
CodeGrid: A Grid Representation of Code

Abdoul Kader Kaboré
University of Luxembourg

Luxembourg
abdoulkader.kabore@uni.lu

Earl T. Barr∗

University College London
United Kingdom

earl.barr@ucl.ac.uk

Jacques Klein
University of Luxembourg

Luxembourg
jacques.klein@uni.lu

Tegawendé F. Bissyandé
University of Luxembourg

Luxembourg
tegawende.bissyande@uni.lu

ABSTRACT

Code representation is a key step in the application of AI in soft-
ware engineering. Generic NLP representations are e�ective but
do not exploit all the rich structure inherent to code. Recent work
has focused on extracting abstract syntax trees (AST) and integrat-
ing their structural information into code representations. These
AST-enhanced representations advanced the state of the art and
accelerated new applications of AI to software engineering. ASTs,
however, neglect important aspects of code structure, notably con-
trol and data �ow, leaving some potentially relevant code signal
unexploited. For example, purely image-based representations per-
form nearly as well as AST-based representations, despite the fact
that they must learn to even recognize tokens, let alone their se-
mantics. This result, from prior work, is strong evidence that these
new code representations can still be improved; it also raises the
question of just what signal image-based approaches are exploiting.

We answer this question.We show that code is spatial and exploit
this fact to propose CodeGrid, a new representation that embeds
tokens into a grid that preserves code layout. Unlike some of the
existing state of the art, CodeGrid is agnostic to the downstream
task: whether that task is generation or classi�cation, CodeGrid
can complement the learning algorithm with spatial signal. For
example, we show that CNNs, which are inherently spatially-aware
models, can exploit CodeGrid outputs to e�ectively tackle fun-
damental software engineering tasks, such as code classi�cation,
code clone detection and vulnerability detection. PixelCNN lever-
ages CodeGrid’s grid representations to achieve code completion.
Through extensive experiments, we validate our spatial code hy-
pothesis, quantifying model performance as we vary the degree to
which the representation preserves the grid. To demonstrate its gen-
erality, we show that CodeGrid augments models, improving their
performance on a range of tasks. On clone detection, CodeGrid
improves ASTNN’s performance by 3.3% F1 score.

∗Some work carried out while a visiting scholar at Google DeepMind.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598141

CCS CONCEPTS

• Computing methodologies→ Machine learning; Image process-

ing; • Software and its engineering→ Software system structures;
Software creation and management; • General and reference→

Cross-computing tools and techniques.

KEYWORDS

Code TypeSetting, Spatial-Aware Neural Network

ACM Reference Format:

Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein, and Tegawendé F. Bis-
syandé. 2023. CodeGrid: A Grid Representation of Code. In Proceedings of

the 32nd ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598141

1 INTRODUCTION

Machine learning (ML) is transforming the digital economy: it has
achieved, even exceeded, human performance, on a wide range of
tasks, such as natural language translation [41] and image recog-
nition [59, 63], to name a few. It is poised to transform software
development [62]. Code is more constrained than the examples of
natural phenomena, like natural language text or images, on which
ML is usually trained: code obeys an arti�cial (human-devised),
formal grammar; it intermingles that language with natural text
in the form of identi�ers and comments [13], and it speci�es an
execution. Its formality and executeability give it unique proper-
ties like relatively rigid syntax, unambiguous abstract syntax trees
(AST) [35], and control and data �ow.

Researchers applying ML to code have been seeking e�ective
representations that exploit the signal inherent to code’s relatively
greater structure than text [1, 2, 17]. AST-based representations
have been prominent [4, 5, 54] and their results on tasks, like code
classi�cation and code clone detection [78] as well as code comple-
tion [45], have been promising. Unfortunately, learning over AST
representations tends to have trouble with large and deep ASTs,
on which they can fall prey to the vanishing gradient problem [8].
Despite the wide variety of ML architectures and methods for cap-
turing rich structure applied to code, models using a stream of
code tokens as their representation continue to achieve state of
the art performance with structure providing only small improve-
ments [16, 24, 33]. In short, code contains unexploited signal.

Keller et al. [39] recently substantiated this claim, as a side-e�ect
of their work, by exploiting a previously untapped source of code

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

1357

http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3597926.3598141
https://doi.org/10.1145/3597926.3598141

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein and Tegawendé F. Bissyandé

signal. They proposedWySiWiM (’What you See isWhat it Means’),
a novel code representation based on an editor’s visual rendering
of code. WySiWiM takes screenshots of the code, then trains CNN-
based computer vision models for software engineering tasks on
those screenshots. WySiWiM’s visual representation does not di-
rectly capture code’s rich structure and mostly contains noise: all
the pixel data that does not contain text. Despite these handicaps,
WySiWiM matched state of the art (SOTA) performance on code
clone detection and code vulnerability prediction tasks. This pio-
neering work shows the e�ectiveness of a visual representation of
source code and the authors suggested that the success ofWySiWiM
may, in part, be due to the maturity and e�ectiveness of computer
vision models, but they left open the question of just what signal
WySiWiM does exploit.

This paper answers this question. The �rst step is to consider
WySiWiM’s construction. Computer vision models, especially CNN
models, are built for grid data. WySiWiM trains a state of the art
CNN computer vision model on screenshots, which are pixel grids.
Keller et al.’s WySiWiM is spatial from the ground up. Thus, WySi-
WiM primarily, and perhaps exclusively, relies on spatial relations
in code’s layout to achieve its results. It must even learn tokens,
if indeed it does learn them, let alone any relations, like type or
dependence, among them.

In stark contrast, machine learning approaches to software en-
gineering tasks have, to date, used code representations, whether
AST, GNN, or token stream, that destroy code’s layout. Transformer
models’ use of byte-pair encoding does capture whitespace, but not
2d layout [24]. Thus, these representations have sought to capture
code’s rich structural information and discounted the importance
of code layout. Certainly, code layout is irrelevant to a compiler and
to the execution of a binary. These facts, however, neglect layout’s
importance to developers.

In any text, layout, or typesetting, matters because they make it
easier to understand. In ’natural’ text, paragraphing consolidates
ideas into blocks and help the reader to navigate a big block of
text [23]. In code, coding conventions determine how code is type-
set in a project. Whether imposed by �at or emergent in a code
base [3], projects adopt coding conventions to speed code mainte-
nance [10]. Some coding conventions have been deemed so e�ec-
tive that languages have been written that enforce them: Python’s
(in)famous whitespace sensitivity is perhaps the most prominent
example [19]. Indeed, Hindle et al. showed indenting alone is an
e�ective proxy for code complexity [29]. Ranging farther a�eld,
experiments show that words are often recognised by their shape,
not attending to their characters [12]. Thus, we speculate that one
reason that the spatiality of code has such strong signal has to do

with the fact that it permits developers to make quick, imperfect, yet

still frequently useful, assessments of a code snippet’s purpose at a

glance. Here, we have in mind System 1 thinking, which is integral
to Daniel Kahneman’s work [36].

So, in practice, developers often obey coding conventions and
carefully typeset their code both horizontally and vertically. Hori-
zontal type setting concerns rules for spacing characters, like op-
erators or delimiters, within a single line; some practitioners will
admit to having debated such details as whether to require spaces
around operators or permit “){” vs. “) {”. Consider Figure 1 to see
how vertical alignment can be critical [71]. Figure 1a, on the left,

1 int robert_age = 32;

2 int annalouise_age = 25;

3 int bob_age = 250;

4 int dorothy_age = 56;

(a) Standard Coding Style.

1 int robert_age = 32;

2 int annalouise_age = 25;

3 int bob_age = 250;

4 int dorothy_age = 56;

(b) Grid Alignment.

Figure 1: Code is spatial! The shared su�x and the 250 outlier

are obscured on the left and jump out on the right.

shows a sequence of assignments, conventionally typeset, using
ragged right, obeying typesetting conventions only horizontally,
within each line. Figure 1a, on the right, shows the same snippet,
spatially typeset. The shared “_age” su�x jumps out, as well as the
anomalous, almost certainly wrong, “250”.

This paper. All the aforementioned examples intuitively argue
in favor of attempting to explore a signal in code with respect to its
layout. The performance of the WySiWiM approach provides an
insight that code spatiality may have a much stronger importance
than ever considered in the literature of code representation.

Guided by the importance of code layout, we introduce Code-
Grid, a new code representation that is spatially-aware and built
for consumption by architectures that exploit spatial relations,
like CNNs.

Unlike WySiWiM, CodeGrid is aware of tokens. It vectorises to-
kens by mapping each token to a vector value using three di�erent
methods of varying complexity: (1) a naive “Color Vectorizing”
method that uses code colors for each token, where the color is
selected according to the TF-IDF value of the token. Token vectors
are constructed with 3-dimensional values that explore the RGB
color space where color vectors are ordered to take into account
brightness following the approach of Bezryadin et al. [9]. The token
with the highest average TF-IDF value will be mapped with the vec-
tor associated to the highest brightness score; (2) the “Word2Vec

Vectorizing” that is directly based on a re-trainedWord2Vec model
using the datasets of our study; and (3) the “Code2Vec Vectoriz-
ing” that leverages the state of the art pre-trained Code2Vec [5]
model built based on AST paths in code snippets. We consider its
keyedvectors1 format, which yields a 300 dimension vector for
every token in the training vocabulary.

The code grid. We consider that code is a character-by-line
grid; CodeGrid must preserve this coordinate system. In the code
grid, each token has a character length. Each token’s embedding
vector also has length, but in a di�erent dimension, with di�erent
semantics than its layout length. There are various ways to map
a token’s vector into the cells its raw lexeme occupies in the grid:
place the vector in one cell and zero vectors into the rest, one could
average the vector across the cells or one could repeat the vector
in each cell. In this work, we show that the last option works best
in practice. Future work would be to employ an architecture that
learns its own solution to this mapping problem.

Our experimental results show the value of building a spatial
representation that is directly aware of code and its properties.

1https://radimrehurek.com/gensim/models/keyedvectors.html

1358

https://radimrehurek.com/gensim/models/keyedvectors.html

CodeGrid: A Grid Representation of Code ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Models trained using CodeGrid consistently outperform WySi-
WiM. CodeGrid achieves near SOTA results on code classi�-
cation, vulnerable code prediction, and code completion tasks.
This last task is impossible for WySiWiM, because it is unaware
of tokens.

Finally, we validate our “code is spatial” hypothesis, using our
four tasks.We compare two grid representations: one that utterly de-
stroys code layout and an intermediate one that obscures it against
CodeGrid and show that models trained with CodeGrid achieve
2.4% to 11.9% more performance on precision. Our main contribu-
tions are as follow:

• We demonstrate that code is spatial — that its layout, both hor-
izontal and vertical, carry useful signal that machine learning
models can e�ectively exploit.

• We introduce CodeGrid, a novel grid representation of code that
combines the spatial layout of code with lexical information.

• We show that models built using CodeGrid achieve high perfor-
mance on code clone detection, code classi�cation, and vulnera-
bility detection (coming within [2..5%] on various measures).

2 APPROACH

CodeGrid takes a code fragment and builds a grid representation.
A major step in CodeGrid is the construction of the code grid,
where the main idea is to ensure that the coordinate system in the
code layout is preserved (Section 2.2). Finally, grid representations
of code are fed into spatial-aware neural network architectures to
train models for speci�c software engineering tasks (Section 2.3).
We discuss implementation details for replication purposes (Sec-
tion 2.4).

2.1 Code Is Spatial

We assert that understanding and navigating code involves sys-
tem 1, which, by de�nition, brings to bear a collection of quick
heuristics for whatever task it is asked to solve. For coding tasks,
some of these heuristics exploit code layout, or typesetting. Good
code typesetting, we claim, even permits perceiving high-level
code semantics visually. This is why code typesetting impacts code
readability and whymany coding conventions specify detailed type-
setting rules. Indeed, in some program languages, notably Python,
spatial properties (e.g., indentation) are even part of the syntax. Fun-
damentally, typesetting implies that program code has a character-
based coordinate system. Humans view and edit it with IDES that
preserve this character-granular coordinate system. Developers
themselves both de�ne and exploit this coordinate system when
they add arbitrary spaces, tabs, etc. This work rests on the assump-
tion that code has visual semantics that contains strong and ex-
ploitable signal. Recast as the principle, this assumption means that
any code representation targeting software engineering tasks has
two implications:

• Code representations should preserve the coordinate system

(i.e., the grid) of code. Indeed, code has visual semantics as
experimentally suggested by the performance achieved with
image-based representations of code [39].

• Models should themselves be spatially-aware to exploit spatial

code representations. Deep Convolutional Neural Networks

(CNNs) are appealing in this regard since the convolutional
structure in a neural network is built to exploit spatially
ordered data [26].

2.2 Representation: Constructing a Code Grid

Given a code sample, CodeGrid unfolds a multi-step process to
produce a grid representation where each code token is carefully
encoded, in a way that captures its importance for modeling, and
mapped to a grid cell. The size of the grid as well as it organisa-
tion (i.e., the position of cells) faithfully account for the spatial
dimension of code. Figure 2 unfolds, with a running example, the
di�erent steps that are carried out to produce the �nal code grid
representation. Note that the colorful visualization that is provided
is only for illustration purposes in this paper (i.e., the target out-
put of CodeGrid is not an image, but rather a matrix grid with
numerical values).
❶-❷ Preprocessing and Tokens Extraction. CodeGrid exclu-
sively targets the representation of source code. Annotations such
as code comments are left out from the design of CodeGrid. Its
preprocessing step removes comments before splitting code into its
constituting tokens. Every single token, including punctuation, is
extracted and kept as such, because, like whitespace, punctuation
is integral to typsetting. All tokens seen in the overall dataset of
code samples constitute the code vocabulary.
❸ Retrieving the Coordinate System. When extracting tokens,
CodeGrid preserves the information about the spatial positions
that they occupy when code is viewed in a text editor. To that end,
CodeGrid scans the code using a cursor that moves through the
whole code to record the coordinates of each code token. The initial
position (top-left) is assigned the origin position (0, 0). The cursor
moves from left to right per character and each encountered token
C is assigned the coordinates (GC , ~C) of its �rst character.

Because CodeGrid faithfully follows the spatial properties of
each code sample, the inferred grid has a variable size. Concretely,
given a sample �8 , the grid size will have a height �8 and a width
,8 that are derived as follows:

�8 = # > 5 ;8=4B 8= �8 (1)

,8 = max
9∈[1...�8]

(;4=(;8=4 9)) (2)

where ;8=4 9 is the 9Cℎ line of code and ;4= is a function that counts
the number of characters (including spaces).
❹ Vectorizing Tokens. CodeGrid constructs its representation
by vectorizing character-based tokens. To realize CodeGrid, we
considered and experimented with three di�erent vectorizations:
word2vec, code2vec, and a novel colorization technique. To vec-
torize via Word2Vec, we re-trained a Word2Vec [53] model on our
study’s datasets (Section 3.1) and used its embeddings. Code2Vec [5]
is a more recent, code-focused approach that learns token represen-
tations from ASTs. For CodeGrid, we directly used its keyedvectors
format, which maps every token to a 128-dimension vector.

In addition to these two techniques, we devised a simple, inter-
pretable heuristic that “colorizes” tokens by mapping them to RGB
color vectors. Chen et al. [15] introduced a heuristic code vector-
ization that replaces each character with its ASCII decimal value.
This heuristic is not immediately suitable to our task: CodeGrid

1359

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein and Tegawendé F. Bissyandé

Preprocessing

(remove comments)

Tokens Extraction

Tokens
Coordinates

Retrieval

Tokens
Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

Figure 2: CodeGrid Representation Construction.

works on tokens, not characters, so its vocabulary is much larger (>
128). Inspired by this ASCII heuristic, we designed a naïve “Color
Vectorizing” technique. As already mentioned, it maps tokens to
RGB color codes. This encoding can handle a vocabulary of over
16 million tokens. As a reference point, our experimental datasets
include 693 054 distinct tokens.

We turned to Information Retrieval (IR) to devise a token encod-
ing that captures token importance. The Term Frequency-Inverse
Document Frequency (TF-IDF) [64] is an prominent IR technique
used in text vectorization algorithms [69]. Concretely, for each
token in the vocabulary, CodeGrid computes the average of its
TF-IDF values across the entire corpus following the formula in
Equation (3) below.

tf (C, 2) =
=C,2

∑

:∈2 =:,2
(3)

idf (C,�) = log

(

|� |

|{2 ∈ � | C ∈ 2}|

)

(4)

t�df (C, 2,�) = tf (C, 2) · idf (C,�) (5)

imp(C) =
1

|� |

(

∑

2∈�

t�df (C, 2,�)

)

(6)

where C is a token in a code sample 2 , =C,2 is the number of oc-
currences (multiplicity) of C in 2 , and =:,2 is the number of tokens
(including C) in 2 .

To build “color vectors”, we �rst sort all the tokens in the corpus
by importance, then sort all RGB values by brightness, using a
heuristic proposed by Bezryadin et al. [9]. Then, we map each token
C to an RGB color vector 2 , where imp(C8) > imp(C 9) implies the
brightness of 28 is greater than that of 2 9 .

With these token vectors, we convert the code layout into a
grid that associates each cell a vector representing either a code
token or a space. As core to typesetting, CodeGrid must explicitly
encode spaces. The space character vector, denoted EB , is fresh, i.e.
di�erent from any assigned token vector and is selected by picking
a random vector among the unassigned vectors after vectorizing
tokens. When placing a vector in the grid whose raw token has
= characters, we place the vector at the coordinate position that
corresponds to token’s �rst character. If the cells corresponding to a
token’s remaining characters are left empty, the grid will be sparse,
which challenges learning [22]. Therefore, we copy a token’s vector
value in all grid cells its token occupies. We refer the reader to
Section 3.8 for a discussion on the validity of this design choice.

OOV tokens. For all three token encodings, we represent out-
of-vocabulary tokens with an <UNK> token, whose value is fresh
w.r.t. the vocabulary. Code2Vec already supported an <UNK> token,
so we reused it. We manually added <UNK> to the Word2Vec and
Color vectorizers.

1360

CodeGrid: A Grid Representation of Code ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

ModelCode Grids Spatial-aware
Deep Neural Network

Architecture

Software
Engineering Task

Figure 3: Learning on Grids

2.3 Learning on Grids

Models must be able to input and exploit CodeGrid’s grid repre-
sentations of code to produce spatially aware models as shown in
Figure 3. Convolutional Neural Networks (CNNs) [44] match this
criterion: composed of multiple building blocks, such as convolu-
tion layers, pooling layers, and fully connected layers, CNNs are
designed to automatically and adaptively learn spatial hierarchies
of features. Widely used in the context of computer vision [75],
CNN models generally take as input digital images, which are in
reality two-dimensional (2D) grids containing pixel values. A CNN-
based model scans all the cells in these grids in order to extract
any relevant features [77] while successfully capturing the spatial
dependencies in an image through the application of relevant �lters.

Researchers and practitioners have achieved exceptional per-
formance using CNNs on a variety of tasks and are now popular
across the AI community. Indeed, in image processing, CNNs e�ec-
tively use adjacent pixels information to e�ectively downsample
the image while preserving the spatial interactions among pixels.
This way, CNNs can assign importance, which is characterized
by learnable weights and biases, to various aspects/objects in the
image and be able to di�erentiate one from another.

Our tool, CodeGrid, accounts for the spatial dimension of code
by placing each token into the grid cell it occupies in a character-
granular view of the source code. CNNs are therefore well suited
for learning characteristics from our code representations. Given a
code corpus and a task at hand (labels for classi�cation), we feed the
set of grids produced by CodeGrid as input data to a CNN-based
architecture and train a model.

2.4 Implementation

We implemented CodeGrid in Python. We used Pandas and Numpy
libraries to manipulate raw data and operate on matrices to con-
struct the code grid. For manipulating the code layout, we used
“GNU indent”2, a program re-formats C to obey a coding convention.
To compute TF-IDF, we used scikit-learn; to compute brightness, we
used the nltk libraries. We build on Gensim [66], PyTorch [40] and
PixelCNN [61] for training the Word2Vec model and conducting
our deep learning experiments.

2https://www.gnu.org/software/indent/

Table 1: Summary of the datasets

Task
Total # of # of code samples

References
code samples in test set

Code Clone Detection 40,000 8,000 [39, 70, 78]
Code Classi�cation 52,000 10,400 [39, 54, 55, 78]
Vulnerability Prediction 420,627 84,126 [48, 56, 57]
Code Completion 874,590 174,918 [4]

3 EVALUATION

We evaluate CodeGrid on four typical tasks that are widely used
in the literature of AI applications in software engineering. Our
experimental setup (Section 3.1) is guided by the requirements of the
considered tasks and our validation is based on performancemetrics
that we have identi�ed for comparison against strong baselines
related to source code representation for learning-based software
engineering (Sections 3.3-3.6). Subsequently, we propose to validate
the “code is spatial” hypothesis by arti�cially manipulating the
layout of the code snippets in our study dataset (Section 3.7). Finally,
we present experimental results that highlight the validity of our
design choices in the grid cell �lling method (Section 3.8) and assess
the token vectorizing techniques (Section 3.9).

3.1 Experimental Setup

Benchmarks. We use benchmarks that have been proposed in
the literature to evaluate the performance AI models for software
engineering tasks. Table 1 summarizes the size these benchmarks,
along with references to state of the art works where they have
been exploited. The tasks that we consider in our evaluation have
been chosen because they are seminal software engineering tasks
that have already been tackled in the AI for software engineering
literature. Notably, these are code clone detection, code classi�-
cation, vulnerable code detection and code completion tasks. We
discuss, later in this section, each task in more detail.
Baselines.We compare our approach (i.e., the CodeGrid code rep-
resentations associated with a CNN-based architecture) to a variety
of approaches. Concretely, we put a signi�cant e�ort in identifying,
for each task, strong baselines from the recent literature. Here, we
compare our results to performance results on the same bench-
marks reported by the authors in their published work, instead of
reproducing their work. Our goal is to validate the spatial signal in
code and show how it can augment existing models, not introduce
a new technique or conduct a replication study. We acknowledge
the threat this decision poses to our �ndings, due to variations
in hardware, tool con�guration, etc.. We note, however, that we
experimentally con�rmed on uniformly selected samples that the
replication packages provided by the authors lead to very similar
results as those reported in the papers in our environment.

• SLM [4] is a structural language model of code that has achieved
high performance on code completion.

• TBCNN [54] implements tree-based convolutional neural net-
works to model programming languages where program vectors
are explicitly learned from the AST tree features.

• ASTNN [78] develops a specialized neural network model for
scaling to large ASTs.

• WySiWiM [39], applies represents code as images for learning
representations that are exploited on software engineering tasks.

1361

https://www.gnu.org/software/indent/

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein and Tegawendé F. Bissyandé

• SySeVR [48] is a deep learning-based approach to vulnerability
detection that learns to identify program regions that are likely
to contain vulnerabilities.

Our comparison focuses, for each baseline, on the task on which
their original implementations have been shown to be successful
in their original publication. We use Checkmarx as a baseline in the
vulnerability detection task although it is not deep learning based,
because it appears in the literature as a key baseline. As already
noted, Table 3, Table 4, Table 5 and Table 6 contain data, and make
comparisons, based on the published IR results of the cited prior
work, as we do not intend to compare the inference time.
Architecture.We select CNN-based architectures for our experi-
ments. Depending on the tasks, we use di�erent CNN-based archi-
tectures to �t with our constraints. For tasks involving the training
of a classi�er, we rely on Deep Residual Network (ResNet) [28].
This architecture has been demonstrated to be one of the best CNN-
based architectures for image classi�cation [18].

For the code completion task, however, we require a generative
architecture. We therefore selected PixelCNN [72], which is a model
used for conditional image generation, i.e. predicting a pixel in
an image given the previous pixels. We use PixelCNN to predict
missing cell values in the grid.

Although pre-trained versions of these architectures exist, they
already pre-set the grid sizes. Therefore, we adapt both ResNet
and PixelCNN architectures to handle larger dimension vectors by
replacing their input layers with new input layers that �t to Code-

Grid grids’ shape, before retraining them with our datasets.
Training. We trained the models for each task by using the appro-
priate benchmark’s dataset (Table 1). Because the tasks are indepen-
dent, CodeGrid handles each dataset independently. Before using
the CodeGrid grids as input to each model, we handle their varying
sizes by considering the highest width and height from each dataset
and then applying padding to this size for each sample. For our
evaluations, we divided the dataset into training (75%), validation
(5%) and testing (20%) following prior work (e.g., [78]) to which
we compare against. With ResNet architecture, the training is con-
ducted over 150 epochs. With PixelCNN, the training is conducted
over 200 epochs.
Metrics. We measure classi�cation performance using the clas-
sical metrics of Accuracy, Precision, Recall and F1 score. For the
generative task of code completion, we follow Alon et al. [4] and
report the exact match accuracy at : , which indicates the number of
relevant tokens among the �rst : predictions. As for the evaluation
of the SLM [4] approach, we use 1 and 5 for : values.

CodeGrid Evaluation objective: By assessing the performance
on a variety of tasks, we seek to demonstrate that:

(1) with CodeGrid, we capture a strong signal in code that is
useful for learning to solve software engineering tasks;

(2) the learned representations are e�ective for diverse tasks,
including generative ones;

(3) CodeGrid combined with Code2Vec as cell values can
achieve high performance on several tasks.

Table 2: CodeGrid Ablation Study

(a) Classi�cation Tasks

Task Vectorizing Method Accuracy Precision Recall F1 score

Code Clone Detection
Word2Vec - 98.4 95.7 97.0
Code2Vec - 99.6 96.1 97.8
Color - 95.9 94.2 95.0

Code Classi�cation
Word2Vec 97.0 97.0 97.0 97.0
Code2Vec 97.2 97.2 97.2 97.2
Color 91.8 91.8 91.8 91.8

Vulnerability Detection
Word2Vec 96.2 93.8 - 90.7
Code2Vec 98.4 94.9 - 92.9
Color 93.8 90.7 - 92.2

(b) Code Completion Task

acc@k (exact-match)

Vectorizing Method @1 @5

CodeGrid + Word2Vec 9.07 15.80
CodeGrid + Code2Vec 7.54 15.09
CodeGrid + Color Vectorizer 14.91 22.70

3.2 CodeGrid Ablation Study

CodeGrid must vectorize code tokens (Figure 2, stage 4). We con-
sider three di�erent tokens vectorizer methods (Section 2): the
color-based vectorizing method which maps each token to a 3D
vector representing a color in the RGB range, the Word2Vec-based
vectorizing method and the Code2Vec-based vectorizing method
which considers the keyed-format of Code2Vec pre-trained model.
In this �rst experiment, we consider an ablation study to compare
those three token vectorizer methods.
The Experiment. For this ablation study, we consider all the clas-
si�cations tasks and the code completion task described in the
sections 3.3, 3.4 and 3.5 and 3.6 respectively.
The Results. Table 2a demonstrates that, on the code classi�cation,
CodeGrid performs best when considering grid’s cells are �lled
using Code2Vec’s embeddings. For the code completion task, the
“Color Vectorizing” method outperforms the “Word2 Vectorizing”
and “Code2Vec Vectorizing” methods. Overall, CodeGrid performs
best on three of the four tasks when using the “Code2Vec Vectoriz-
ing” method. Thus, in the remaining sections, we use CodeGrid
to refer to CodeGrid Code2Vec token embeddings; all subsequent
comparisons with the baselines are against this variant.

3.3 CodeGrid on Clone Detection

While the de�nition of Code clones varies across the literature where
researchers consider di�erent levels of similarity at the lexical, syn-
tactic and semantic levels, the research direction on clone detection
is fairly active [65, 67], with several applications in plagiarism de-
tection, origin analysis, program understanding, code compacting,
malicious code detection, etc. In recent years, machine learning
techniques have been applied towards improving performance of
code clone detection tools [74, 76, 78].
The Task Given a pair of code samples, the clone detection task
consists in determining whether they are similar (at di�erent levels:
lexical, syntactic or semantic). The literature distinguishes several
types of Cloning, including Type-1 (with identical code fragments,
except for di�erences in whitespace, layout, and comments), Type-2
(with identical code fragments, except for di�erences in identi�er
names and literal values, in addition to Type-1 clone di�erences),

1362

CodeGrid: A Grid Representation of Code ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

1 public static boolean isPalindrome(String

original) {

2 String reverse = "";

3 int length = original.length ();

4 for (int i = length - 1; i >= 0; i--)

5 reverse = reverse + original.charAt(i

);

6 if (original.equals(reverse))

7 return true;

8 else

9 return false;

10 }

(a) Code Fragment 2

1 public static boolean isPalindrome(String

string) {

2 if (string.length () == 0)

3 return true;

4 int limit = string.length () / 2;

5 for (int forward = 0, backward = string.

length () - 1; forward < limit;

forward++, backward --)

6 if (string.charAt(forward) != string.

charAt(backward))

7 return false;

8 return true;

9 }

(b) Code Fragment 1

Figure 4: Type-4 Code clone pair identi�ed with CodeGrid

Type-3 (with syntactically similar code fragments that di�er at
the statement level) and Type-4 (with syntactically dissimilar code
fragments that implement the same functionality). The latter are the
most challenging to detect and have been scarcely investigated in
the literature in contrast with former types on which high accuracy
was achieved by lexical and syntax-based clone detectors such as
CCFinder [37], Deckard [34], SourcererCC [68].

BigCloneBench (BCB) [70] is widely used in the community for
assessing clone detection tools, as it includes a mix of di�erent
types of clones. BCB consists of ∼8 million clone pairs mined from
25 000 open source Java projects in the IJaDataset-2.0 [6] (3 million
source code �les and 250 millions of lines of code). Nevertheless,
to ensure a direct and unbiased comparison with our baselines,
we evaluate on the same subset of 40k Type-4 clone pairs that
ASTNN and WySiWiM were evaluated on. Figure 4 illustrates an
example of Type-4 cloned methods: despite being named similarly,
the signi�cant di�erences in method bodies makes many token-
based approaches fail to identify the cloning.
The Experiment. We train a binary classi�er which yields a prob-
ability that two code fragments given as inputs constitute a clone
pair. We keep to the default threshold probability of 0.5 for the
classi�cation decision. To include negative samples in the test and
training sets, we randomly shu�e known clone pairs in the dataset
and create new non-clone pairs.
The Results. Table 3 summarizes the performance results of a
ResNet model trained with CodeGrid representations against the
baselines. While ASTNN achieves higher precision by 0.3 percent-
age points, CodeGrid improves it by ∼8 percentage points in terms

Table 3: Performances on Code Clone Detection.

Method Precision Recall F1

ASTNN 99.8 88.3 93.7
WySiWiM 95.4 94.3 94.8

CodeGrid 99.6 96.1 97.8

of recall. Furthermore, CodeGrid combined with any token vec-
torizing method yields balanced scores in terms of precision and
recall compared to ASTNN.

3.4 CodeGrid on Code Classi�cation

Reuse and maintenance activities in software engineering often
require some degree of comprehension of what program code is
doing, i.e., what algorithm/functionality are implemented. To that
end, code classi�cation has been studied as an important software
engineering task for benchmarking AI models targeting software
engineering. Note that in some work, code classi�cation is referred
to as algorithm classi�cation [7] and promoted as an important
research direction in guided programming where developers are
provided with alternate code suggestions based on the comprehen-
sion of what the developer code is about.
The Task. Given a sample method, the code classi�cation task con-
sists in predicting the label re�ecting the implemented functionality.
We use a dataset [55] containing C programs written by 500 stu-
dents to answer 104 programming questions on OpenJudge3. Each
question addresses a speci�c functionality, such as implementing
bubble sort. For each question, OpenJudge veri�ed 500 solutions
as correct and thus share the same label. Figure 5 illustrates two
examples of such correct solutions.
TheExperiment.We train amulti-class classi�er whereCodeGrid
representations are fed to a ResNet architecture. The resulting
model yields scores for the probability that a given code sample is
related to one of the 104 functionalities in the benchmark. The �nal
classi�cation selects the functionality for which the probability is
the highest. For this multi-class classi�cation task, we use micro-
average4 precision when computing the model scores.
The Results. Table 4 reports the performance results. ASTNN
and TBCNN authors only reported Accuracy metrics on this bench-
mark. CodeGrid enables the ResNet-based model to achieve similar
performance to the baselines (by 1% from ASTNN), while outper-
forming the WySiWiM baseline by about 3 percentage points. This
result suggests that CodeGrid is e�ective in eliminating the pixel
noise introduced by WySiWiM (which takes screenshots and also
feeds them into a ResNet architecture), instead of extracting the
most relevant information in the spatial layout of code.

CodeGrid also improves over TBCNN, which was the �rst model
to be applied to the OpenJudge dataset. Finally, we note that the
ResNet architecture trained with CodeGrid representations yields
balanced precision and recall: both metrics provide a performance
score at ∼92%, suggesting a good trade-o� between avoiding false
positives and recalling labels for most samples.

3http://poj.openjudge.cn/
4https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-
multilabel-classi�cation

1363

http://poj.openjudge.cn/
https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification
https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein and Tegawendé F. Bissyandé

void main() {

int i, n, max1 = 0,

max2 = 0, a[100];

scanf("%d", &n);

for(i=0; i<n; i++) {

scanf("%d", &a[i]);

if(max1 < a[i])

max1 = a[i];

}

printf("\n%d\n", max1);

for(i=0; i<n; i++) {

if(max2 < a[i] &&

max1 > a[i])

max2 = a[i];

}

printf("%d\n", max2);

}

(a) Program 1

1 main() {

2 int i, n, a[100], max1

, max2 , temp;

3 scanf("%d", &n);

4 for(i=0; i<n; i++)

5 scanf("%d", &a[i]);

6 max1 = 0;

7 for(i=1; i<n; i++)

8 if(a[max1] < a[i])

9 max1 = i;

10 temp = a[0];

11 a[0] = a[max1];

12 a[max1] = temp;

13 max2 = 1;

14 for(i=2; i<n; i++)

15 if(a[max2] < a[i])

16 max2 = i;

17 temp = a[1];

18 a[1] = a[max2];

19 a[max2] = temp;

20 printf("\n%d", a[0]);

21 printf("\n%d", a[1]);

22 }

(b) Program 2

Figure 5: Two student programs submitted to “�nd and dis-

play the 2 largest numbers in an array”

Table 4: Performance on Code Classi�cation

Approach Accuracy Precision F1

ASTNN 98.2 - -
TBCNN 94.0 - -
WySiWiM 89.7 85.7 86.3

CodeGrid 97.2 97.2 97.2

3.5 CodeGrid on Vulnerability Detection

Beyond code clone detection and code classi�cation, software engi-
neers must constantly be on the lookout for vulnerabilities in their
code. These are bugs that expose the software system to security
breaches. Their detection however is generally challenged by the
lack of exploits (i.e., vulnerability-revealing test cases). To cope with
this gap, the literature proposes approaches that statically analyse
the code and leverages similarity-based [42, 47] or pattern-based
techniques [14, 27, 30, 58] to predict the presence of vulnerabilities.
The former techniques are rather ine�ective [49] while the latter
techniques are costly and cannot scale because they often require
extensive human expert intervention to identify vulnerable code
patterns, or to engineer features for prediction learning. In recent
years, deep neural networks based approaches such as SySeVR [48]
have been proposed for the task of predicting vulnerable code.
The Task. Given a code sample, the vulnerability detection task
consists in predicting whether it is vulnerable or not. We used
the evaluation dataset collected by SySeVR. It includes samples
from two sources: the National Vulnerability Database (NVD) [56],
which includes vulnerabilities from production software, and the
Software Assurance Reference Dataset (SARD) [57], which includes
vulnerabilities from production, synthetic and academic software.

Table 5: Performance on Vulnerability Detection

Method Accuracy Precision F1

SySeVR 98.0 90.8 92.6
Checkmarx 72.9 30.9 36.1

CodeGrid 98.4 94.9 92.9

Each sample in the �nal dataset is labeled either as "good" (i.e.
having no vulnerabilities) or "bad" (i.e. having vulnerabilities).
The Experiment.We train a binary classi�er by feedingCodeGrid
representations of code samples along with their label into a ResNet
architecture. The included vulnerabilities span several issues related
to pointer or array usage, arithmetic expressions, and API calls.
The Results. Table 5 reports the experimental results. We also
include the performance reported by SySeVR authors on their own
tool as well on the Checkmarx commercial tool. CodeGrid repre-
sentations fed to a ResNet led to a performance improvement over
SySeVR for the vulnerability detection task. The gap is particularly
large in terms of Precision (by 4%).

3.6 CodeGrid on Code Completion

In integrated development environments (IDEs), code completion
is a feature that is highly sought by developers. It is about gener-
ating missing code at a speci�c location by using the surrounding
code as context. It helps to speed up coding and can contribute to
reducing programming mistakes. Actually, more generally, code
completion can be seen as �rst step towards program synthesis,
which remains one the oldest and most challenging problem in
computer science [73]. It is thus an extremely challenging task that
has uses even in other research directions of software engineering,
including automatic program repair.

The Task. Given an incomplete program with some missing part,
i.e., a hole, the code completion task consists in predicting the
missing token(s). We rely on the java-small dataset released by
Alon et al. [4], which includes code samples from 11 Java projects
collected from GitHub.
The Experiment.We train a code completion engine by leveraging
PixelCNN [72], a generative model targeting images. PixelCNN was
initially proposed to generate image variations (e.g., portraits of the
same person with di�erent facial expressions) based on an image
variant. By feeding PixelCNN with the CodeGrid representations
of code, we hypothesize that the architecture can learn to produce
variants. Thus, when given a partial grid, PixelCNN can suggest
the next cell value, which can be automatically mapped to a single
token in the vocabulary. For this experiment, we considered the
default parameters in PixelCNN implementation, and �xed the
size of the grid to a 32x32 matrix. Code completion is therefore
performed by iteratively predicting missing grid cell values until
a �lled cell is encountered or until we hit the boundary of the
grid. Figure 6 illustrates an example case where our model suggests
several possibilities among which the exact-match of the missing
code is predicting with the top-5 predictions.
The Results. Table 6 reports experimental results achieved with
CodeGrid (using PixelCNN) on the code completion task. We also

1364

CodeGrid: A Grid Representation of Code ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

public Peer getPeer () {

}

Top-5 Predictions: Probabilities

1. return peer; 61.4%

2. return peer<SPACE> 16.0%

3. Peer getPeer; 05.9%

4. Peer getPeer(04.8%

5. public getPeer(03.1%

Figure 6: Example of Code Completion achieved with Pixel-

CNN based on code representations yielded by CodeGrid

Table 6: Performance on Code Completion

acc@k (exact-match)

Approach/Model @1 @5

SLM 18.04 24.83

CodeGrid 7.54 15.09

provide results achieved by SLM, on the same dataset. To facilitate
comparisons, we use the acc@k (accuracy at k) metric proposed by
Alon et al. [4], which seeks to check whether the model can produce
the exact-match. The experimental data show that the PixelCNN
model trained on CodeGrid representations achieves low perfor-
mances compared to SLM in both measures. acc@1 and acc@5.
This suggests that a grid representation of code using Code2Vec
token’s embeddings as cell values is not suitable for such a task.
Despite these results, we also note that while our natural reference
is WySiWiM because it inspired our principled approach to account
for the spatial dimension of code, WySiWiM is not aware of code
tokens and therefore cannot even be applied to code completion
task, unlike CodeGrid. Finally, the results of our ablation study on
the code completion task (Table 2b) show that the “Color Vectoriz-
ing” method provides substantially better results compared to the
“Word2Vec Vectorizing” and the “Code2Vec Vectorizing” methods.
The code completion task is a token generation which is e�ectively
a multi-class prediction problem. Code2vec produces much larger
vectors, so we speculate that the color vectors are e�ectively per-
forming a rank reduction increasing the probability weight on more
likely tokens. And our results suggest that this reduction works
particularly well for code completion where it is safer relative to
natural language to ignore the long tail of tokens, which include
variables that are out of scope.

Findings: Trained on CNN architectures, CodeGrid code rep-
resentations yields near the baseline’s performance on all three
classi�cation tasks. The experimental results show that the code
spatiality signal captured by CodeGrid (with the Code2Vec to-
ken’s embeddings) is indeed useful for learning to solve software
engineering tasks.

CODEGRID

Figure 7: Constructing a Destroyed-Typesetting Grid

CODEGRID

Figure 8: Constructing a Left-Aligned Grid

3.7 Validating That Code Is Spatial

CodeGrid is based on a fundamental assertion, which we made,
that code is spatial (2.1). Our representation design follows this
assertion and strives to faithfully capture code layout. When em-
ployed with CNN-based architectures CodeGrid representations
achieve near the considered baseline performance on a variety of
software engineering tasks where AI solutions are increasingly
sought. We propose to further validate our initial assertion through
adapted ablation studies.

The experimental objective is to assess to what extent being
faithful to the developer code layout is important. Our assumption
is that if the coordinate system is not preserved as is, the resulting
representations should lead to less performance on the software
engineering tasks. We consider two variations for the code layout,
where the typesetting is entirely destroyed (i.e., loss of horizontal
and vertical spatial information) or the code is simply left-justi�ed
(i.e., loss of horizontal information only).

Untypeset Grid. Our �rst variation emulates the case where type-
setting does not matter. For this variant, we destroy both the spatial
dimension of code — both horizontal and vertical — when construct-
ing the grid, as illustrated in Figure 7. To that end, we remove all
spatial properties that are not necessary for execution: we drop line
breaks and convert tabs into single spaces. After �attening the code
into a single line, we build a square matrix whose boundaries no
longer map to the initial code lines. We set the grid size based on
the following equation:

6A83F8Cℎ = 6A83ℎ486ℎC = 248; (B@AC (#)) (7)

where # is the code snippet length including all white-spaces.
Left-Aligned Grid. Our second variation emulates the case where
the spatial dimension is only partially destroyed. For example, we
lose the horizontal dimension information (e.g., indentation) but
retain vertical dimension (e.g. line breaks are kept, but all tabs are
removed to left-align the code as in Figure 8). In this con�guration,
the grid size is constrained by the number of lines of code and the
number of tokens and spaces in the longest line of code.

1365

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein and Tegawendé F. Bissyandé

Table 7: Comparing performance with di�erent variations

of the code grid representation

Task Code Representation Accuracy Precision Recall F1

Untypeset Grid 80.8 80.8 80.8 80.8
Code Classi�cation Left-Aligned Grid 85.8 85.8 85.8 85.8

CodeGrid 97.2 97.2 97.2 97.2

Untypeset Grid 89.2 89.1 85.6 87.3
Code Clone Detection Left-Aligned Grid 93.9 92.0 97.2 94.5

CodeGrid 99.6 99.8 96.1 97.9

Untypeset Grid 88.7 88.5 88.6 88.5
Vulnerability Prediction Left-Aligned Grid 88.5 88.4 88.5 88.4

CodeGrid 98.4 94.9 91.0 92.9

Experiments. This ablation study builds the grid from code tokens
as usual. We consider both typesetting-destroying prepossessing
variations described above. Due to computational costs, we do not
consider experimentations on the code completion task.
Results. Table 7 presents the experimental results with the code
grid representation variations. Destroying the typesetting entirely
leads to the largest performance gap (up to 16% Accuracy in code
classi�cation) compared to the designed CodeGrid representation.
Models trained with left-aligned grid representations also under-
perform compared to CodeGrid, although they generally over-
perform models trained with untypeset grids. These results clearly
con�rm that typesetting matters in code representation and that
code is indeed spatial.

The experimental results con�rm that preserving typesetting in
code representations improves the performance of AI architec-
tures in software engineering tasks. The hypothesis that code is
spatial is thus validated.

3.8 Variations in Grid Cell Filling

As introduced in Section 2, the grid cells in CodeGrid representa-
tions are �lled with the objective of keeping the coordinate system:
we implement two vector �lling mechanisms:
◗ Exact-copy. In this mechanism, which is the one adopted for Code-
Grid, all grid cells spanning the character positions of the token are
�lled with the same vector value associated to the token. Figure 9a
illustrates what a grid row (representing a line of code) would look
like. We remind the reader that the �nal representations are not the
illustrative images shown for readability in this paper. Instead, the
representations are grids (high-dimensional matrices) with token
vector values.
◗ First cell only. In this alternate mechanism, only the cell associated
to the position of the �rst character is �lled with the value of
the token vector. The token’s remaining default to the grid’s cell
initialization value). Figure 9b illustrates what a grid row would
look like. The grid is therefore sparse.

We apply variants of CodeGrid representations considering
both mechanisms on the code classi�cation task. Experimental
results show that the variant yielding sparse grids substantially
underperforms against our initial design of CodeGrid: f1-score
drops by 12%.

(a) All the token cells are �lled

(b) Fist cell of each token is �lled

Figure 9: Examples of Variations in Grid Cell Filling with the

statement "int r = rand() % 20;"

3.9 Grid Construction Methods

The main contribution of our work is its principled demonstration
of the signal inherent to the spatial dimension of code via a spatially
aware code representation. We show that AI models can bene�t
from this representation. Our design focuses on the layout informa-
tion while retaining tokens and their spatial relations. We devise
an ad-hoc heuristic of importance based on the TF-IDF algorithm
to map tokens to vectors in the RGB color-coding scheme (using
brightness for sorting). We also consider the use of other meth-
ods (the use a pre-trained Code2Vec models as well as Word2Vec
newly trained model) for inferring the tokens vectors. Overall re-
sults on Table 3, Table 4 and Table 5 suggest that our Code2Vec
coding scheme is generally more e�ective than Word2Vec, which is
also more e�ective than Color vectorizing. This performance order
re�ects the richness of information carried out by the token em-
beddings: on the one end of the spectrum, Color-based embeddings
carry no semantics; on the other end Code2Vec embeddings are
built based on AST paths of code snippets in the dataset.

4 RELATED WORK

Our work is related to various research directions in the literature.
We overview the most recent works and discuss how CodeGrid

contributes to the domains of code representation learning for
automated problem-solving in software engineering.

4.1 Code Representation Learning in General

E�cient representation of source code is essential for various soft-
ware engineering tasks. While initial representations were built on
architectures such as Word2Vec [52], Doc2Vec [43] or BERT [21],
either by using their pre-trained models or retraining them (e.g.,
CodeBERT [24]), there is a momuntum of research works that pro-
pose specialized architectures to statically deep-learn structural and
semantic representations of code. Code2vec [5] is a prominent such
example that develops a path-based approach with an attention-
based neural network to learn code embeddings. The Tree-based
Convolutional Neural Network (TBCNN) approach proposed by
Mou et al. [54] was also successfully applied in various tasks. Simi-
larly, ASTNN et al. [78] later managed to outperform TBCNN and
other baselines in several tasks.
➥ Unlike the aforementioned approaches which are known as em-
beddings, because they are produced based on learning through
deep neural networks, CodeGrid builds a code grid representation
that preserves the coordinate system that is inherent to code and
by vectorizing code tokens via a simple and transparent mapping
mechanism where token importance in the corpus is encoded. Both
approaches can be complementary, where token vectors can be

1366

CodeGrid: A Grid Representation of Code ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

learned with specialized architectures to capture even more con-
textual information, and the spatial dimension, whose importance
was demonstrated in our experiments, is preserved by CodeGrid.

4.2 Image-Based Representations of Code

Successful applications of AI in software engineering has attracted
interest of researchers from various disciplines. For example, in
the malware detection community, image-based representations
of applications are already considered to exploit the capabilities of
computer vision algorithms in order to learn to discriminate mal-
ware from goodware [20, 32]. In software engineering, there are
increasing attempts in this respect. Chen et al. [15] have proposed
an approach where characters of source code are converted into
pixels whose colors are decided based on the ASCII decimal value
of each character. The resulting pixels are then arranged in a matrix,
which is viewed as an image. Besides the fact that tokens are lost in
this translation, the construction of the matrix does not take into
account the developer typesetting. More recently, Keller et al. [39]
proposed to consider code screenshots as inputs to visual repre-
sentation learning. While the authors indeed capture the spatial
dimension of code, the fact is that the representation made with
raw pixels introduces a signi�cant amount of noise.
➥ While visual representations of code experimentally provide
appealing performance, we have shown that CodeGrid represen-
tations captures better the underlying signal related to the spatial
dimension of code.We expect future work to further investigate this
principled methodology towards producing richer representations.

4.3 AI for Software Engineering

Research on the automation of several software engineering tasks
is being rebooted lately due to the improved performance of AI al-
gorithms, the availability of data and compute capacity as well
as the democratization of various deep learning programming
frameworks. Tasks such as code classi�cation, code clone detec-
tion [54, 78], code completion [4, 11, 50, 51], defect/vulnerability
predictions [25, 46, 48] are now classically used to benchmark
research advances in AI for software engineering. Existing ap-
proaches exploit di�erent signals in the code: lexical information in
tokens [31, 38, 60], structural information and ASTs and other pro-
gram tree representations [4, 54, 78], or visual information [39, 48].
➥ While some research work develop representation learning ap-
proaches for a speci�c task, our CodeGrid representations can be
inferred for any multiline code fragments and be applied to any
task. In contrast, representations such as Code2vec, which require
AST path traversals, are challenging to apply to arbitrary code
fragments; similarly, approaches, such as WySiWiM, cannot be
applied to tasks that require decoding the representation back to
code (e.g., code completion). Finally, representations such as SLM
speci�cally aim a single task where they are extremely e�ective.
While CodeGrid is generic, it helped classical CNN-based learn-
ing architectures achieve near SOTA results for various software
engineering tasks.

5 CONCLUSION

We have argued that code typesetting should be preserved when
constructing representations of code to feed to neural network
architectures targeting software engineering tasks. We therefore
investigated the spatial dimension of code and designed the Code-
Grid approach as a principledmethodology for representing code in
a way that preserves its visual layout. Spatially-aware architectures
are best placed to leverage CodeGrid representations. We showed
that augmenting them with CodeGrid provides performance that
is on-par with literature baselines for several software engineering
tasks. We further validated our initial assertion that code is spatial
by experimentally showing that, when representations are not faith-
ful to the typesetting, models under-perform compared to when
they use CodeGrid representations. Future work will investigate
embedding techniques for token vectorizing that directly account
for spatial information.

DATA AVAILABILITY

For the sake of Open Science, we provide to the community all the
artifacts used in our study. The project’s repository including all
artifacts (tool, datasets, etc.) is available at:

https://github.com/itscodegrid/codegrid

ACKNOWLEDGMENTS

This work was partly supported (1) by the Luxembourg National
Research Fund (FNR) - NERVE project, ref. 14591304, (2) by the Lux-
embourg Ministry of Foreign and European A�airs through their
Digital4Development (D4D) portfolio under project LuxWAyS and
(3) by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Project
NATURAL - grant agreement N> 949014).

REFERENCES
[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020.

A transformer-based approach for source code summarization. arXiv preprint
arXiv:2005.00653 (2020). https://doi.org/10.48550/arXiv.2005.00653

[2] Miltiadis Allamanis. 2021. Graph Neural Networks on Program Analysis. In
Graph Neural Networks: Foundations, Frontiers, and Applications, Lingfei Wu, Peng
Cui, Jian Pei, and Liang Zhao (Eds.). Springer, Singapore, Chapter need number,
need pages. https://doi.org/10.1007/978-981-16-6054-2_22

[3] Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2014. Learn-
ing Natural Coding Conventions. In Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (Hong Kong, China)
(FSE 2014). Association for Computing Machinery, New York, NY, USA, 281–293.
https://doi.org/10.1145/2635868.2635883

[4] Uri Alon, Roy Sadaka, Omer Levy, and Eran Yahav. 2020. Structural language
models of code. In International Conference on Machine Learning. PMLR, 245–256.

[5] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[6] Ambient Software Evoluton Group. 2013. . https://sites.google.com/site/
asegsecold/projects/seclone.

[7] Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoe�er. 2018. Neural code
comprehension: A learnable representation of code semantics. arXiv preprint
arXiv:1806.07336 (2018).

[8] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term
dependencies with gradient descent is di�cult. IEEE transactions on neural
networks 5, 2 (1994), 157–166. https://doi.org/10.1109/72.279181

[9] Sergey Bezryadin, Pavel Bourov, and Dmitry Ilinih. 2007. Brightness calculation
in digital image processing. In International symposium on technologies for digital
photo ful�llment, Vol. 2007. Society for Imaging Science and Technology, 10–15.
https://doi.org/10.2352/ISSN.2169-4672.2007.1.0.10

1367

https://github.com/itscodegrid/codegrid
https://doi.org/10.48550/arXiv.2005.00653
https://doi.org/10.1007/978-981-16-6054-2_22
https://doi.org/10.1145/2635868.2635883
https://sites.google.com/site/asegsecold/projects/seclone
https://sites.google.com/site/asegsecold/projects/seclone
https://doi.org/10.1109/72.279181
https://doi.org/10.2352/ISSN.2169-4672.2007.1.0.10

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Abdoul Kader Kaboré, Earl T. Barr, Jacques Klein and Tegawendé F. Bissyandé

[10] Cathal Boogerd and Leon Moonen. 2008. Assessing the value of coding standards:
An empirical study. In 2008 IEEE International Conference on Software Maintenance.
277–286. https://doi.org/10.1109/ICSM.2008.4658076

[11] Marcel Bruch,MartinMonperrus, andMiraMezini. 2009. Learning fromExamples
to Improve Code Completion Systems. 213–222. https://doi.org/10.1145/1595696.
1595728

[12] Harold E. Burtt. 1949. Typography and Readability. Elementary English 26, 4
(April 1949), 212–221. https://www.jstor.org/stable/41383630

[13] Casey Casalnuovo, Earl T. Barr, Santanu Kumar Dash, Prem Devanbu, and Emily
Morgan. 2020. A Theory of Dual Channel Constraints. In 2020 IEEE/ACM 42nd
International Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). 25–28. https://doi.org/10.1145/3377816.3381720

[14] Checkmarx. [n. d.]. Checkmarx. ttps://www.checkmarx.com/.
[15] J. Chen, K. Hu, Y. Yu, Z. Chen, Q. Xuan, Y. Liu, and V. Filkov. 2020. Software

Visualization andDeep Transfer Learning for E�ective Software Defect Prediction.
In 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
578–589. https://doi.org/10.1145/3377811.3380389

[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. https://doi.org/10.48550/arXiv.2107.03374
arXiv:2107.03374 [cs.LG]

[17] Zimin Chen and Martin Monperrus. 2019. A Literature Study of Embeddings on
Source Code. CoRR abs/1904.03061 (2019). arXiv:1904.03061 http://arxiv.org/abs/
1904.03061

[18] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. 2017. Dawn-
bench: An end-to-end deep learning benchmark and competition. Training 100,
101 (2017), 102.

[19] Wikipedia contributors. 2021. Python (programming language) Inden-
tation. https://en.wikipedia.org/wiki/Python_(programming_language)
#Indentation https://en.wikipedia.org/wiki/Python_(programming_language).

[20] Nadia Daoudi, Jordan Samhi, Abdoul Kader Kaboré, Kevin Allix, Tegawendé F.
Bissyandé, and Jacques Klein. 2021. DexRay: A Simple, yet E�ective Deep
Learning Approach to Android Malware Detection based on Image Represen-
tation of Bytecode. In The 2nd International Workshop on Deployable Machine
Learning for Security Defense (MLHat@KDD) (Singapore, Singapore). https:
//doi.org/10.1109/BigData.2018.8622324

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018). https://doi.org/10.48550/arXiv.1810.04805

[22] Iain S Du�, Albert Maurice Erisman, and John Ker Reid. 2017. Direct methods for
sparse matrices. Oxford University Press.

[23] Rick Eden and Ruth Mitchell. [n. d.]. Paragraphing for the reader. College
Composition and Communication 37, 4 ([n. d.]), 416–441. https://doi.org/10.2307/
357912

[24] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020). https://doi.org/10.48550/arXiv.2002.08155

[25] Michael Fu and Chakkrit Tantithamthavorn. 2022. LineVul: A Transformer-
Based Line-Level Vulnerability Prediction. In Proceedings of the 19th International
Conference on Mining Software Repositories (Pittsburgh, Pennsylvania) (MSR ’22).
Association for Computing Machinery, New York, NY, USA, 608–620. https:
//doi.org/10.1145/3524842.3528452

[26] Rohan Ghosh and Anupam K Gupta. 2019. Investigating convolutional neural
networks using spatial orderness. In Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops. 0–0.

[27] Gustavo Grieco, Guillermo Luis Grinblat, Lucas Uzal, Sanjay Rawat, Josselin
Feist, and Laurent Mounier. 2016. Toward large-scale vulnerability discovery
using machine learning. In Proceedings of the Sixth ACM Conference on Data and
Application Security and Privacy. 85–96.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[29] AbramHindle, Michael W. Godfrey, and Richard C. Holt. 2009. Reading beside the
lines: Using indentation to rank revisions by complexity. Science of Computer Pro-
gramming 74(7) (2009), 414–429. http://softwareprocess.ca/pubs/hindle2009SCP-
Reading-beside-the-lines.pdf

[30] Aram Hovsepyan, Riccardo Scandariato, Wouter Joosen, and James Walden. 2012.
Software vulnerability prediction using text analysis techniques. In Proceedings
of the 4th international workshop on Security measurements and metrics. 7–10.

[31] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2020. Deep code comment
generation with hybrid lexical and syntactical information. Empirical Software
Engineering 25, 3 (2020), 2179–2217.

[32] T. H. Huang and H. Kao. 2018. R2-D2: ColoR-inspired Convolutional NeuRal
Network (CNN)-based AndroiD Malware Detections. In 2018 IEEE International
Conference on Big Data (Big Data). 2633–2642. https://doi.org/10.1109/BigData.
2018.8622324

[33] Kevin Jesse, Premkumar T. Devanbu, and Tou�que Ahmed. 2021. Learning
type annotation: is big data enough?. In ESEC/FSE ’21: 29th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021, Diomidis Spinellis, Georgios
Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.). ACM, 1483–1486.
https://doi.org/10.1145/3468264.3473135

[34] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 96–105.

[35] Joel Jones. 2003. Abstract Syntax Tree Implementation Idioms. In Proceedings
of the 10th Conference on Pattern Languages of Programs (PLoP2003). http:
//www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf Pro-
ceedings of the 10th Conference on Pattern Languages of Programs
(PLoP2003)http://hillside.net/plop/plop2003/papers.html.

[36] Daniel Kahneman. 2011. Thinking, fast and slow. Macmillan.
[37] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: A

multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[38] WANGKe, Jian-Hong JIANG, andMARui-Yun. 2018. A code classi�cationmethod
based on TF-IDF. DEStech Transactions on Economics, Business and Management
eced (2018).

[39] Patrick Keller, Laura Plein, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. 2021. What You See is What it Means! Semantic Representation Learning
of Code based on Visualization and Transfer Learning. ACM Transactions on
Software Engineering and Methodology - To appear (2021).

[40] Nikhil Ketkar. 2017. Introduction to pytorch. In Deep learning with python.
Springer, 195–208.

[41] Fazeel Ahmed Khan and Adamu Abubakar. 2020. Machine Translation in Natural
Language Processing by Implementing Arti�cial Neural NetworkModelling Tech-
niques: An Analysis. International Journal on Perceptive and Cognitive Computing
6, 1 (2020), 9–18.

[42] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. Vuddy: A
scalable approach for vulnerable code clone discovery. In 2017 IEEE Symposium
on Security and Privacy (SP). IEEE, 595–614.

[43] Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and
documents. In International conference on machine learning. PMLR, 1188–1196.

[44] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[45] Jian Li, Yue Wang, Michael R Lyu, and Irwin King. 2017. Code completion with
neural attention and pointer networks. arXiv preprint arXiv:1711.09573 (2017).

[46] Xin Li, Lu Wang, Yang Xin, Yixian Yang, and Yuling Chen. 2020. Automated Vul-
nerability Detection in Source Code UsingMinimum Intermediate Representation
Learning. Applied Sciences 10, 5 (2020), 1692.

[47] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
Vulpecker: an automated vulnerability detection system based on code similarity
analysis. In Proceedings of the 32nd Annual Conference on Computer Security
Applications. 201–213.

[48] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. 2018.
Sysevr: A framework for using deep learning to detect software vulnerabilities.
arXiv preprint arXiv:1807.06756 (2018).

[49] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. Vuldeepecker: A deep learning-based system for
vulnerability detection. arXiv preprint arXiv:1801.01681 (2018).

[50] Fang Liu, Ge Li, Bolin Wei, Xin Xia, Zhiyi Fu, and Zhi Jin. 2020. A self-attentional
neural architecture for code completion with multi-task learning. In Proceedings
of the 28th International Conference on Program Comprehension. 37–47.

[51] Fang Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-task Learning based
Pre-trained Language Model for Code Completion. CoRR abs/2012.14631 (2020).
arXiv:2012.14631 https://arxiv.org/abs/2012.14631

[52] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[53] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in neural information processing systems 26 (2013).

[54] Lili Mou, Ge Li, Zhi Jin, Lu Zhang, and Tao Wang. 2014. TBCNN: A Tree-Based
Convolutional Neural Network for Programming Language Processing. CoRR

1368

https://doi.org/10.1109/ICSM.2008.4658076
https://doi.org/10.1145/1595696.1595728
https://doi.org/10.1145/1595696.1595728
https://www.jstor.org/stable/41383630
https://doi.org/10.1145/3377816.3381720
ttps://www.checkmarx.com/
https://doi.org/10.1145/3377811.3380389
https://doi.org/10.48550/arXiv.2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1904.03061
http://arxiv.org/abs/1904.03061
http://arxiv.org/abs/1904.03061
https://en.wikipedia.org/wiki/Python_(programming_language)#Indentation
https://en.wikipedia.org/wiki/Python_(programming_language)#Indentation
https://en.wikipedia.org/wiki/Python_(programming_language)
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.2307/357912
https://doi.org/10.2307/357912
https://doi.org/10.48550/arXiv.2002.08155
https://doi.org/10.1145/3524842.3528452
https://doi.org/10.1145/3524842.3528452
http://softwareprocess.ca/pubs/hindle2009SCP-Reading-beside-the-lines.pdf
http://softwareprocess.ca/pubs/hindle2009SCP-Reading-beside-the-lines.pdf
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.1145/3468264.3473135
http://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
http://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://arxiv.org/abs/2012.14631
https://arxiv.org/abs/2012.14631

CodeGrid: A Grid Representation of Code ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

abs/1409.5718 (2014). arXiv:1409.5718 http://arxiv.org/abs/1409.5718
[55] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional neural

networks over tree structures for programming language processing. In Thirtieth
AAAI Conference on Arti�cial Intelligence.

[56] National Institute of Standards and Technology. 2018. National Vulnerability
Database. http://nvd.nist.gov/.

[57] National Institute of Standards and Technology. 2018. Software Assurance
Reference Dataset. https://samate.nist.gov/SRD/index.php.

[58] Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller.
2007. Predicting vulnerable software components. In Proceedings of the 14th ACM
conference on Computer and communications security. 529–540.

[59] Lawrence C Ngugi, Moataz Abelwahab, and Mohammed Abo-Zahhad. 2021.
Recent advances in image processing techniques for automated leaf pest and
disease recognition–A review. Information processing in agriculture 8, 1 (2021),
27–51.

[60] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.
2013. A statistical semantic language model for source code. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. 532–542.

[61] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. 2016. Conditional image generation with
pixelcnn decoders. arXiv preprint arXiv:1606.05328 (2016).

[62] OpenAI. 2021. GitHub Copilot - Your AI Pair Programmer. https://copilot.github.
com

[63] Alice J O’Toole and Carlos D Castillo. 2021. Face Recognition by Humans and
Machines: Three Fundamental Advances from Deep Learning. Annual Review of
Vision Science 7 (2021).

[64] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the �rst instructional conference on machine learning,
Vol. 242. Citeseer, 29–48.

[65] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165–1199.

[66] Radim Řehřek, Petr Sojka, et al. 2011. Gensim—statistical semantics in python.
Retrieved from genism. org (2011).

[67] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[68] Hitesh Sajnani, Vaibhav Saini, Je�rey Svajlenko, Chanchal K Roy, and Cristina V
Lopes. 2016. Sourcerercc: Scaling code clone detection to big-code. In Proceedings
of the 38th International Conference on Software Engineering. 1157–1168.

[69] Hajah T Sueno, Bobby D Gerardo, and Ruji P Medina. 2020. Converting Text to
Numerical Representation using Modi�ed Bayesian Vectorization Technique for
Multi-Class Classi�cation. International Journal 9, 4 (2020).

[70] Je�rey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Moham-
mad Mamun Mia. 2014. Towards a big data curated benchmark of inter-project
code clones. In 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 476–480.

[71] Tyler Neylon. 2015. Vertical code alignment. https://medium.com/@tylerneylon/
vertical-code-alignment-9635bd2ee08c.

[72] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. 2016. Conditional Image Generation with
PixelCNN Decoders. CoRR abs/1606.05328 (2016). arXiv:1606.05328 http://arxiv.
org/abs/1606.05328

[73] Richard J Waldinger and Richard CT Lee. 1969. PROW: A step toward automatic
programwriting. In Proceedings of the 1st international joint conference on Arti�cial
intelligence. 241–252.

[74] Huihui Wei and Ming Li. 2017. Supervised Deep Features for Software Functional
Clone Detection by Exploiting Lexical and Syntactical Information in Source
Code.. In IJCAI. 3034–3040.

[75] Hyeon-Joong Yoo. 2015. Deep convolution neural networks in computer vision:
a review. IEIE Transactions on Smart Processing and Computing 4, 1 (2015), 35–43.

[76] Hao Yu,Wing Lam, Long Chen, Ge Li, Tao Xie, and QianxiangWang. 2019. Neural
detection of semantic code clones via tree-based convolution. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC). IEEE, 70–80.

[77] Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818–833.

[78] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 783–794.

Received 2023-02-16; accepted 2023-05-03

1369

https://arxiv.org/abs/1409.5718
http://arxiv.org/abs/1409.5718
http://nvd.nist.gov/
https://samate.nist.gov/ SRD/index.php
https://copilot.github.com
https://copilot.github.com
https://medium.com/@tylerneylon/vertical-code-alignment-9635bd2ee08c
https://medium.com/@tylerneylon/vertical-code-alignment-9635bd2ee08c
https://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1606.05328

	Abstract
	1 Introduction
	2 Approach
	2.1 Code Is Spatial
	2.2 Representation: Constructing a Code Grid
	2.3 Learning on Grids
	2.4 Implementation

	3 Evaluation
	3.1 Experimental Setup
	3.2 CodeGrid Ablation Study
	3.3 CodeGrid on Clone Detection
	3.4 CodeGrid on Code Classification
	3.5 CodeGrid on Vulnerability Detection
	3.6 CodeGrid on Code Completion
	3.7 Validating That Code Is Spatial
	3.8 Variations in Grid Cell Filling
	3.9 Grid Construction Methods

	4 Related Work
	4.1 Code Representation Learning in General
	4.2 Image-Based Representations of Code
	4.3 AI for Software Engineering

	5 Conclusion
	Acknowledgments
	References

