
Guided Retraining to Enhance the Detection of Di�icult Android
Malware

Nadia Daoudi
nadia.daoudi@uni.lu

University of Luxembourg
Luxembourg

Kevin Allix
kevin.allix@centralesupelec.fr

CentraleSupelec
France

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu
University of Luxembourg

Luxembourg

Jacques Klein
jacques.klein@uni.lu

University of Luxembourg
Luxembourg

ABSTRACT

The popularity of Android OS has made it an appealing target for

malware developers. To evade detection, including by ML-based

techniques, attackers invest in creating malware that closely resem-

ble legitimate apps, challenging the state of the art with di�cult-to-

detect samples. In this paper, we propose Guided Retraining, a

supervised representation learning-based method for boosting the

performance of malware detectors. To that end, we �rst split the

experimental dataset into subsets of “easy” and “di�cult” samples,

where di�culty is associated to the prediction probabilities yielded

by a malware detector. For the subset of “easy” samples, the base

malware detector is used to make the �nal predictions since the er-

ror rate on that subset is low by construction. Our work targets the

second subset containing “di�cult” samples, for which the probabil-

ities are such that the classi�er is not con�dent on the predictions,

which have high error rates. We apply our Guided Retraining

method on these di�cult samples to improve their classi�cation.

Guided Retraining leverages the correct predictions and the er-

rors made by the base malware detector to guide the retraining

process. Guided Retraining learns new embeddings of the di�-

cult samples using Supervised Contrastive Learning and trains an

auxiliary classi�er for the �nal predictions. We validate our method

on four state-of-the-art Android malware detection approaches us-

ing over 265k malware and benign apps. Experimental results show

that Guided Retraining can boost state-of-the-art detectors by

eliminating up to 45.19% of the prediction errors that they make on

di�cult samples. We note furthermore that our method is generic

and designed to enhance the performance of binary classi�ers for

other tasks beyond Android malware detection.

CCS CONCEPTS

• Security and privacy→Malware and its mitigation; • Com-

puting methodologies→Machine learning.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598123

KEYWORDS

Android, malware, retraining, di�cult samples

ACM Reference Format:

Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein. 2023.

Guided Retraining to Enhance theDetection of Di�cult AndroidMalware. In

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598123

1 INTRODUCTION

Android malware plays hide and seek with mobile applications

markets operators. Indeed, new emerging malware apps are in-

creasingly sophisticated [11, 19, 23] and challenge state-of-the-art

detection techniques, in particular literature ML-based approaches.

These malware apps are designed to closely resemble benign apps

in order to hide their malicious behaviour and evade detection. In

typical ML-based malware detection schemes, Android apps are

represented using feature vectors (i.e., apps are embedded), which

are fed to an algorithm that learns to distinguish malware and

benign samples. In such an embedding space, some malware (or

benign) samples occupy a distinct region of the input space [54].

These samples share similar feature vectors that make them easily

distinguishable and separable from the benign (respectively mal-

ware) apps in the embedding space. Nevertheless, there are other

malware apps which have feature vectors that are similar to fea-

ture vectors of benign samples. Such apps are located in regions of

the embedding space where malware and benign samples are not

perfectly separable and distinguishable. In such regions, malware

and benign apps overlap, which leads to misclassi�cations.

Deep representation learning aims to extract relevant patterns

from the input data and discard the noise. Several techniques [20,

22, 36, 46, 47] have leveraged the class labels to generate powerful

representations, which has led to state-of-the-art performance. In-

deed, supervised representation learning methods are trained to

automatically learn characteristic features of samples that share

the same class labels. The resulting embeddings are passed to a

classi�er that maps the samples to their respective classes. Recently,

Supervised Contrastive Learning [22] has been proposed to max-

imise the embedding similarity of samples from the same class

and minimise the embedding similarity of samples belonging to

di�erent classes. This representation learning method transforms

the input data into an embedding space in which samples with

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1131

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3597926.3598123
https://doi.org/10.1145/3597926.3598123

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

the same labels are close to each other, so they can have similar

representations. Furthermore, it increases the distance between

samples from di�erent classes so they can get distinct representa-

tions. Supervised Contrastive Learning seems to propose a solution

for overlapping malware and benign samples since it transforms

the input data into a new embedding space in which samples from

the same class are grouped together and separated from the other

class.

In binary classi�cation, we can distinguish between two cate-

gories of samples based on their input labels: positives and negatives

(e.g., malware and benign). It is also possible to classify samples

into easy and di�cult instances based on their feature vectors. Easy

samples refer to positive and negative instances which a classi�er

can easily identify and correctly predict their classes. The di�cult

samples can also be positives or negatives, but they have similar

input features that make it challenging for the classi�er to cor-

rectly identify their classes. The notion of di�culty is related to

the malware detector itself (i.e., its features set and ML algorithm).

Speci�cally, depending on the features and the classi�cation algo-

rithm leveraged by a malware detector, a malware app might be

di�cult to detect by one approach but easy to detect by another.

For a base classi�er, identifying the class of the easy samples would

be straightforward, which results in low prediction errors. For the

di�cult samples, they would need more advanced techniques to

better discriminate the two classes.

In this paper, we investigate the feasibility of boosting existing

malware detectors by focusing on di�cult-to-detect samples. To

that end, we explore the power of contrastive learning with the idea

of further guiding the learning to build embeddings where samples

that were previously close to samples of other classes are now

clearly separated in the embedding space. We propose to address

the problem of malware classi�cation in two steps: The �rst step of

the classi�cation involves the samples that are easy to predict by

a base classi�er. To decide whether a sample is easy or di�cult to

predict, we rely on the prediction probabilities yielded by the base

classi�er. Thus, all samples that are identi�ed as easy (i.e., with

high prediction probabilities from the base classi�er), are simply

left to be predicted by the base classi�er. If a sample is identi�ed

as di�cult (i.e., with low prediction probabilities from the base

classi�er), then it is passed to the second step where an auxiliary

classi�er trained via our Guided Retraining method is meant to

address its �nal prediction. Note that we use the term “Retraining”

to refer to the task which consists in training a new classi�er on a

given dataset. As its name suggests, our technique is designed to

guide the retraining on the di�cult samples to reduce the prediction

errors. We rely on the predictions generated by the base classi�er

on the di�cult samples to learn distinctive representations for each

class. Speci�cally, we leverage Supervised Contrastive Learning to

generate embeddings for the di�cult samples in �ve guided steps

that teach the model to learn from the correct predictions and errors

made by the base classi�er. Then, we train an auxiliary classi�er

on the generated embeddings so it can make the �nal classi�cation

decision on the di�cult samples.

To validate the e�ectiveness of ourmethod, we evaluate it on four

state-of-the-art Android malware detectors (i.e., with their variants)

that were successfully replicated in the literature [7]: DREBIN [4],

RevealDroid [15],MaMaDroid [31], andMalScan [50]. These

detectors consider various features to discriminate between mal-

ware and benign apps, and they have been reported to be highly

e�ective. Our experiments demonstrate that the prediction errors

made by state-of-the-art Android malware detectors can be reduced

via our Guided Retraining method. Speci�cally, we show that

our technique boosts the detection performance and reduces up to

45.19% prediction errors made by the classi�ers.

We have also assessed the e�ectiveness of our method in boost-

ing the detection performance on new Android apps. For instance,

we have trained the state-of-the-art DREBIN on samples from 2019

and tested its performance on apps from 2020. Our results showed

thatDREBIN achieves an F1 score of 85.31%. After using ourGuided

Retraining approach on DREBIN, it was able to detect 769 mali-

cious samples that escaped its detection in the �rst place. 70% of

these malicious samples (i.e., 535 apps) were originally collected

from the Google Play Store and belong to di�erent malware fami-

lies such as: “jiagu”, “blacklister” and “dnotua”. Overall, our results

show that Guided Retraining is an e�ective method to reduce the

misclassi�cations of state-of-the-art Android malware detectors.

Our contributions can be summarised as follows:

• We propose to address the malware detection problem in

two steps: the �rst step deals with the detection of the easy

samples, and the second step is intended for the di�cult-to-

detect apps;

• We design a new technique, Guided Retraining, that im-

proves the classi�cation of the di�cult-to-detect apps by

yielding contrasted representations;

• We validate the e�ectiveness of our method on four state-of-

the-art Android malware detectors;

• We make our code and dataset publicly available at: https:

//github.com/Trustworthy-Software/GuidedRetraining

2 APPROACH

2.1 Overview

Our method aims to leverage deep learning techniques in order

to boost the performance of a binary base classi�er. We present

in Figure 1 an overview of our method. The �rst step consists

of training a base classi�er on the whole training dataset. Then,

we leverage the prediction probabilities of the base classi�er to

split the dataset into two subsets: easy and di�cult samples. The

di�cult samples are used to train an auxiliary classi�er via our

Guided Retraining method. The motivation behind the auxiliary

classi�er is to obtain a "specialised classi�er" that will improve the

performance on di�cult samples.

Given a new sample, if it is identi�ed as an easy sample, it will be

predicted by the base classi�er. Otherwise, the prediction decision

will be made by the auxiliary classi�er that is trained on the di�cult

samples via our Guided Retraining method.

More speci�cally, the overall process of our approach can be

summarised as follows:

(1) Train a base classi�er on the training set (step 1 in Figure 1)

(2) Use this classi�er to collect the “di�cult” samples (i.e., those

samples from the training set that are close to the decision

boundary of the trained classi�er). This is illustrated in step 2

in Figure 1; Concretely, to do this we apply the classi�er on

1132

https://github.com/Trustworthy-Software/GuidedRetraining
https://github.com/Trustworthy-Software/GuidedRetraining

Guided Retraining to Enhance the Detection of Di�icult Android Malware ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Step 1: The base
classifier training

Training
Dataset

Base
Classifier

Train

Step 2: Difficult samples identification
2.1: Identifying the probability thresholds

Validation
Dataset

Base
Classifier

Predict Prediction
probabilities

Probability
threshold

training or test
Dataset

Base
Classifier

Predict Prediction
probabilities

Probability
threshold

2.2: Splitting the datasets Easy
Dataset

Difficult
Dataset

Step 3: Guided Retraining

Difficult SubSet
for Training ModelsSupervised Contrastive

Learning Embeddings Auxiliary
Classifier

Final predictions

Test
Dataset

Base
Classifier

Predict Prediction
probabilities

Probability
threshold

Easy
Dataset

Difficult
Dataset

Base
Classifier

Auxiliary
Classifier

Predictions

Predictions

+ Final
predictions

Figure 1: An overview of our approach

its own training set (which is uncommon, but useful here to

identify the “di�cult” samples).

(3) Devise a new embedding, specialized to contrast “di�cult

goodware” from “di�cult malware” (step 3 in Figure 1).

(4) Train another classi�er on the devised embeddings of the

di�cult samples in the training set. This classi�er is the

auxiliary classi�er (step 3 in Figure 1).

To use our approach on a new sample: the sample would �rst

be classi�ed by the base classi�er. If it turns out this is a di�cult

sample, then (and only then), we would instead use the auxiliary,

specialized, classi�er. In the following, we describe the main steps

of our approach which are: The base classi�er training, Di�cult

samples identi�cation, and Guided Retraining.

2.2 The Base Classi�er Training

Our approach is designed to boost the performance of an existing

binary classi�er that we denote as the base classi�er. The type of this

classi�er is not important, but ideally it should be able to output the

prediction probabilities, i.e., not only a binary classi�cation (such

as malware or benign) but a value, typically between 0 and 1, that

indicates the likelihood that a given sample is a malware. If the

classi�er does not generate prediction probabilities, we propose

other solutions in Section 3.5.

The �rst step consists in splitting the dataset into three subsets:

training, validation, and test. We train the base classi�er using all

the samples in the training subset.

2.3 Di�cult Samples Identi�cation

The aim of this step is to identify the samples that are “di�cult” to

predict by the base classi�er. The criteria we use to identify these

samples is their probabilities of prediction.

In a binary classi�cation experiment, if the model is con�dent

about the label of a given sample, it assigns a high prediction proba-

bility to the class that is associated with that label (i.e., a probability

of prediction that is close to 1). Otherwise, samples from any of the

two classes get similar probabilities of prediction (i.e., the probabili-

ties of prediction for the two classes are close to 0.5). The predicted

labels are then decided based on the probabilities of predictions.

Generally, when the probability of prediction for the positive class

(or the negative class) is higher than 0.5, the classi�er predicts the

sample as positive (or negative). Since the probability of prediction

for the negative class can be deduced from the probability of pre-

diction of the positive class (i.e., the two probabilities sum up to 1),

we consider only the probability of prediction of the positive class

in the following, and we denote it ? .

In our approach, we leverage the probabilities of prediction to

split a dataset into easy and di�cult subsets. After it is trained,

the base classi�er would assign either a very high or a very low

probability of prediction ? to the samples that it can predict their

labels with a high con�dence. Speci�cally, if ? is very high, the

base classi�er is con�dent that the sample belongs to the positive

class. Conversely, if ? is very low, the classi�er is con�dent that the

sample belongs to the negative class. If a given sample is attributed

a very high or a very low probability of prediction, we consider

it as an easy sample. Otherwise, it is considered to belong to the

di�cult subset.

We postulate that easy and di�cult subsets have the following

properties:

Easy subset: Applying a base classi�er on the samples of this

subset will yield only a few prediction errors.

Di�cult subset: Applying a base classi�er on the samples of

this subset will mostly yield prediction errors.

2.3.1 On Applying the Base Classifier on Its Own Training Set. In

practice, to identify di�cult and easy samples, we apply the base

classi�er on its own training set, i.e., we collect the prediction prob-

abilities to decide whether the samples are easy or di�cult. We

acknowledge that using a trained model (i.e., the base classi�er) on

its own training set is uncommon, and would be absurd in most

cases. Here, however, we only do it to identify which samples are

close to the decision boundary of the classi�er (i.e., when the clas-

si�er “is unsure”), and later to improve the training on di�cult

samples by learning new embeddings (Cf. Section 2.4). It is impor-

tant to note that this design conforms to traditional ML processes

where the training set is clearly separated from the test set (i.e.,

there is no data leakage).

2.3.2 Identifying the Probability Thresholds. From the previous

step, our base classi�er has attributed a probability of prediction to

each sample in the training and validation datasets. The next step

consists of tagging each sample in the dataset as easy or di�cult

based on its probability of prediction. To this end, we need to

identify two thresholds for considering a sample as easy or di�cult.

Speci�cally, we rely on one probability threshold to decide whether

the prediction probability ? of a given sample is high enough to

consider that sample as easy (i.e., in this case the sample is an easy

positive since ? is high). Similarly, when the prediction probability

? of a given sample is small, we need another probability threshold

to decide whether ? is small enough to tag the sample as easy (i.e.,

in this case the sample is an easy negative).

We rely on the validation dataset to determine the values of

the two probability thresholds. Speci�cally, since the validation

samples are classi�ed into TNs (i.e., True Negatives), FPs (i.e., False

Positives), FNs (i.e., False Negatives), and TPs (i.e., True Positives),

we determine the probability thresholds that satisfy the following

constraints:

1133

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

• The probability threshold for considering a sample as an easy

positive must ensure that the number of false positives in the

easy validation dataset is equal to -% of the total number of FPs

(i.e., FPs predicted by the base classi�er on the whole validation

dataset). We denote this threshold Cℎ? .

• The probability threshold for classifying a sample as an easy

negative must guarantee that the number of false negatives in

the easy validation dataset is equal to .% of the total number of

FNs (i.e., FNs predicted by the base classi�er based on the whole

validation dataset). We denote this threshold Cℎ= .
To identify the values of the two probability thresholds, we need

to compute the number of FPs and FNs that we tolerate in the
easy validation dataset. We note these variables C>;4A0C43�%B and
C>;4A0C43�#B and we calculate their values as follows:

C>;4A0C43�%B =

- × �%E

100
; C>;4A0C43�#B =

. × �#E

100

where �%E and �#E represent the number of FPs and FNs re-

turned by the base classi�er on the whole validation dataset, re-

spectively.

The process of identifying the two probability of prediction

thresholds is adequately detailed in Algorithm 1.

Algorithm 1: Thresholds selection

Input: vDataset, yProbabilities, toleratedFPs, toleratedFNs, indicesOfFPs,
indicesOfFNs

Output: thresholdFPs, thresholdFNs

counterFPs← 0

counterFNs← 0

lenData← E�0C0B4C .;4=6Cℎ ()
probasIndicesPos← ∅
probasIndicesNeg← ∅
for 8 ← 1, ;4=�0C0 do

if yProbabilities(i) ≥ 0.5 then
probasIndicesPos← probasIndicesPos + (yProbabilities(i), i)

// We keep track of the index of the sample to verify that it is not among
the FPs and FNs. We later search that index in indicesOfFPs and
indicesOfFNs lists

else
probasIndicesNeg← probasIndicesNeg + (yProbabilities(i), i)

probasIndicesPos← probasIndicesPos.inverselySortProbas()
// The prediction probabilities of the positive samples are sorted in
descending order

probasIndicesNeg← probasIndicesNeg.sortProbas()
// The prediction probabilities of the negative samples are sorted in ascending
order

lenPos← ?A>10B�=3824B%>B.;4=6Cℎ ()
lenNeg← ?A>10B�=3824B#46.;4=6Cℎ ()
for 8 ← 1, ;4=%>B do

if counterFPs == toleratedFPs then
thresholdFPs← probasIndicesPos[i][0]
break

if probasIndicesPos[i][1] in indicesOfFPs then
counterFPs← counterFPs + 1

for 8 ← 1, ;4=#46 do
if counterFNs == toleratedFNs then

thresholdFNs← probasIndicesNeg[i][0]
break

if probasIndicesNeg[i][1] in indicesOfFNs then
counterFNs← counterFNs + 1

The inputs to this algorithm are the validation dataset, the proba-

bilities of prediction returned by the base classi�er on the validation

dataset, toleratedFPs, toleratedFNs, and the indices of the �%E and

�#E in the validation dataset (i.e., we consider that each instance

in the dataset has a unique index, and we denote the lists of the FPs

and FNs indices as indicesOfFPs and indicesOfFNs respectively). To

identify the threshold of the positives, we �rst select all the samples

from the validation dataset that have their ? ≥ 0.5 and we sort their

probabilities in descending order. We also keep track of the indices

of these samples in the validation dataset to verify whether they

are predicted as TPs or FPs by the base classi�er (i.e., based on in-

dicesOfFPs list). Then, we initialise a counter of the number of FPs

in the easy dataset and we iterate over the sorted samples starting

from the one with the highest probability of prediction. During

each iteration, we �rst check whether the value of the FPs counter

has reached the number of toleratedFPs, in which case we stop the

iteration and set the Cℎ? to the current probability of prediction.

Otherwise, we increment the counter of FPs if the sample has been

predicted as FP by the base classi�er.

We apply the same technique to identify the value of negatives

threshold Cℎ= . We select the samples that have their ? ≤ 0.5 and

we sort their probabilities in ascending order since the classi�er is

con�dent about the samples with low probabilities of prediction.

Similarly, we keep a counter for the number of FNs that are tolerated

in the easy dataset and we iterate over the sorted samples starting

from the one with the lowest probability of prediction. When the

value of the FNs counter is equal to the value of toleratedFNs, we

stop the iteration. We then set the value of Cℎ= to the probability of

prediction of the last sample in which the iteration stopped.

2.3.3 Spli�ing the Datasets. After identifying the values of Cℎ? and

Cℎ= , we split our datasets into easy and di�cult subsets. The easy

dataset contains all the samples whose probabilities of prediction

satisfy:

40B~�0C0B4C = {G8 ∈ 30C0B4C | Cℎ= ≥ ?i or Cℎ? ≤ ?i}

where ?i is the probability of prediction of sample G8 .

The easy dataset includes all the positive samples whose predic-

tion probabilities are greater than the threshold Cℎ? (i.e., they are

predicted as positives with high con�dence by the base classi�er).

It also includes the negative samples whose prediction probabili-

ties are smaller than the threshold Cℎ= (i.e., they are predicted as

negatives with high con�dence by the base classi�er).

As for the di�cult dataset, it contains all the samples that do not

satisfy the constraints of the easy dataset. Speci�cally, it includes the

samples whose prediction probabilities are at the same time below

the threshold Cℎ? and above the threshold Cℎ= (i.e., the base classi�er

is not con�dent that these samples are positives or negatives). The

samples in the di�cult dataset satisfy:

38 5 5 82D;C�0C0B4C = {G8 ∈ 30C0B4C | Cℎ= < ?i < Cℎ? }

At the end of this step, we have the training, validation, and test

datasets split into easy and di�cult subsets.

2.4 Guided Retraining

In our approach we make use of Supervised Contrastive Learn-

ing [22] to generate the embeddings of the di�cult samples. Con-

trastive Learning is a technique that generates new embeddings of

the dataset in such a way that samples belonging to the same class

are close to each other in the embedding space. Similarly, samples

belonging to di�erent classes are far from each other in the embed-

ding space. While Contrastive Learning [22] has been proposed for

the general case of multi-class classi�cation, we have adapted it to

1134

Guided Retraining to Enhance the Detection of Di�icult Android Malware ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

the special case of having only two classes: malware and benign

(i.e., positive and negative). Supervised Contrastive Learning works

in two stages: First, it generates the embeddings using an Encoder

followed by a Projection Network (we refer to both of them as

the Model). After the training is done, the Projection Network is

discarded and a classi�er is trained on the embeddings from the last

layer of the Encoder. This classi�er is referred to as the auxiliary

classi�er. At the end of the second stage, the samples are classi�ed

into their respective classes. Using Supervised Contrastive Learn-

ing, we aim to create contrasted representations for the samples in

the di�cult subsets which would help to better classify them into

their respective classes.

From the previous step (i.e., Section 2.3), we have created two

validation subsets: easy and di�cult. By construction, the di�cult

validation subset contains most of the misclassi�ed samples yielded

by the base classi�er. Speci�cally, it contains (100 - X)% of the total

number of FPs contained in the whole validation dataset. Likewise,

the number of FNs reaches (100 - Y)% of the total number of FNs

in the validation dataset. The di�cult subset for training is also

expected to include similar proportions of FPs and FNs (i.e., it

includes most of the prediction errors from the whole training

dataset). We remind that the di�cult subsets also contain correctly

predicted samples yielded by the base classi�er. In the following,

we use)# ′tr, �%
′
tr, �#

′
tr, and)%

′
tr to refer to TNs, FPs, FNs, and TPs

of the base classi�er on the di�cult subset for training.

As the title suggests, we propose a method that would guide

the retraining on the di�cult samples. Speci�cally, we aim to help

the Model distinguish between four categories of samples in the

di�cult training subset. These categories are:)# ′tr, �%
′
tr, �#

′
tr, and

)% ′tr. We present in Figure 2 an overview of ourGuided Retraining

approach.

Since training a binary classi�er requires a dataset that contains

samples from two classes (i.e., positives and negatives), we make

use of the di�erent combinations of subsets in the di�cult training

subset to help the Model generate more contrasted embeddings.

Speci�cally, we �rst train a Model using)% ′tr (i.e., they have posi-

tive real labels) and �% ′tr (i.e., they have negative real labels), and

we denote it Model1. Basically, we guide Model1 to distinguish be-

tween the positive samples that are correctly predicted by the base

classi�er and the negative samples that are all misclassi�ed by the

same classi�er. Consequently, Model1 focuses on learning a con-

trasted representation for the true positives and the false positives

in the di�cult subset for training. Then, we train another Model

using)# ′tr (i.e., they have negative real labels) and �# ′tr (i.e., they

have positive real labels) and we denoted it Model2. This Model

would learn to distinguish between the true negatives and the false

negatives predicted by the base classi�er on the di�cult subset for

training. Similarly, we train Model3 on)% ′tr (i.e., they have posi-

tive real labels) and)# ′tr (i.e., they have negative real labels), and

Model4 on �% ′tr (i.e., they have negative real labels) and �# ′tr (i.e.,

they have positive real labels).

In summary, the four Models are trained on two di�cult training

subsets that the base classi�er has: (1) either correctly or incorrectly

classi�ed both of them, (2) correctly predicted one subset and mis-

classi�ed the other subset.

Di�cult training
dataset

Predict Base
classi�er

TP
′
tr FP

′
tr TN

′
tr FN

′
tr

Train Train Train Train

Model1 Model2 Model3 Model4

Di�cult training
dataset

Generate embeddings

Model1 Model2 Model3 Model4

Embedding 1 Embedding 2 Embedding 3 Embedding 4

Concatenation

Embedding

Train

Model5

Generate embedding

Final embedding

Train

Auxiliary
classi�er

Figure 2: An illustration of our Guided Retrainingmethod

After the four Models are trained, they are used to generate

embeddings for the di�cult training subset. Speci�cally, four em-

beddings are generated for each sample in the di�cult training

subset. Then, we concatenate the four feature representations of

each sample into one vector in order to have one embedding per

sample.

To create more contrasted representations for the di�cult sam-

ples, we train another Model on the concatenated embeddings and

we denote it Model5. Basically, Model5 is trained on all the samples

from the di�cult training subset, which would create �ne-grained

contrasted representations based on the embeddings generated by

the four previous Models. Indeed, Model5 would learn from the

concatenated embeddings of each sample in the di�cult subset (i.e.,

regardless if the base classi�er has correctly or incorrectly predicted

it) to generate the �nal feature representations.

The last step in our approach is to train the auxiliary classi�er

on the di�cult training embeddings that are generated by Model5.

This classi�er is trained on all the di�cult samples in the training

subset. The �nal classi�cation decision of the di�cult samples is

given by the auxiliary classi�er. We remind that for the easy dataset,

it is the base classi�er that is in charge of predicting their class

labels, as illustrated in Figure 1.

3 EVALUATION SETUP

In this section, we �rst present the research questions we investi-

gate in our study and the evaluation subjects we use to assess the

e�ectiveness of our approach. Then, we describe the dataset, the

architecture of both the Models and the auxiliary classi�er, and we

1135

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

overview our experimental setup (i.e., models’ hyperparameters

and implementation details).

3.1 Research Questions

In our study, we investigate the possibility of selecting and separat-

ing the samples that are most challenging to classify. Speci�cally,

we aim to identify the di�cult subset in a dataset that would contain

samples that yield most of the prediction errors.

• RQ1: To what extent is it feasible to split a dataset into two subsets,

one with fewer prediction errors and one with most errors?

After identifying the di�cult subset in a dataset, we assess the

impact of Guided Retraining on the detection performance and

we compare it to other classic retraining methods.

• RQ2: How e�ective is Guided Retraining in improving the classi-

�cation results of state-of-the-art malware detectors?

Additionally, we evaluate the e�ectiveness of Guided Retraining

in detecting new Android malware.

• RQ3: How e�ective is Guided Retraining in improving the classi-

�cation performance on new Android apps?

Finally, we investigate the impact of the errors thresholds used

to construct the di�cult and the easy subsets.

• RQ4:What is the impact of the errors thresholds on the detection

performance of Guided Retraining?

We note that we have also conducted an ablation study to assess

the importance of Guided Retraining’s components. Due to space

limitation, we provide the results of the study in our repository:

https://github.com/Trustworthy-Software/GuidedRetraining

3.2 Evaluation Subjects

To evaluate the e�ectiveness of our approach in boosting the per-

formance of base classi�ers, we conduct our experiments on classi-

�ers trained to detect Android malware. Speci�cally, we apply our

method on four state-of-the-art Android malware detectors from

the literature: DREBIN [4], RevealDroid [15],MaMaDroid [31]

(using two variants:MaMaDroid Family andMaMaDroid Pack-

age), andMalScan [50] (i.e., two variants:MalScan Average and

MalScan Concatenate). These detectors have been successfully

replicated [7] in a study that has considered malware detectors

from leading venues in Security, Software Engineering, and Ma-

chine Learning. We present a brief description of the features set

and the ML algorithms used by these approaches in Table 1 and we

refer the reader to the replication study [7] for further details.

Table 1: Evaluation subjects

ML algorithm Features set

DREBIN LinearSVC App Components, Filtered Intents, Hard-
ware Components, Network Addresses, Re-
stricted API Calls, Requested Permissions,
Suspicious API Calls and Used Permissions

RevealDroid LinearSVC Android API usage, Native Call and Re�ec-
tive Features

MaMaDroid Random Forest The representation of the abstracted API
calls as Markov Chain

MalScan KNN Call graphs are represented as social net-
works to conduct centrality analysis

3.3 Dataset

We conduct our experiments on a public dataset of Androidmalware

and benign apps from the literature [8]. It has been collected from

AndroZoo [2], which is a growing collection that contains more

than 22 million apps crawled from di�erent markets, including

Google Play. In this dataset, benign apps are de�ned as apps that

have not been �agged by any antivirus engine from VirusTotal [45].

A sample is labelled as malware if it is �agged by at least two

antivirus engines. The apps in this dataset are created between

2019 and 2020 (i.e., according to their compilation date). In total,

the dataset contains 78 002 malware and 187 797 benign apps.

3.4 Model and Auxiliary Classi�er Architectures

In this section, we present the neural network architecture we adopt

for the Models and the auxiliary classi�er, which are both based on

the multi-layer perception (MLP).

3.4.1 The Model. As stated in Section 2, we use Model to refer to

the Encoder and the Projection Network, that we train to generate

contrasted embeddings of the di�cult samples. For the Encoder, our

MLP contains �ve fully connected layers1 that have 2048, 1024, 512,

256, and 128 neurons, respectively. The outputs from each layer are

normalised and passed through a RELU activation function. The

size of the input in the Encoder is not �xed since it depends on the

size of the feature vectors of each approach.

For the Projection Network, we use a two layers MLP2 that

receives normalised inputs from the Encoder. The �rst layer has

64 neurons with a RELU activation function and the output layer

contains 32 neurons. After it is trained, only the embeddings at the

last layer of the Encoder are considered [22]. Consequently, the size

of the feature vectors generated by the Models is 128.

3.4.2 The Auxiliary Classifier. This neural network is used to clas-

sify the samples using the embeddings generated by Model5. It

contains �ve layers with 64, 32, 16, 8, and 2 neurons, respectively.

The RELU activation function is applied to the normalised output

of the �rst four layers. Since we conduct our experiments on bi-

nary classi�ers, the last layer contains two neurons with a Sigmoid

activation function (i.e., to output prediction probabilities for the

two classes).

3.5 Experimental Setup

We conduct our experiments using PyTorch [35] and scikit-learn [37]

libraries. For the base classi�ers training step (i.e., Section 2.2), we

split the dataset into training (80%), validation (10%), and test (10%),

and we rely on the implementation of the evaluation subjects from

the replication study [7]. In our experiments, we set the percentage

of FPs and FNs tolerated in the easy dataset (i.e., the values of the

parameters - and . described in Section 2.3) to 5%. We also study

the impact of these two parameters in Section 4.4.

For training the Models and the auxiliary classi�ers, we leverage

a publicly available implementation [43] of Supervised Contrastive

Learning. We set 2000 as the maximum number of epochs, and we

1We were inspired by the Contrastive Learning implementation [43] that relies on
ResNet-50. We have replaced the embedding layer and each of the four basic blocks
with fully connected layers.
2We considered the same number of layers used in the CL implementation [43]

1136

https://github.com/Trustworthy-Software/GuidedRetraining

Guided Retraining to Enhance the Detection of Di�icult Android Malware ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 2: Size of input vectors, the number of samples and the number of FPs and FNs in the test subsets

Size of input

vectors in the

di�cult datasets

Number of samples in the test dataset

(i.e., benign:18 739 and malware: 7841)
Number of FPs and FNs in the test dataset

Easy dataset Di�cult dataset Whole dataset Easy dataset Di�cult dataset

benign malware benign malware FPs FNs FPs FNs FPs FNs

DREBIN 1 184 063 7824 4146 10 915 3695 154 419 7 26 147 393

RevealDroid 7 882 350 6120 5308 12 619 2533 90 625 2 37 88 588

MaMaDroid Family 65 7770 743 10 969 7098 52 734 3 33 49 701

MaMaDroid Package 198 916 9642 178 9097 7663 136 322 4 10 132 312

MalScan Average 21 986 13 856 5621 4883 2220 243 420 25 40 218 380

MalScan Concatenate 87 944 13 760 5619 4979 2222 187 414 30 33 157 381

stop the training if the optimised metric (i.e., the loss for the Models

and the accuracy for the auxiliary classi�er) does not improve after

100 epochs 3. We also set the batch size to the size of the training

dataset divided by 10. Due to the huge size of the input vectors of

some evaluated approaches, we had to divide their training size

by 20, so the dataset could �t into memory. For the learning-rate

hyper-parameter, we set its value to 0.0014. We note that we did

not conduct any �ne-tuning of the Models and auxiliary classi�ers

hyper-parameters.

Since the evaluated subjects have di�erent feature vector sizes

and leverage di�erent base classi�er algorithms, we had to resolve

some issues faced during our experiments which are related to:

3.5.1 The Size of the Input Vectors. We present in the �rst column

of Table 2 the size of the feature vectors in the di�cult datasets of

our evaluation subjects. As we can see, DREBIN and RevealDroid

leverage huge input vectors that would need massive memory

resources to conduct the training. To solve this issue, we rely on

feature selection methods to select the top best 200 000 features

for both DREBIN and RevealDroid. Although the performance

might decrease when discarding the other features, this method

can guarantee that the training is feasible.

3.5.2 The Probabilities of Prediction. As we have mentioned in

Section 2.2, our method requires a base classi�er that outputs pre-

diction probabilities. This requirement is satis�ed for MaMaDroid

since the base classi�er is Random Forest.

For DREBIN and RevealDroid, they train an SVM algorithm

that outputs a decision function (i.e., its absolute value indicates

the distance of the sample to the hyper-plan that separates the

two classes). This function that we denote 5 can take negative and

positive values, and it is unbounded (i.e., it can take any value).

In our experiments, we apply a transformation on the decision

function to obtain prediction probabilities:

?8 =
58 − 5min

5max − 5min

× (?max − ?min) + ?min

where 58 , 5min, 5max, ?min, and ?max refer to the decision function

value of sample 8 , the minimum and maximum values of 5 and the

minimum and maximum values of ? respectively. This transfor-

mation converts the positive values of the decision function into

3We apply the early stopping constraint after the models start to converge
4In our preliminary experiments, we tested with three values: 0.05, 0.01 and 0.001. The
best results were reported using the value of 0.001

probabilities that are equal or greater than 0.5 and the negative

values to probabilities smaller than 0.5.

As for MalScan variants, they rely on the 1-Nearest Neighbour

classi�er that outputs either 0 or 1, which does not enable to ex-

ploit probability distributions for identifying thresholds to separate

easy and di�cult samples. Thus, we propose a work-around, where

we train a Random Forest model based onMalScan features, for

predictingMalScan outputs. Such a model yields probability dis-

tributions for the test set. We leverage this output to identifying

the sought threshold for splitting the dataset.

4 EVALUATION RESULTS

4.1 RQ1: To What Extent Is It Feasible to Split a
Dataset into Two Subsets, One with Fewer
Prediction Errors and One with Most Errors?

In this section, we investigate the possibility of identifying the di�-

cult and easy subsets within a dataset. As introduced in Section 2.3,

we hypothesise that (1) most of the samples in the easy subset

would be correctly classi�ed by the base classi�er (i.e., the easy

dataset would yield only a few prediction errors). In contrast, (2)

the di�cult subset would be associated with most of the prediction

errors that are yielded when applying the base classi�er to the

entire dataset.

We conduct our experiments on the evaluation subjects intro-

duced in Section 3.2. For MaMaDroid variants, we directly apply

our method described in Section 2.3 since the base classi�ers out-

put prediction probabilities. For DREBIN and RevealDroid, we

use the technique described in Section 3.5.2 to map the decision

function values returned by the base classi�ers (i.e., linear SVM) to

prediction probabilities. As forMalScan variants, the 1-NN base

classi�er does not output usable prediction probabilities (i.e., the

probabilities are either 0 or 1). We thus rely on the method de-

scribed in Section 3.5.2 for splitting the datasets. We note that most

classi�ers described in scikit-learn documentation [38] generate

prediction probabilities or decision function values. Consequently,

when the base classi�er does not directly output prediction proba-

bilities, our approach is still feasible using the techniques described

in Section 3.5.2.

We report in Table 2 the size of the easy and di�cult subsets

as well as the prediction errors made by the base classi�er in each

subset. Overall, we are able to split the test dataset into easy and

di�cult subsets for all the evaluation subjects. Indeed, the easy

1137

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

subsets contain few FPs and FNs made by the base classi�ers. As for

the di�cult subsets, they include most of the misclassi�ed samples

yielded by the base classi�ers on the whole test dataset.

We also present in Figure 3 the evolution of the accumulated

FPs and FNs against the prediction probability thresholds on the

test dataset. The graphs that are de�ned for prediction probabili-

ties smaller than 0.5 represent the accumulated FNs. Similarly, the

accumulated FPs are represented by the graphs that are de�ned for

prediction probabilities greater than 0.5.

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

thn @5% of FNs thp @5% of FPs

FNs

FPs

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

thn @5% of FNs thp @5% of FPsFNs FPs

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

thn @5% of FNs
thp @5% of FPs

FNs

FPs

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

thn @5% of FNs

thp @5% of FPs

FNs

FPs

Prediction probability thresholds

DREBIN

RevealDroid

MaMaDroid Family

MaMaDroid Package

Ac
cu

m
ul

at
ed

 F
Ns

/F
Ps

Figure 3: The accumulated number of FPs and FNs as a

function of the prediction probability thresholds

From Figure 3, we observe that the accumulated FNs are pos-

itively correlated with the prediction probabilities. As for the ac-

cumulated FPs, they are negatively correlated with the prediction

probabilities. These two observations support our splitting method

since we select the easy samples from the two ends of the graphs,

where the FNs and FPs are low.

RQ1 answer: Splitting the dataset based on the prediction

probabilities indeed leads to two subsets that can be quali�ed

as easy and di�cult: the former subset indeed contains samples

that a base classi�er is e�ective in predicting (i.e., fewer errors),

while the latter subset contains the samples associated to most

misclassi�cations.

4.2 RQ2: How E�ective Is Guided Retraining

in Improving the Classi�cation Results of
State-of-the-Art Malware Detectors?

As we have seen in the previous section, we have created easy and

di�cult subsets based on the prediction probabilities of the base

classi�ers. We can directly predict the class of the easy samples

using the base classi�ers since theymake few classi�cationmistakes

on these samples. For the di�cult subsets, the prediction errors are

important.

In this section, we investigate the impact of Guided Retraining

on the detection performance of the base classi�ers on the di�cult

samples. To that end, we compare the following classi�ers:

• BC, which refers to the original base classi�ers that are trained

on the whole training dataset;

• RBC: it refers to the original algorithms of the approaches re-

trained only on the di�cult subset for training;

• RClassic, which refers to the use of Contrastive learning (with-

out guiding). We retrain only one Model on a training dataset

(i.e., either the di�cult subset or the whole training samples) to

generate the embeddings. Then, we directly train the auxiliary

classi�er. This method consists of a trivial retraining that does

not involve any guidance to generate the embeddings.We present

an illustration of this method in Figure 4;

• Guided Retraining, which refers to our approach (Contrastive

learning + guiding as described in Section 2). We train the clas-

si�ers on the di�cult subset for training and evaluate it on the

di�cult test samples.

Training
dataset

Train
Model

Generate
embedding

Embedding
Train Auxiliary

classi�er

Figure 4: The classic retraining method: RClassic

We de�ne Δ�AA>AB as the di�erence between the number of pre-

diction errors made by the original base classi�er and the number of

prediction errors from the evaluated classi�er. Its value can be pos-

itive or negative. If it is positive, Δ�AA>AB means that the evaluated

classi�er has made more prediction errors than the base classi�er.

If Δ�AA>AB is negative, the evaluated classi�er has improved the de-

tection performance by decreasing the number of misclassi�cations

reported by the base classi�er. Its formula is as follows:

Δ�AA>AB = (�%bc + �#bc) − (�%ec + �#ec)

where �%bc, �#bc, �%ec, and �#ec refer to the FPs and FNs of

the base classi�er (i.e., bc) and the evaluated classi�er (i.e., ec)

respectively.

In the following, we compare the detection performance of

Guided Retraining to BC, RBC, and RClassic on the di�cult

test subset in Section 4.2.1. We also assess the overall gain in per-

formance by comparing Guided Retraining to BC, and RClassic

on the whole test dataset in Section 4.2.2. We note that BC and RBC

refer to the same classi�er when they are evaluated on the whole

test dataset.

1138

Guided Retraining to Enhance the Detection of Di�icult Android Malware ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 3: Comparison of the detection performance of BC, RBC, RClassic, and Guided Retraining, on the di�cult test dataset

and the whole test dataset

Di�cult test dataset Whole test dataset

BC RBC
RClassic trained on

the di�cult training subset
Guided Retraining BC

RClassic trained on
the whole training dataset

Guided Retraining

F1 (%)
Errors
(FPs + FNs)

F1 (%) Δ�AA
Errors

reduction
F1 (%) Δ�AA

Errors
reduction

F1 (%) Δ�AA
Errors

reduction
F1 (%)

Errors
(FPs + FNs)

F1 (%) Δ�AA
Errors

reduction
F1 (%) Δ�AA

Errors
reduction

DREBIN 92.44 540 92.45 -1 0.18% 93.33 -63 11.67% 93.44 -69 12.78% 96.28 573 96.52 -36 6.28% 96.74 -69 12.04%
Reveal 85.19 676 85.03 +9 -1.33% 87.18 -72 10.65% 91.44 -248 36.69% 95.28 715 95.89 -87 12.17% 97.00 -248 34.69%
MaMaF 94.46 750 94.32 +18 -2.4% 96.31 -232 30.93% 96.55 -264 35.2% 94.76 786 96.36 -221 28.12% 96.64 -264 33.59%
MaMaP 97.07 444 94.84 +356 -80.18% 96.9 +25 -5.63% 97.13 -9 2.03% 97.04 458 96.98 +12 -2.62% 97.11 -9 1.97%
MalscanA 86.02 598 85.38 +32 -5.35% 90.81 -194 32.44% 91.83 -243 40.64% 95.72 663 97.28 -241 36.35% 97.30 -243 36.65%
MalscanCO 87.25 538 86.51 -37 6.88% 88.43 -58 10.78% 91.66 -177 32.90% 96.11 601 95.45 +93 -15.47% 97.28 -177 29.45%

4.2.1 RQ2-A: How E�ective Is Guided Retraining in Improving

the Classification on the Di�icult Test Subset? We calculate the F1-

score, Δ�AA>AB , and the percentage of errors reduction for BC, RBC,

RClassic and Guided Retraining on the di�cult test samples and

we present them in the left part of Table 3 (i.e., Di�cult test dataset

column).

We observe that RBC has degraded the detection performance

for four out of six approaches. For RClassic, it has improved the

detection scores for �ve approaches. However, it has increased the

prediction errors of MaMaP by 5.63%. As for Guided Retraining,

it has improved the detection performance of all the approaches.

Compared to RClassic, the error reduction of Guided Retraining

is more important and reaches 40.64% forMalScan Average.

We have also repeated our experiments 5-times to verify the

generalisability of our results. Before each run of the experiments,

we randomly shu�e and split our dataset into training, validation,

and test. We present in the left part of Table 4 the average of F1

scores and errors reduction over the �ve runs of the experiments.

Table 4: Comparison of the detection performance of BC,

RBC, RClassic, and Guided Retraining using 5-times

hold-out evaluation

Di�cult test datasets Whole test datasets

BC RBC

RClassic

trained on the
di�cult subset

Guided

Retraining
BC

RClassic

trained on the
whole subset

Guided

Retraining

F1 (%) F1 (%)
Errors

reduction
F1 (%)

Errors
reduction

F1 (%)
Errors

reduction
F1 (%) F1 (%)

Errors
reduction

F1 (%)
Errors

reduction
DRE 93.36 93.35 -0.08% 94.11 11.21% 94.18 12.77% 96.42 96.70 8.06% 96.85 12.10%
Rev 86.38 86.34 -0.67% 88.37 9.45% 91.31 28.74% 95.36 95.87 10.47% 96.69 27.10%

MaMF 94.64 94.54 -1.62% 96.33 28.99% 96.50 32.06% 94.88 96.34 25.95% 96.56 30.33%
MaMP 86.77 82.49 -18.2% 89.13 14.37% 89.84 15.58% 96.29 96.94 13.34% 96.99 14.91%
MalA 86.69 86.24 -3.73% 92.48 42.82% 92.81 45.19% 95.47 97.28 40.03% 97.34 41.06%
MalC 87.81 86.54 -13.02% 89.36 12.94% 92.50 36.71% 95.84 95.55 -4.86% 97.25 33.09%

Overall, our previous observations are con�rmed by the results

reported in Table 4. Guided Retraining outperforms BC, RBC and

RClassic classi�ers and decreases up to 45.19% of the prediction

errorsmade by the state-of-the art malware detectors on the di�cult

test subsets.

4.2.2 RQ2-B: How E�ective Is Guided Retraining in Improving

the Classification on the Whole Test Subset? To assess the detection

performance on the whole test dataset, we leverage Guided Re-

training and the original base classi�ers to classify the di�cult

and easy test subsets respectively. For the experimental compari-

son, we rely on the base classi�ers (i.e., BC) evaluated on the whole

test dataset, and RClassic that is trained on the whole training

dataset. We remind that training RBC on the whole training dataset

is equivalent to BC training. Consequently, we compare Guided

Retraining only to BC and RClassic on the whole dataset and we

report our results in the right part of Table 3.

We observe that Guided Retraining has outperformed RClas-

sic and reduced up to 36.65% of the prediction errors made by the

base classi�ers.

We also present the results of the �ve runs of the experiments

in the right part of Table 4. The detection scores reported in Ta-

ble 4 show that Guided Retraining decreases up to 41.06% of the

prediction errors and outperforms both BC and RClassic on the

whole test dataset.

RQ2 answer: Guided Retraining boosts the detection per-

formance of the base classi�ers. Indeed, it has reduced the

prediction errors made by the base classi�ers by up to 45.19%

on the di�cult test dataset. Furthermore, Guided Retraining

results in higher detection performance than RBC and RClas-

sic classi�ers.

4.3 RQ3: How E�ective Is Guided Retraining

in Improving the Classi�cation
Performance on New Android Apps?

In this section, we evaluate the detection performance of Guided

Retraining in a temporally-consistent scenario. Speci�cally, we

train the base classi�ers on apps that are temporally anterior to the

apps in the test set. Since this setting has been reported to be chal-

lenging for Android malware detectors [3, 34], we assess the added

value of Guided Retraining in enhancing their detection perfor-

mance. We rely on the experimental setup presented in section 3.55,

and we evaluate Guided Retraining against the base classi�ers

on the whole test dataset. We remind that the easy samples are

predicted by the base classi�ers, and Guided Retraining is only

used on the di�cult subset. We report our results in columns 1 and

2 of Table 5.

We observe that Guided Retraining with the hyperparameters

introduced in Section 3.5 (i.e., batch size = (size_data/10) and early

stopping = True) improves the detection performance only for three

approaches. During the training that generates the embeddings, we

observed that many Models do not train for enough epochs due

to the early stopping constraint. Consequently, we investigated

5We note that we increased the number of epochs for MaMaP auxiliary classi�er to
3000 because the di�cult dataset was imbalanced

1139

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

Table 5: Evaluation of the performance of Guided

Retraining in enhancing the detection of new Android

malware

Base classi�ers
Guided Retraining

batch size = (size_data/10)
early stopping = True

Guided Retraining

batch size = (size_data/10)
early stopping = False

Guided Retraining

batch size = (size_data/20)
early stopping = False

F1 (%)
Errors
(FPs + FNs)

F1 (%) Δ�AA
Errors

reduction
F1 (%) Δ�AA

Errors
reduction

F1 (%) Δ�AA
Errors

reduction
DRE 85.31 2032 89.03 -479 23.57% 88.83 -450 22.15% 89.58 -547 26.92%
Rev 89.37 1519 88.80 70 -4.61% 88.64 103 -6.78% 91.42 -230 15.14%

MaMF 92.72 1061 91.84 153 -14.42% 91.94 132 -12.44% 92.19 99 -9.33%
MaMP 91.94 1213 93.30 -194 18.22% 93.33 -224 18.47% 93.39 -233 19.21%
MalA 92.77 1090 93.59 -134 12.29% 93.38 -103 9.45% 93.74 -158 14.50%
MalCO 92.67 1104 92.40 49 -4.44% 92.37 53 -4.80% 93.89 -189 17.12%

two additional settings to help Guided Retraining learn better

representations: (1) We removed the early stopping constraint, (2)

We removed the early stopping constraint and decreased the batch

size to the size of the dataset divided by 20. We present the results

of these two settings in columns 3 and 4 of Table 5.

We observe that only removing the early stopping constraint

does not improve the detection performance. However, decreas-

ing the batch size and removing the early stopping constraint (i.e.,

column 4 of Table 5) results in better classi�ers. Guided Retrain-

ing has reduced the detection errors made by state-of-the-art ap-

proaches by up to 26.92%. For MaMaF, the F1 score is still not

improved. We further investigated the case of MaMaF by increasing

the number of epochs to 4000. This setting has helped the approach

to learn better from the dataset and has increased the F1 score to

93.01%. We remind that in this work, we did not �ne-tune the hyper-

parameters of Guided Retraining. We expect the �ne-tuning to

further reduce the prediction errors of state-of-the-art classi�ers.

RQ3 answer: Guided Retraining improves the detection

performance of state-of-the-art approaches on new Android

malware and reduces their prediction errors by up to 26.92%.

4.4 RQ4: What Is the Impact of the Errors
Thresholds on the Detection Performance of
Guided Retraining?

We now investigate the impact of the parameters X and Y described

in Section 2.3 on the detection performance of Guided Retraining.

We remind that X and Y represent the percentage of FPs and FNs

tolerated in the easy subset, respectively. In the previous experi-

ments, we set their values to 5%, which means we split the datasets

to have only 5% of the FPs and FNs in the easy subsets. To assess

the impact of these two parameters on the detection performance,

we split our datasets into easy and di�cult subsets using the fol-

lowing thresholds: 1%, 2%, 5%, 10%, 15%, and 20%. For each of these

thresholds, we report Guided Retraining errors reduction on the

di�cult test datasets in Table 6. We also report the average error

reduction of the four classi�ers in Table 6. For fair comparison, we

do not consider the speci�c cases of MalScan classi�ers since their

probability thresholds are inferred from a method that is not fully

aligned with the initial publication.

We observe that the impact of X and Y on Guided Retrain-

ing detection performance varies depending on the base classi�ers.

Among the evaluated thresholds, only 2% and 5% have resulted in

improving the detection performance of the four approaches. Addi-

tionally, the value of 5% has enabled the highest errors reduction

and seems to be the best threshold for splitting a dataset into easy

and di�cult subsets. Moreover, the average error reduction shows

that the highest detection performance is achieved when using the

threshold of 5%.

Table 6: The impact of FPs and FNs percentage tolerated in

the easy dataset on the error reduction* of Guided

Retraining

1% 2% 5% 10% 15% 20%

DREBIN 9.11% 10.09% 12.78% 16.76% -12.06% -39.30%

Reveal 34.46% 34.14% 36.69% 37.23% 44.46% 41.08%

MaMaF 33.46% 32.77% 35.20% 33.24% 38.02% 35.78%

MaMaP -1.55% 0.67% 2.03% -10.31% -16.29% -18.25%

Average 18.87% 19.42% 21.67% 19.23% 13.53% 4.83%

* We remind that the highest the error reduction, the best is the detection performance

RQ4 answer: The error thresholds may signi�cantly impact

the detection e�ectiveness of Guided Retraining. Thus, it is

important to carefully choose the value of these thresholds to

achieve the highest detection performance.

5 RELATED WORK

5.1 The Concept of Di�cult Samples

The notion of di�cult or hard samples has been discussed in several

previous works. Researchers have attributed di�erent de�nitions to

this concept depending on its use case. A study [42] has de�ned the

di�cult samples in the context of data imbalance as the samples

that belong to the minority class and overlap with the majority class

in the embedding space. Its authors have proposed a framework

MISO that creates non-overlapping embeddings for the di�cult

samples based on anchor instances. ADASYN [18] is an algorithm

that helps learning from imbalanced datasets by focusing more on

the di�cult samples during synthetic data generation. Speci�cally,

ADASYN relies on a weighted distribution of the minority classes

to generate the synthetic samples. Adaboost [14] is an ensemble

learning technique that combines the predictions of a series of base

learners. The basic idea of this technique is that each algorithm in

the series increases the weights associated with the hard samples

(i.e., samples that are incorrectly predicted) reported by the previous

learner. Focal Loss [26] and Dice Loss [24] have been proposed

to modify the weights associated with the hard/di�cult samples.

The notion of di�cult samples has also been implicitly used in

GANs [17] where the generator is trained to produce adversary

samples that are di�cult to classify by the discriminator.

Ourwork di�ers from these relatedworks by considering di�cult

samples as the instances on which a base classi�er is not con�dent

about their predictions.

5.2 Retraining ML Models

Retraining is a technique that generally aims to improve the de-

tection performance of the model. It has been de�ned and adopted

in various ways in the literature. DeltaGrad [48] is proposed to

1140

Guided Retraining to Enhance the Detection of Di�icult Android Malware ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

retrain a model by updating its parameters after adding or deleting

a set of training instances. A Neural Network Tree algorithm [53]

has been proposed, which relies on a retraining technique that

updates the weights of the neural networks to minimise the predic-

tion errors. Similarly, retraining using predicted prior time series

data has been proposed to improve the prediction of Anaerobic

digestion [33]. SURE [13] is a partial label learning technique that

is based on self-training. It introduces the maximum in�nity norm

regularisation to generate pseudo-labels for the training samples.

Weighted Retraining [44] is a method that updates the latent space

with new instances and periodically retrains generative models

(e.g., GANs [17]) to improve the optimisation. Model retraining

techniques have also been proposed for medical research [5, 6] and

IoT systems [40].

To tackle the problem of dataset imbalance, a resampling ap-

proach has been proposed to obtain a smaller representative subset

of the negative samples [25]. This method is inspired by hard-

negative mining [12, 16] to select the negative instances that will

be considered during the training. Speci�cally, the resampling tech-

nique learns adversarial weights for the negative samples that are

then leveraged to determine the size of the negative subset. Fi-

nally, a classi�er is trained using both the positive samples and the

selected negative samples.

Since the easy samples are e�ectively predicted by the base

classi�er, our Guided Retraining method targets the di�cult

samples in order to improve their classi�cation and is guided using

the predictions of a base classi�er.

5.3 Android Malware Detection

The literature onAndroidmalware lavisheswith diverse approaches

that aim to detect malicious applications. In addition to the state-

of-the-art approaches that we have presented in Section 3.2, many

ML-based malware detectors [1, 23, 27, 28, 30, 32, 39, 52] that rely

on hand crafted features have been proposed. Recently, image-

based Android malware detection has also become popular due to

its automatic features extraction [9, 10, 21, 41]. With our Guided

Retrainingmethod, we aim to enhance the detection performance

of Android malware detectors and reduce their misclassi�cations.

5.4 Supervised Contrastive Learning for
Malware Detection

Recently, a few studies for malware detection have leveraged Super-

vised Contrastive Learning due to its promising results. IFDroid [49]

is an Android malware family classi�cation approach that relies on

Supervised Contrastive Learning by considering the instances that

belong to the same family as positive samples. Malfustection [29]

is a malware classi�er and Obfuscation detector that is based on

semi-supervised contrastive learning. CADE [51] is a concept drift

detection method that relies on Supervised Contrastive Learning

to map input samples into a low-dimensional space. In our work,

we leverage Contrastive Learning to generate the embeddings of

the di�cult samples. This process is guided using the predictions

of the base classi�er.

6 CONCLUSION

To evade detection, attackers devote time and e�ort to develop ma-

licious software that resemble legitimate programs. Consequently,

many malware are di�cult to distinguish from genuine programs,

and thus manage to make their way into application markets. Real-

world software datasets are not perfectly separable into benign

and malware samples due to the presence of malicious programs

that are very similar to legitimate software and vice versa. These

samples are challenging to malware detectors and require sophisti-

cated techniques to achieve a high detection e�ectiveness. In this

paper, we proposed to split a binary dataset into subsets containing

either easy or di�cult samples. The easy samples are e�ciently

predicted by a base classi�er. For the di�cult samples, we propose

a more advanced technique to better di�erentiate the two classes

(malicious vs benign). Speci�cally, we leverage Supervised Con-

trastive Learning to generate enhanced embeddings for the di�cult

samples. We rely on the predictions of the base classi�er on the

di�cult samples to guide the retraining that generates the new

representations. Then, we train an auxiliary classi�er on the new

embeddings of the di�cult samples. We evaluate our method on

four state-of-the-art Android malware detectors, and we show that

Guided Retraining boosts the detection performance and reduces

the prediction errors by up to 45.19%. We note that our method is

not limited to Android malware detection and can be applied to

other binary classi�cation tasks.

Data Availability:Wemake our code and dataset publicly avail-

able at https://github.com/Trustworthy-Software/GuidedRetraining

ACKNOWLEDGMENTS

This work was partially supported (a) by the Fonds National de la

Recherche (FNR), Luxembourg, under project Reprocess

C21/IS/16344458, (b) by the University of Luxembourg under the

HitDroid grant, and (c) by the Luxembourg Ministry of Foreign

and European A�airs through their Digital4Development (D4D)

portfolio under project LuxWAyS.

REFERENCES
[1] Fahad Akbar, Mehdi Hussain, Ra�a Mumtaz, Qaiser Riaz, Ainuddin Wahid Ab-

dul Wahab, and Ki-Hyun Jung. 2022. Permissions-Based Detection of An-
droid Malware Using Machine Learning. Symmetry 14, 4 (2022), 718. https:
//doi.org/10.3390/sym14040718

[2] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/
10.1145/2901739.2903508

[3] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves LeTraon. 2015. Are
Your Training Datasets Yet Relevant?. In Engineering Secure Software and Systems,
Frank Piessens, Juan Caballero, and Nataliia Bielova (Eds.). Springer International
Publishing, Cham, 51–67. https://doi.org/10.1007/978-3-319-15618-7_5

[4] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck. 2014. Drebin: E�cient and explainable detection of android malware in
your pocket. In Proceedings of the ISOC Network and Distributed System Security
Symposium (NDSS), San Diego, CA. https://doi.org/10.14722/ndss.2014.23247

[5] Mariam Barque, Simon Martin, Jérémie Etienne Norbert Vianin, Dominique
Genoud, and David Wannier. 2018. Improving wind power prediction with
retraining machine learning algorithms. In 2018 International Workshop on Big
Data and Information Security (IWBIS). 43–48. https://doi.org/10.1109/IWBIS.
2018.8471713

[6] Cheng-Yi Chiang, Nai-Fu Chang, Tung-Chien Chen, Hong-Hui Chen, and Liang-
Gee Chen. 2011. Seizure prediction based on classi�cation of EEG synchronization
patterns with on-line retraining and post-processing scheme. In 2011 Annual

1141

https://github.com/Trustworthy-Software/GuidedRetraining
https://doi.org/10.3390/sym14040718
https://doi.org/10.3390/sym14040718
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1007/978-3-319-15618-7_5
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1109/IWBIS.2018.8471713
https://doi.org/10.1109/IWBIS.2018.8471713

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé, and Jacques Klein

International Conference of the IEEE Engineering in Medicine and Biology Society.
7564–7569. https://doi.org/10.1109/IEMBS.2011.6091865

[7] Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2021.
Lessons Learnt on Reproducibility in Machine Learning Based Android Malware
Detection. Empirical Software Engineering 26, 4 (2021), 1–53. https://doi.org/10.
1007/s10664-021-09955-7

[8] Nadia Daoudi, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein. 2023. As-
sessing the opportunity of combining state-of-the-art Android malware detectors.
Empirical Software Engineering 28, 2 (2023), 22. https://doi.org/10.1007/s10664-
022-10249-9

[9] Nadia Daoudi, Jordan Samhi, Abdoul Kader Kabore, Kevin Allix, Tegawendé F.
Bissyandé, and Jacques Klein. 2021. DexRay: A Simple, yet E�ective Deep Learn-
ing Approach to Android Malware Detection Based on Image Representation
of Bytecode. In Deployable Machine Learning for Security Defense, Gang Wang,
Arridhana Ciptadi, and Ali Ahmadzadeh (Eds.). Springer International Publishing,
Cham, 81–106. https://doi.org/10.1007/978-3-030-87839-9_4

[10] Yuxin Ding, Xiao Zhang, Jieke Hu, and Wenting Xu. 2020. Android malware
detection method based on bytecode image. Journal of Ambient Intelligence and
Humanized Computing (2020), 1–10. https://doi.org/10.1007/s12652-020-02196-4

[11] Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wenqiang Wan, Kui Wang,
Yinming Mei, and Qi Xiong. 2021. Heterogeneous Temporal Graph Transformer:
An Intelligent System for Evolving Android Malware Detection. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (Virtual
Event, Singapore) (KDD ’21). Association for Computing Machinery, New York,
NY, USA, 2831–2839. https://doi.org/10.1145/3447548.3467168

[12] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
2009. Object detection with discriminatively trained part-based models. IEEE
transactions on pattern analysis and machine intelligence 32, 9 (2009), 1627–1645.
https://doi.org/10.1109/TPAMI.2009.167

[13] Lei Feng and Bo An. 2019. Partial Label Learning with Self-Guided Retraining.
Proceedings of the AAAI Conference on Arti�cial Intelligence 33, 01 (Jul. 2019),
3542–3549. https://doi.org/10.1609/aaai.v33i01.33013542

[14] Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. System Sci. 55, 1
(1997), 119–139. https://doi.org/10.1006/jcss.1997.1504

[15] Joshua Garcia, Mahmoud Hammad, and Sam Malek. 2018. Lightweight,
Obfuscation-Resilient Detection and Family Identi�cation of Android Mal-
ware. ACM Trans. Softw. Eng. Methodol. 26, 3, Article 11 (Jan. 2018), 29 pages.
https://doi.org/10.1145/3162625

[16] Ross Girshick, Je� Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich
feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
580–587. https://doi.org/10.1109/CVPR.2014.81

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Genera-
tive Adversarial Nets. In Advances in Neural Information Processing Systems,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (Eds.),
Vol. 27. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2014/�le/
5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[18] Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. 2008. ADASYN: Adaptive
synthetic sampling approach for imbalanced learning. In 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence). 1322–1328. https://doi.org/10.1109/IJCNN.2008.4633969

[19] Shifu Hou, Yujie Fan, Yiming Zhang, Yanfang Ye, Jingwei Lei, Wenqiang Wan,
Jiabin Wang, Qi Xiong, and Fudong Shao. 2019. <i>U Cyber</i>: Enhancing
Robustness of Android Malware Detection System against Adversarial Attacks on
Heterogeneous Graph Based Model. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management (Beijing, China) (CIKM
’19). Association for Computing Machinery, New York, NY, USA, 609–618. https:
//doi.org/10.1145/3357384.3357875

[20] Ming Huang, Fuzhen Zhuang, Xiao Zhang, Xiang Ao, Zhengyu Niu, Min-Ling
Zhang, and Qing He. 2019. Supervised representation learning for multi-label
classi�cation. Machine Learning 108, 5 (2019), 747–763. https://doi.org/10.1007/
s10994-019-05783-5

[21] T. H. Huang and H. Kao. 2018. R2-D2: ColoR-inspired Convolutional NeuRal
Network (CNN)-based AndroiD Malware Detections. In 2018 IEEE International
Conference on Big Data (Big Data). 2633–2642. https://doi.org/10.1109/BigData.
2018.8622324

[22] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised
Contrastive Learning. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.
Curran Associates, Inc., 18661–18673. https://proceedings.neurips.cc/paper/
2020/�le/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf

[23] Vasileios Kouliaridis and Georgios Kambourakis. 2021. A Comprehensive Survey
on Machine Learning Techniques for Android Malware Detection. Information
12, 5 (2021). https://doi.org/10.3390/info12050185

[24] Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang, Fei Wu, and Jiwei Li. 2020.
Dice Loss for Data-imbalanced NLP Tasks. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics. Association for Computa-
tional Linguistics, Online, 465–476. https://doi.org/10.18653/v1/2020.acl-main.45

[25] Yi Li and Nuno Vasconcelos. 2020. Background data resampling for outlier-aware
classi�cation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 13218–13227. https://doi.org/10.1109/CVPR42600.2020.01323

[26] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. 2017.
Focal Loss for Dense Object Detection. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2017.324

[27] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu. 2020. A Review of Android
Malware Detection Approaches Based on Machine Learning. IEEE Access 8 (2020),
124579–124607. https://doi.org/10.1109/ACCESS.2020.3006143

[28] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep Learning
for Android Malware Defenses: A Systematic Literature Review. ACM Comput.
Surv. 55, 8, Article 153 (dec 2022), 36 pages. https://doi.org/10.1145/3544968

[29] Mohammad Mahdi Maghouli, Mohamadreza Fereydooni, Monireh Abdoos, and
Mojtaba Vahidi-Asl. 2021. Malfustection: Obfuscated Malware Detection and
Malware Classi�cation with Data Shortage by Combining Semi-Supervised and
Contrastive Learning. arXiv preprint arXiv:2111.09975 (2021). https://doi.org/10.
48550/arXiv.2111.09975

[30] Arvind Mahindru and AL Sangal. 2021. MLDroid—framework for Android mal-
ware detection using machine learning techniques. Neural Computing and Appli-
cations 33, 10 (2021), 5183–5240. https://doi.org/10.1007/s00521-020-05309-4

[31] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MaMaDroid: Detecting
Android Malware by Building Markov Chains of Behavioral Models. In ISOC
Network and Distributed Systems Security Symposiym (NDSS). San Diego, CA.
https://doi.org/10.14722/ndss.2017.23353

[32] Stuart Millar, Niall McLaughlin, Jesus Martinez del Rincon, and Paul Miller. 2021.
Multi-view deep learning for zero-day Android malware detection. Journal of
Information Security and Applications 58 (2021), 102718. https://doi.org/10.1016/j.
jisa.2020.102718

[33] Jun-Gyu Park, Hang-Bae Jun, and Tae-Young Heo. 2021. Retraining prior state
performances of anaerobic digestion improves prediction accuracy of methane
yield in various machine learning models. Applied Energy 298 (2021), 117250.
https://doi.org/10.1016/j.apenergy.2021.117250

[34] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Mal-
ware Classi�cation across Space and Time. In 28th USENIX Security Sympo-
sium (USENIX Security 19). USENIX Association, Santa Clara, CA, 729–746.
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury

[35] PyTorch. . https://pytorch.org. [Online; accessed 30-August-2022].
[36] Alain Rakotomamonjy. 2017. Supervised Representation Learning for Audio

Scene Classi�cation. IEEE/ACM Transactions on Audio, Speech, and Language
Processing 25, 6 (2017), 1253–1265. https://doi.org/10.1109/TASLP.2017.2690561

[37] scikit learn. . https://scikit-learn.org. [Online; accessed 30-August-2022].
[38] scikit learn. . https://scikit-learn.org/stable/modules/classes.html. [Online;

accessed 30-August-2022].
[39] Tejpal Sharma and Dhavleesh Rattan. 2021. Malicious application detection in

android — A systematic literature review. Computer Science Review 40 (2021),
100373. https://doi.org/10.1016/j.cosrev.2021.100373

[40] Yan Song, Yibin Li, Lei Jia, and Meikang Qiu. 2020. Retraining Strategy-Based
Domain Adaption Network for Intelligent Fault Diagnosis. IEEE Transactions on
Industrial Informatics 16, 9 (2020), 6163–6171. https://doi.org/10.1109/TII.2019.
2950667

[41] Tiezhu Sun, Nadia Daoudi, Kevin Allix, and Tegawendé F. Bissyandé. 2021. An-
droid Malware Detection: Looking beyond Dalvik Bytecode. In Proceedings of the
36th IEEE/ACM International Conference on Automated Software EngineeringWork-
shops (Virtual Event, Australia) (ASE ’21). https://doi.org/10.1109/ASEW52652.
2021.00019

[42] Jiachen Tian, Shizhan Chen, Xiaowang Zhang, Zhiyong Feng, Deyi Xiong, Shao-
juan Wu, and Chunliu Dou. 2021. Re-embedding Di�cult Samples via Mutual
Information Constrained Semantically Oversampling for Imbalanced Text Classi-
�cation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational Linguistics, Online and Punta
Cana, Dominican Republic, 3148–3161. https://doi.org/10.18653/v1/2021.emnlp-
main.252

[43] Yonglong Tian. 2020. https://github.com/HobbitLong/SupContrast. [Online;
accessed 30-August-2022].

[44] Austin Tripp, Erik Daxberger, and José Miguel Hernández-Lobato. 2020. Sample-
E�cient Optimization in the Latent Space of Deep Generative Models via
Weighted Retraining. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33.
Curran Associates, Inc., 11259–11272. https://proceedings.neurips.cc/paper/
2020/�le/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf

[45] VirusTotal. . https://www.virustotal.com. [Online; accessed 30-August-2022].
[46] Mike Walmsley, Anna MM Scaife, Chris Lintott, Michelle Lochner, Verlon Et-

sebeth, Tobias Géron, Hugh Dickinson, Lucy Fortson, Sandor Kruk, Karen L

1142

https://doi.org/10.1109/IEMBS.2011.6091865
https://doi.org/10.1007/s10664-021-09955-7
https://doi.org/10.1007/s10664-021-09955-7
https://doi.org/10.1007/s10664-022-10249-9
https://doi.org/10.1007/s10664-022-10249-9
https://doi.org/10.1007/978-3-030-87839-9_4
https://doi.org/10.1007/s12652-020-02196-4
https://doi.org/10.1145/3447548.3467168
https://doi.org/10.1109/TPAMI.2009.167
https://doi.org/10.1609/aaai.v33i01.33013542
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1145/3162625
https://doi.org/10.1109/CVPR.2014.81
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1145/3357384.3357875
https://doi.org/10.1145/3357384.3357875
https://doi.org/10.1007/s10994-019-05783-5
https://doi.org/10.1007/s10994-019-05783-5
https://doi.org/10.1109/BigData.2018.8622324
https://doi.org/10.1109/BigData.2018.8622324
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://doi.org/10.3390/info12050185
https://doi.org/10.18653/v1/2020.acl-main.45
https://doi.org/10.1109/CVPR42600.2020.01323
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1145/3544968
https://doi.org/10.48550/arXiv.2111.09975
https://doi.org/10.48550/arXiv.2111.09975
https://doi.org/10.1007/s00521-020-05309-4
https://doi.org/10.14722/ndss.2017.23353
https://doi.org/10.1016/j.jisa.2020.102718
https://doi.org/10.1016/j.jisa.2020.102718
https://doi.org/10.1016/j.apenergy.2021.117250
https://www.usenix.org/conference/usenixsecurity19/presentation/pendlebury
https://pytorch.org
https://doi.org/10.1109/TASLP.2017.2690561
https://scikit-learn.org
https://scikit-learn.org/stable/modules/classes.html
https://doi.org/10.1016/j.cosrev.2021.100373
https://doi.org/10.1109/TII.2019.2950667
https://doi.org/10.1109/TII.2019.2950667
https://doi.org/10.1109/ASEW52652.2021.00019
https://doi.org/10.1109/ASEW52652.2021.00019
https://doi.org/10.18653/v1/2021.emnlp-main.252
https://doi.org/10.18653/v1/2021.emnlp-main.252
https://github.com/HobbitLong/SupContrast
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/81e3225c6ad49623167a4309eb4b2e75-Paper.pdf
https://www.virustotal.com

Guided Retraining to Enhance the Detection of Di�icult Android Malware ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Masters, et al. 2021. Practical Galaxy Morphology Tools from Deep Super-
vised Representation Learning. arXiv preprint arXiv:2110.12735 (2021). https:
//doi.org/10.1093/mnras/stac525

[47] Xiaohui Wan, Zheng Zheng, Fangyun Qin, Yu Qiao, and Kishor S. Trivedi. 2019.
Supervised Representation Learning Approach for Cross-Project Aging-Related
Bug Prediction. In 2019 IEEE 30th International Symposium on Software Reliability
Engineering (ISSRE). 163–172. https://doi.org/10.1109/ISSRE.2019.00025

[48] Yinjun Wu, Edgar Dobriban, and Susan Davidson. 2020. DeltaGrad: Rapid
retraining of machine learning models. In Proceedings of the 37th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Re-
search, Vol. 119), Hal Daumé III and Aarti Singh (Eds.). PMLR, 10355–10366.
https://proceedings.mlr.press/v119/wu20b.html

[49] Yueming Wu, Shihan Dou, Deqing Zou, Wei Yang, Weizhong Qiang, and Hai
Jin. 2021. Obfuscation-resilient Android Malware Analysis Based on Contrastive
Learning. arXiv preprint arXiv:2107.03799 (2021). https://doi.org/10.48550/arXiv.
2107.03799

[50] Y. Wu, X. Li, D. Zou, W. Yang, X. Zhang, and H. Jin. 2019. MalScan: Fast Market-
Wide Mobile Malware Scanning by Social-Network Centrality Analysis. In 2019

34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
139–150. https://doi.org/10.1109/ASE.2019.00023

[51] Limin Yang, Wenbo Guo, Qingying Hao, Arridhana Ciptadi, Ali Ahmadzadeh,
Xinyu Xing, and Gang Wang. 2021. CADE: Detecting and Explaining Concept
Drift Samples for Security Applications. In 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, 2327–2344. https://www.usenix.org/
conference/usenixsecurity21/presentation/yang-limin

[52] Nan Zhang, Yu an Tan, Chen Yang, and Yuanzhang Li. 2021. Deep learning
feature exploration for Android malware detection. Applied Soft Computing 102
(2021), 107069. https://doi.org/10.1016/j.asoc.2020.107069

[53] Q. Zhao. 2001. Training and retraining of neural network trees. In IJCNN’01. In-
ternational Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222),
Vol. 1. 726–731 vol.1. https://doi.org/10.1109/IJCNN.2001.939114

[54] Rui Zhu, Chenglin Li, Di Niu, Hongwen Zhang, and HusamKinawi. 2018. Android
malware detection using large-scale network representation learning. arXiv
preprint arXiv:1806.04847 (2018). https://doi.org/10.48550/arXiv.1806.04847

Received 2023-02-16; accepted 2023-05-03

1143

https://doi.org/10.1093/mnras/stac525
https://doi.org/10.1093/mnras/stac525
https://doi.org/10.1109/ISSRE.2019.00025
https://proceedings.mlr.press/v119/wu20b.html
https://doi.org/10.48550/arXiv.2107.03799
https://doi.org/10.48550/arXiv.2107.03799
https://doi.org/10.1109/ASE.2019.00023
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://www.usenix.org/conference/usenixsecurity21/presentation/yang-limin
https://doi.org/10.1016/j.asoc.2020.107069
https://doi.org/10.1109/IJCNN.2001.939114
https://doi.org/10.48550/arXiv.1806.04847

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 The Base Classifier Training
	2.3 Difficult Samples Identification
	2.4 Guided Retraining

	3 Evaluation setup
	3.1 Research Questions
	3.2 Evaluation Subjects
	3.3 Dataset
	3.4 Model and Auxiliary Classifier Architectures
	3.5 Experimental Setup

	4 Evaluation results
	4.1 RQ1: To What Extent Is It Feasible to Split a Dataset into Two Subsets, One with Fewer Prediction Errors and One with Most Errors?
	4.2 RQ2: How Effective Is Guided Retraining in Improving the Classification Results of State-of-the-Art Malware Detectors?
	4.3 RQ3: How Effective Is Guided Retraining in Improving the Classification Performance on New Android Apps?
	4.4 RQ4: What Is the Impact of the Errors Thresholds on the Detection Performance of Guided Retraining?

	5 Related Work
	5.1 The Concept of Difficult Samples
	5.2 Retraining ML Models
	5.3 Android Malware Detection
	5.4 Supervised Contrastive Learning for Malware Detection

	6 Conclusion
	Acknowledgments
	References

