.803 0.843 0.882 0.917

LRGP 0.474 0.728 0.776 0.802 0.832 0.863 0.906 LRGP 0.406 0.677 0.744 0.791 0.833 0.874 0.909

RFGP 0.487 0.736 0.771 0.803 0.848 0.896 0.923 RFGP 0.408 0.684 0.758 0.802 0.843 0.881 0.914

GraphSAGE

XGGP 0.479 0.718 0.760 0.803 0.854 0.894 0.939

GraphSAGE

XGGP 0.404 0.678 0.748 0.793 0.832 0.871 0.907

KMGP 0.372 0.668 0.788 0.841 0.863 0.888 0.914 KMGP 0.379 0.545 0.610 0.722 0.791 0.844 0.885

DNGP 0.347 0.671 0.797 0.844 0.870 0.891 0.912 DNGP 0.402 0.593 0.644 0.692 0.734 0.777 0.828

LGGP 0.357 0.668 0.804 0.863 0.889 0.914 0.930 LGGP 0.415 0.631 0.731 0.804 0.865 0.910 0.946

LRGP 0.347 0.669 0.799 0.848 0.871 0.891 0.914 LRGP 0.409 0.618 0.707 0.784 0.840 0.889 0.927

RFGP 0.376 0.678 0.820 0.872 0.895 0.924 0.943 RFGP 0.409 0.621 0.722 0.795 0.847 0.889 0.923

Cora

TAGCN

XGGP 0.361 0.670 0.796 0.852 0.880 0.904 0.926

PubMed

TAGCN

XGGP 0.410 0.627 0.722 0.796 0.852 0.899 0.934

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 21

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���
�
�
�

����

����

����

����

����

����

(a) Cora, TAGCN

��� ��� ��� ��� ��� ��� ���

���

���

���

���

���

���

���

�
�
�

����

����

����

����

����

����

(b) LastFM, GraphSAGE

Fig. 3. Test prioritization efectiveness of the six GraphPrior approaches for Cora with TAGCN and LastFM with GraphSAGE.
X-Axis: the percentage of prioritized tests; Y-Axis: the percentage of detected miscalssified tests

Table 7. Average efectiveness comparison among KMGP and the feature-based GraphPrior approaches in terms of PFD

Average PFD
Approaches

PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

KMGP 0.353 0.589 0.707 0.775 0.828 0.869 0.907

DNGP 0.346 0.618 0.724 0.768 0.802 0.836 0.868

LGGP 0.358 0.627 0.754 0.809 0.844 0.875 0.906

LRGP 0.348 0.623 0.741 0.791 0.826 0.858 0.890

RFGP 0.362 0.629 0.761 0.812 0.849 0.882 0.913

XGGP 0.354 0.624 0.748 0.802 0.840 0.874 0.907

Table 8. Time comparison between GraphPrior and compared approaches

Time cost parts
Approaches

GraphPrior DeepGini Least Conidence Margin Vanilla SM PCS Entropy Rndom

Mutant Generation 35 min - - - - - - -

Training 3 min - - - - - - -

Execution 40 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s

5.3 RQ3: Efectiveness of GraphPrior on adversarial test inputs

Objectives: We further investigate the efectiveness of GraphPrior on adversarial test data. Here, we adopt eight

graph adversarial attacks (cf. Section 4.4) from the existing studies [3, 48, 86, 100]. The results can answer whether

GraphPrior can perform well on adversarial test sets for GNNs, compared with existing approaches that can be

used to identify possibly-misclassiied test inputs.

Experimental design: We evaluate GraphPrior on adversarial datasets generated by 8 graph attack tech-

niques [100] [86] [3] [48]. In this research question, we set the attack level as 0.3, which means that 30% of the

test inputs in the test set are adversarial tests. It is important to note that a high attack level, such as 90%, would

result in a signiicant ratio of adversarial test inputs. Under such circumstances, a larger number of bug cases

could be selected by any of the prioritization methods, making it diicult to demonstrate the efectiveness of

GraphPrior. Thus, in order to ensure an efective evaluation of GraphPrior and the compared approaches, we

selected a reasonable attack level (i.e., 0.3), which can limit the proportion of adversarial test inputs. Totally, in

this research question, we evaluate GraphPrior on 108 subjects (4 GNN models, 4 datasets and 8 graph adversarial

attacks). We then ran all six GraphPrior approaches and the compared approaches on the subjects, and calculated

ACM Trans. Softw. Eng. Methodol.



22 • Dang and Li et al.

Table 9. Efectiveness comparison among GraphPrior and the compared approaches in terms of APFD
Approaches

Attack
DNGP KMGP LGGP XGGP LRGP RFGP DeepGini Least Conidence Margin Random Vanilla SM PCS Entropy

DICE 0.672 0.710 0.707 0.706 0.695 0.713 0.667 0.698 0.693 0.500 0.698 0.693 0.642

MMA 0.691 0.725 0.721 0.724 0.705 0.731 0.684 0.717 0.718 0.499 0.717 0.718 0.672

NEAA 0.698 0.723 0.733 0.732 0.721 0.738 0.676 0.711 0.703 0.499 0.711 0.703 0.646

NEAR 0.737 0.735 0.767 0.764 0.757 0.774 0.678 0.719 0.717 0.499 0.719 0.717 0.644

PGD 0.718 0.730 0.743 0.743 0.729 0.753 0.693 0.728 0.727 0.498 0.728 0.727 0.656

RAA 0.659 0.701 0.697 0.696 0.684 0.703 0.671 0.702 0.695 0.499 0.702 0.695 0.648

RAF 0.657 0.702 0.696 0.696 0.683 0.703 0.670 0.701 0.694 0.500 0.701 0.694 0.646

RAR 0.703 0.724 0.735 0.734 0.723 0.742 0.673 0.708 0.707 0.498 0.708 0.707 0.645

Average 0.692 0.718 0.725 0.724 0.712 0.732 0.677 0.711 0.707 0.499 0.711 0.707 0.650

the APFD values of each approach with each graph adversarial attack. Moreover, we calculated the PFD values of

each approach in terms of diferent ratios of prioritized values.

Results: GraphPrior approaches outperform the compared approaches (i.e., DeepGini, Least Conidence,

Margin, Vanilla SM, PCS, Entropy and Random) in the context of graph adversarial attacks. Table 9

shows the test prioritization efectiveness (measured by APFD) of GraphPrior and the compared approaches

across a variety of adversarial attacks. The experimental results indicate that the GraphPrior approaches exhibit

superior performance, with the average APFD values ranging from 0.692 to 0.732, while the compared approaches

range from 0.499 to 0.711. Notably, ive GraphPrior approaches, namely RFGP, XGGP, LRGP, LGGP, and KMGP,

outperform all the compared approaches on average across all the adversarial attacks. Table 10 presents the

comparison results of GraphPrior and the compared approaches in terms of PFD, conirming the superior

performance of GraphPrior from both the perspective of average efectiveness and the number of best cases.

Furthermore, Table 11 presents the overall comparison results in terms of PFD, which further support the above

conclusions by demonstrating that the largest average efectiveness of each case is achieved by the GraphPrior

approaches, along with the largest number of best cases.

Among all the GraphPrior approaches proposed, the efectiveness of RFGP stands out as the most

notable. From Table 9, in which the efectiveness is measured by the APFD values, we see that RFGP performs

the best across diferent adversarial attacks, with the average improvement of 2.95%~46.69% compared with

uncertainty-based test prioritization approaches. Table 10 presents the test prioritization efectiveness in terms of

PFD. The column #Best case in PFD denotes the number of best cases a test prioritization approach achieved

across all cases (i.e., all subjects of a graph adversarial attack). The results demonstrate that, against a majority

of adversarial attacks, RFGP consistently outperforms all other GraphPrior approaches in terms of average

efectiveness. Moreover, Table 11 presents the overall comparison results in terms of PFD, further indicating that

RFGP outperforms all other approaches in terms of average efectiveness. Notably, when prioritizing 20% to 40%

of the test inputs, RFGP consistently exhibits the highest number of best cases across a variety of subjects.

Answer to RQ3: GraphPrior approaches outperform the compared approaches (i.e., DeepGini, Least Conidence,

Margin, Vanilla SM, PCS, Entropy and Random) in the context of graph adversarial attacks. Among all the

GraphPrior approaches proposed, the efectiveness of RFGP stands out as the most notable.

5.4 RQ4: Efectiveness of GraphPrior against adversarial atacks at varying atack levels

Objectives: We investigate the efectiveness of GraphPrior on adversarial test inputs with diferent attack levels.

Experimental design: To investigate the efectiveness of GraphPrior on test inputs generated via diferent

levels of graph adversarial attacks, we set diferent attack levels (i.e., 0.1, 0.2, 0.3 and 0.4) on 8 graph adversarial

techniques (i.e., DICE, Min-max attack, NEAA, NEAR, PGD attack, RAA, RAF, and RAR). As mentioned in RQ3,

the attack level indicates the ratio of adversarial inputs in the dataset. For example, 0.4 means that 40% tests in the

dataset are adversarial tests. We select these attack levels because a high attack level (e.g., 80%) would engender a

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 23

Table 10. Efectiveness comparison of GraphPrior and the compared approaches on adversarial test inputs in terms of PFD
#Best cases in PFD Average PFD #Best cases in PFD Average PFD

Attack Approaches
PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40 Attack Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40

DNGP 0 2 0 0 0.289 0.553 0.705 0.769 DNGP 0 1 1 0 0.309 0.572 0.701 0.752

KMGP 7 1 2 2 0.300 0.520 0.665 0.754 KMGP 7 4 3 3 0.336 0.573 0.714 0.789

LGGP 1 0 0 0 0.301 0.557 0.719 0.801 LGGP 0 0 0 0 0.307 0.563 0.707 0.781

LRGP 0 0 0 0 0.291 0.555 0.711 0.788 LRGP 0 2 0 0 0.305 0.570 0.697 0.762

RFGP 4 9 10 10 0.304 0.561 0.729 0.818 RFGP 1 1 4 5 0.326 0.571 0.727 0.806

XGGP 0 0 0 0 0.293 0.556 0.716 0.799 XGGP 0 0 0 0 0.300 0.558 0.703 0.774

DeepGini 0 0 0 0 0.215 0.394 0.535 0.655 DeepGini 0 0 0 0 0.238 0.413 0.556 0.672

Entropy 0 0 0 0 0.212 0.381 0.507 0.611 Entropy 0 0 0 0 0.236 0.409 0.547 0.660

Least Conidence 0 0 0 0 0.233 0.428 0.590 0.713 Least Conidence 0 0 0 0 0.255 0.451 0.604 0.727

Margin 0 0 0 0 0.225 0.423 0.584 0.711 Margin 0 0 0 0 0.242 0.449 0.606 0.730

PCS 0 0 0 0 0.225 0.423 0.584 0.711 PCS 0 0 0 0 0.242 0.449 0.606 0.730

DICE

Vanilla SM 0 0 0 0 0.233 0.428 0.590 0.713

PGD

Vanilla SM 0 0 0 0 0.255 0.451 0.604 0.727

Random 0 0 0 0 0.100 0.200 0.299 0.398 Random 0 0 0 0 0.098 0.199 0.299 0.397

DNGP 0 2 0 0 0.320 0.598 0.729 0.785 DNGP 0 1 0 0 0.303 0.573 0.719 0.781

KMGP 7 5 5 4 0.340 0.578 0.701 0.773 KMGP 5 3 2 4 0.308 0.544 0.675 0.755

LGGP 1 1 0 0 0.327 0.597 0.739 0.809 LGGP 6 4 4 3 0.314 0.578 0.734 0.812

LRGP 0 0 0 0 0.320 0.595 0.729 0.793 LRGP 0 1 0 0 0.307 0.574 0.727 0.800

RFGP 4 4 7 8 0.341 0.598 0.754 0.829 RFGP 5 7 10 9 0.315 0.579 0.737 0.821

XGGP 0 0 0 0 0.319 0.592 0.736 0.804 XGGP 0 0 0 0 0.307 0.574 0.730 0.808

DeepGini 0 0 0 0 0.243 0.426 0.568 0.682 DeepGini 0 0 0 0 0.221 0.395 0.538 0.652

Entropy 0 0 0 0 0.240 0.412 0.538 0.635 Entropy 0 0 0 0 0.219 0.387 0.518 0.623

Least Conidence 0 0 0 0 0.263 0.469 0.622 0.741 Least Conidence 0 0 0 0 0.234 0.425 0.582 0.705

Margin 0 0 0 0 0.253 0.463 0.622 0.743 Margin 0 0 0 0 0.220 0.411 0.570 0.698

PCS 0 0 0 0 0.253 0.463 0.622 0.743 PCS 0 0 0 0 0.220 0.411 0.570 0.698

MMA

Vanilla SM 0 0 0 0 0.263 0.469 0.622 0.741

RAA

Vanilla SM 0 0 0 0 0.234 0.425 0.582 0.705

Random 0 0 0 0 0.102 0.202 0.303 0.402 Random 0 0 0 0 0.101 0.201 0.301 0.399

DNGP 0 0 0 0 0.332 0.627 0.783 0.840 DNGP 0 1 0 0 0.295 0.565 0.715 0.780

KMGP 3 2 2 1 0.335 0.589 0.733 0.805 KMGP 7 3 1 3 0.301 0.533 0.673 0.760

LGGP 0 2 0 1 0.343 0.636 0.803 0.877 LGGP 4 5 5 4 0.307 0.568 0.731 0.812

LRGP 1 0 0 0 0.334 0.630 0.795 0.860 LRGP 0 0 0 0 0.298 0.565 0.723 0.798

RFGP 4 4 6 6 0.345 0.640 0.814 0.884 RFGP 5 7 10 9 0.308 0.570 0.736 0.821

XGGP 0 0 0 0 0.336 0.631 0.800 0.869 XGGP 0 0 0 0 0.299 0.565 0.727 0.807

DeepGini 0 0 0 0 0.245 0.433 0.579 0.694 DeepGini 0 0 0 0 0.218 0.394 0.536 0.650

Entropy 0 0 0 0 0.240 0.414 0.538 0.632 Entropy 0 0 0 0 0.216 0.385 0.516 0.620

Least Conidence 0 0 0 0 0.261 0.472 0.638 0.763 Least Conidence 0 0 0 0 0.230 0.422 0.580 0.706

Margin 0 0 0 0 0.245 0.457 0.625 0.757 Margin 0 0 0 0 0.217 0.409 0.567 0.698

PCS 0 0 0 0 0.245 0.457 0.625 0.757 PCS 0 0 0 0 0.217 0.409 0.567 0.698

NEAA

Vanilla SM 0 0 0 0 0.261 0.472 0.638 0.763

RAF

Vanilla SM 0 0 0 0 0.230 0.422 0.580 0.706

Random 0 0 0 0 0.100 0.200 0.301 0.399 Random 0 0 0 0 0.100 0.202 0.301 0.402

DNGP 0 0 0 0 0.322 0.618 0.787 0.848 DNGP 0 2 0 0 0.334 0.606 0.720 0.766

KMGP 1 2 2 1 0.335 0.618 0.780 0.856 KMGP 6 1 1 4 0.341 0.568 0.697 0.772

LGGP 1 0 0 0 0.336 0.620 0.793 0.871 LGGP 2 4 4 4 0.347 0.616 0.752 0.814

LRGP 0 0 0 0 0.326 0.621 0.798 0.866 LRGP 1 0 0 0 0.338 0.611 0.740 0.799

RFGP 2 2 2 3 0.339 0.627 0.810 0.893 RFGP 7 8 11 7 0.348 0.617 0.761 0.823

XGGP 0 0 0 0 0.327 0.620 0.796 0.872 XGGP 0 1 0 1 0.339 0.613 0.749 0.810

DeepGini 0 0 0 0 0.247 0.432 0.576 0.687 DeepGini 0 0 0 0 0.231 0.410 0.551 0.662

Entropy 0 0 0 0 0.244 0.427 0.569 0.675 Entropy 0 0 0 0 0.229 0.400 0.528 0.627

Least Conidence 0 0 0 0 0.256 0.458 0.621 0.747 Least Conidence 0 0 0 0 0.247 0.445 0.603 0.723

Margin 0 0 0 0 0.233 0.431 0.600 0.737 Margin 0 0 0 0 0.243 0.444 0.605 0.727

PCS 0 0 0 0 0.233 0.431 0.600 0.737 PCS 0 0 0 0 0.243 0.444 0.605 0.727

NEAR

Vanilla SM 0 0 0 0 0.256 0.458 0.621 0.747

RAR

Vanilla SM 0 0 0 0 0.247 0.445 0.603 0.723

Random 0 0 0 0 0.101 0.198 0.294 0.391 Random 0 0 0 0 0.099 0.200 0.300 0.401

Table 11. Average efectiveness comparision among GraphPrior and the compared approaches on adversarial test inputs in
terms of PFD

#Best case in PFD Average PFD
Approaches

PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40

DNGP 0 9 1 0 0.313 0.589 0.732 0.790

KMGP 43 21 18 22 0.325 0.565 0.705 0.783

LGGP 15 16 13 12 0.323 0.592 0.747 0.822

LRGP 2 3 0 0 0.315 0.590 0.740 0.808

RFGP 32 42 60 57 0.328 0.595 0.758 0.837

XGGP 0 1 0 1 0.315 0.589 0.745 0.818

DeepGini 0 0 0 0 0.232 0.412 0.555 0.669

Entropy 0 0 0 0 0.23 0.402 0.533 0.635

Least Conidence 0 0 0 0 0.247 0.446 0.605 0.728

Margin 0 0 0 0 0.235 0.436 0.597 0.725

PCS 0 0 0 0 0.235 0.436 0.597 0.725

Vanilla SM 0 0 0 0 0.247 0.446 0.605 0.728

Random 0 0 0 0 0.101 0.202 0.301 0.399

ACM Trans. Softw. Eng. Methodol.



24 • Dang and Li et al.

substantial proportion of adversarial test inputs. Consequently, such circumstances could yield a greater number

of bug cases selected by any prioritization method, thereby afecting the evaluation of GraphPrior. Therefore,

we carefully selected a range of attack levels that are not unduly high for the evaluation of GraphPrior. In this

research question, we totally evaluate GraphPrior and the compared approaches on 432 subjects.

Results: GraphPrior outperforms all the compared approaches on the adversarial test inputs generated

from diferent attack levels. More speciically, Table 12 presents the efectiveness of GraphPrior and the

compared approaches under the attacks DICE, MMA, RAA and RAR, with the attack level ranging from 0.1 to 0.4.

In this research question, we totally apply 8 adversarial attacks. The remaining experimental results (i.e., results

of the other four adversarial attacks) are presented on our Github2.

The experimental results presented in Table 12 demonstrate that GraphPrior, consisting of DNGP, KMGP,

LGGP, LRGP, RFGP and XGGP, outperforms all the compared approaches across diferent levels of the adversarial

attacks.

Table 13 demonstrates the overall comparison results among GraphPrior and the compared approaches across 8

adversarial attacks with difernet attack levels. Speciically, we evaluate the efectiveness of each test prioritization

approach in terms of the number of cases where it performed the best, as well as its average PFD values across

diferent attack levels. For example, the "All-0.1" refers to the overall results of each approach under all the

adversarial attacks with an attack level of 0.1. Table 13 demonstrates that GraphPrior outperforms all compared

approaches, achieving the best efectiveness in 99.94% of the tested cases. Only one best case is achieved by the

compared approach margin. Furthermore, GraphPrior approaches such as RFGP and KMGP consistently exhibit

the largest average PFD values across diferent attack levels.

Among all the GraphPrior approaches, RFGP and KMGP exhibit superior performance across

diferent attack levels in comparison to other GraphPrior approaches. In Table 12, we see that, across the

attack levels from 0.1 to 0.4, RFGP performs the best in the largest number of best cases, followed by KMGP. For

example, when the attack level is 0.1, RFGP performs the best in 46.47% cases. KMGP performs the best in 35.33%

cases. Notably, when prioritizing 10% test inputs, KMGP takes the largest number of best cases. When the attack

level is 0.2~0.4, RFGP takes the largest number of best cases.

Additionally, our experimental results, as illustrated in Table 13, reveal that the RFGP technique exhibits

the largest average PFD values when compared to the other evaluated approaches across varying attack levels.

Speciically, when 40% of the test inputs are prioritized, RFGP achieves a PFD value ranging from 0.832 to 0.836,

which indicates the ability to detect more than 80% of misclassiied tests.

Answer to RQ4: GraphPrior outperforms all the compared approaches on the adversarial test inputs generated

from diferent attack levels. Among all the GraphPrior approaches, RFGP and KMGP exhibit superior performance

across diferent attack levels in comparison to other GraphPrior approaches.

5.5 RQ5: Contribution analysis of diferent mutation rules

Objectives: For each evaluated GNN model, we investigate which mutated rules generate more top contributing

mutated models for test prioritization.

Experimental design: In our study, we employed one or more mutation rules to generate a mutated model.

Each mutated model corresponds to one mutation feature. Thus, to evaluate the importance of diferent mutation

rules, we initially evaluate the importance of various mutation features. We adopted the cover metric of the

XGBoost algorithm to identify the importance of each mutation feature for ranking models. A detailed account of

this approach is presented in Section 4.5. After computing the importance scores of all the mutated features, we

2https://github.com/yinghuali/GraphPrior/tree/main/mutation/adv_res

ACM Trans. Softw. Eng. Methodol.

https://github.com/yinghuali/GraphPrior/tree/main/mutation/adv_res


GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 25

Table 12. Comparison results of GraphPrior and the compared approaches against diferent levels of the atacks DICE, MMA,
RAA and RAR in terms of PFD

#Best cases in PFD Average PFD #Best cases in PFD Average PFD
Attack Approaches

PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40 Attack Approaches PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40

DNGP 0 1 0 0 0.322 0.595 0.724 0.775 DNGP 0 0 0 0 0.333 0.604 0.725 0.774
KMGP 7 3 2 5 0.335 0.568 0.700 0.776 KMGP 4 3 5 5 0.336 0.574 0.696 0.770
LGGP 1 0 1 0 0.335 0.600 0.745 0.811 LGGP 3 6 4 4 0.343 0.611 0.751 0.814
LRGP 0 0 0 0 0.323 0.597 0.736 0.797 LRGP 1 0 0 0 0.337 0.607 0.743 0.803
RFGP 4 7 9 7 0.338 0.605 0.757 0.828 RFGP 8 7 7 7 0.345 0.613 0.757 0.822
XGGP 0 1 0 0 0.325 0.599 0.743 0.810 XGGP 0 0 0 0 0.338 0.608 0.749 0.813
DeepGini 0 0 0 0 0.237 0.419 0.559 0.674 DeepGini 0 0 0 0 0.232 0.410 0.549 0.660
Entropy 0 0 0 0 0.233 0.405 0.528 0.627 Entropy 0 0 0 0 0.230 0.399 0.527 0.626
Least Conidence 0 0 0 0 0.256 0.459 0.616 0.736 Least Conidence 0 0 0 0 0.248 0.445 0.602 0.722
Margin 0 0 0 0 0.245 0.451 0.613 0.737 Margin 0 0 0 0 0.236 0.438 0.597 0.720
PCS 0 0 0 0 0.245 0.451 0.613 0.737 PCS 0 0 0 0 0.236 0.438 0.597 0.720

DICE-0.1

Vanilla SM 0 0 0 0 0.256 0.459 0.616 0.736

RAA-0.1

Vanilla SM 0 0 0 0 0.248 0.445 0.602 0.722
Random 0 0 0 0 0.098 0.198 0.296 0.397 Random 0 0 0 0 0.100 0.200 0.301 0.401

DNGP 0 0 0 0 0.305 0.573 0.713 0.772 DNGP 0 0 0 0 0.311 0.584 0.717 0.773
KMGP 6 3 2 3 0.314 0.545 0.678 0.762 KMGP 6 5 4 5 0.318 0.553 0.683 0.762
LGGP 1 2 0 1 0.314 0.576 0.732 0.807 LGGP 4 5 3 3 0.323 0.587 0.736 0.807
LRGP 0 0 0 0 0.304 0.575 0.724 0.795 LRGP 1 1 0 0 0.314 0.586 0.729 0.796
RFGP 5 6 10 8 0.316 0.579 0.741 0.820 RFGP 5 5 9 8 0.324 0.590 0.744 0.818
XGGP 0 1 0 0 0.305 0.574 0.729 0.804 XGGP 0 0 0 0 0.314 0.586 0.734 0.805
DeepGini 0 0 0 0 0.228 0.409 0.552 0.667 DeepGini 0 0 0 0 0.223 0.397 0.540 0.653
Entropy 0 0 0 0 0.225 0.395 0.522 0.624 Entropy 0 0 0 0 0.221 0.388 0.519 0.620
Least Conidence 0 0 0 0 0.244 0.443 0.602 0.724 Least Conidence 0 0 0 0 0.237 0.431 0.588 0.713
Margin 0 0 0 0 0.235 0.435 0.596 0.723 Margin 0 0 0 0 0.226 0.422 0.582 0.709
PCS 0 0 0 0 0.235 0.435 0.596 0.723 PCS 0 0 0 0 0.226 0.422 0.582 0.709

DICE-0.2

Vanilla SM 0 0 0 0 0.244 0.443 0.602 0.724

RAA-0.2

Vanilla SM 0 0 0 0 0.237 0.431 0.588 0.713
Random 0 0 0 0 0.101 0.202 0.302 0.401 Random 0 0 0 0 0.099 0.199 0.298 0.398

DNGP 0 2 0 0 0.289 0.553 0.705 0.769 DNGP 0 1 0 0 0.303 0.573 0.719 0.781
KMGP 7 1 2 2 0.300 0.520 0.665 0.754 KMGP 5 3 2 4 0.308 0.544 0.675 0.755
LGGP 1 0 0 0 0.301 0.557 0.719 0.801 LGGP 6 4 4 3 0.314 0.578 0.734 0.812
LRGP 0 0 0 0 0.291 0.555 0.711 0.788 LRGP 0 1 0 0 0.307 0.574 0.727 0.800
RFGP 4 9 10 10 0.304 0.561 0.729 0.818 RFGP 5 7 10 9 0.315 0.579 0.737 0.821
XGGP 0 0 0 0 0.293 0.556 0.716 0.799 XGGP 0 0 0 0 0.307 0.574 0.730 0.808
DeepGini 0 0 0 0 0.215 0.394 0.535 0.655 DeepGini 0 0 0 0 0.221 0.395 0.538 0.652
Entropy 0 0 0 0 0.212 0.381 0.507 0.611 Entropy 0 0 0 0 0.219 0.387 0.518 0.623
Least Conidence 0 0 0 0 0.233 0.428 0.590 0.713 Least Conidence 0 0 0 0 0.234 0.425 0.582 0.705
Margin 0 0 0 0 0.225 0.423 0.584 0.711 Margin 0 0 0 0 0.220 0.411 0.570 0.698
PCS 0 0 0 0 0.225 0.423 0.584 0.711 PCS 0 0 0 0 0.220 0.411 0.570 0.698

DICE-0.3

Vanilla SM 0 0 0 0 0.233 0.428 0.590 0.713

RAA-0.3

Vanilla SM 0 0 0 0 0.234 0.425 0.582 0.705
Random 0 0 0 0 0.100 0.200 0.299 0.398 Random 0 0 0 0 0.101 0.201 0.301 0.399

DNGP 0 1 2 0 0.276 0.532 0.694 0.770 DNGP 0 1 0 0 0.290 0.554 0.713 0.783
KMGP 7 2 1 1 0.288 0.510 0.647 0.740 KMGP 6 3 1 4 0.294 0.525 0.671 0.761
LGGP 0 1 1 1 0.286 0.535 0.702 0.799 LGGP 4 5 3 3 0.300 0.559 0.726 0.812
LRGP 0 0 1 0 0.277 0.533 0.699 0.785 LRGP 0 1 0 0 0.293 0.556 0.720 0.800
RFGP 5 8 7 10 0.291 0.538 0.708 0.812 RFGP 6 6 12 9 0.302 0.560 0.731 0.823
XGGP 0 0 0 0 0.280 0.532 0.700 0.795 XGGP 0 0 0 0 0.294 0.556 0.724 0.809
DeepGini 0 0 0 0 0.211 0.388 0.533 0.654 DeepGini 0 0 0 0 0.215 0.392 0.535 0.650
Entropy 0 0 0 0 0.209 0.376 0.508 0.613 Entropy 0 0 0 0 0.213 0.384 0.517 0.621
Least Conidence 0 0 0 0 0.226 0.419 0.579 0.708 Least Conidence 0 0 0 0 0.226 0.418 0.576 0.702
Margin 0 0 0 0 0.215 0.406 0.568 0.701 Margin 0 0 0 0 0.210 0.399 0.559 0.689
PCS 0 0 0 0 0.215 0.406 0.568 0.701 PCS 0 0 0 0 0.210 0.399 0.559 0.689

DICE-0.4

Vanilla SM 0 0 0 0 0.226 0.419 0.579 0.708

RAA-0.4

Vanilla SM 0 0 0 0 0.226 0.418 0.576 0.702
Random 0 0 0 0 0.098 0.200 0.300 0.400 Random 0 0 0 0 0.098 0.200 0.300 0.400

DNGP 0 1 0 0 0.329 0.611 0.733 0.781 DNGP 0 0 0 0 0.342 0.613 0.721 0.767
KMGP 7 5 4 4 0.346 0.583 0.708 0.776 KMGP 6 3 3 7 0.348 0.583 0.704 0.774
LGGP 0 1 2 1 0.336 0.609 0.748 0.810 LGGP 4 4 4 1 0.352 0.621 0.753 0.809
LRGP 0 0 0 0 0.330 0.608 0.738 0.800 LRGP 1 0 0 0 0.342 0.616 0.740 0.792
RFGP 5 5 6 7 0.349 0.614 0.763 0.833 RFGP 5 9 8 8 0.357 0.624 0.760 0.817
XGGP 0 0 0 0 0.329 0.607 0.746 0.808 XGGP 0 0 1 0 0.345 0.620 0.748 0.806
DeepGini 0 0 0 0 0.246 0.428 0.568 0.682 DeepGini 0 0 0 0 0.240 0.416 0.552 0.662
Entropy 0 0 0 0 0.241 0.413 0.536 0.634 Entropy 0 0 0 0 0.238 0.404 0.527 0.626
Least Conidence 0 0 0 0 0.269 0.472 0.627 0.745 Least Conidence 0 0 0 0 0.257 0.455 0.609 0.726
Margin 0 0 0 0 0.257 0.467 0.627 0.749 Margin 0 0 0 0 0.248 0.451 0.609 0.729
PCS 0 0 0 0 0.257 0.467 0.627 0.749 PCS 0 0 0 0 0.249 0.451 0.609 0.729

MMA-0.1

Vanilla SM 0 0 0 0 0.269 0.472 0.627 0.745

RAR-0.1

Vanilla SM 0 0 0 0 0.257 0.455 0.609 0.726
Random 0 0 0 0 0.099 0.198 0.296 0.396 Random 0 0 0 0 0.100 0.200 0.301 0.401

DNGP 0 0 0 0 0.328 0.605 0.725 0.775 DNGP 0 1 0 0 0.341 0.614 0.723 0.771
KMGP 6 5 5 4 0.344 0.581 0.705 0.774 KMGP 7 3 0 6 0.346 0.579 0.701 0.775
LGGP 1 2 1 0 0.336 0.605 0.741 0.805 LGGP 4 3 3 3 0.353 0.619 0.751 0.812
LRGP 0 0 0 0 0.331 0.603 0.734 0.794 LRGP 1 1 0 0 0.342 0.615 0.740 0.795
RFGP 5 5 6 7 0.349 0.610 0.758 0.829 RFGP 4 7 13 7 0.356 0.623 0.762 0.822
XGGP 0 0 0 0 0.330 0.601 0.738 0.802 XGGP 0 1 0 0 0.343 0.618 0.748 0.805
DeepGini 0 0 0 0 0.248 0.431 0.573 0.686 DeepGini 0 0 0 0 0.237 0.411 0.550 0.659
Entropy 0 0 0 0 0.245 0.417 0.541 0.639 Entropy 0 0 0 0 0.234 0.401 0.526 0.624
Least Conidence 0 0 0 0 0.267 0.473 0.629 0.746 Least Conidence 0 0 0 0 0.250 0.449 0.604 0.725
Margin 0 0 0 1 0.255 0.466 0.626 0.746 Margin 0 0 0 0 0.244 0.447 0.605 0.728
PCS 0 0 0 0 0.255 0.466 0.626 0.746 PCS 0 0 0 0 0.244 0.447 0.605 0.728

MMA-0.2

Vanilla SM 0 0 0 0 0.267 0.473 0.629 0.746

RAR-0.2

Vanilla SM 0 0 0 0 0.250 0.449 0.604 0.725
Random 0 0 0 0 0.099 0.199 0.297 0.401 Random 0 0 0 0 0.098 0.199 0.297 0.397

DNGP 0 2 0 0 0.320 0.598 0.729 0.785 DNGP 0 2 0 0 0.334 0.606 0.720 0.766
KMGP 7 5 5 4 0.340 0.578 0.701 0.773 KMGP 6 1 1 4 0.341 0.568 0.697 0.772
LGGP 1 1 0 0 0.327 0.597 0.739 0.809 LGGP 2 4 4 4 0.347 0.616 0.752 0.814
LRGP 0 0 0 0 0.320 0.595 0.729 0.793 LRGP 1 0 0 0 0.338 0.611 0.740 0.799
RFGP 4 4 7 8 0.341 0.598 0.754 0.829 RFGP 7 8 11 7 0.348 0.617 0.761 0.823
XGGP 0 0 0 0 0.319 0.592 0.736 0.804 XGGP 0 1 0 1 0.339 0.613 0.749 0.810
DeepGini 0 0 0 0 0.243 0.426 0.568 0.682 DeepGini 0 0 0 0 0.231 0.410 0.551 0.662
Entropy 0 0 0 0 0.240 0.412 0.538 0.635 Entropy 0 0 0 0 0.229 0.400 0.528 0.627
Least Conidence 0 0 0 0 0.263 0.469 0.622 0.741 Least Conidence 0 0 0 0 0.247 0.445 0.603 0.723
Margin 0 0 0 0 0.253 0.463 0.622 0.743 Margin 0 0 0 0 0.243 0.444 0.605 0.727
PCS 0 0 0 0 0.253 0.463 0.622 0.743 PCS 0 0 0 0 0.243 0.444 0.605 0.727

MMA-0.3

Vanilla SM 0 0 0 0 0.263 0.469 0.622 0.741

RAR-0.3

Vanilla SM 0 0 0 0 0.247 0.445 0.603 0.723
Random 0 0 0 0 0.102 0.202 0.303 0.402 Random 0 0 0 0 0.099 0.200 0.300 0.401

DNGP 0 2 0 0 0.322 0.601 0.732 0.787 DNGP 0 1 0 0 0.333 0.607 0.723 0.770
KMGP 7 6 5 5 0.345 0.582 0.711 0.778 KMGP 7 1 1 3 0.337 0.564 0.692 0.771
LGGP 1 3 2 0 0.331 0.598 0.739 0.807 LGGP 3 5 4 3 0.341 0.611 0.749 0.815
LRGP 0 0 0 0 0.324 0.597 0.728 0.790 LRGP 0 2 0 0 0.335 0.609 0.738 0.799
RFGP 4 1 5 7 0.345 0.598 0.754 0.827 RFGP 6 7 10 10 0.345 0.613 0.758 0.824
XGGP 0 0 0 0 0.323 0.592 0.731 0.797 XGGP 0 0 1 0 0.335 0.609 0.745 0.809
DeepGini 0 0 0 0 0.245 0.427 0.568 0.681 DeepGini 0 0 0 0 0.233 0.406 0.547 0.658
Entropy 0 0 0 0 0.242 0.413 0.539 0.636 Entropy 0 0 0 0 0.231 0.398 0.524 0.623
Least Conidence 0 0 0 0 0.265 0.469 0.624 0.741 Least Conidence 0 0 0 0 0.248 0.439 0.596 0.719
Margin 0 0 0 0 0.253 0.464 0.625 0.744 Margin 0 0 0 0 0.243 0.443 0.600 0.723
PCS 0 0 0 0 0.253 0.464 0.625 0.744 PCS 0 0 0 0 0.243 0.443 0.600 0.723

MMA-0.4

Vanilla SM 0 0 0 0 0.265 0.469 0.624 0.741

RAR-0.4

Vanilla SM 0 0 0 0 0.248 0.439 0.596 0.719
Random 0 0 0 0 0.098 0.201 0.300 0.399 Random 0 0 0 0 0.097 0.199 0.299 0.398

selected the top-N important features for each subject and subsequently identiied the top-N mutated models. We

then identiied the mutation rules utilized to generate each mutated model and compared the contributions of

the mutation rules accordingly. Additionally, for diferent subjects in this research question, we generate 80~240

mutated models.

Results: The mutation rule HC made high contributions to the efectiveness of GraphPrior on all the

four types of GNN models. Table 14 to Table 17 illustrate the contributions of diferent mutation rules to the

efectiveness of GraphPrior on diferent GNN models (i.e., GCN, GAT, GraphSAGE and TAGCN). For each GNN

model, we identify the top-N mutated models that made top contributions to the efectiveness of GraphPrior.

The corresponding mutation rules applied to generate each mutated model are highlighted in grey. Table 14

presents the contributions of Top-N mutated models to the efectiveness of GraphPrior for the case of GCN model.

Notably, the mutation rules BIA and HC made contributions to 100% of the top contributing mutated models,

while SL, NOR, CA, and IMP contributed to a lower percentage of the top contributing mutated models. We

ACM Trans. Softw. Eng. Methodol.



26 • Dang and Li et al.

Table 13. Overall comparison results among GraphPrior and the compared approaches on adversarial tests with diferent
atack levels

#Best case in PFD Average PFD
Attack Level Approaches

PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40

DNGP 0 3 0 0 0.334 0.615 0.738 0.784

KMGP 42 27 28 33 0.349 0.594 0.723 0.791

LGGP 13 18 14 11 0.346 0.619 0.760 0.820

LRGP 3 0 0 0 0.336 0.617 0.752 0.808

RFGP 34 43 48 46 0.352 0.624 0.772 0.836

XGGP 0 1 2 1 0.336 0.617 0.758 0.819

DeepGini 0 0 0 0 0.243 0.425 0.566 0.679

Entropy 0 0 0 0 0.241 0.413 0.541 0.642

Least Conidence 0 0 0 0 0.261 0.465 0.623 0.742

Margin 0 0 0 1 0.249 0.457 0.619 0.742

PCS 0 0 0 0 0.249 0.457 0.619 0.742

All-0.1

Vanilla SM 0 0 0 0 0.261 0.465 0.623 0.742

Random 0 0 0 0 0.099 0.200 0.301 0.402

DNGP 0 2 0 0 0.323 0.602 0.734 0.786

KMGP 44 29 20 29 0.335 0.580 0.713 0.786

LGGP 13 19 10 10 0.332 0.604 0.753 0.820

LRGP 2 3 0 0 0.323 0.602 0.745 0.806

RFGP 33 37 62 52 0.339 0.608 0.765 0.836

XGGP 0 2 0 0 0.323 0.602 0.750 0.816

DeepGini 0 0 0 0 0.238 0.419 0.561 0.675

Entropy 0 0 0 0 0.235 0.408 0.538 0.640

Least Conidence 0 0 0 0 0.254 0.456 0.614 0.736

Margin 0 0 0 1 0.241 0.446 0.609 0.734

PCS 0 0 0 0 0.241 0.446 0.609 0.734

All-0.2

Vanilla SM 0 0 0 0 0.254 0.456 0.614 0.736

Random 0 0 0 0 0.099 0.199 0.299 0.399

DNGP 0 9 1 0 0.313 0.589 0.732 0.790

KMGP 43 21 18 22 0.324 0.565 0.704 0.783

LGGP 15 16 13 12 0.322 0.591 0.747 0.822

LRGP 2 3 0 0 0.314 0.590 0.740 0.808

RFGP 32 42 60 57 0.328 0.595 0.758 0.836

XGGP 0 1 0 1 0.315 0.588 0.744 0.817

DeepGini 0 0 0 0 0.232 0.412 0.554 0.669

Entropy 0 0 0 0 0.229 0.401 0.532 0.635

Least Conidence 0 0 0 0 0.247 0.446 0.605 0.728

Margin 0 0 0 0 0.234 0.435 0.597 0.725

PCS 0 0 0 0 0.234 0.435 0.597 0.725

All-0.3

Vanilla SM 0 0 0 0 0.247 0.446 0.605 0.728

Random 0 0 0 0 0.100 0.200 0.299 0.398

DNGP 0 8 3 0 0.306 0.578 0.727 0.790

KMGP 43 23 15 23 0.316 0.554 0.694 0.776

LGGP 13 20 13 11 0.314 0.580 0.739 0.819

LRGP 2 3 1 0 0.307 0.577 0.732 0.805

RFGP 34 38 58 58 0.320 0.581 0.748 0.832

XGGP 0 0 2 0 0.307 0.576 0.735 0.813

DeepGini 0 0 0 0 0.228 0.408 0.552 0.669

Entropy 0 0 0 0 0.226 0.399 0.532 0.636

Least Conidence 0 0 0 0 0.242 0.439 0.599 0.724

Margin 0 0 0 0 0.227 0.426 0.588 0.717

PCS 0 0 0 0 0.227 0.426 0.588 0.717

All-0.4

Vanilla SM 0 0 0 0 0.242 0.439 0.599 0.724

Random 0 0 0 0 0.097 0.199 0.299 0.398

conclude that, for the GCN model, the mutation rules SL and HC were the most efective in generating the top

important mutated models. Moving to GAT, GraphSAGE, and TAGCN, whose results are presented in Table 15,

Table 16, and Table 17, the mutation rule HC also generates a large ratio (i.e., 100%, 90%, and 90% respectively) of

top contributing mutated models. We can conclude that, across the four diferent types of GNN models, HC can

continuously make top contributions to the efectiveness of GraphPrior.

Some mutated rules, such as NOR and BIA, made high contributions to the efectiveness of Graph-

Prior on some speciic GNN models.Moreover, some mutation rules, such as BIA and NOR, also generate a

considerable ratio (i.e., from 50% to 100%) of top-critical mutated models. For example, on GCN and GraphSAGE,

BIA made contributions to 100% top-N mutated models. On TAGCN, NOR made contributions to 100% top-N

mutated models.

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 27

Answer to RQ5: The mutation rule HC made high contributions to the efectiveness of GraphPrior on all the

four types of GNN models. Some mutated rules, such as NOR and BIA made high contributions to the efectiveness

of GraphPrior on some speciic GNN models.

Table 14. The contributions of diferent mutation

rules (GCN)

Top-N SL BIA CA IMP NOR HC

0 ✓ ✓ ✓

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓

4 ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓

9 ✓ ✓ ✓ ✓

Table 15. The contributions of diferent mutation

rules (GAT)

Top-N SL BIA CON HDS EP NS HC

0 ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓

8 ✓ ✓ ✓ ✓ ✓

9 ✓ ✓ ✓ ✓ ✓

Table 16. The contributions of diferent mutation

rules (GraphSAGE)

Top-N BIA NOR HC EP

0 ✓ ✓ ✓ ✓

1 ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓ ✓ ✓

9 ✓ ✓ ✓

Table 17. The contributions of diferent mutation

rules to the (TAGCN)

Top-N NOR HC EP

0 ✓

1 ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓

4 ✓ ✓ ✓

5 ✓ ✓

6 ✓ ✓ ✓

7 ✓ ✓ ✓

8 ✓ ✓

9 ✓ ✓ ✓

5.6 RQ6: Enhancing GNNs with GraphPrior

Objectives: We investigate whether GraphPrior and the uncertainty-based metrics can select informative

retraining subsets to improve the performance of a GNN model.

Experimental design: Following the prior research by Ma et al. [57], our retraining experiments are structured

as follows. Firstly, we randomly partitioned the dataset into three sets: an initial training set, a candidate set, and

a test set, with a ratio of 4:4:2. The candidate set was reserved exclusively for retraining purposes, while the test

set was kept untouched for the purpose of evaluation. In the irst round, we trained a GNN model using only the

initial training set and computed its accuracy on the test set. We employed the best model obtained over the

training epochs for the subsequent retraining process. In the second round, we incorporate an additional 10% of

new inputs from the candidate set into the existing training set without replacement. The inputs selected for

inclusion are those that are prioritized in the irst 10% by the test prioritization approaches, namely GraphPrior

and the compared techniques. Following Ma et al. [57], we retrain the GNN models by utilizing the complete

augmented training set. This approach ensures that the old and new training data are treated equally. We repeat

the retraining process for multiple rounds until the candidate set is empty. We kept the test data untouched

during the retraining process. Moreover, we account for the randomness involved in the model training process

and repeat all the experiments ten times to report the average results (averaged over ten repetitions).

Results: Table 18 illustrates the average accuracy of GNN models after retraining with 10% to 100% prioritized

test inputs. For each case, we highlight the approach with the highest efectiveness in grey to facilitate quick and

easy interpretation of the results. GraphPrior and the uncertainty-based test prioritization approaches

outperform the random selection approach. However, the observed improvement is relatively small,

ACM Trans. Softw. Eng. Methodol.



28 • Dang and Li et al.

Table 18. The GNNs’ average accuracy value ater retraining with 10%~100% prioritized tests.

Accuracy of percentage of datasets
Approaches

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Average

KMGP 0.787 0.810 0.825 0.834 0.844 0.854 0.861 0.867 0.874 0.878 0.844

DNGP 0.787 0.811 0.827 0.836 0.844 0.853 0.859 0.867 0.873 0.877 0.843

LGGP 0.787 0.812 0.825 0.835 0.845 0.852 0.861 0.868 0.873 0.877 0.844

LRGP 0.787 0.811 0.825 0.835 0.845 0.854 0.864 0.869 0.873 0.877 0.844

XGGP 0.788 0.811 0.824 0.834 0.845 0.853 0.861 0.867 0.873 0.877 0.843

RFGP 0.787 0.813 0.825 0.835 0.845 0.853 0.860 0.869 0.874 0.877 0.844

DeepGini 0.788 0.801 0.814 0.826 0.836 0.844 0.851 0.858 0.866 0.870 0.835

Entropy 0.789 0.801 0.816 0.829 0.836 0.845 0.852 0.858 0.866 0.872 0.837

LeastConidence 0.789 0.802 0.816 0.828 0.836 0.846 0.853 0.860 0.866 0.872 0.837

Margin 0.788 0.801 0.818 0.827 0.837 0.845 0.853 0.861 0.867 0.872 0.837

VanillaSM 0.788 0.804 0.819 0.829 0.837 0.846 0.853 0.861 0.867 0.873 0.838

PCS 0.787 0.802 0.817 0.827 0.837 0.845 0.854 0.860 0.866 0.872 0.837

Random 0.789 0.799 0.814 0.825 0.834 0.843 0.853 0.860 0.866 0.872 0.836

indicating that GNN test prioritization approaches can guide the retraining of GNN models but with

limited efect. In Table 18, we observe that test prioritization methods, including GraphPrior and compared

approaches, consistently demonstrate better performance across varying ratios of added data compared with the

random selection. Furthermore, when incorporating prioritized tests exceeding 10% of the total, a signiicant

majority of the test prioritization methods - speciically, 83.4% (10 out of 12) - outperform random selection

in each case. However, the improvements achieved by these test prioritization methods compared to random

selection are relatively small, with the highest increase being only 0.014. Additionally, Figure 4 visually depicts an

example outcome of the retraining experiments conducted on the Cora dataset using the GCNmodel, showcasing a

comparative evaluation of the performance of test prioritization approaches against random selection (indicated by

the black line). As observed from the results, the test prioritization approaches demonstrate a better performance

compared to random selection, but the improvement is visually slight.

One reason that leads to the efectiveness of GraphPrior and uncertainty-based test prioritization approaches

being limited lies in their inadequate consideration of node importance (i.e., impact on other nodes in the dataset).

In a GNN dataset, the complex interdependence among test inputs and their neighbors can lead to them having

diferent importance. For example, nodes with greater connectivity can afect more of other nodes, making them

relatively more critical. However, the current test prioritization approaches only focus on the ability of test inputs

to reveal system bugs without regard to the importance of nodes. Although the selected test input by them can

have a higher likelihood of misclassiication, their importance within the dataset can be minor if they have a very

small number of neighbors. Retraining such inputs would have less efect. Consequently, it is crucial to consider

node importance in the selection of retraining data to achieve more efective outcomes.

GraphPrior achieved better efectiveness than the uncertainty-based test prioritization methods.

In Table 18, we see that, when adding more than 20% (including 20%) test cases for retraining, the GraphPrior

approaches perform the best in 100% cases. Figure 4 visually demonstrates that the GraphPrior approaches (solid

line) perform better than the compared approaches (dotted line) in most cases.

Answer to RQ6: GraphPrior and the uncertainty-based test prioritization approaches outperform the random

selection approach. However, the observed improvement is relatively small, indicating that GNN test prioritization

approaches can guide the retraining of GNNmodels but with limited efect. GraphPrior achieved better efectiveness

than the uncertainty-based test prioritization methods.

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 29

��� ��� ��� ��� ��� ��� ��� ��� ��� ����

����

����

����

����

����

�
�
�
�
��
�
�

����

����

����

����

����

����

��������

�������

����������������

������

���������

���

������

Fig. 4. Enhancing the accuracy of the GNN with prioritized tests (Cora with GCN)

6 DISCUSSION

6.1 Generality of GraphPrior

Although the conidence-based test prioritization approaches demonstrate excellent efectiveness in traditional

DNNs, they do not consider the interdependencies between test inputs, which are particularly crucial in GNN test

prioritization. Our proposed GraphPrior leverages the mutation analysis of GNN models to perform GNN test

input prioritization, which has been demonstrated efective on graph classiication tasks through 604 carefully

designed subjects. In fact, the scheme of GraphPrior, (i.e., modifying training parameters to mutate the GNN

model for test prioritization) can also be generalized to other dimensions of GNN tasks, including graph-level

and edge-level tasks. In the future, we will further verify the extension of GraphPrior from this perspective.

[The applicability of GraphPrior on regression tasks] In this section, we will also discuss the potential applicability

of GraphPrior to regression tasks. Currently, the mutation rules and ranking models of GraphPrior are speciically

designed for classiication tasks. To extend GraphPrior to regression tasks, modiications to the mutation rules

and ranking models would be required. If appropriate mutation rules can be identiied for regression tasks and

suitable ranking models can be designed, GraphPrior could also be applied to regression tasks.

6.2 Limitations of GraphPrior

[Diversity of the prioritized data] One limitation of GraphPrior lies in guaranteeing the diversity of selected bug

data. This limitation is also noted in prior work on the uncertainty-based test prioritization approaches [26],

which did not consider the diversity of bugs when prioritizing test inputs. Similarly, GraphPrior also does not aim

for diversity in the prioritized tests. However, GraphPrior has demonstrated the ability to identify a signiicant

majority of misclassiied test inputs using a small ratio of prioritized test cases. Speciically, RFGP (i.e., the most

efective GraphPrior approach) has been shown to detect over 80% misclassiied tests by prioritizing only 40%

of the test inputs. This highlights GraphPrior’s ability to eiciently identify a large proportion of bugs using a

small set of prioritized tests, even without explicitly ensuring bug diversity. While prioritizing diverse bugs can

improve the overall quality of testing, prioritizing a signiicant majority of bugs can still be a practical strategy in

situations where time and resources are limited. Therefore, GraphPrior’s ability to eiciently identify a large

ACM Trans. Softw. Eng. Methodol.



30 • Dang and Li et al.

proportion of bugs using a small set of prioritized tests can be particularly useful in scenarios where time and

resources are constrained.

[GraphPrior in active learning scenarios.] Active learning [68] operates under the assumption that samples

within a dataset have varying contributions to the improvement of the current model and aims to select the most

informative samples for inclusion in the training set. Our investigation in RQ6 has demonstrated that GraphPrior

and uncertainty-based metrics can be utilized to select informative retraining tests. However, the efectiveness of

these approaches is limited. Speciically, despite the demonstrated success of uncertainty-based metrics such as

DeepGini and margin in previous studies [26] [36] on DNNs, their efectiveness in the context of GNNs is slight.

We explore potential reasons for this phenomenon.

One crucial reason for their limited efectiveness lies in their inadequate consideration of node importance, i.e.,

the impact that a node has on other nodes in the graph dataset. In a GNN dataset, the complex interdependence

among test inputs and their neighbors can result in difering levels of importance for diferent nodes. For

instance, nodes with higher connectivity can be more inluential and hence more critical. However, current

test prioritization approaches only focus on the ability of test inputs to expose system bugs without taking

into account the node importance. Although these approaches may identify inputs with a higher likelihood

of misclassiication, their importance within the dataset may be negligible if they have only a few neighbors.

Retraining such inputs is, therefore, less efective.

Furthermore, we elaborate on the diference between GraphPrior and the existing active learning methods

evaluated in our study. The active learning methods used for comparison in our paper are primarily uncertainty-

based, aimed at datasets where each sample is independent of others. However, for graph datasets, these methods

select retraining data without considering the interdependencies between nodes and also neglect the importance of

nodes, merely selecting possibly-misclassifed nodes. In contrast, GraphPrior employs mutation analysis to identify

test inputs that are more likely to be misclassiied while considering the interdependencies between nodes during

the mutation process. Despite this added consideration, GraphPrior’s goal remains to select misclassiied test

inputs and does not explicitly consider node importance, leading to slight efectiveness as the uncertainty-based

methods.

[Generating mutants for large-scale GNN models] In our experiments, which are based on our current model

and datasets, the time cost of our retraining method (for generating mutants) is within an acceptable range. When

dealing with large-scale GNN models, GraphPrior can require large computational resources, but it can remain

feasible in situations where the cost of manual labeling outweighs the computational cost.

6.3 Threats to Validity

Threats to Internal Validity. The internal threats to validity mainly lie in the implementation of our proposed

GraphPrior and the compared approaches. To reduce the threat, we implemented GraphPrior based on the widely

used library PyTorch and adopted the implementations of the compared approaches published by their authors.

Another internal threat lies in the randomness of the model training. To mitigate this threat and ensure the

stability of our experimental results, we conducted a statistical analysis. Speciically, we repeated the training

process ten times for both the original model and the mutated model and calculated the statistical signiicance of

the experiments.

The selection of mutation rules in our study presents another internal threat to validity. Despite our best eforts

to collect a comprehensive set of mutation rules, it is possible that other training parameters beyond our current

knowledge could serve as mutation rules. To mitigate this threat, we selected mutation rules that can directly or

indirectly afect node interdependence in the prediction process. The selection of parameter ranges for mutation

rules is another internal threat that could afect the efectiveness of the rules. To mitigate this threat, we adopted

a strategy in which we inverted the values of Boolean parameters, setting true to false and false to true. For

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 31

integer and loat parameters, we selected a range that introduces only slight changes to the original GNN model.

Our experimental results demonstrated the efectiveness of GraphPrior, indicating that the mutation rules and

selected parameter range are suitable for GNN test prioritization.

Threats to External Validity. The external threats to validity mainly lie in the GNN models under test and the

testing datasets we used in our study. To mitigate this threat, we adopted a large number of subjects (pair of model

and dataset) in our study and leveraged diferent types of test inputs. We applied 8 graph adversarial attacks

from public studies to generate adversarial test inputs and varied the attack level for more detailed evaluation. In

the future, we will apply GraphPrior to more GNN models and test datasets with diversity.

7 RELATED WORK

We present the related work in three aspects, which are test prioritization techniques, deep neural network

testing, and mutation-based test prioritization for traditional software.

7.1 Test prioritization Techniques

In traditional software testing, test prioritization [11ś13, 19, 20, 33, 69, 92] aims to ind the ideal order of test

cases to reveal system bugs earlier. Prioritizing test cases contributes to two critical constraints, time and budget

for software testing, in order to detect more fault-revealing test cases in a limited time. Di Nardo et al. [19]

conducted a case study of coverage-based prioritization strategies on real-world regression faults, evaluating the

efectiveness of several test case prioritization techniques in bug detection. Rothermel et al. [69] presented and

compared three types of test case prioritization techniques for regression testing that are based on test execution

information. They demonstrated that each of the studied prioritization techniques increased the fault detection

rate of the test suite. Henard et al. [33] conducted a comprehensive study to compare existing test prioritization

approaches, inding that the diference between white-box [23, 24, 49, 92] and black-box strategies [32, 34, 46] are

little. Chen et al. [13] proposed LET to prioritize test programs for compiler testing acceleration and demonstrated

its efectiveness. LET works through two processes, the learning process to identify program features and predict

the bug-revealing probability of a new test program and the scheduling process to prioritize test programs based

on bug-revealing probabilities. Chen et al. [11] proposed to prioritize test programs based on the prediction

information of the test coverage for compilers.

In terms of test prioritization for DNNs, Feng et al. [26] proposed the state-of-the-art approach, DeepGini,

which identiies possibly-misclassiied tests based on model uncertainty. DeepGini assumes a test is more likely

to be mispredicted if the DNN outputs similar probabilities for each class. Byun et al. [6] evaluated several metrics

that prioritize bug-revealing inputs based on the white-box measures of DNN’s sentiment, including softmax

conidence (i.e., predicted probability for output categories in DNNs that use softmax output layers), Bayesian

uncertainty (i.e., the uncertainty of the prediction probability distributions for Bayesian Neural Networks), and

input surprise (i.e., the distance of the neuron activation pattern between a test input and the training data). Wang

et al. [81] proposed PRIMA to prioritize test inputs for DNNs via intelligent mutation analysis. PRIMA further

improves DNN test prioritization in two main aspects. First, PRIMA can be applied not only to classiication modes

but also to regression models. Second, PRIMA can deal with the case in which test inputs are generated from

adversarial input generation approaches [8] that can make the probability of the wrong class larger. Furthermore,

some data selection approaches [80] are also proposed to detect possibly-misclassiied tests for DNNs. Despite its

efectiveness in DNN test prioritization, the PRIMA approach cannot be directly applied to GNNs. This is because

PRIMA’s mutation operators are not adapted to graph-structured data and GNN models.

More speciically, GNN models operate on graph-structured data, where nodes and edges represent entities and

their relationships. Conversely, the input mutation rules of PRIMA were designed for independent test samples,

rendering them unsuitable for GNNs. Moreover, GNNs incorporate unique graph operations and aggregation

ACM Trans. Softw. Eng. Methodol.



32 • Dang and Li et al.

mechanisms, including graph convolution operations and message passing mechanisms. PRIMA’s model mutation

rules are not applicable to the graph-level mechanisms employed by GNNs. As such, GNNs require specialized

test prioritization techniques, such as GraphPrior, which leverages the properties of GNN models in its mutation

analysis for test prioritization. More speciically, to address the limitations of PRIMA, GraphPrior introduces

mutation rules that are designed based on the graph operations and aggregation mechanisms of GNNs. These

rules can directly or indirectly impact message passing. Consequently, GraphPrior enables prioritizing tests for

graph-structured data.

7.2 Deep Neural Network Testing

Besides test input prioritization, some test selection approaches have also been proposed to improve the eiciency

of DNN testing. Test selection aims to precisely estimate the accuracy of the whole set by only labeling the set of

selected test inputs. In this way, the labeling cost for DNN testing is reduced. Li et al. [50] proposed CES (Cross

Entropy-based Sampling) and CSS (Conidence-based Stratiied Sampling) to select a small group of representative

test inputs to estimate the accuracy of the whole testing set. CES minimizes the cross-entropy between the

selected set and the entire test set to ensure that the distribution of the selected test set is similar to the original

test set. CSS leverages the conidence features of test inputs to guarantee the similarity between the selected

test set and the entire test set. Chen et al. [14] proposed PACE (Practical Accuracy Estimation), which selects

test inputs practically based on clustering, prototype selection, and adaptive random testing. Pace irst clusters

all the test inputs into diferent groups based on their testing capabilities. Then, Pace utilizes the MMD-critic

algorithm [43] to select prototypes from each group. For test inputs not in any group, Pace leverages adaptive

random testing to select tests from them. Compared to the aforementioned research, our work focus on test

prioritization, which ranks all the test inputs without discarding any test input. In this way, testers or developers

can ind the test inputs that reveal bugs earlier.

In addition to improving the eiciency of DNN testing, several existing studies [37, 44, 54ś56, 66] have focused

on measuring the adequacy of DNNs. Pei et al. [66] proposed a metric of neuron coverage to evaluate how

adequate a test set covers the logic of a DNN model. Based on this metric, they proposed a white-box framework

for testing DNNs. In the following study, Ma et al. [55] proposed DeepGauge, a set of DNN testing coverage

criteria to measure the test adequacy of DNNs. DeepGauge also considers neuron coverage to be a good indicator

of the efectiveness of a test input. Based on the basic neuron coverage metric, they proposed new metrics with

diferent granularities to diferentiate adversarial attacks from legit test data. Kim et al. [44] proposed the surprise

adequacy for testing of DL models, which identify how efective a test input by measuring its surprise with

respect to the training set. More speciically, the surprise of a test input refers to the diference in the activation

value of neurons in the face of this new test.

7.3 Mutation Testing for DNNs

Several existing studies have explored the use of mutation testing for DNNs and developed diferent mutation

operators and frameworks. Ma et al. [56] propose DeepMutation to measure the quality of test data for DL systems

based on mutation testing. To this end, they design a set of source-level and model-level mutation operators to

inject faults into the training data, training programs, and DL models. The quality of test data is evaluated by

analyzing the extent to which the injected faults can be detected. The work by Ma et al. was later extended into

a mutation testing tool for DL systems named DeepMutation++ [37], which proposed a set of new mutation

operators for feed-forward neural networks (FNNs) and Recurrent Neural Networks (RNNs) and can dynamically

mutate run-time states of an RNN. Humbatova et al. [39] proposed DeepCrime, which is the irst mutation

testing tool that implements a set of DL mutation operators based on real DL faults. Shen et al. [72] proposed

MuNN, a mutation analysis method for neural networks. MuNN deined ive mutation operators based on the

ACM Trans. Softw. Eng. Methodol.



GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 33

characteristics of neural networks. The results reveal that mutation analysis has strong domain characteristics,

indicating the need for domain mutation operators to enhance the analysis, and that new mutation mechanisms

are required for deep neural networks.

The above studies in mutation testing have focused on traditional DNNs, which are typically evaluated on

datasets with independent samples. However, the mutation rules employed in these studies do not account for

the interdependence among test inputs, which is a crucial factor to consider in the context of GNN testing. In

contrast, the mutation rules of GraphPrior are designed to impact the message passing mechanism in the GNN

prediction process. In the mutated GNN model, the way nodes acquire information from their neighboring nodes

difers slightly from that of the original GNN model. The mutation features generated based on these mutation

rules are fed into ranking models to predict the likelihood of a test input being misclassiied by the GNN model.

7.4 Mutation-based Test Prioritization for Traditional Sotware

In traditional software testing, mutation testing is a well-established technique to evaluate the quality of test

sets. Mutation-based test prioritization focuses on prioritizing test cases based on their ability to detect mutants.

The key idea is that test cases that can detect mutants are likely to be more efective at inding real faults in

the code and, therefore, should be given higher priority. Several mutation-based approaches [52, 74] have been

proposed. Lou et al. [52] proposed a test-case prioritization approach based on the fault detection capability of

test cases. They introduced two models to calculate the fault detection capability: the statistics-based model

and the probability-based model. Based on the experimental study, they found that the statistics-based model

outperforms all the approaches. Shin et al. [74] proposed a test case prioritization technique guided by the

diversity-aware mutation adequacy criterion and empirically evaluated the efectiveness of mutation-based

prioritization techniques with large-scale developer-written test cases. Papadakis et al. [63] proposed mutating

Combinatorial Interaction Testing models and using them to prioritize tests based on their ability to kill mutants

and showed that the number of model-based mutants that are killed yields a strong correlation to code-level faults

revealed by the test cases. The aforementioned DNN-oriented approaches consider each test input independent

of each other, while in a graph dataset, there are usually complex connections between test inputs. Our proposed

GraphPrior speciically targets GNNs and utilizes several mutation rules to generate GNN mutants for test

prioritization. Moreover, to better leverage the mutation results, we adopt several ranking models [5, 42, 83] that

can learn to predict the probability of a test input to be misclassiied.

8 CONCLUSION

To improve the eiciency of GNN testing, we aim to prioritize possibly-misclassiied test inputs to reveal GNN

bugs earlier. However, a crucial limitation of existing test prioritization approaches is that, when applying to

GNNs, they do not take into account the interdependence between test inputs (nodes). In this paper, we propose

GraphPrior, a set of test prioritization approaches speciically for GNN testing. GraphPrior assumed that a test

input is more likely to be misclassiied if it can kill many mutated models. Based on it, GraphPrior leveraged

carefully designed mutation rules to generate mutated models for GNNs. Subsequently, GraphPrior obtained the

mutation results of test inputs based on the execution of the mutated models. GraphPrior utilized the mutation

results in two ways, namely, killing-based and feature-based methods. In the process of scoring a test, killing-

based methods considered each mutated model equally important, while feature-based methods learned diferent

importance for each mutated model through ranking models. Finally, GraphPrior ranked all the test inputs based

on their scores. We conducted an extensive study to evaluate the efectiveness of GraphPrior approaches on

604 subjects, comparing them with existing approaches that could detect possibly-misclassiied test inputs. The

experimental results demonstrate the efectiveness of GraphPrior. In terms of APFD, the killing-based GraphPrior

approach, KMGP, exceeds the compared approaches (i.e., DeepGini, margin, Vanilla Softmax, PCS, Entropy,

ACM Trans. Softw. Eng. Methodol.



34 • Dang and Li et al.

least conidence and random selection) by 0.034~0.248 on average. Furthermore, RFGP (i.e., the feature-based

GraphPrior approach) exhibited better performance compared to other GraphPrior approaches. Speciically, RFGP

outperforms the uncertainty-based test prioritization approaches against diferent adversarial attacks, with the

average improvement of 2.95%~46.69%.

ACKNOWLEDGEMENTS

This work is supported by the Luxembourg National Research Funds (FNR) AFR Grant 17036341 and funding

from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation

program (grant agreement No. 949014)

REFERENCES
[1] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Rupert Schlick, and Stefan Tiran. 2015. Killing strategies for

model-based mutation testing. Softw. Test. Veriication Reliab. 25, 8 (2015), 716ś748. https://doi.org/10.1002/stvr.1522

[2] Paul Ammann and Jef Ofutt. 2008. Introducation to Software Testing. Cambridge University Press. 170ś212 pages.

[3] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial attacks on node embeddings via graph poisoning. In International

Conference on Machine Learning. PMLR, 695ś704.

[4] Pietro Bongini, Monica Bianchini, and Franco Scarselli. 2021. Molecular generative graph neural networks for drug discovery.

Neurocomputing 450 (2021), 242ś252.

[5] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5ś32.

[6] Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and Darren Cofer. 2019. Input prioritization for testing

neural networks. In 2019 IEEE International Conference On Artiicial Intelligence Testing (AITest). IEEE, 63ś70.

[7] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A comprehensive survey of graph embedding: Problems,

techniques, and applications. IEEE transactions on knowledge and data engineering 30, 9 (2018), 1616ś1637.

[8] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security

and privacy (sp). Ieee, 39ś57.

[9] Thierry Titcheu Chekam, Mike Papadakis, Yves Le Traon, and Mark Harman. 2017. An empirical study on mutation, statement and

branch coverage fault revelation that avoids the unreliable clean program assumption. In Proceedings of the 39th International Conference

on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián Uchitel, Alessandro Orso, and Martin P. Robillard

(Eds.). IEEE / ACM, 597ś608. https://doi.org/10.1109/ICSE.2017.61

[10] Cen Chen, Kenli Li, Sin G Teo, Xiaofeng Zou, Kang Wang, Jie Wang, and Zeng Zeng. 2019. Gated residual recurrent graph neural

networks for traic prediction. In Proceedings of the AAAI conference on artiicial intelligence, Vol. 33. 485ś492.

[11] Junjie Chen. 2018. Learning to accelerate compiler testing. In Proceedings of the 40th International Conference on Software Engineering:

Companion Proceeedings. 472ś475.

[12] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie. 2017. Learning to prioritize test programs for compiler

testing. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE, 700ś711.

[13] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, Lu Zhang, and Bing Xie. 2018. Coverage prediction for

accelerating compiler testing. IEEE Transactions on Software Engineering 47, 2 (2018), 261ś278.

[14] Junjie Chen, Zhuo Wu, Zan Wang, Hanmo You, Lingming Zhang, and Ming Yan. 2020. Practical accuracy estimation for eicient deep

neural network testing. ACM Transactions on Software Engineering and Methodology (TOSEM) 29, 4 (2020), 1ś35.

[15] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining. 785ś794.

[16] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018. Adversarial attack on graph structured data. In

International conference on machine learning. PMLR, 1115ś1124.

[17] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer.

IEEE Computer 11, 4 (1978), 34ś41. https://doi.org/10.1109/C-M.1978.218136

[18] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves Schobbens, and Patrick Heymans. 2016. Featured model-based

mutation analysis. In Proceedings of the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22,

2016, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.). ACM, 655ś666. https://doi.org/10.1145/2884781.2884821

[19] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2013. Coverage-based test case prioritisation: An industrial case

study. In 2013 IEEE Sixth International Conference on Software Testing, Veriication and Validation. IEEE, 302ś311.

[20] Hyunsook Do and Gregg Rothermel. 2006. On the use of mutation faults in empirical assessments of test case prioritization techniques.

IEEE Transactions on Software Engineering 32, 9 (2006), 733ś752.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1002/stvr.1522
https://doi.org/10.1109/ICSE.2017.61
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/2884781.2884821


GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 35

[21] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. 2017. Topology adaptive graph convolutional networks.

arXiv preprint arXiv:1710.10370 (2017).

[22] Sebastian Elbaum, Alexey G Malishevsky, and Gregg Rothermel. 2002. Test case prioritization: A family of empirical studies. IEEE

transactions on software engineering 28, 2 (2002), 159ś182.

[23] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for improving regression testing in continuous integration

development environments. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering.

235ś245.

[24] Emelie Engström, Per Runeson, and Mats Skoglund. 2010. A systematic review on regression test selection techniques. Information and

Software Technology 52, 1 (2010), 14ś30.

[25] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph neural networks for social recommendation.

In The world wide web conference. 417ś426.

[26] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen. 2020. Deepgini: prioritizing massive tests to enhance

the robustness of deep neural networks. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing and

Analysis. 177ś188.

[27] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep, Gertrude Liu, Jeremy BR Hayter, Richard Vickers, Charles

Roberts, Jian Tang, et al. 2021. Utilizing graph machine learning within drug discovery and development. Brieings in bioinformatics 22,

6 (2021), bbab159.

[28] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann. 2021. Robustness of

graph neural networks at scale. Advances in Neural Information Processing Systems 34 (2021), 7637ś7649.

[29] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. 2017. Neural message passing for quantum

chemistry. In International conference on machine learning. PMLR, 1263ś1272.

[30] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. Advances in neural information

processing systems 30 (2017).

[31] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. 2020. Lightgcn: Simplifying and powering graph

convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR conference on research and development in

Information Retrieval. 639ś648.

[32] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. 2013. Achieving scalable model-based testing through test case diversity. ACM

Transactions on Software Engineering and Methodology (TOSEM) 22, 1 (2013), 1ś42.

[33] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon. 2016. Comparing white-box and black-box test

prioritization. In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE). IEEE, 523ś534.

[34] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Heymans, and Yves Le Traon. 2014. Bypassing the

combinatorial explosion: Using similarity to generate and prioritize t-wise test conigurations for software product lines. IEEE

Transactions on Software Engineering 40, 7 (2014), 650ś670.

[35] Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, and Jocelyn Chanussot. 2020. Graph convolutional networks for

hyperspectral image classiication. IEEE Transactions on Geoscience and Remote Sensing 59, 7 (2020), 5966ś5978.

[36] Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Wei Ma, Mike Papadakis, and Yves Le Traon. 2021. Towards Exploring the

Limitations of Active Learning: An Empirical Study. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, 917ś929.

[37] Qiang Hu, Lei Ma, Xiaofei Xie, Bing Yu, Yang Liu, and Jianjun Zhao. 2019. Deepmutation++: A mutation testing framework for deep

learning systems. In 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 1158ś1161.

[38] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. 2020. Open

graph benchmark: Datasets for machine learning on graphs. Advances in neural information processing systems 33 (2020), 22118ś22133.

[39] Nargiz Humbatova, Gunel Jahangirova, and Paolo Tonella. 2021. DeepCrime: mutation testing of deep learning systems based on real

faults. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 67ś78.

[40] Kanchan Jha, Sriparna Saha, and Hiteshi Singh. 2022. Prediction of proteinśprotein interaction using graph neural networks. Scientiic

Reports 12, 1 (2022), 1ś12.

[41] Weiwei Jiang and Jiayun Luo. 2022. Graph neural network for traic forecasting: A survey. Expert Systems with Applications (2022),

117921.

[42] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly

eicient gradient boosting decision tree. Advances in neural information processing systems 30 (2017).

[43] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not enough, learn to criticize! criticism for interpretability.

Advances in neural information processing systems 29 (2016).

[44] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system testing using surprise adequacy. In 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE). IEEE, 1039ś1049.

ACM Trans. Softw. Eng. Methodol.



36 • Dang and Li et al.

[45] Thomas N Kipf and Max Welling. 2016. Semi-supervised classiication with graph convolutional networks. arXiv preprint

arXiv:1609.02907 (2016).

[46] Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. 2012. Prioritizing test cases with string distances. Automated

Software Engineering 19, 1 (2012), 65ś95.

[47] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. 2017. Deepcas: An end-to-end predictor of information cascades. In Proceedings of

the 26th international conference on World Wide Web. 577ś586.

[48] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. 2020. Deeprobust: A pytorch library for adversarial attacks and defenses. arXiv preprint

arXiv:2005.06149 (2020).

[49] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search algorithms for regression test case prioritization. IEEE Transactions on

software engineering 33, 4 (2007), 225ś237.

[50] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lü. 2019. Boosting operational dnn testing eiciency through

conditioning. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 499ś509.

[51] Yiling Lou, Junjie Chen, Lingming Zhang, and Dan Hao. 2019. A survey on regression test-case prioritization. In Advances in Computers.

Vol. 113. Elsevier, 1ś46.

[52] Yiling Lou, Dan Hao, and Lu Zhang. 2015. Mutation-based test-case prioritization in software evolution. In 2015 IEEE 26th International

Symposium on Software Reliability Engineering (ISSRE). IEEE, 46ś57.

[53] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. 2020. Towards more practical adversarial attacks on graph neural networks. Advances in

neural information processing systems 33 (2020), 4756ś4766.

[54] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019. Deepct: Tomographic combinatorial testing for deep

learning systems. In 2019 IEEE 26th International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 614ś618.

[55] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge:

Multi-granularity testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering. 120ś131.

[56] Lei Ma, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Felix Juefei-Xu, Chao Xie, Li Li, Yang Liu, Jianjun Zhao, et al. 2018. Deepmutation:

Mutation testing of deep learning systems. In 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE). IEEE,

100ś111.

[57] Wei Ma, Mike Papadakis, Anestis Tsakmalis, Maxime Cordy, and Yves Le Traon. 2021. Test selection for deep learning systems. ACM

Transactions on Software Engineering and Methodology (TOSEM) 30, 2 (2021), 1ś22.

[58] Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, and Jiliang Tang. 2019. Attacking graph convolutional networks via rewiring. arXiv

preprint arXiv:1906.03750 (2019).

[59] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2017. Towards deep learning models

resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017).

[60] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,

Andreas K Fidjeland, Georg Ostrovski, et al. 2015. Human-level control through deep reinforcement learning. nature 518, 7540 (2015),

529ś533.

[61] Quang Hung Nguyen, Hai-Bang Ly, Lanh Si Ho, Nadhir Al-Ansari, Hiep Van Le, Van Quan Tran, Indra Prakash, and Binh Thai Pham.

2021. Inluence of data splitting on performance of machine learning models in prediction of shear strength of soil. Mathematical

Problems in Engineering 2021 (2021), 1ś15.

[62] Niccolò Pancino, Alberto Rossi, Giorgio Ciano, Giorgia Giacomini, Simone Bonechi, Paolo Andreini, Franco Scarselli, Monica Bianchini,

and Pietro Bongini. 2020. Graph Neural Networks for the Prediction of Protein-Protein Interfaces.. In ESANN. 127ś132.

[63] Mike Papadakis, Christopher Henard, and Yves Le Traon. 2014. Sampling Program Inputs with Mutation Analysis: Going Beyond

Combinatorial Interaction Testing. In Seventh IEEE International Conference on Software Testing, Veriication and Validation, ICST 2014,

March 31 2014-April 4, 2014, Cleveland, Ohio, USA. IEEE Computer Society, 1ś10. https://doi.org/10.1109/ICST.2014.11

[64] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. 2019. Chapter Six - Mutation Testing Advances:

An Analysis and Survey. Adv. Comput. 112 (2019), 275ś378. https://doi.org/10.1016/bs.adcom.2018.03.015

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style, high-performance deep learning library. Advances in neural

information processing systems 32 (2019).

[66] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Automated whitebox testing of deep learning systems. In

proceedings of the 26th Symposium on Operating Systems Principles. 1ś18.

[67] Michael Prince. 2004. Does active learning work? A review of the research. Journal of engineering education 93, 3 (2004), 223ś231.

[68] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang Chen, and Xin Wang. 2021. A survey of

deep active learning. ACM computing surveys (CSUR) 54, 9 (2021), 1ś40.

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1109/ICST.2014.11
https://doi.org/10.1016/bs.adcom.2018.03.015


GraphPrior: Mutation-based Test Input Prioritization for Graph Neural Networks • 37

[69] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 2001. Prioritizing test cases for regression testing. IEEE

Transactions on software engineering 27, 10 (2001), 929ś948.

[70] Benedek Rozemberczki and Rik Sarkar. 2020. Characteristic functions on graphs: Birds of a feather, from statistical descriptors to

parametric models. In Proceedings of the 29th ACM international conference on information & knowledge management. 1325ś1334.

[71] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008. The graph neural network model.

IEEE transactions on neural networks 20, 1 (2008), 61ś80.

[72] Weijun Shen, Jun Wan, and Zhenyu Chen. 2018. Munn: Mutation analysis of neural networks. In 2018 IEEE International Conference on

Software Quality, Reliability and Security Companion (QRS-C). IEEE, 108ś115.

[73] Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. 2020. Graphaf: a low-based autoregressive model

for molecular graph generation. arXiv preprint arXiv:2001.09382 (2020).

[74] Donghwan Shin, Shin Yoo, Mike Papadakis, and Doo-Hwan Bae. 2019. Empirical evaluation of mutation-based test case prioritization

techniques. Software Testing, Veriication and Reliability 29, 1-2 (2019), e1695.

[75] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[76] Chen Sun, Abhinav Shrivastava, Carl Vondrick, Rahul Sukthankar, Kevin Murphy, and Cordelia Schmid. 2019. Relational action

forecasting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 273ś283.

[77] Lichao Sun, Yingtong Dou, Carl Yang, Ji Wang, Philip S Yu, Lifang He, and Bo Li. 2018. Adversarial attack and defense on graph data: A

survey. arXiv preprint arXiv:1812.10528 (2018).

[78] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Eicient processing of deep neural networks: A tutorial and survey.

Proc. IEEE 105, 12 (2017), 2295ś2329.

[79] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks.

arXiv preprint arXiv:1710.10903 (2017).

[80] Dan Wang and Yi Shang. 2014. A new active labeling method for deep learning. In 2014 International joint conference on neural networks

(IJCNN). IEEE, 112ś119.

[81] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin Zhang. 2021. Prioritizing test inputs for deep neural

networks via mutation analysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 397ś409.

[82] Michael Weiss and Paolo Tonella. 2022. Simple techniques work surprisingly well for neural network test prioritization and active

learning (replicability study). In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.

139ś150.

[83] Raymond E Wright. 1995. Logistic regression. (1995).

[84] Le Wu, Peijie Sun, Richang Hong, Yanjie Fu, Xiting Wang, and Meng Wang. 2018. Socialgcn: An eicient graph convolutional network

based model for social recommendation. arXiv preprint arXiv:1811.02815 (2018).

[85] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural networks in recommender systems: a survey. Comput.

Surveys 55, 5 (2022), 1ś37.

[86] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin. 2019. Topology attack and defense for

graph neural networks: An optimization perspective. arXiv preprint arXiv:1906.04214 (2019).

[87] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv preprint

arXiv:1810.00826 (2018).

[88] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-supervised learning with graph embeddings. In

International conference on machine learning. PMLR, 40ś48.

[89] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional networks for text classiication. In Proceedings of the AAAI

conference on artiicial intelligence, Vol. 33. 7370ś7377.

[90] Ruiping Yin, Kan Li, Guangquan Zhang, and Jie Lu. 2019. A deeper graph neural network for recommender systems. Knowledge-Based

Systems 185 (2019), 105020.

[91] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. 2018. Graph convolutional neural

networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery

& data mining. 974ś983.

[92] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection and prioritization: a survey. Software testing, veriication

and reliability 22, 2 (2012), 67ś120.

[93] Junliang Yu, Hongzhi Yin, Jundong Li, Min Gao, Zi Huang, and Lizhen Cui. 2020. Enhance social recommendation with adversarial

graph convolutional networks. IEEE Transactions on Knowledge and Data Engineering (2020).

[94] Long Zhang, Xuechao Sun, Yong Li, and Zhenyu Zhang. 2019. A noise-sensitivity-analysis-based test prioritization technique for deep

neural networks. arXiv preprint arXiv:1901.00054 (2019).

[95] Qin Zhang, Keping Yu, Zhiwei Guo, Sahil Garg, Joel JPC Rodrigues, Mohammad Mehedi Hassan, and Mohsen Guizani. 2021. Graph

neural network-driven traic forecasting for the connected internet of vehicles. IEEE Transactions on Network Science and Engineering

ACM Trans. Softw. Eng. Methodol.



38 • Dang and Li et al.

9, 5 (2021), 3015ś3027.

[96] Dongbin Zhao, Haitao Wang, Kun Shao, and Yuanheng Zhu. 2016. Deep reinforcement learning with experience replay based on

SARSA. In 2016 IEEE symposium series on computational intelligence (SSCI). IEEE, 1ś6.

[97] Hang Zhou, Weikun Wang, Jiayun Jin, Zengwei Zheng, and Binbin Zhou. 2022. Graph Neural Network for ProteinśProtein Interaction

Prediction: A Comparative Study. Molecules 27, 18 (2022), 6135.

[98] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun.

2020. Graph neural networks: A review of methods and applications. AI Open 1 (2020), 57ś81.

[99] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial attacks on neural networks for graph data. In Proceedings

of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. 2847ś2856.

[100] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on graph neural networks via meta learning. arXiv preprint

arXiv:1902.08412 (2019).

ACM Trans. Softw. Eng. Methodol.


	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Networks
	2.2 Test Input Prioritization for DNNs

	3 Approach
	3.1 Overview
	3.2 Mutation Rules
	3.3 Killing-based GraphPrior
	3.4 Feature-based GraphPrior
	3.5 Usage of GraphPrior

	4 Study design
	4.1 Research Questions
	4.2 GNN models and Datasets
	4.3 Compared Approaches
	4.4 Graph Adversarial Attacks
	4.5 Evaluation of mutation rules (RQ5)
	4.6 Implementation and Configuration
	4.7 Measurements

	5 Results and analysis
	5.1 RQ1: Effectiveness of the killing-based GraphPrior approach (KMGP)
	5.2 RQ2: Effectiveness of the feature-based GraphPrior approaches
	5.3 RQ3: Effectiveness of GraphPrior on adversarial test inputs
	5.4 RQ4: Effectiveness of GraphPrior against adversarial attacks at varying attack levels
	5.5 RQ5: Contribution analysis of different mutation rules
	5.6 RQ6: Enhancing GNNs with GraphPrior

	6 DISCUSSION
	6.1 Generality of GraphPrior
	6.2 Limitations of GraphPrior
	6.3 Threats to Validity

	7 Related Work
	7.1 Test prioritization Techniques
	7.2 Deep Neural Network Testing
	7.3 Mutation Testing for DNNs
	7.4 Mutation-based Test Prioritization for Traditional Software

	8 Conclusion
	References

