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In this article, we summarize our experience in combining program analysis with machine learning (ML) 
to develop a technique that can improve the development of specific program analyses. Our experience 
is negative. We describe the areas that need to be addressed if ML techniques are to be useful in the 
program analysis context. Most of the issues that we report are different from the ones that discuss the 
state of the art in the use of ML techniques to detect security vulnerabilities 

W hile issues such as relevant 
datasets and representation 

of program semantics are common, 
our focus is on enhancing vulner-
ability detection by combining static 
analysis and ML approaches.

Static application security testing 
(SAST) is a methodology that stati-
cally examines source code to find 
security flaws that make the applica-
tion susceptible to attack. SAST is 
popular because it can detect secu-
rity vulnerabilities already in the 
early stages of the software develop-
ment lifecycle. The static analysis 
can be integrated into a continu-
ous integration/continuous deliv-
ery pipeline, thus automating the 
checks during the build process. 
While this is effective for deploy-
ing existing analyses, the process 
of developing new analyses is still 
manual: whenever a new defect or 
vulnerability type needs to be sup-
ported, an expert in static analysis 
needs to extend the existing frame-
work to detect the new vulner-
ability type. This can be laborious 

and time-consuming, as one has 
to check that the new analysis has 
the desired accuracy, that it does 
not introduce any regressions to 
other analyses already deployed 
in production, and that it does not 
adversely affect the performance of 
the deployed products. Ideally, one 
would want to automate the genera-
tion of such analyses to make them 
available faster.

ML has been applied to perform 
security analysis tasks that are cur-
rently performed using static analyz-
ers.15 In particular, ML techniques 
have been used to learn to solve 
SAST problems. Actually, ML tech-
niques have already become popular 
in the context of mimicking specific 
program analyses, such as symbolic 
execution. Although the results in 
such domains are impressive, they 
are, unfortunately, not generalizable 
to automatically learn static check-
ers, especially for security analysis. 
Even deep learning techniques have 
focused on relatively simple defect 
types, such as incorrect operators or 
assignments. Based on our experi-
ence in using different ML techniques 
for vulnerability detection, here we 

describe our insights into why it is 
hard to learn to solve SAST problems.

Learn to Solve Static 
Analysis Tasks: Our  
Initial Attempts
In our past work, we have combined 
program analysis with ML, aim-
ing to enable the ML technique to 
learn from existing program analysis 
approaches to improve future pro-
gram analysis. In our experience, any 
simple combination of the two tech-
niques does not work. ML by itself 
merely echoes its result with addi-
tional errors. Indeed, it often requires 
a program analysis to run in the first 
place and recognizes the output of 
the analysis as being reliable.3 If we 
do not involve program analysis, the 
ML-based classifier can only use the 
input source code or its direct inter-
mediate representation, like opcodes, 
to represent the program’s semantics, 
such as loading data to a variable or 
calling a function (both considered 
as a sequence of words) to train and 
subsequently predict vulnerable 
code. Unfortunately, the tokens of the 
source code, such as opcodes, expres-
sions, and statements, are generic 
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syntactic constructs that alone do 
not represent the semantics of vul-
nerable code when directly applied 
to ML approaches.2 While there are 
existing works that represent the 
code sequence with more advanced 
data structures, such as trees or 
graphs, e.g., using abstract syntax 
trees or program dependence 
graphs,13 these statically extracted 
representations are not sufficient also 
to capture semantics related to the 
program’s runtime behavior, such as 
values of expressions and operations 
on the heap. Whether ML techniques 
and lightweight program analysis 
techniques can be combined to have 
a technique that is comparable to a 
custom program analysis technique 
is still an open question.

For such techniques to be use-
ful in practice, they have to work 
on real-world codebases, not toy 
programs. Our experience in using 
ML-based approaches on codebases 
with several millions of lines of code, 
such as Open Solaris to detect vul-
nerabilities in the C code, was not 
successful.3 Since there is no ground 
truth in such large codebases, it is 
nontrivial to compute an F-score 
to evaluate the actual capability of 
the ML approaches. In the experi-
ments we ran, the ML technique 
generated 250 times the number of 
potential vulnerability reports com-
pared to a static analysis tool. How-
ever, the generated reports were all 
false positives, providing no useful 
information to the developers. This 
evidence experimentally shows that 
it is indeed nontrivial to learn ML 
approaches to handle real-world vul-
nerability detections.

Another key distinguishing fea-
ture between program analysis 
techniques and ML-based tech-
niques is explainability. Program 
analysis techniques typically gener-
ate an abstract trace, also known as 
a potential witness path, derived from 
data-flow analysis to explain why a 
value generated at a program point 
can have a detrimental effect on an 

operation at another program point. 
While explainable ML is an active 
area of research, its focus is on gener-
ating explanations of the characteris-
tics of the model that resulted in the 
observed output. No ML is able to 
produce abstract traces of program 
behaviors. This is related to the fact 
that the ML models do not capture 
the execution semantics of programs 
(i.e., runtime behavior). There are 
ML techniques that accept traces as 
input, but none of them, as yet, can 
generate traces from programming 
language models.

Understanding the 
Limitations of ML Applied 
to Static Analysis
In this section, we summarize, at a 
high level, the reasons the ML-based 
techniques fare poorly. These results 
are based on our experience of 
exploring such techniques in differ-
ent domains, including misuse of 
cryptographic application program-
ming interfaces (APIs) in Java pro-
grams and detecting memory-related 
issues in C programs.

Labeling Issue: Learning 
Through Crowd-Sourcing 
Solutions Is Not Feasible
The usual ML problem of having 
sufficient labeled data is a challenge. 
Creating such labeled data of a large 
corpus of code with annotated vul-
nerabilities can hardly be automated. 
It is unclear whether creating such 
labeled data is any cheaper than 
writing a specific program analysis. 
Solutions, such as crowd-sourcing 
(e.g., learning from existing bench-
marks collected by different teams 
from different code repositories), 

which works for very simple prob-
lems, do not typically work in the 
context of security analysis: in fact, 
it can be hard to get consensus on 
vulnerable code purely through such 
crowd-sourced datasets (e.g., such 
datasets per se may suffer from qual-
ity issues14). Our work on the mis-
use of cryptographic APIs4 shows 
that the level of expertise required 
to identify proper and improper 
uses is quite high. While research-
ers have shown that it is possible to 
learn rules from code changes to fix 
incorrect cryptographic API usages, 

it is nevertheless hard to automate 
the process to achieve a comparable 
set of rules manually summarized by 
humans. By checking the updates of 
API usage in the evolution of 40,000 
real-world Android apps, we have 
experimentally found that crypto-
graphic APIs are widely misused in 
practice. Such misuses are not even 
regularly fixed by app developers.

This labeling issue also relates 
to a “definition issue,” where several 
security-related concepts are not 
well-defined. In contrast with other 
traditional classification or detection 
tasks on which artificial intelligence 
techniques perform extremely well, 
several important security concepts 
are difficult to define properly, and 
they are often context-dependent. 
Researchers and analysts still require 
a lot of effort and expertise to check 
if a given warning is actually a mali-
cious piece of code or a vulnerability. 

Semantics Issue: Learning 
Code Semantics Is Hard
While pretrained models like Code-
BERT1 and Graph CodeBERT offer 

Whether ML techniques and lightweight 
program analysis techniques can be 

combined to have a technique that is 
comparable to a custom program analysis 

technique is still an open question.

Authorized licensed use limited to: University of Luxembourg. Downloaded on October 11,2023 at 13:15:24 UTC from IEEE Xplore.  Restrictions apply. 



BUILDING SECURITY IN

70 IEEE Security & Privacy September/October 2023

promising new code representations 
(i.e., new embeddings for code), 
they still only capture the structural 
aspects of the code. They do not 
quite capture the runtime semantics 
of the code, especially for arithmetic 
expressions and operations on arrays. 
Other approaches like JSNice5 do 
guess the semantics, but that is only 
in the context of variable renam-
ing; i.e., they do not deal with the 
semantics of the instructions in the 
code. Yamaguchi et al.13 propose a 
novel code representation approach 
called code property graph that merges 
abstract syntax trees, control flow 
graphs, and program dependence 
graphs into a joint data structure, 
representing the semantics more 
comprehensively. Their approach, 
however, requires performing com-
plicated program analysis already 
(e.g., to build data-flow analysis) and 
it is hard to retain context-sensitivity 
information (which has been consid-
ered important for purely static pro-
gram analysis approaches).

Assessment Issue: In the Lab 
Versus in the Wild
It is not rare to read papers proposing 
a new ML-based approach to solve a 
given security problem, for instance, 
malware detection, showing impres-
sive performance scores, sometimes 
up to 0.99.8 We have shown in in Allix 
et al.6 that most of these approaches 
suffer from assessment issues. Indeed, 
many approaches are assessed with 
what we call in the lab validation sce-
narios, i.e., a combination of 10-fold 
cross-validation and a limited data-
set. We demonstrated the limita-
tions of such a validation scenario. In 
particular, we showed that 10-fold 
cross-validation on the usual sizes of 
datasets presented in the literature is 
not a reliable performance indicator 
for realistic malware detectors “in the  
wild.” With Tesseract, Pendlebury  
et al.7 confirmed our findings and intro-
duced the notions of spatial bias (distri-
butions of training and testing data that 
are not representative of a real-world 

deployment) and temporal bias (incor-
rect time splits of training and testing 
sets). In the context of program seman-
tics, focusing only on specific datas-
ets like big data clone benchmarks,10 
semantic clone bench,11 or using exam-
ples from GoogleCodeJam12 seems to 
yield good results. But these articles do 
not investigate the case when a model 
is generated on one benchmark and is 
used on a different set of benchmarks. 
Thus, is it not possible to estimate the 
generalizability of the approaches.

Understanding the Dataset’s 
Diversity Is Challenging
Another important aspect of the 
evaluation of learning-based tech-
niques is the diversity of data within 
the dataset (e.g., to what extent has 
the dataset covered the landscape 
of the concerned problems). For 
instance, in the context of vulnerabil-
ity detection, the commonly used 
dataset contains only code fragments 
that are related to vulnerabilities. 
Hence, any evaluation that uses only 
that dataset is potentially misleading. 
It is important to use datasets that 
also have nonvulnerability-related 
code fragments. Furthermore, the 
number of nonvulnerability-related 
code fragments must be much higher 
than vulnerability-related code frag-
ments. This will determine if the 
proposed technique is actually appli-
cable in practice. That is, the tech-
nique must be able to distinguish 
vulnerability-related code from 
nonvulnerability-related code where 
most of the code is not vulnerable.

Lack of Explainability
Program analysis approaches usu-
ally yield warnings with relevant 
data-flow traces and even change 
recommendations that are often 
useful for users to understand the 
problem or fix the issues. This level 
of explainability as to why the pro-
gram analysis determined that a 
particular statement in the code is 
an issue is not available when per-
forming ML classifiers, they only 

report there is likely a vulnerability 
but do not explain why it is regarded 
as such. Therefore, we argue that, in 
order to make ML approaches more 
useful in practice, it is important to 
develop explainable ML techniques. 

I t is indeed hard to train ML-based 
security static checkers. We have 

identified four main reasons that 
make learning static security check-
ers challenging: labeling, semantics, 
assessment issues, and explainability. 
The labeling issue can be overcome 
by putting more effort into building 
reliable artifacts, sharing annotated 
datasets, releasing tools, etc. This is 
still too rarely done in the security 
community. The semantics issue 
can be addressed by developing new 
advanced code representation tech-
niques, for instance, by embedding 
semantically rich information such 
as value-flow graphs. Regarding the 
assessment issue, we strongly invite 
researchers to adequately assess 
their approach to match practical 
and realistic constraints. Finally, 
the lack of explainability is a tough 
area of research where we invite 
researchers to develop techniques 
to generate traces from program-
ming language models.

Moreover, while it is nontrivial to 
automatically learn to generate fully 
functional SAST approaches, we 
argue that it might still be feasible 
to generate partial solutions, e.g., 
only using ML to generate mod-
ules (i.e., type inference module of 
a static analysis approach) that are 
actually suitable for ML approaches. 
These partial modules could then 
be integrated into program analysis 
approaches to enable better perfor-
mance, which cannot be achieved 
using program analysis techniques 
alone. Our fellow researchers have 
recently demonstrated the feasi-
bility of implementing that.9 They 
have proposed an approach that 
leverages deep learning techniques 
to infer types for Python programs 
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and then integrates the outcomes 
into a program analysis approach to 
validate and refine the results. Static 
analyzers could further leverage this 
ML-generated type data to support 
more advanced program analyses, 
such as context-aware data-flow analy-
sis. We invite the research commu-
nity to further explore this exciting 
research direction. 
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We identify 10 generic pitfalls that can affect the experimental outcome of AI driven solutions  
in computer security. We find that they are prevalent in the literature and provide recommendations 
for overcoming them in the future.

A rtificial intelligence (AI) 
and machine learning have 

enabled remarkable progress in 
science and industry. This advance-
ment has naturally also impacted 
computer security, with nearly 
every major vendor now marketing 
AI-driven solutions for threat anal-
ysis and detection. Similarly, the 

number of research papers applying 
machine learning to solve security 
tasks has literally exploded.

These works come with the 
implicit promise that learning algo-
rithms provide significant benefits 
compared with traditional solu-
tions. In recent years, however, 
different studies have shown that 
learning-based approaches often 
fail to provide the promised per-
formance in practice due to various 

restrictions ignored in the original 
publications.1,2,3,4 In this article, 
we want to ask, Are there generic 
pitfalls that can affect the experi-
mental outcome when applying 
machine learning in security? If 
so, how can researchers avoid step-
ping into them?

Why Should I Care?
As a thorough researcher, one 
might tend to think, “This can 
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