
68 September/October 2023 Copublished by the IEEE Computer and Reliability Societies 1540-7993/23©2023IEEE

BUILDING SECURITY IN
Editors: Fabio Massacci, fabio.massacci@ieee.org | Eric Bodden, eric.bodden@uni-paderborn.de | Antonino Sabetta, as@sabetta.com

In this article, we summarize our experience in combining program analysis with machine learning (ML)
to develop a technique that can improve the development of specific program analyses. Our experience
is negative. We describe the areas that need to be addressed if ML techniques are to be useful in the
program analysis context. Most of the issues that we report are different from the ones that discuss the
state of the art in the use of ML techniques to detect security vulnerabilities

W hile issues such as relevant
datasets and representation

of program semantics are common,
our focus is on enhancing vulner-
ability detection by combining static
analysis and ML approaches.

Static application security testing
(SAST) is a methodology that stati-
cally examines source code to find
security flaws that make the applica-
tion susceptible to attack. SAST is
popular because it can detect secu-
rity vulnerabilities already in the
early stages of the software develop-
ment lifecycle. The static analysis
can be integrated into a continu-
ous integration/continuous deliv-
ery pipeline, thus automating the
checks during the build process.
While this is effective for deploy-
ing existing analyses, the process
of developing new analyses is still
manual: whenever a new defect or
vulnerability type needs to be sup-
ported, an expert in static analysis
needs to extend the existing frame-
work to detect the new vulner-
ability type. This can be laborious

and time-consuming, as one has
to check that the new analysis has
the desired accuracy, that it does
not introduce any regressions to
other analyses already deployed
in production, and that it does not
adversely affect the performance of
the deployed products. Ideally, one
would want to automate the genera-
tion of such analyses to make them
available faster.

ML has been applied to perform
security analysis tasks that are cur-
rently performed using static analyz-
ers.15 In particular, ML techniques
have been used to learn to solve
SAST problems. Actually, ML tech-
niques have already become popular
in the context of mimicking specific
program analyses, such as symbolic
execution. Although the results in
such domains are impressive, they
are, unfortunately, not generalizable
to automatically learn static check-
ers, especially for security analysis.
Even deep learning techniques have
focused on relatively simple defect
types, such as incorrect operators or
assignments. Based on our experi-
ence in using different ML techniques
for vulnerability detection, here we

describe our insights into why it is
hard to learn to solve SAST problems.

Learn to Solve Static
Analysis Tasks: Our
Initial Attempts
In our past work, we have combined
program analysis with ML, aim-
ing to enable the ML technique to
learn from existing program analysis
approaches to improve future pro-
gram analysis. In our experience, any
simple combination of the two tech-
niques does not work. ML by itself
merely echoes its result with addi-
tional errors. Indeed, it often requires
a program analysis to run in the first
place and recognizes the output of
the analysis as being reliable.3 If we
do not involve program analysis, the
ML-based classifier can only use the
input source code or its direct inter-
mediate representation, like opcodes,
to represent the program’s semantics,
such as loading data to a variable or
calling a function (both considered
as a sequence of words) to train and
subsequently predict vulnerable
code. Unfortunately, the tokens of the
source code, such as opcodes, expres-
sions, and statements, are generic

Digital Object Identifier 10.1109/MSEC.2023.3287206
Date of current version: 11 September 2023

Why Is Static Application
Security Testing Hard to Learn?

Padmanabhan Krishnan and Cristina Cifuentes | Oracle Labs
Li Li | Beihang University
Tegawendé F. Bissyandé and Jacques Klein | University of Luxembourg

Authorized licensed use limited to: University of Luxembourg. Downloaded on October 11,2023 at 13:15:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5905-8499
https://orcid.org/0000-0003-2990-1614
https://orcid.org/0000-0001-7270-9869
https://orcid.org/0000-0003-4052-475X

www.computer.org/security 69

syntactic constructs that alone do
not represent the semantics of vul-
nerable code when directly applied
to ML approaches.2 While there are
existing works that represent the
code sequence with more advanced
data structures, such as trees or
graphs, e.g., using abstract syntax
trees or program dependence
graphs,13 these statically extracted
representations are not sufficient also
to capture semantics related to the
program’s runtime behavior, such as
values of expressions and operations
on the heap. Whether ML techniques
and lightweight program analysis
techniques can be combined to have
a technique that is comparable to a
custom program analysis technique
is still an open question.

For such techniques to be use-
ful in practice, they have to work
on real-world codebases, not toy
programs. Our experience in using
ML-based approaches on codebases
with several millions of lines of code,
such as Open Solaris to detect vul-
nerabilities in the C code, was not
successful.3 Since there is no ground
truth in such large codebases, it is
nontrivial to compute an F-score
to evaluate the actual capability of
the ML approaches. In the experi-
ments we ran, the ML technique
generated 250 times the number of
potential vulnerability reports com-
pared to a static analysis tool. How-
ever, the generated reports were all
false positives, providing no useful
information to the developers. This
evidence experimentally shows that
it is indeed nontrivial to learn ML
approaches to handle real-world vul-
nerability detections.

Another key distinguishing fea-
ture between program analysis
techniques and ML-based tech-
niques is explainability. Program
analysis techniques typically gener-
ate an abstract trace, also known as
a potential witness path, derived from
data-flow analysis to explain why a
value generated at a program point
can have a detrimental effect on an

operation at another program point.
While explainable ML is an active
area of research, its focus is on gener-
ating explanations of the characteris-
tics of the model that resulted in the
observed output. No ML is able to
produce abstract traces of program
behaviors. This is related to the fact
that the ML models do not capture
the execution semantics of programs
(i.e., runtime behavior). There are
ML techniques that accept traces as
input, but none of them, as yet, can
generate traces from programming
language models.

Understanding the
Limitations of ML Applied
to Static Analysis
In this section, we summarize, at a
high level, the reasons the ML-based
techniques fare poorly. These results
are based on our experience of
exploring such techniques in differ-
ent domains, including misuse of
cryptographic application program-
ming interfaces (APIs) in Java pro-
grams and detecting memory-related
issues in C programs.

Labeling Issue: Learning
Through Crowd-Sourcing
Solutions Is Not Feasible
The usual ML problem of having
sufficient labeled data is a challenge.
Creating such labeled data of a large
corpus of code with annotated vul-
nerabilities can hardly be automated.
It is unclear whether creating such
labeled data is any cheaper than
writing a specific program analysis.
Solutions, such as crowd-sourcing
(e.g., learning from existing bench-
marks collected by different teams
from different code repositories),

which works for very simple prob-
lems, do not typically work in the
context of security analysis: in fact,
it can be hard to get consensus on
vulnerable code purely through such
crowd-sourced datasets (e.g., such
datasets per se may suffer from qual-
ity issues14). Our work on the mis-
use of cryptographic APIs4 shows
that the level of expertise required
to identify proper and improper
uses is quite high. While research-
ers have shown that it is possible to
learn rules from code changes to fix
incorrect cryptographic API usages,

it is nevertheless hard to automate
the process to achieve a comparable
set of rules manually summarized by
humans. By checking the updates of
API usage in the evolution of 40,000
real-world Android apps, we have
experimentally found that crypto-
graphic APIs are widely misused in
practice. Such misuses are not even
regularly fixed by app developers.

This labeling issue also relates
to a “definition issue,” where several
security-related concepts are not
well-defined. In contrast with other
traditional classification or detection
tasks on which artificial intelligence
techniques perform extremely well,
several important security concepts
are difficult to define properly, and
they are often context-dependent.
Researchers and analysts still require
a lot of effort and expertise to check
if a given warning is actually a mali-
cious piece of code or a vulnerability.

Semantics Issue: Learning
Code Semantics Is Hard
While pretrained models like Code-
BERT1 and Graph CodeBERT offer

Whether ML techniques and lightweight
program analysis techniques can be

combined to have a technique that is
comparable to a custom program analysis

technique is still an open question.

Authorized licensed use limited to: University of Luxembourg. Downloaded on October 11,2023 at 13:15:24 UTC from IEEE Xplore. Restrictions apply.

BUILDING SECURITY IN

70 IEEE Security & Privacy September/October 2023

promising new code representations
(i.e., new embeddings for code),
they still only capture the structural
aspects of the code. They do not
quite capture the runtime semantics
of the code, especially for arithmetic
expressions and operations on arrays.
Other approaches like JSNice5 do
guess the semantics, but that is only
in the context of variable renam-
ing; i.e., they do not deal with the
semantics of the instructions in the
code. Yamaguchi et al.13 propose a
novel code representation approach
called code property graph that merges
abstract syntax trees, control flow
graphs, and program dependence
graphs into a joint data structure,
representing the semantics more
comprehensively. Their approach,
however, requires performing com-
plicated program analysis already
(e.g., to build data-flow analysis) and
it is hard to retain context-sensitivity
information (which has been consid-
ered important for purely static pro-
gram analysis approaches).

Assessment Issue: In the Lab
Versus in the Wild
It is not rare to read papers proposing
a new ML-based approach to solve a
given security problem, for instance,
malware detection, showing impres-
sive performance scores, sometimes
up to 0.99.8 We have shown in in Allix
et al.6 that most of these approaches
suffer from assessment issues. Indeed,
many approaches are assessed with
what we call in the lab validation sce-
narios, i.e., a combination of 10-fold
cross-validation and a limited data-
set. We demonstrated the limita-
tions of such a validation scenario. In
particular, we showed that 10-fold
cross-validation on the usual sizes of
datasets presented in the literature is
not a reliable performance indicator
for realistic malware detectors “in the
wild.” With Tesseract, Pendlebury
et al.7 confirmed our findings and intro-
duced the notions of spatial bias (distri-
butions of training and testing data that
are not representative of a real-world

deployment) and temporal bias (incor-
rect time splits of training and testing
sets). In the context of program seman-
tics, focusing only on specific datas-
ets like big data clone benchmarks,10
semantic clone bench,11 or using exam-
ples from GoogleCodeJam12 seems to
yield good results. But these articles do
not investigate the case when a model
is generated on one benchmark and is
used on a different set of benchmarks.
Thus, is it not possible to estimate the
generalizability of the approaches.

Understanding the Dataset’s
Diversity Is Challenging
Another important aspect of the
evaluation of learning-based tech-
niques is the diversity of data within
the dataset (e.g., to what extent has
the dataset covered the landscape
of the concerned problems). For
instance, in the context of vulnerabil-
ity detection, the commonly used
dataset contains only code fragments
that are related to vulnerabilities.
Hence, any evaluation that uses only
that dataset is potentially misleading.
It is important to use datasets that
also have nonvulnerability-related
code fragments. Furthermore, the
number of nonvulnerability-related
code fragments must be much higher
than vulnerability-related code frag-
ments. This will determine if the
proposed technique is actually appli-
cable in practice. That is, the tech-
nique must be able to distinguish
vulnerability-related code from
nonvulnerability-related code where
most of the code is not vulnerable.

Lack of Explainability
Program analysis approaches usu-
ally yield warnings with relevant
data-flow traces and even change
recommendations that are often
useful for users to understand the
problem or fix the issues. This level
of explainability as to why the pro-
gram analysis determined that a
particular statement in the code is
an issue is not available when per-
forming ML classifiers, they only

report there is likely a vulnerability
but do not explain why it is regarded
as such. Therefore, we argue that, in
order to make ML approaches more
useful in practice, it is important to
develop explainable ML techniques.

I t is indeed hard to train ML-based
security static checkers. We have

identified four main reasons that
make learning static security check-
ers challenging: labeling, semantics,
assessment issues, and explainability.
The labeling issue can be overcome
by putting more effort into building
reliable artifacts, sharing annotated
datasets, releasing tools, etc. This is
still too rarely done in the security
community. The semantics issue
can be addressed by developing new
advanced code representation tech-
niques, for instance, by embedding
semantically rich information such
as value-flow graphs. Regarding the
assessment issue, we strongly invite
researchers to adequately assess
their approach to match practical
and realistic constraints. Finally,
the lack of explainability is a tough
area of research where we invite
researchers to develop techniques
to generate traces from program-
ming language models.

Moreover, while it is nontrivial to
automatically learn to generate fully
functional SAST approaches, we
argue that it might still be feasible
to generate partial solutions, e.g.,
only using ML to generate mod-
ules (i.e., type inference module of
a static analysis approach) that are
actually suitable for ML approaches.
These partial modules could then
be integrated into program analysis
approaches to enable better perfor-
mance, which cannot be achieved
using program analysis techniques
alone. Our fellow researchers have
recently demonstrated the feasi-
bility of implementing that.9 They
have proposed an approach that
leverages deep learning techniques
to infer types for Python programs

Authorized licensed use limited to: University of Luxembourg. Downloaded on October 11,2023 at 13:15:24 UTC from IEEE Xplore. Restrictions apply.

www.computer.org/security 71

and then integrates the outcomes
into a program analysis approach to
validate and refine the results. Static
analyzers could further leverage this
ML-generated type data to support
more advanced program analyses,
such as context-aware data-flow analy-
sis. We invite the research commu-
nity to further explore this exciting
research direction.

References
1. Z. Feng et al., “CodeBERT: A pre-

trained model for programming and
natural languages,” in Proc. Findings
Assoc. Comput. Linguistics, EMNLP,
2020, pp. 1536–1547, doi: 10.18653/
v1/2020.findings-emnlp.139.

2. T. Chappell, C. Cifuentes, P. Krishnan,
and S. Geva, “Machine learning for
finding bugs: An initial report,” in Proc.
IEEE Workshop Mach. Learn. Techn.
Softw. Qual. Eval. (MaLTeSQuE),
2017, pp. 21–26, doi: 10.1109/
MALTESQUE.2017.7882012.

3. Y. Zhao, X. Du, P. Krishnan, and C.
Cifuentes, “Buffer overflow detec-
tion for C programs is hard to
learn,” in Proc. Companion (MLPL)
ISSTA/ECOOP, 2018, pp. 8–9, doi:
10.1145/3236454.3236455.

4. J. Gao, P. Kong, L. Li, T. F. Bissy-
andé, and J. Klein, “Negative results
on mining crypto-API usage rules in
android apps,” in Proc. IEEE/ACM
16th Int. Conf. Mining Softw. Reposi-
tories (MSR), 2019, pp. 388–398,
doi: 10.1109/MSR.2019.00065.

5. V. Raychev, M. Vechev, and A.
Krause, “Predicting program prop-
erties from ‘Big Code’,” ACM SIG-
PLAN Notices, vol. 50, no. 1, pp.
111–124, Jan. 2015, doi: 10.1145/
2775051.2677009.

6. K. Allix, T. F. Bissyandé, Q. Jérome,
J. Klein, R. State, and Y. Le Traon,
“Empirical assessment of machine
learning-based malware detec-
tors for android: Measuring the
gap between in-the-lab and in-the-
wild validation scenarios,” Empiri-
cal Softw. Eng., vol. 21, no. 1, pp.
183–211, Feb. 2016, doi: 10.1007/
s10664-014-9352-6.

7. F. Pendlebury, F. Pierazzi, R. Jor-
daney, J. Kinder, and L. Cavallaro,
“TESSERACT: Eliminating experi-
mental bias in malware classifica-
tion across space and time,” in Proc.
28th USENIX Security Symp. (USE-
NIX Security), Santa Clara, CA,
USA, 2019, pp. 729–746.

8. Y. Liu, C. Tantithamthavorn, L.
Li, and Y. Liu, “Deep learning for
android malware defenses: A system-
atic literature review,” ACM Comput.
Surv., vol. 55, no. 8, pp. 1–36, Dec.
2022, doi: 10.1145/3544968.

9. Y. Peng et al., “Static inference
meets deep learning: A hybrid type
inference approach for Python,”
in Proc. 44th Int. Conf. Softw. Eng.
(ICSE), 2022, pp. 2019–2030, doi:
10.1145/3510003.3510038.

10. J. Svajlenko, I. Keivanloo, and C.
Roy, “Big data clone detection using
classical detectors: An exploratory
study,” J. Softw., Evol. Process, vol. 27,
no. 6, pp. 430–464, Jun. 2015, doi:
10.1002/smr.1662.

11. F. Al-Omari, C. K. Roy, and T. Chen,
“SemanticCloneBench: A seman-
tic code clone benchmark using
crowd-source knowledge,” in Proc.
IEEE 14th Int. Workshop Softw. Clones
(IWSC), 2020, pp. 57–63, doi:
10.1109/IWSC50091.2020.9047643.

12. W. Wang, G. Li, B. Ma, X. Xia, and Z.
Jin, “Detecting code clones with graph
neural network and flow-augmented
abstract syntax tree,” in Proc. SANER,
2020, pp. 261–271, doi: 10.1109/
SANER48275.2020.9054857.

13. F. Yamaguchi, N. Golde, D. Arp, and
K. Rieck, “Modeling and discover-
ing vulnerabilities with code prop-
erty graphs,” in Proc. IEEE Symp.
Security Privacy, 2014, pp. 590–604,
doi: 10.1109/SP.2014.44.

14. Y. Zhao et al., “On the impact of sam-
ple duplication in machine-learning-
based android malware detection,”
ACM Trans. Softw. Eng. Methodology,
vol. 30, no. 3, pp. 1–38, May 2021,
doi: 10.1145/3446905.

15. T. Marjanov, I. Pashchenko, and F.
Massacci, “Machine learning for
source code vulnerability detection:

What works and what isn’t there yet,”
IEEE Security Privacy, vol. 20, no.
5, pp. 60–76, Sep./Oct. 2022, doi:
10.1109/MSEC.2022.3176058.

Padmanabhan Krishnan is the direc-
tor of research at Oracle Labs, Bris-
bane, QLD 400, Australia, leading a
team that is working on developing
suitable tools to detect and reme-
diate security vulnerabilities. His
research interests include program
analysis, application security, and
formal methods. Krishnan received
a B.Tech. from the Indian Institute
of Technology of Kanpur, India and
a Ph.D. in programming languages
from the University of Michigan,
USA. He is a senior member of
the Association of Computing
Machinery and a Senior Member
of IEEE. Contact him at paddy.
krishnan@oracle.com.

Cristina Cifuentes is vice president of
software assurance at Oracle Labs,
Brisbane, QLD 400, Australia,
leading a global team focusing on
making application security and
software assurance, at scale, a real-
ity. Her research interests include
software assurance. Cifuen-
tes received a Ph.D. in computer
science from the Queensland Uni-
versity of Technology. She was the
founding Director of Oracle Labs,
Australia in 2010 and has over
20 years of industrial experience,
holds 15+ US patents, and has
published over 50 peer-reviewed
publications. Contact her at cris-
tina.cifuentes@oracle.com.

Li Li is a professor with the School
of Software, Beihang Univer-
sity, 100191 Beijing, China. His
research interests include mobile
software engineering and intel-
ligent software engineering. Li
received a Ph.D. in software
engineering from the University
of Luxembourg. He is a Senior
Member of IEEE. Contact him at
lilicoding@ieee.org.

Authorized licensed use limited to: University of Luxembourg. Downloaded on October 11,2023 at 13:15:24 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.18653/v1/2020.findings-emnlp.139
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.139
http://dx.doi.org/10.1145/3236454.3236455
http://dx.doi.org/10.1109/MSR.2019.00065
http://dx.doi.org/10.1007/s10664-014-9352-6
http://dx.doi.org/10.1007/s10664-014-9352-6
http://dx.doi.org/10.1145/3544968
http://dx.doi.org/10.1002/smr.1662
http://dx.doi.org/10.1109/IWSC50091.2020.9047643
http://dx.doi.org/10.1145/3446905
http://dx.doi.org/10.1109/MSEC.2022.3176058
mailto:paddy.krishnan@oracle.com
mailto:paddy.krishnan@oracle.com
mailto:cristina.cifuentes@oracle.com
mailto:cristina.cifuentes@oracle.com
mailto:lilicoding@ieee.org

BUILDING SECURITY IN

72 IEEE Security & Privacy September/October 2023

Tegawendé F. Bissyandé is a chief
 scientist, associate professor at the
University of Luxembourg, L -1359
Luxembourg, Luxembourg, where
he conducts research on program
debugging and repair at the Inter-
disciplinary Centre for Security,
Reliability, and Repair. His re -
search interests include program
repair and software analytics.

Bissyandé received a Ph.D. in com-
puter science from the Univer sity
of Bordeaux, France. He is a
Member of IEEE. Contact him at
tegawende.bissyande@uni.lu.

Jacques Klein is a full professor in
software engineering and software
security within the Interdisciplin-
ary Centre for Security, Reliability,

and Trust at the University of Lux-
embourg, L-1359 Luxembourg,
Luxembourg. His main research
interests are software security, soft-
ware reliability, and data analytics.
Klein received a Ph.D. in computer
science from the University of
Rennes, France. He is a Member
of IEEE. Contact him at jacques.
klein@uni.lu.

We identify 10 generic pitfalls that can affect the experimental outcome of AI driven solutions
in computer security. We find that they are prevalent in the literature and provide recommendations
for overcoming them in the future.

A rtificial intelligence (AI)
and machine learning have

enabled remarkable progress in
science and industry. This advance-
ment has naturally also impacted
computer security, with nearly
every major vendor now marketing
AI-driven solutions for threat anal-
ysis and detection. Similarly, the

number of research papers applying
machine learning to solve security
tasks has literally exploded.

These works come with the
implicit promise that learning algo-
rithms provide significant benefits
compared with traditional solu-
tions. In recent years, however,
different studies have shown that
learning-based approaches often
fail to provide the promised per-
formance in practice due to various

restrictions ignored in the original
publications.1,2,3,4 In this article,
we want to ask, Are there generic
pitfalls that can affect the experi-
mental outcome when applying
machine learning in security? If
so, how can researchers avoid step-
ping into them?

Why Should I Care?
As a thorough researcher, one
might tend to think, “This can

Digital Object Identifier 10.1109/MSEC.2023.3287207
Date of current version: 11 September 2023

Lessons Learned on Machine Learning
for Computer Security

Daniel Arp | Technische Universität Berlin and University College London
Erwin Quiring | ICSI and Ruhr University Bochum
Feargus Pendlebury | University College London
Alexander Warnecke | Technische Universität Berlin
Fabio Pierazzi | King’s College London
Christian Wressnegger | KASTEL Security Research Labs and Karlsruhe Institute of Technology
Lorenzo Cavallaro | University College London
Konrad Rieck | Technische Universität Berlin

Authorized licensed use limited to: University of Luxembourg. Downloaded on October 11,2023 at 13:15:24 UTC from IEEE Xplore. Restrictions apply.

mailto:tegawende.bissyande@uni.lu
mailto:jacques.klein@uni.lu
mailto:jacques.klein@uni.lu
https://orcid.org/0000-0003-3628-794X
https://orcid.org/0009-0004-7170-1274
https://orcid.org/0000-0003-1140-322X
https://orcid.org/0009-0006-3617-3968
https://orcid.org/0000-0002-1254-1758
https://orcid.org/0009-0007-1493-9552
https://orcid.org/0000-0002-3878-2680
https://orcid.org/0000-0002-5054-8758

	68_21msec05-buildingsecurityin-3287206

