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ABSTRACT

Code representation is a key step in the application of Al in soft-
ware engineering. Generic NLP representations are effective but
do not exploit all the rich structure inherent to code. Recent work
has focused on extracting abstract syntax trees (AST) and integrat-
ing their structural information into code representations. These
AST-enhanced representations advanced the state of the art and
accelerated new applications of Al to software engineering. ASTs,
however, neglect important aspects of code structure, notably con-
trol and data flow, leaving some potentially relevant code signal
unexploited. For example, purely image-based representations per-
form nearly as well as AST-based representations, despite the fact
that they must learn to even recognize tokens, let alone their se-
mantics. This result, from prior work, is strong evidence that these
new code representations can still be improved; it also raises the
question of just what signal image-based approaches are exploiting.

We answer this question. We show that code is spatial and exploit
this fact to propose CODEGRID, a new representation that embeds
tokens into a grid that preserves code layout. Unlike some of the
existing state of the art, CODEGRID is agnostic to the downstream
task: whether that task is generation or classification, CODEGRID
can complement the learning algorithm with spatial signal. For
example, we show that CNNs, which are inherently spatially-aware
models, can exploit CODEGRID outputs to effectively tackle fun-
damental software engineering tasks, such as code classification,
code clone detection and vulnerability detection. PixelCNN lever-
ages CODEGRID’s grid representations to achieve code completion.
Through extensive experiments, we validate our spatial code hy-
pothesis, quantifying model performance as we vary the degree to
which the representation preserves the grid. To demonstrate its gen-
erality, we show that CODEGRID augments models, improving their
performance on a range of tasks. On clone detection, CODEGRID
improves ASTNN’s performance by 3.3% F1 score.

“Some work carried out while a visiting scholar at Google DeepMind.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598141

1357

Earl T. Barr*

University College London
United Kingdom
earl.barr@ucl.ac.uk

Tegawendé F. Bissyandé
University of Luxembourg
Luxembourg
tegawende.bissyande@uni.lu

CCS CONCEPTS

« Computing methodologies — Machine learning; Image process-
ing; « Software and its engineering — Software system structures;
Software creation and management;  General and reference —
Cross-computing tools and techniques.

KEYWORDS
Code TypeSetting, Spatial-Aware Neural Network

ACM Reference Format:

Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein, and Tegawendé F. Bis-
syandé. 2023. CoDEGRID: A Grid Representation of Code. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598141

1 INTRODUCTION

Machine learning (ML) is transforming the digital economy: it has
achieved, even exceeded, human performance, on a wide range of
tasks, such as natural language translation [41] and image recog-
nition [59, 63], to name a few. It is poised to transform software
development [62]. Code is more constrained than the examples of
natural phenomena, like natural language text or images, on which
ML is usually trained: code obeys an artificial (human-devised),
formal grammar; it intermingles that language with natural text
in the form of identifiers and comments [13], and it specifies an
execution. Its formality and executeability give it unique proper-
ties like relatively rigid syntax, unambiguous abstract syntax trees
(AST) [35], and control and data flow.

Researchers applying ML to code have been seeking effective
representations that exploit the signal inherent to code’s relatively
greater structure than text [1, 2, 17]. AST-based representations
have been prominent [4, 5, 54] and their results on tasks, like code
classification and code clone detection [78] as well as code comple-
tion [45], have been promising. Unfortunately, learning over AST
representations tends to have trouble with large and deep ASTs,
on which they can fall prey to the vanishing gradient problem [8].
Despite the wide variety of ML architectures and methods for cap-
turing rich structure applied to code, models using a stream of
code tokens as their representation continue to achieve state of
the art performance with structure providing only small improve-
ments [16, 24, 33]. In short, code contains unexploited signal.

Keller et al. [39] recently substantiated this claim, as a side-effect
of their work, by exploiting a previously untapped source of code
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signal. They proposed WySiWiM ("What you See is What it Means’),
a novel code representation based on an editor’s visual rendering
of code. WySiWiM takes screenshots of the code, then trains CNN-
based computer vision models for software engineering tasks on
those screenshots. WySiWiM’s visual representation does not di-
rectly capture code’s rich structure and mostly contains noise: all
the pixel data that does not contain text. Despite these handicaps,
WySiWiM matched state of the art (SOTA) performance on code
clone detection and code vulnerability prediction tasks. This pio-
neering work shows the effectiveness of a visual representation of
source code and the authors suggested that the success of WySiWiM
may, in part, be due to the maturity and effectiveness of computer
vision models, but they left open the question of just what signal
WySiWiM does exploit.

This paper answers this question. The first step is to consider
WySiWiM’s construction. Computer vision models, especially CNN
models, are built for grid data. WySiWiM trains a state of the art
CNN computer vision model on screenshots, which are pixel grids.
Keller et al’s WySiWiM is spatial from the ground up. Thus, WySi-
WiM primarily, and perhaps exclusively, relies on spatial relations
in code’s layout to achieve its results. It must even learn tokens,
if indeed it does learn them, let alone any relations, like type or
dependence, among them.

In stark contrast, machine learning approaches to software en-
gineering tasks have, to date, used code representations, whether
AST, GNN, or token stream, that destroy code’s layout. Transformer
models’ use of byte-pair encoding does capture whitespace, but not
2d layout [24]. Thus, these representations have sought to capture
code’s rich structural information and discounted the importance
of code layout. Certainly, code layout is irrelevant to a compiler and
to the execution of a binary. These facts, however, neglect layout’s
importance to developers.

In any text, layout, or typesetting, matters because they make it
easier to understand. In ’natural’ text, paragraphing consolidates
ideas into blocks and help the reader to navigate a big block of
text [23]. In code, coding conventions determine how code is type-
set in a project. Whether imposed by fiat or emergent in a code
base [3], projects adopt coding conventions to speed code mainte-
nance [10]. Some coding conventions have been deemed so effec-
tive that languages have been written that enforce them: Python’s
(in)famous whitespace sensitivity is perhaps the most prominent
example [19]. Indeed, Hindle et al. showed indenting alone is an
effective proxy for code complexity [29]. Ranging farther afield,
experiments show that words are often recognised by their shape,
not attending to their characters [12]. Thus, we speculate that one
reason that the spatiality of code has such strong signal has to do
with the fact that it permits developers to make quick, imperfect, yet
still frequently useful, assessments of a code snippet’s purpose at a
glance. Here, we have in mind System 1 thinking, which is integral

to Daniel Kahneman’s work [36].
So, in practice, developers often obey coding conventions and

carefully typeset their code both horizontally and vertically. Hori-
zontal type setting concerns rules for spacing characters, like op-
erators or delimiters, within a single line; some practitioners will
admit to having debated such details as whether to require spaces
around operators or permit “){” vs. ) {”. Consider Figure 1 to see
how vertical alignment can be critical [71]. Figure 1a, on the left,
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int robert_age = 32; 1 int robert_age = 32;
int annalouise_age = 25; 2 int annalouise_age = 25;
int bob_age = 250; 3 int bob_age = 250;
int dorothy_age = 56; 4 int dorothy_age = 56;
(a) Standard Coding Style. (b) Grid Alignment.

Figure 1: Code is spatial! The shared suffix and the 250 outlier
are obscured on the left and jump out on the right.

shows a sequence of assignments, conventionally typeset, using
ragged right, obeying typesetting conventions only horizontally,
within each line. Figure 1a, on the right, shows the same snippet,
spatially typeset. The shared “_age” suffix jumps out, as well as the
anomalous, almost certainly wrong, “250”.

This paper. All the aforementioned examples intuitively argue
in favor of attempting to explore a signal in code with respect to its
layout. The performance of the WySiWiM approach provides an
insight that code spatiality may have a much stronger importance
than ever considered in the literature of code representation.

Guided by the importance of code layout, we introduce CODE-
GRID, a new code representation that is spatially-aware and built
for consumption by architectures that exploit spatial relations,
like CNNs.

Unlike WySiWiM, CopEGRID is aware of tokens. It vectorises to-
kens by mapping each token to a vector value using three different
methods of varying complexity: (1) a naive “Color Vectorizing”
method that uses code colors for each token, where the color is
selected according to the TF-IDF value of the token. Token vectors
are constructed with 3-dimensional values that explore the RGB
color space where color vectors are ordered to take into account
brightness following the approach of Bezryadin et al. [9]. The token
with the highest average TF-IDF value will be mapped with the vec-
tor associated to the highest brightness score; (2) the “Word2Vec
Vectorizing” that is directly based on a re-trained Word2Vec model
using the datasets of our study; and (3) the “Code2Vec Vectoriz-
ing” that leverages the state of the art pre-trained Code2Vec [5]
model built based on AST paths in code snippets. We consider its
keyedvectors! format, which yields a 300 dimension vector for
every token in the training vocabulary.

The code grid. We consider that code is a character-by-line
grid; CopEGRID must preserve this coordinate system. In the code
grid, each token has a character length. Each token’s embedding
vector also has length, but in a different dimension, with different
semantics than its layout length. There are various ways to map
a token’s vector into the cells its raw lexeme occupies in the grid:
place the vector in one cell and zero vectors into the rest, one could
average the vector across the cells or one could repeat the vector
in each cell. In this work, we show that the last option works best
in practice. Future work would be to employ an architecture that
learns its own solution to this mapping problem.

Our experimental results show the value of building a spatial
representation that is directly aware of code and its properties.

!https://radimrehurek.com/gensim/models/keyedvectors.html
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Models trained using CoDEGRID consistently outperform WySi-
WiM. CopeEGRID achieves near SOTA results on code classifi-
cation, vulnerable code prediction, and code completion tasks.
This last task is impossible for WySiWiM, because it is unaware
of tokens.

Finally, we validate our “code is spatial” hypothesis, using our
four tasks. We compare two grid representations: one that utterly de-
stroys code layout and an intermediate one that obscures it against
CopeGRID and show that models trained with CopDEGRID achieve
2.4% to 11.9% more performance on precision. Our main contribu-
tions are as follow:

e We demonstrate that code is spatial — that its layout, both hor-
izontal and vertical, carry useful signal that machine learning
models can effectively exploit.

e We introduce CODEGRID, a novel grid representation of code that
combines the spatial layout of code with lexical information.

o We show that models built using CopEGRID achieve high perfor-
mance on code clone detection, code classification, and vulnera-
bility detection (coming within [2..5%] on various measures).

2 APPROACH

CopEGRID takes a code fragment and builds a grid representation.
A major step in CopEGRID is the construction of the code grid,
where the main idea is to ensure that the coordinate system in the
code layout is preserved (Section 2.2). Finally, grid representations
of code are fed into spatial-aware neural network architectures to
train models for specific software engineering tasks (Section 2.3).
We discuss implementation details for replication purposes (Sec-
tion 2.4).

2.1 Code Is Spatial

We assert that understanding and navigating code involves sys-
tem 1, which, by definition, brings to bear a collection of quick
heuristics for whatever task it is asked to solve. For coding tasks,
some of these heuristics exploit code layout, or typesetting. Good
code typesetting, we claim, even permits perceiving high-level
code semantics visually. This is why code typesetting impacts code
readability and why many coding conventions specify detailed type-
setting rules. Indeed, in some program languages, notably Python,
spatial properties (e.g., indentation) are even part of the syntax. Fun-
damentally, typesetting implies that program code has a character-
based coordinate system. Humans view and edit it with IDES that
preserve this character-granular coordinate system. Developers
themselves both define and exploit this coordinate system when
they add arbitrary spaces, tabs, etc. This work rests on the assump-
tion that code has visual semantics that contains strong and ex-
ploitable signal. Recast as the principle, this assumption means that
any code representation targeting software engineering tasks has
two implications:

o Code representations should preserve the coordinate system
(i.e., the grid) of code. Indeed, code has visual semantics as
experimentally suggested by the performance achieved with
image-based representations of code [39].

o Models should themselves be spatially-aware to exploit spatial
code representations. Deep Convolutional Neural Networks
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(CNNis) are appealing in this regard since the convolutional
structure in a neural network is built to exploit spatially
ordered data [26].

2.2 Representation: Constructing a Code Grid

Given a code sample, CODEGRID unfolds a multi-step process to
produce a grid representation where each code token is carefully
encoded, in a way that captures its importance for modeling, and
mapped to a grid cell. The size of the grid as well as it organisa-
tion (i.e., the position of cells) faithfully account for the spatial
dimension of code. Figure 2 unfolds, with a running example, the
different steps that are carried out to produce the final code grid
representation. Note that the colorful visualization that is provided
is only for illustration purposes in this paper (i.e., the target out-
put of CoDEGRID is not an image, but rather a matrix grid with
numerical values).

®-0 Preprocessing and Tokens Extraction. CODEGRID exclu-
sively targets the representation of source code. Annotations such
as code comments are left out from the design of CODEGRID. Its
preprocessing step removes comments before splitting code into its
constituting tokens. Every single token, including punctuation, is
extracted and kept as such, because, like whitespace, punctuation
is integral to typsetting. All tokens seen in the overall dataset of
code samples constitute the code vocabulary.

® Retrieving the Coordinate System. When extracting tokens,
CoDEGRID preserves the information about the spatial positions
that they occupy when code is viewed in a text editor. To that end,
CopEGRID scans the code using a cursor that moves through the
whole code to record the coordinates of each code token. The initial
position (top-left) is assigned the origin position (0, 0). The cursor
moves from left to right per character and each encountered token
t is assigned the coordinates (x;, y;) of its first character.

Because CoDEGRID faithfully follows the spatial properties of
each code sample, the inferred grid has a variable size. Concretely,
given a sample C;, the grid size will have a height H; and a width
W; that are derived as follows:

H; = # of lines in C;

len(line;
jellrllfl.);iij( en(linej))

1)

W = (2)

where line; is the j h line of code and len is a function that counts
the number of characters (including spaces).

® Vectorizing Tokens. CoDEGRID constructs its representation
by vectorizing character-based tokens. To realize CODEGRID, we
considered and experimented with three different vectorizations:
word2vec, code2vec, and a novel colorization technique. To vec-
torize via Word2Vec, we re-trained a Word2Vec [53] model on our
study’s datasets (Section 3.1) and used its embeddings. Code2Vec [5]
is a more recent, code-focused approach that learns token represen-
tations from ASTs. For CODEGRID, we directly used its keyedvectors
format, which maps every token to a 128-dimension vector.

In addition to these two techniques, we devised a simple, inter-
pretable heuristic that “colorizes” tokens by mapping them to RGB
color vectors. Chen et al. [15] introduced a heuristic code vector-
ization that replaces each character with its ASCII decimal value.
This heuristic is not immediately suitable to our task: CODEGRID
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Figure 2: CopDEGRID Representation Construction.

works on tokens, not characters, so its vocabulary is much larger (>
128). Inspired by this ASCII heuristic, we designed a naive “Color
Vectorizing” technique. As already mentioned, it maps tokens to
RGB color codes. This encoding can handle a vocabulary of over
16 million tokens. As a reference point, our experimental datasets
include 693 054 distinct tokens.

We turned to Information Retrieval (IR) to devise a token encod-
ing that captures token importance. The Term Frequency-Inverse
Document Frequency (TF-IDF) [64] is an prominent IR technique
used in text vectorization algorithms [69]. Concretely, for each
token in the vocabulary, CODEGRID computes the average of its
TF-IDF values across the entire corpus following the formula in
Equation (3) below.

Nt.c
Yo = Dkec ke ®
) B IC|
lcif(t,C)—log(—|{cecl tec}|) (4)
tfidf (t,c,C) = tf (t,c) - idf (,C) ©)
imp(t) = I_él( Z tfidf (t, C»C)) (6)

ceC

where ¢t is a token in a code sample ¢, n is the number of oc-
currences (multiplicity) of ¢ in ¢, and ny . is the number of tokens
(including ¢) in c.
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To build “color vectors”, we first sort all the tokens in the corpus
by importance, then sort all RGB values by brightness, using a
heuristic proposed by Bezryadin et al. [9]. Then, we map each token
t to an RGB color vector ¢, where imp(t;) > imp(t;j) implies the
brightness of c; is greater than that of c;.

With these token vectors, we convert the code layout into a
grid that associates each cell a vector representing either a code
token or a space. As core to typesetting, CODEGRID must explicitly
encode spaces. The space character vector, denoted vs, is fresh, i.e.
different from any assigned token vector and is selected by picking
a random vector among the unassigned vectors after vectorizing
tokens. When placing a vector in the grid whose raw token has
n characters, we place the vector at the coordinate position that
corresponds to token’s first character. If the cells corresponding to a
token’s remaining characters are left empty, the grid will be sparse,
which challenges learning [22]. Therefore, we copy a token’s vector
value in all grid cells its token occupies. We refer the reader to
Section 3.8 for a discussion on the validity of this design choice.

OOV tokens. For all three token encodings, we represent out-
of-vocabulary tokens with an <UNK> token, whose value is fresh
w.r.t. the vocabulary. Code2Vec already supported an <UNK> token,
so we reused it. We manually added <UNK> to the Word2Vec and
Color vectorizers.
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Figure 3: Learning on Grids

2.3 Learning on Grids

Models must be able to input and exploit CODEGRID’s grid repre-
sentations of code to produce spatially aware models as shown in
Figure 3. Convolutional Neural Networks (CNNs) [44] match this
criterion: composed of multiple building blocks, such as convolu-
tion layers, pooling layers, and fully connected layers, CNNs are
designed to automatically and adaptively learn spatial hierarchies
of features. Widely used in the context of computer vision [75],
CNN models generally take as input digital images, which are in
reality two-dimensional (2D) grids containing pixel values. A CNN-
based model scans all the cells in these grids in order to extract
any relevant features [77] while successfully capturing the spatial
dependencies in an image through the application of relevant filters.

Researchers and practitioners have achieved exceptional per-
formance using CNNs on a variety of tasks and are now popular
across the Al community. Indeed, in image processing, CNNs effec-
tively use adjacent pixels information to effectively downsample
the image while preserving the spatial interactions among pixels.
This way, CNNs can assign importance, which is characterized
by learnable weights and biases, to various aspects/objects in the
image and be able to differentiate one from another.

Our tool, CODEGRID, accounts for the spatial dimension of code
by placing each token into the grid cell it occupies in a character-
granular view of the source code. CNNs are therefore well suited
for learning characteristics from our code representations. Given a
code corpus and a task at hand (labels for classification), we feed the
set of grids produced by CopEGRID as input data to a CNN-based
architecture and train a model.

2.4 Implementation

We implemented CoDEGRID in Python. We used Pandas and Numpy
libraries to manipulate raw data and operate on matrices to con-
struct the code grid. For manipulating the code layout, we used
“GNU indent”?, a program re-formats C to obey a coding convention.
To compute TF-IDF, we used scikit-learn; to compute brightness, we
used the nltk libraries. We build on Gensim [66], PyTorch [40] and
PixelCNN [61] for training the Word2Vec model and conducting
our deep learning experiments.

Zhttps://www.gnu.org/software/indent/
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Table 1: Summary of the datasets

Total # of  # of code samples

Task . References
code samples in test set

Code Clone Detection 40,000 8,000 [39, 70, 78]

Code Classification 52,000 10,400 [39, 54, 55, 78]

Vulnerability Prediction 420,627 84,126 [48, 56, 57]

Code Completion 874,590 174,918 [4]

3 EVALUATION

We evaluate CODEGRID on four typical tasks that are widely used
in the literature of Al applications in software engineering. Our
experimental setup (Section 3.1) is guided by the requirements of the
considered tasks and our validation is based on performance metrics
that we have identified for comparison against strong baselines
related to source code representation for learning-based software
engineering (Sections 3.3-3.6). Subsequently, we propose to validate
the “code is spatial’ hypothesis by artificially manipulating the
layout of the code snippets in our study dataset (Section 3.7). Finally,
we present experimental results that highlight the validity of our
design choices in the grid cell filling method (Section 3.8) and assess
the token vectorizing techniques (Section 3.9).

3.1 Experimental Setup

Benchmarks. We use benchmarks that have been proposed in
the literature to evaluate the performance AI models for software
engineering tasks. Table 1 summarizes the size these benchmarks,
along with references to state of the art works where they have
been exploited. The tasks that we consider in our evaluation have
been chosen because they are seminal software engineering tasks
that have already been tackled in the Al for software engineering
literature. Notably, these are code clone detection, code classifi-
cation, vulnerable code detection and code completion tasks. We
discuss, later in this section, each task in more detail.

Baselines. We compare our approach (i.e., the CoDEGRID code rep-
resentations associated with a CNN-based architecture) to a variety
of approaches. Concretely, we put a significant effort in identifying,
for each task, strong baselines from the recent literature. Here, we
compare our results to performance results on the same bench-
marks reported by the authors in their published work, instead of
reproducing their work. Our goal is to validate the spatial signal in
code and show how it can augment existing models, not introduce
a new technique or conduct a replication study. We acknowledge
the threat this decision poses to our findings, due to variations
in hardware, tool configuration, etc.. We note, however, that we
experimentally confirmed on uniformly selected samples that the
replication packages provided by the authors lead to very similar
results as those reported in the papers in our environment.

o SLM [4] is a structural language model of code that has achieved
high performance on code completion.

e TBCNN [54] implements tree-based convolutional neural net-
works to model programming languages where program vectors
are explicitly learned from the AST tree features.

e ASTNN [78] develops a specialized neural network model for
scaling to large ASTs.

o WySiWiM [39], applies represents code as images for learning
representations that are exploited on software engineering tasks.
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o SySeVR [48] is a deep learning-based approach to vulnerability
detection that learns to identify program regions that are likely
to contain vulnerabilities.

Our comparison focuses, for each baseline, on the task on which
their original implementations have been shown to be successful
in their original publication. We use Checkmarx as a baseline in the
vulnerability detection task although it is not deep learning based,
because it appears in the literature as a key baseline. As already
noted, Table 3, Table 4, Table 5 and Table 6 contain data, and make
comparisons, based on the published IR results of the cited prior
work, as we do not intend to compare the inference time.
Architecture. We select CNN-based architectures for our experi-
ments. Depending on the tasks, we use different CNN-based archi-
tectures to fit with our constraints. For tasks involving the training
of a classifier, we rely on Deep Residual Network (ResNet) [28].
This architecture has been demonstrated to be one of the best CNN-
based architectures for image classification [18].

For the code completion task, however, we require a generative
architecture. We therefore selected PixelCNN [72], which is a model
used for conditional image generation, i.e. predicting a pixel in
an image given the previous pixels. We use PixelCNN to predict
missing cell values in the grid.

Although pre-trained versions of these architectures exist, they

already pre-set the grid sizes. Therefore, we adapt both ResNet
and PixelCNN architectures to handle larger dimension vectors by
replacing their input layers with new input layers that fit to Copk-
GRID grids’ shape, before retraining them with our datasets.
Training. We trained the models for each task by using the appro-
priate benchmark’s dataset (Table 1). Because the tasks are indepen-
dent, CopEGRID handles each dataset independently. Before using
the CopEGRID grids as input to each model, we handle their varying
sizes by considering the highest width and height from each dataset
and then applying padding to this size for each sample. For our
evaluations, we divided the dataset into training (75%), validation
(5%) and testing (20%) following prior work (e.g., [78]) to which
we compare against. With ResNet architecture, the training is con-
ducted over 150 epochs. With PixelCNN, the training is conducted
over 200 epochs.
Metrics. We measure classification performance using the clas-
sical metrics of Accuracy, Precision, Recall and F1 score. For the
generative task of code completion, we follow Alon et al. [4] and
report the exact match accuracy at k, which indicates the number of
relevant tokens among the first k predictions. As for the evaluation
of the SLM [4] approach, we use 1 and 5 for k values.

CopeGRID Evaluation objective: By assessing the performance

on a variety of tasks, we seek to demonstrate that:

(1) with CopEGRID, we capture a strong signal in code that is
useful for learning to solve software engineering tasks;

(2) the learned representations are effective for diverse tasks,
including generative ones;

(3) ConEGRID combined with Code2Vec as cell values can
achieve high performance on several tasks.
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Table 2: CopEGRID Ablation Study

(a) Classification Tasks

Task Vectorizing Method ~ Accuracy Precision Recall F1 score

Word2Vec
Code2Vec
Color

98.4
99.6
95.9

95.7
96.1
94.2

97.0
97.8
95.0

Code Clone Detection

Word2Vec
Code2Vec
Color

Word2Vec
Code2Vec
Color

97.0
97.2
91.8

97.0
97.2
91.8

97.0
97.2
91.8

97.0
97.2
91.8

Code Classification

96.2
98.4
93.8

93.8
94.9
90.7

90.7
92.9
92.2

Vulnerability Detection

(b) Code Completion Task

acc@k (exact-match)

Vectorizing Method @1 @5
CoDEGRID + Word2Vec 9.07 15.80
CopEGRID + Code2Vec 7.54 15.09
CopEGRID + Color Vectorizer = 14.91 22.70

3.2 CobpeGRID Ablation Study

CopEGRID must vectorize code tokens (Figure 2, stage 4). We con-
sider three different tokens vectorizer methods (Section 2): the
color-based vectorizing method which maps each token to a 3D
vector representing a color in the RGB range, the Word2Vec-based
vectorizing method and the Code2Vec-based vectorizing method
which considers the keyed-format of Code2Vec pre-trained model.
In this first experiment, we consider an ablation study to compare
those three token vectorizer methods.

The Experiment. For this ablation study, we consider all the clas-
sifications tasks and the code completion task described in the
sections 3.3, 3.4 and 3.5 and 3.6 respectively.

The Results. Table 2a demonstrates that, on the code classification,
CoDpEGRID performs best when considering grid’s cells are filled
using Code2Vec’s embeddings. For the code completion task, the
“Color Vectorizing” method outperforms the “Word2 Vectorizing”
and “Code2Vec Vectorizing” methods. Overall, CODEGRID performs
best on three of the four tasks when using the “Code2Vec Vectoriz-
ing” method. Thus, in the remaining sections, we use CODEGRID
to refer to ConEGRID Code2Vec token embeddings; all subsequent
comparisons with the baselines are against this variant.

3.3 CobpEeGRID on Clone Detection

While the definition of Code clones varies across the literature where
researchers consider different levels of similarity at the lexical, syn-
tactic and semantic levels, the research direction on clone detection
is fairly active [65, 67], with several applications in plagiarism de-
tection, origin analysis, program understanding, code compacting,
malicious code detection, etc. In recent years, machine learning
techniques have been applied towards improving performance of
code clone detection tools [74, 76, 78].

The Task Given a pair of code samples, the clone detection task
consists in determining whether they are similar (at different levels:
lexical, syntactic or semantic). The literature distinguishes several
types of Cloning, including Type-1 (with identical code fragments,
except for differences in whitespace, layout, and comments), Type-2
(with identical code fragments, except for differences in identifier
names and literal values, in addition to Type-1 clone differences),



CopEGRID: A Grid Representation of Code

public static boolean isPalindrome(String
original) {

2 String reverse = ;

3 int length = original.length();

4 for (int i = length - 1; i >= 0; i--)

5 reverse = reverse + original.charAt(i

)

6 if (original.equals(reverse))

7 return true;

8 else

9 return false;

10 3}

(a) Code Fragment 2

1 public static boolean isPalindrome(String

string) {

2 if (string.length() == 0)

3 return true;

4 int limit = string.length() / 2;

5 for (int forward = @, backward = string.
length() - 1; forward < limit;
forward++, backward--)

6 if (string.charAt(forward) != string.

charAt (backward))
return false;
return true;

(b) Code Fragment 1
Figure 4: Type-4 Code clone pair identified with CoDEGRID

Type-3 (with syntactically similar code fragments that differ at
the statement level) and Type-4 (with syntactically dissimilar code
fragments that implement the same functionality). The latter are the
most challenging to detect and have been scarcely investigated in
the literature in contrast with former types on which high accuracy
was achieved by lexical and syntax-based clone detectors such as
CCFinder [37], Deckard [34], SourcererCC [68].

BigCloneBench (BCB) [70] is widely used in the community for
assessing clone detection tools, as it includes a mix of different
types of clones. BCB consists of ~8 million clone pairs mined from
25000 open source Java projects in the [JaDataset-2.0 [6] (3 million
source code files and 250 millions of lines of code). Nevertheless,
to ensure a direct and unbiased comparison with our baselines,
we evaluate on the same subset of 40k Type-4 clone pairs that
ASTNN and WySiWiM were evaluated on. Figure 4 illustrates an
example of Type-4 cloned methods: despite being named similarly,
the significant differences in method bodies makes many token-
based approaches fail to identify the cloning.

The Experiment. We train a binary classifier which yields a prob-
ability that two code fragments given as inputs constitute a clone
pair. We keep to the default threshold probability of 0.5 for the
classification decision. To include negative samples in the test and
training sets, we randomly shuffle known clone pairs in the dataset
and create new non-clone pairs.

The Results. Table 3 summarizes the performance results of a
ResNet model trained with CODEGRID representations against the
baselines. While ASTNN achieves higher precision by 0.3 percent-
age points, CODEGRID improves it by ~8 percentage points in terms
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Table 3: Performances on Code Clone Detection.

Method Precision Recall F1
ASTNN 99.8 88.3 93.7
WySiWiM 95.4 943 94.8
CoDEGRID 99.6 96.1 97.8

of recall. Furthermore, CODEGRID combined with any token vec-
torizing method yields balanced scores in terms of precision and
recall compared to ASTNN.

3.4 CobpeGRID on Code Classification

Reuse and maintenance activities in software engineering often
require some degree of comprehension of what program code is
doing, i.e., what algorithm/functionality are implemented. To that
end, code classification has been studied as an important software
engineering task for benchmarking Al models targeting software
engineering. Note that in some work, code classification is referred
to as algorithm classification [7] and promoted as an important
research direction in guided programming where developers are
provided with alternate code suggestions based on the comprehen-
sion of what the developer code is about.

The Task. Given a sample method, the code classification task con-
sists in predicting the label reflecting the implemented functionality.
We use a dataset [55] containing C programs written by 500 stu-
dents to answer 104 programming questions on OpenJudge®. Each
question addresses a specific functionality, such as implementing
bubble sort. For each question, OpenJudge verified 500 solutions
as correct and thus share the same label. Figure 5 illustrates two
examples of such correct solutions.

The Experiment. We train a multi-class classifier where CODEGRID
representations are fed to a ResNet architecture. The resulting
model yields scores for the probability that a given code sample is
related to one of the 104 functionalities in the benchmark. The final
classification selects the functionality for which the probability is
the highest. For this multi-class classification task, we use micro-
average* precision when computing the model scores.

The Results. Table 4 reports the performance results. ASTNN
and TBCNN authors only reported Accuracy metrics on this bench-
mark. CoDEGRID enables the ResNet-based model to achieve similar
performance to the baselines (by 1% from ASTNN), while outper-
forming the WySiWiM baseline by about 3 percentage points. This
result suggests that CODEGRID is effective in eliminating the pixel
noise introduced by WySiWiM (which takes screenshots and also
feeds them into a ResNet architecture), instead of extracting the
most relevant information in the spatial layout of code.

CopEGRID also improves over TBCNN, which was the first model
to be applied to the OpenJudge dataset. Finally, we note that the
ResNet architecture trained with CoDEGRID representations yields
balanced precision and recall: both metrics provide a performance
score at ~92%, suggesting a good trade-off between avoiding false
positives and recalling labels for most samples.

Shttp://poj.openjudge.cn/
4https://scikit-learn.org/stable/modules/model_evaluation html#multiclass-and-
multilabel-classification
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void main() { 1 main() {
int i, n, max1 = 0, 2 int i, n, al[100