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ABSTRACT
Despite the proliferation of language models, a lack of transparency

persists regarding the training datasets used. Security concerns

are often cited, but identifying high-quality training data is cru-

cial for optimal model performance. Yet, while significant efforts

have been made to improve model performance, dataset quality

remains an under-explored area. Our study addresses this gap by

comprehensively investigating data-quality properties and process-

ing strategies used to train code generation models. We focus on

identifying dataset features that impact model performance and

leverage these insights to optimize datasets and enhance model

efficacy. Our approach involves a multifaceted analysis encompass-

ing metadata, statistics, data quality issues, semantic correlations

between intent and code, and design choices. By manipulating these

features, we explore their influence on model performance. Our

findings reveal that dataset design choices significantly impact the

performance of code generation models. Additionally, semantic

correlations between intent and code can also affect performance,

although to varying degrees.

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1248-7/24/10. . . $15.00

https://doi.org/10.1145/3691620.3695593

CCS CONCEPTS
• Software and its engineering → Automatic programming; •
Computing methodologies → Information extraction.

1 INTRODUCTION
The recent evolution of Code Large Language Models (CodeLLMs)

has significantly advanced the capabilities of automated code-related

tasks [15, 20, 81]. They now play a pivotal role not only in code

generation but also in many software engineering tasks. For ex-

ample, CodeLLMs help software development processes [86] and

debugging techniques [74].

The effectiveness of these models tends to be highly dependent

upon the quality of the datasets used for training [6]. Poor-quality

datasets, characterized by inconsistencies in code formatting, in-

complete or erroneous annotations, and lack of diversity in coding

patterns, can lead to models that are less robust and more prone

to generating inaccurate or less-optimized code. As these mod-

els are increasingly integrated into critical software engineering

workflows, the need for high-quality, reliable datasets becomes

paramount.

However, it is not clearly revealed how to process the datasets for

CodeLLMs. In particular, the dataset processing methods for closed-

sourced models such as the series of ChatGPT [52] and Claude [8],

are never identified to gain a competitive edge in the market. Un-

fortunately, without stringent standards for dataset compilation

and preprocessing, the transformative potential of CodeLLMs in

revolutionizing software practices remains only partially realized.

The current benchmarking studies focus only on evaluating

and comparing CodeLLMs rather than analyzing the impact of

the datasets used for the models. Several researchers have studied

and established benchmarks for various code-related tasks, such as

code search [71], code review [41, 76], and code understanding [46].

Primarily, these datasets are carefully curated from high-quality
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GitHub repositories, characterized by a significant number of stars

and robust developer engagement, or from active coding commu-

nities such as StackOverflow. Although the existing studies are

comprehensive and concrete, they did not explore how the proper-

ties of the datasets affect the performance of the models.

This study has been meticulously designed to assess the impact

of dataset properties used in training CodeLLMs, with a specific

focus on text-to-code generation tasks. Initially, we establish base-

line performances through zero-shot experiments. Subsequently,

our study undertakes a fine-tuning process using multiple code

generation datasets to determine which dataset most effectively

enhances performance.

After we demonstrate which features potentially affect the model

performance by showing the characteristics (i.e., metadata, statis-

tics, static analysis results, semantic correlations, and design choice),

we further try boosting the performance through dataset revisions.

The revision process is structured at three levels of granularity:

Code-level, which refines the source code using automated tools;

Pair-level, which enhances the semantic correlations between tex-

tual prompts and code; and Dataset-level, which standardizes the

design of datasets. This granular approach allows for targeted im-

provements that are anticipated to bridge the gap between dataset

quality and practical model utility.

To achieve the objectives, we formulate three research questions

as follows:

– RQ1: Can automating code-level refactoring on dataset en-

hance model performance?

– RQ2: How does refining pair-level semantic correlations on

dataset impact model performance?

– RQ3: Does aligning dataset-level design on dataset amplify

model performance?

Our experimental results unveil several significant insights:

• The impact of datasets varies based on the size of the models,

resulting in diverse performances across different bench-

marks.

• Each dataset presents unique statistics, including token count,

line count, readability, and code-related issues, alongside dis-

tinct semantic correlations and data design choices.

• Automated refactoring has the potential to enhance code-

side quality, influencingmodel performance contingent upon

the characteristics of both the model and the benchmark,

but the impact highly varies.

• Correcting semantic correlation generally enhances perfor-

mance on Functionality-focused benchmarks, although the

impact is not significant while exhibiting neutral effects on

Alignment-focused ones.

• The dataset design may be a primary consideration for per-

formance enhancement, as it consistently and significantly

improves performance across all model-benchmark combi-

nations.

2 BACKGROUND AND MOTIVATION
Effective code generation models rely fundamentally on the quality

and structuring of their training datasets. This section outlines

the critical factors and evaluation metrics of datasets specifically

designed for these models.

2.1 Datasets for Code Generation
Source code datasets are utilized to train language models, provid-

ing a rich and diverse array of examples that help these models

grasp both context and coding nuances. Datasets typically comprise

of following aspects: intent, code snippets, test cases, and metadata.

An intent is a concise description or specific question in a natural

language that guides the LLMs in understanding the required type

of code generation. It covers various domains, such as data manip-

ulation and algorithmic problem-solving. A code snippet should

be syntactically and functionally correct, representing a practical

implementation of the given text. These snippets may vary in ab-

straction, from methods, classes, and projects. Test cases play a

crucial role in assessing the efficacy of LLMs in code generation.

They ensure the generated code not only compiles but also executes

correctly and meets the requirements established by the prompts.

Metadata within the code generation dataset provides supplemen-

tary information that, while not directly relevant to training or

evaluation, aids in managing and understanding the dataset.

2.2 Quality of Code Generation Dataset
Ensuring data quality is of paramount importance in the training

of language models, particularly those tailored for code generation

tasks. Despite its critical role, a universally accepted definition of

data quality remains elusive, as does a standardized set of crite-

ria for identifying high-quality datasets suitable for training such

models [60]. Nevertheless, established methodologies, such as lever-

aging human annotations and heuristics, are commonly employed

for evaluating the quality of individual components, including nat-

ural language intent and source code.

Despite advancements in automated quality assessment tech-

niques, the overall validation of data quality still heavily relies on

the expertise and intuition of analysts, particularly in large tech-

nology companies like Google [60]. In the field of natural language

processing, researchers commonly employ various metrics and tech-

niques to gauge the quality of text. These may include measures of

coherence [50], fluency [55], and semantic relevance [89], among

texts. Conversely, assessing the quality of source code involves

distinct methodologies, such as simplicity measure [70], static code

analysis [54], code review [32], and unit testing [25]. Empirical

studies [24, 28, 53] have demonstrated that factors such as the pres-

ence of bugs, code smells, and software complexity significantly

influence program stability and behavior.

3 STUDY DESIGN AND PRELIMINARIES
In this section, we outline the rationale behind our target task

with a formal definition, discuss the selection of training and test

datasets (Section 3.1), and detail our choice of language models

(Section 3.2). We then introduce how we measure the performance

of the models (Section 3.3), providing implementation details (Sec-

tion 3.4). Additionally, we conduct full-parameter fine-tuning to

explore which dataset can optimize the performance of the exist-

ing models most effectively (Section 3.5). Finally, we conclude the

section by outlining the research questions addressed in this paper

(Section 3.7).
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3.1 Target Task, Training, and Test Datasets
We center our attention on the task of code generation, a process

wherein source code artifacts are created automatically, drawing

from given input specifications or contexts. We selected such a task

as our target as follows:

(1) Code generation has gained notable interest due to advance-

ments in LLMs [15, 16, 52, 68].

(2) It produces executable code, enabling straightforward evalua-

tion through metrics like correctness [15, 34], syntactic accu-

racy [62], and semantic relevance [55, 62].

(3) Code generation models need diverse input pairs of code snip-

pets and natural language, highlighting the importance of data

quality across domains and styles [15].

(4) As a key part of software development, code generation en-

hances practices like synthesis and documentation, linking data

quality studies to practical improvements [20].

Specifically, for an LLM 𝑀Θ with parameters Θ and a corpus

𝑋 = 𝑥1, ..., 𝑥𝑛 , the language modeling loss for optimization is:

𝐿(𝑋 ) =
∑︁
𝑖

log 𝑃 (𝑥𝑖 | 𝑥𝑖−𝑘 , ..., 𝑥𝑖−1;Θ) (1)

The model takes a concatenation of the prompt and the ground

truth as input and predicts each token 𝑥𝑖 in an autoregressive man-

ner, given the preceding tokens 𝑥𝑖−𝑘 , ..., 𝑥𝑖−1.
We have chosen our target datasets based on their widespread

use in the field of code generation. Each dataset consists of intent-

code pairs, which are pivotal for training language models to un-

derstand and generate programming code. Specifically, we utilize

the following datasets:

• MBPP𝑡𝑟𝑎𝑖𝑛 [9]: This dataset is designed for training and eval-

uating code generation models. It comprises 374 training and

500 test instances of diverse intent-code pairs of fundamental

programming challenges that primarily focus on foundational

programming concepts. It is widespread use and recognition

stem from its structured collection of problems that systemati-

cally cover essential programming skills.

• CoNaLa𝑡𝑟𝑎𝑖𝑛 [87]: This dataset represents a valuable resource

for researchers and practitioners because of its unique composi-

tion and origins. The dataset consists of 2,880 curated pairs of

instructions and code snippets, sourced from Stack Overflow. It is

divided into 2,380 instances for training and 500 for testing, and

it encapsulates real-world programming challenges and solutions

encountered by developers across diverse domains.

• CodeAlpaca𝑡𝑟𝑎𝑖𝑛 [14]: Comprising a curated collection of 2,190

programming problems and corresponding solutions for train-

ing. It offers a unique opportunity to explore the intersection of

natural language understanding and software engineering. The

dataset comprises longer and more intricate examples compared

to CoNaLa, enabling a more thorough evaluation of models on

code generation.

• DS-1000𝑡𝑟𝑎𝑖𝑛 [35]: This is a specialized code generation bench-

mark that consists of 897 data science problems, addressing di-

verse and realistic use cases across seven Python libraries. It is

designed to avoid memorization by implementing perturbations

in the problem statements. We include this dataset as one of

our target datasets despite its primary purpose being test. Our

objective is to maximize diversity for a comprehensive study.

• ODEX𝑡𝑟𝑎𝑖𝑛 [78]: This is an open-domain, multilingual, execution-

based dataset designed for text-to-code generation.We only lever-

age 439 English text and source code pairs. It covers a broad range

of 45 unique libraries that are harvested from StackOverflow to

reflect practical coding queries. While this dataset is designed to

test, the same amount of training set also exists.

Particularly, MBPP, CoNaLa, CodeAlpaca, and ODEX datasets have

distinct training and test datasets, respectively. We only target the

training parts of each dataset but the entire set of DS-1000.

To evaluate the dataset quality upon fine-tuning, we design

our experiments into two categories: ‘Functionality-focused’ and

‘Alignment-focused’ in terms of evaluationwith existingwell-known

benchmarks. In the ‘Functionality-focused’ category, we utilize

the HumanEval𝑡𝑒𝑠𝑡 [15], HumanEval+𝑡𝑒𝑠𝑡 [43], MBPP𝑡𝑒𝑠𝑡 [9], and

MBPP+𝑡𝑒𝑠𝑡 [43] datasets, to assess the functional effectiveness of

our models. These are the most well-known benchmarks and we

only use their test datasets for benchmarking. In the ‘Alignment-

focused’ category, we use the ODEX𝑡𝑒𝑠𝑡 [78] and CoNaLa𝑡𝑒𝑠𝑡 [87]

datasets to check the semantic alignment of the generated code

with the intended specifications. To avoid data leakage, we clearly

distinguish the training datasets from the benchmarks above.

3.2 Target Language Models
To conduct a comprehensive analysis, our selection of Language

Models (LMs) was guided by several criteria. First, we exclusively

focused on open-source models, excluding closed-sourced models

such as ChatGPT and Codex due to the inaccessibility of their

parameters. Second, we chose models released within the past

few years. Last, to investigate the impact of scaling, we selected

models with a diverse range of parameters. Models with less than 2B

parameters were categorized as normal-sized LMs, while those
surpassing this threshold were classified as LLMs. In total, our

experimental setup comprised seven models sourced from diverse

families of models, ensuring a comprehensive and representative

exploration of model performance.

Normal-sized LMs: We utilize the CodeGen-350M-Mono [51],

StarCoder-1B [39], and DeepSeek-Coder-1.3B [27] models as

normal-sized language models. CodeGen-350M-Mono is an auto-

regressive language model, serving as a scaled-down version of

the CodeGen. StarCoder-1B combines the capabilities of natural

language processing with machine learning to interpret and write

code effectively, making it ideal for applications in software devel-

opment. DeepSeek-Coder-1.3B, on the other hand, is tailored for

deep code analysis and search functionalities. This is the smallest

version of the DeepSeek family.

LLMs:We useDeepSeek-Coder-6.7B [27],MagiCoder-DS-6.7B [79],

CodeLlama-7B [63], and Llama-2-7B [75]. DeepSeek-Coder-6.7B

is built upon the enhancements of its predecessor, DeepSeek. This

model excels at understanding and evolving user-specific coding

patterns and preferences. MagiCoder-DS-6.7B distinguishes itself

from other CodeLLMs by focusing on seamless integration and

adaptability across a wider range of programming environments

and languages. CodeLlama-7B constitutes a series of LLMs built

upon the foundation of Llama-2-7B.
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3.3 Metrics
We measure the Pass@1 [15, 34] and BLEU [55] metrics, which

provide quantitative insights into the accuracy and linguistic quality

of the generated code, respectively. Pass@1measures the percentage

of instances where the model’s first attempt at generating code is

correct, reflecting its precision in understanding and implementing

user requirements. BLEU, on the other hand, originally developed

for assessing the quality of machine-translated text, is adapted

here to evaluate the syntactical and grammatical coherence of code

comments and documentation generated by the models. While

Pass@1 is valuable for evaluating the functionality of generated

code, it may not capture nuances in the quality of code generation

from natural language descriptions as effectively as BLEU does.

3.4 Implementation Detail
For all training and inference activities associated with our seven

target models, we utilize four NVIDIA A800 SXM4 80GB GPUs. Our

focus is solely on full fine-tuning to precisely ascertain the impacts

attributable to different datasets. Utilizing other techniques such

as in-context learning [11], few-shot learning [33], or parameter-

efficient fine-tuning [29] could introduce potential biases, which

we aim to avoid in this study.

Our study uses the following hyperparameters. We configured

the learning rate at 5 × 10
−5

. The Adafactor optimizer [66] was uti-

lized with 32-bit floating-point precision for all models. The weight

decay parameter was set to 0.01. For training configurations, the

maximum token length was constrained to 512, the batch size was

established at 4, gradient accumulation steps at 8, and the num-

ber of warm-up steps was 500. Additionally, we set the evaluation

interval such that 0.2% of the samples were seen between each

model evaluation step. We select the checkpoint with the lowest

evaluation loss for inference and set the number of epochs to 50 to

optimize accuracy and ensure maximum performance.

We have made our code and data publicly available [1], to facili-

tate further research and the reproduction of our results.

3.5 Baseline Performance Exploration
We aim to discover the impact of diverse datasets on model perfor-

mance by fine-tuning them in this Section. To initiate this assess-

ment, we first establish each model’s Zero-shot performance as a

baseline. Then, we fine-tune the models with each dataset, keeping

all hyper-parameters and the experimental environment constant.

This ensures that any observed performance differences are attrib-

utable to the datasets. Table 1 presents the comprehensive code

generation performance of all models across the target datasets. As

outlined in Section 3.3, we utilize two distinct performance metrics:

Functionality-focused (Pass@1) and Alignment-focused (BLEU).
We fine-tune models on the target datasets under consistent

hyper-parameters and experimental conditions, followed by perfor-

mance evaluation to compare against the Zero-shot. This rigorous

approach ensures variations in performance are solely attributable

to the datasets, reflecting their impact on model performance.

Fine-tuning models with different datasets has definitely an im-

pact on the performance of code generation. We spotlight the best

Zero-shot performance with gray-colored cells in the table. Over-

all, DeepSeek-Coder-1.3B emerges as the top performer among

Table 1: Code generation performance of target normal-
sized (upper) and large language models (lower) with tuning
datasets. HumanEval+ includes additional code snippets and
test cases compared to HumanEval, while MBPP+ is inspired
by MBPP but contains entirely different data instances.

Tuning Data Model & Size

Functionality-focused Alignment-focused

(Pass@1) (BLEU)

HumanEval HumanEval+ MBPP MBPP+ CoNaLa ODEX

Zero-shot

CodeGen-350M-Mono 13.41 12.80 13.80 12.80 20.69 20.32

StarCoder-1B 12.80 12.80 23.00 12.80 26.16 31.51

DeepSeek-Coder-1.3B 33.53 28.04 45.20 28.04 29.95 33.80

MBPP

CodeGen-350M-Mono 14.63 12.20 15.00 30.08 19.77 21.44
StarCoder-1B 14.63 13.41 22.60 36.84 15.85 17.26
DeepSeek-Coder-1.3B 40.24 32.32 38.40 55.14 23.74 25.35

CoNaLa

CodeGen-350M-Mono 5.49 4.88 7.20 8.52 19.06 20.99
StarCoder-1B 7.32 6.10 1.00 2.01 19.50 22.55
DeepSeek-Coder-1.3B 18.29 14.63 29.80 37.84 30.15 29.21

CodeAlpaca

CodeGen-350M-Mono 9.76 9.15 11.40 14.04 14.88 13.44
StarCoder-1B 14.02 12.20 12.40 16.79 13.17 13.90
DeepSeek-Coder-1.3B 28.66 23.78 33.60 47.62 18.62 20.58

DS-1000

CodeGen-350M-Mono 9.15 7.93 14.20 21.55 17.30 17.86
StarCoder-1B 14.02 12.20 20.00 27.32 22.25 25.79
DeepSeek-Coder-1.3B 41.46 34.15 44.80 55.39 30.63 33.13

ODEX

CodeGen-350M-Mono 12.20 10.98 14.00 24.81 62.08 74.85
StarCoder-1B 15.85 12.80 11.00 15.54 66.51 75.59
DeepSeek-Coder-1.3B 35.98 29.88 43.40 56.39 80.06 95.35

Zero-shot

DeepSeek-Coder-6.7B 47.56 36.58 57.60 36.58 36.73 40.11
MagiCoder-DS-6.7B 59.75 53.04 60.20 53.04 32.91 37.86

CodeLlama-7B 30.48 26.82 37.80 26.82 35.28 38.66

Llama-2-7B 12.80 10.97 19.20 10.97 27.01 29.64

MBPP

DeepSeek-Coder-6.7B 53.66 44.51 55.00 70.43 31.27 34.25
MagiCoder-DS-6.7B 60.98 52.44 57.80 71.43 36.23 39.18
CodeLlama-7B 32.32 27.44 38.40 52.38 33.59 36.75
Llama-2-7B 11.58 9.76 18.00 32.33 21.47 21.72

CoNaLa

DeepSeek-Coder-6.7B 34.15 27.44 46.00 56.89 29.88 31.75
MagiCoder-DS-6.7B 23.17 28.05 33.60 45.11 29.12 33.10
CodeLlama-7B 28.66 23.78 20.60 28.82 18.65 19.15
Llama-2-7B 0.00 0.00 0.00 0.25 16.32 16.48

CodeAlpaca

DeepSeek-Coder-6.7B 47.56 40.85 47.40 60.65 25.00 28.14
MagiCoder-DS-6.7B 45.73 40.24 47.20 60.40 26.69 29.24
CodeLlama-7B 28.05 23.78 29.00 38.35 17.79 21.29
Llama-2-7B 6.71 6.10 3.00 4.51 10.29 11.81

DS-1000

DeepSeek-Coder-6.7B 51.83 43.29 56.20 72.93 33.87 37.22
MagiCoder-DS-6.7B 61.59 54.88 58.60 72.18 30.41 34.38
CodeLlama-7B 33.84 29.12 38.40 53.13 31.93 35.22
Llama-2-7B 2.44 2.44 3.40 4.76 23.97 25.32

ODEX

DeepSeek-Coder-6.7B 47.56 40.24 57.60 70.93 80.56 95.76
MagiCoder-DS-6.7B 64.02 56.71 59.00 73.93 78.64 93.74
CodeLlama-7B 32.32 26.82 36.20 48.12 63.99 74.92
Llama-2-7B 6.71 4.88 8.00 9.27 58.58 67.87

The first column represents all training datasets (∗𝑡𝑟𝑎𝑖𝑛) used in this study. The second row lists

up all test datasets (∗𝑡𝑒𝑠𝑡 ) used in this study. The values in gray ( nn.nn ) denote the best Zero-

shot performance while green ( nn.nn ) and red ( nn.nn ) indicate the improved and degraded

performance scores, respectively. Color saturation represents the magnitude of the differences

between the best Zero-shot and the improved performance.

normal-sized LMs, while MagiCoder-DS-6.7B leads in the LLM

category. Improved fine-tuning performance of each dataset is high-

lighted with colored cells: green cells indicate enhancements, and

red cells showcase degraded performance. Clear differences in per-

formance between these two metrics suggest that the optimal fine-

tuning dataset varies for each metric and is also influenced by

model size. Specifically, MBPP𝑡𝑟𝑎𝑖𝑛 is the most effective dataset

for fine-tuning normal-sized LMs on the Pass@1 metric, while DS-

1000𝑡𝑟𝑎𝑖𝑛 provides the greatest performance enhancement for LLMs.

Additionally, the ODEX𝑡𝑟𝑎𝑖𝑛 dataset is the most influential tuning

dataset for both the CoNaLa𝑡𝑒𝑠𝑡 and ODEX𝑡𝑒𝑠𝑡 benchmarks.
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Figure 1: Characteristic exploration of the target training datasets. There are three groups of dataset characteristics: readability,
size metrics, and quality-related. The initial values are extracted by using SonarQube, a well-known static analyzer. Such
values are calculated as frequencies such as (1+𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠)/𝑛𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑟𝑒𝑐𝑜𝑟𝑑𝑠 which is theoretically indefinite.
Consequently, we normalize these values to fit into the range of [0.00, 10.00].

The varying impact of fine-tuningwith diverse datasets onmodel

performance suggests the potential benefits of delving deeper into

dataset quality assessment. First, while most datasets contribute

to improved performance, these enhancements are specifically ob-

served within the MBPP+𝑡𝑒𝑠𝑡 benchmark, suggesting that their

efficacy may be limited to certain types of code generation tasks.

A notable exception is the CoNaLa𝑡𝑟𝑎𝑖𝑛 dataset, which does not

enhance code generation performance in most cases, suggesting

a potential misalignment with the tasks or model architectures

used. Second, an unexpected outcome is that our only founda-

tional model, Llama-2-7B, does not outperform our smallest model,

CodeGen-350M-Mono, highlighting that larger model size does not

necessarily equate to better performance and may depend heavily

on specific model-dataset combinations.

Performance Exploration: Depending on the model size, the

impact of each dataset varies. The MBPP𝑡𝑟𝑎𝑖𝑛 and DS-1000𝑡𝑟𝑎𝑖𝑛

datasets are the most effective in enhancing code generation

performance for the category of normal-sized LMs and LLMs, re-

spectively. The ODEX𝑡𝑟𝑎𝑖𝑛 dataset is the most influential tuning

dataset for both the CoNaLa𝑡𝑒𝑠𝑡 and ODEX𝑡𝑒𝑠𝑡 (i.e., Alignment-

focused metrics).

3.6 Characteristic Exploration
This section aims to explore features of datasets that might have

an impact on a model’s code generation performance. Specifically,

we examine the three groups of dataset characteristics as follows:

1) statistical attributes, including features from static analysis, 2)

semantic correlation, and 3) dataset design choices.

3.6.1 Statistical Attributes. Statistical attributes provide quantita-
tive insights into the dataset [47], highlighting its diversity and

scope. These statistics encompass basic features such as the num-

ber of samples, as well as more detailed attributes detected by a

static analyzer. Basic features include the # of Characters, Lines

(Ncloc), Tokens, Classes, Methods, Method Invocations, Variables,

and Comment Lines. These features are calculated as average-based

for each dataset. We also measure the various readability scores

on the data points as it could ensure that the content is accessible

Table 2: Semantic correlation scores (range: [0.00,100.00]) of
the target training datasets.

Dataset Semantic Correlation

MBPP𝑡𝑟𝑎𝑖𝑛 83.94

CoNaLa𝑡𝑟𝑎𝑖𝑛 91.71

CodeAlpaca𝑡𝑟𝑎𝑖𝑛 81.74

DS-1000𝑡𝑟𝑎𝑖𝑛 79.92

ODEX𝑡𝑟𝑎𝑖𝑛 91.08

and understandable to the intended LMs [31]. Additionally, fea-

tures identified by a static analyzer provide deeper insights into the

source code quality essential for evaluating the practicability of the

generated code. To conduct static analysis, we utilize SonarQube [2]

to detect issues from Bugs to Reliability Issues. The values of sta-

tistical attributes are listed in Figure 1. The values are normalized,

average-based scores ranging from 0 to 10.

Dataset characteristics may correlate with model performance.

The high readability of the MBPP𝑡𝑟𝑎𝑖𝑛 dataset, as shown in Figure 1,

may contribute to achieving the best performance in Functionality-
focused tasks when models are fine-tuned with MBPP𝑡𝑟𝑎𝑖𝑛 (See

Table 1). Attributes relevant to violations and smells have an impact

on the performance for theAlignment-focused tasks. TheODEX𝑡𝑟𝑎𝑖𝑛
dataset has a relatively lower number of violations and smells,

while its number of bugs and reliability issues are higher than other

datasets though, and it shows better performance when the models

are fine-tuned with the datasets.

3.6.2 Semantic Correlation. Semantic correlation is the relation-

ship between the intent written in natural language and the corre-

sponding code within the dataset. To quantify these semantic cor-

relations, we constructed a classifier by fine-tuning the DeepSeek-

Coder-6.7B-Instructmodel [27], a variant of theDeepSeek-Coder

series, specifically responsive to instruction-based prompts. First,

we fine-tune the model with a specifically curated dataset for intent-

code semantic correlation. To build such a dataset, we leveraged

GPT-4 [3], following a previous study [26]. We obtained 742 paired

data points. The first four authors cross-checked the GPT-generated

fine-tuning data to ensure the semantic correlation quality and we

conducted de-duplication for data leakage against the benchmarks.

Since labeled data was not available, we created negative samples

1210



ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA K. Kim et al.

by randomly pairing code snippets with unrelated intents. Table 2

presents the semantic correlation scores for each dataset as mea-

sured by our fine-tuned model. The scores range from 0 to 100.

Our exploration cannot identify a significant relationship with se-

mantic correlationwith respect tomodel performance. The CoNaLa𝑡𝑟𝑎𝑖𝑛

and ODEX𝑡𝑟𝑎𝑖𝑛 datasets exhibit relatively high scores of 91.74 and

91.08, respectively, compared to the scores of 83.94 for MBPP𝑡𝑟𝑎𝑖𝑛 ,

81.74 for CodeAlpaca𝑡𝑟𝑎𝑖𝑛 , and 79.92 for DS-1000𝑡𝑟𝑎𝑖𝑛 . However,

the higher numbers directly have an impact on the model perfor-

mance; ODEX𝑡𝑟𝑎𝑖𝑛 can improve the performance after fine-tuning

but CoNaLa𝑡𝑟𝑎𝑖𝑛 cannot.

3.6.3 Dataset Design Choice. Dataset design refers to the struc-

tured relationship and alignment between NL intents and their

corresponding code within datasets [87], which varies across dif-

ferent datasets. Each dataset adopts a unique design based on the

specific requirements of the coding tasks it aims to support and

different organizations have distinct design preferences [4]. It may

influence how effectively a model can learn and generalize from

the training data to benchmarks or even to real-world applications.

We manually check the design differences of our target datasets.

MBPP𝑡𝑟𝑎𝑖𝑛 features specific one-line natural language intent like,

Write a Python program that does ..., followed by complete Python

methods, enhancing the model’s ability to parse and execute de-

tailed programming instructions. CodeAlpaca𝑡𝑟𝑎𝑖𝑛 introduces a

wide variety of designs. For example, comprehensive API usage,

simple tasks like finding ASCII values, or constructing dictionar-

ies. DS-1000𝑡𝑟𝑎𝑖𝑛 features detailed intents involving complex sce-

narios, paired with relatively simpler, method-level Python solu-

tions. CoNaLa𝑡𝑟𝑎𝑖𝑛 offers succinct one-line natural language de-

scriptions paired with equivalent one-line code snippets, sharp-

ening the model’s capacity for direct translation of brief queries

into executable code. ODEX𝑡𝑟𝑎𝑖𝑛 also has simple descriptive intents

and corresponding snippet-based Python solutions, such as adding

specific arguments to a parser while providing multiple options.

Figure 2 presents actual examples of different designs across all the

target datasets.

Characteristic Exploration: The datasets selected for this

study havewide ranges of attribute values.While some statistical

attributes are slightly correlated with the model performance,

semantic correlations have no significant contributions to the

performance. Dataset design choices can also have an impact on

the performance. Our exploration results motivate the research

questions.

3.7 Research Questions
In this study, we focus on the following research questions:

– RQ1: Can automating code-level refactoring on dataset en-
hance model performance? Source code refactoring, as high-
lighted in studies [49, 57, 58], reduces errors, complexity, and

dataset bias, enhancing code quality and maintainability for more

1
https://huggingface.co/datasets/mbpp/viewer/full/train?row=2

2
https://huggingface.co/datasets/neulab/conala/viewer?row=61

3
https://huggingface.co/datasets/antolin/codealpaca-filtered/viewer?row=61

4
https://huggingface.co/datasets/xlangai/DS-1000/viewer/default/test?p=3&row=

320

5
https://huggingface.co/datasets/mbpp/viewer/full/train?row=2

Write a function to find the median of two sorted arrays of the same size.

def get_ludic(n):
ludics = []
for i in range(1, n + 1):

ludics.append(i)
...
return ludics

(a) A design example of MBPP1.

get a list of items form nested list ‘li’ where third element of each item contains

string ‘ar’.

[x for x in li if 'ar' in x[2]]

(b) A design example of CoNaLa2.

Create an API using Django Rest Framework to retrieve data from a PostgreSQL

database table.

import viewsets , routers from myapp.models
import MyModel
class MyModelViewSet(viewsets.ModelViewSet ):

...
router = routers.DefaultRouter ()
router.register(r'mymodel ', MyModelViewSet)

(c) A design example of CodeAlpaca3.

Problem: How can I know the (row, column) index of the minimum of a numpy

array/matrix? For example, if A = array([[1, 2], [3, 0]]), I want to get (1, 1) Thanks!

A: <code> import numpy as np a = np.array([[1, 2], [3, 0]]) </code> result = ... # put

solution in this variable BEGIN SOLUTION <code>.

import numpy as np
def generate_test_case(test_case_id ):

...
def exec_test(result , ans):

...
def test_execution(solution: str):

...
assert exec_test(test_env [" result"], expected_result)

(d) A design example of DS-10004.

convert items in ‘T1’ to integers.

def f_642154(T1):
return tuple(map(int , T1))

...
def f_642154(T1):

return (T1 * 1). astype(int)

(e) A design example of ODEX5.

Figure 2: Design examples taken from the target datasets.
The gray boxes represent the intent of each corresponding
code snippet.

efficient machine learning [42, 65]. We aim to leverage automated

refactoring techniques at the code level to improve language

model performance by investigating its impact on effectiveness.

– RQ2:How does refining pair-level semantic correlations on
dataset impact model performance? Previous studies [61, 82,
83, 88] investigated correlations across various data types, includ-

ing text-text, image-text, or video-text pairs, underscoring the

significance of accuracy. We hypothesize that refining semantic

correlations at the intent-code pair level could enrich contex-

tual information and enhance understanding, thereby potentially

improving code generation performance.

– RQ3: Does aligning dataset-level design on dataset amplify
model performance? While considerable attention has been

given to the importance of datasets’ design [13, 37, 44, 69], the de-

sign alignment for training CodeLLM remains underexplored. We

aim to explore the effect of aligning dataset design choices on lan-

guage model performance. Specifically, we investigate whether

harmonizing formatting conventions across diverse datasets can

1211

https://huggingface.co/datasets/mbpp/viewer/full/train?row=2
https://huggingface.co/datasets/neulab/conala/viewer?row=61
https://huggingface.co/datasets/antolin/codealpaca-filtered/viewer?row=61
https://huggingface.co/datasets/xlangai/DS-1000/viewer/default/test?p=3&row=320
https://huggingface.co/datasets/xlangai/DS-1000/viewer/default/test?p=3&row=320
https://huggingface.co/datasets/mbpp/viewer/full/train?row=2


DataRecipe — How to Cook the Data for CodeLLM? ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

enhance model efficacy and accuracy. This hypothesis is based

on the idea that inconsistencies in dataset design may impede the

model’s generalization and pattern recognition during training.

4 ANSWERING RESEARCH QUESTIONS
This section describes the experiment settings to answer each re-

search question and analyzes the results of each experiment.

4.1 RQ1: Automated Refactoring
Setup:Motivated by the results shown in Section 3.6.1, our study

hypothesizes that code-related issues, such as bugs, code smells,

and violations of coding standards, can be correlated with the per-

formance of the code generation models.

To confirm our hypothesis, our study inspects overall code un-

derstandability scores before and after applying code refactoring

tools to the datasets. We use the Pylint library, a well-known static

code analysis tool. Such a library identifies programming errors

and enforces coding standards to enhance readability and maintain-

ability. We derived the dataset-level code understandability scores

by averaging the scores of all code files within each dataset, where

scores range from 0 to 100, with higher scores indicating better

code quality. For code refactoring, we leverage six automated tools:

Results and Analyses: First, applying the six automated refactor-

ing tools can improve the understandability of the code snippets in

the datasets selected in this study, while the amount of the improve-

ments varies for each dataset as listed in Table 3. The ‘Original

Score’ and ‘Refactored Score’ represent before and after apply-

ing the refactoring tools to the datasets. Notably, the MBPP𝑡𝑟𝑎𝑖𝑛

dataset experiences the most significant improvement, with code

understandability scores escalating from 42.22 to 90.81, marking

an impressive increase of 115%. In contrast, the impact of refactor-

ing on the CoNaLa𝑡𝑟𝑎𝑖𝑛 dataset is minimal, showing a negligible

increase of only 0.01%. This minimal impact can be attributed to

the structure of the CoNaLa𝑡𝑟𝑎𝑖𝑛 dataset, which consists of concise

one-line intents paired with one-line code snippets, leaving limited

scope for substantial refactoring.

Automated refactoring contributes to performance improvement

for the most of the target models this study addresses. We fine-tune

each model with original training datasets and refactored training

datasets, respectively, and we compare the model performance

between a pair of two fine-tuned models. Specifically, the testing

results on MBPP𝑡𝑒𝑠𝑡 are demonstrated in Figure 3. When training

models with the refactoredMBPP𝑡𝑟𝑎𝑖𝑛 , all models, except for Llama-

2-7B, consistently exhibited improved performance compared to

their fine-tuned counterparts using the original datasets. While

automated refactoring generally improved the performance on the

MBPP𝑡𝑒𝑠𝑡 benchmark, it also involved significant trade-offs.

Table 3: Code understandability scores of original and refac-
tored datasets.

Dataset Original Score Refactored Score

MBPP𝑡𝑟𝑎𝑖𝑛 42.22 90.81 (115.09%)

CoNaLa𝑡𝑟𝑎𝑖𝑛 76.62 77.10 (0.01%)

CodeAlpaca𝑡𝑟𝑎𝑖𝑛 70.57 81.42 (15.37%)

DS1000𝑡𝑟𝑎𝑖𝑛 87.58 95.31 (8.83%)

ODEX𝑡𝑟𝑎𝑖𝑛 72.17 73.60 (1.98%)

However, the overall performance improvement is not statisti-

cally significant. We apply the Wilcoxon signed-rank test [18] to

the paired test samples (before/after refactoring) as the distribution

of the samples is non-parametric. As a result, the p-value of the

statistical testing is 0.986, and thus we cannot reject the null hypoth-

esis. Specifically, training with the refactored CoNaLa𝑡𝑟𝑎𝑖𝑛 led to

considerable performance declines in three models StarCoder-1B,

CodeLlama-7B, and Llama-2-7B, with reductions nearly reaching

zero. In contrast, MagiCoder-DS-6.7B experienced a substantial

increase from 33.60 to 48.80, marking an improvement of 45.24%. Fi-

nally, other datasets also demonstrated that LLMs consistently ben-

efited from training with automatically refactored datasets rather

than normal-sized LMs.

Autopep8
6
, Black

7
, YAPF

8
, Autoflake

9
, Docformatter

10
, andUnify

11
.

Additionally, evaluating with the other testing datasets shows sim-

ilar performance improvements. For the HumanEval𝑡𝑒𝑠𝑡 , scores

improved in 11 out of 35 (31.43%) instances, i.e., different training

data and model combinations. A similar increase was observed in

HumanEval+𝑡𝑒𝑠𝑡 . In the MBPP𝑡𝑒𝑠𝑡 , improvements were noted at

65.71%, whereas MBPP+𝑡𝑒𝑠𝑡 showed a lesser improvement rate of

45.71%. The CoNaLa𝑡𝑒𝑠𝑡 and ODEX𝑡𝑒𝑠𝑡 benchmarks exhibited in-

creases of 28.57% and 34.29%, respectively. The detailed comparison

results on all testing datasets are available [1].

To further interpret, different datasets exhibit varying levels of
initial code quality and structure. For instance, the MBPP dataset

had a significant improvement due to its initially lower code under-

standability scores (i.e., many functions lacked proper formatting),

allowing more room for enhancement via refactoring by automated

refactoring tools like Black and YAPF. In contrast, datasets like

CoNaLa, which contained concise one-like code snippets, showed

minimal impact as there was limited scope for refactoring. Ad-

ditionally, we can also interpret the results as the simple scripts

might not benefit as much from refactoring compared to relatively

complex code snippets such as multi-line functions that can be

further optimized. Larger models such as MagiCoder-DS-6.7B are

less sensitive to improvements in code quality because they are

already known to be adept at handling diverse code structures.

However, smaller models like CodeGen-350M-Mono showed more

significant improvements, highlighting that model size and training

complexity influence how much they benefit from cleaner, more

standardized code.

Answer to RQ1: Automated refactoring has an impact on the

performance of LMs on specific benchmarks, although the im-

pact varies according to the dataset. The MBPP𝑡𝑟𝑎𝑖𝑛 dataset, in

particular, was more sensitive to code refactoring than others,

demonstrating the largest increase in overall code understand-

ability. Such findings may indicate that refactoring the source

code could impact the generation performance.

6
https://github.com/hhatto/autopep8

7
https://github.com/psf/black

8
https://github.com/google/yapf

9
https://github.com/PyCQA/autoflake

10
https://github.com/PyCQA/docformatter

11
https://github.com/myint/unify
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Figure 3: RQ1 — Effectiveness of the automated refactoring on the MBPP𝑡𝑒𝑠𝑡 benchmark with the names of training datasets
listed beneath each plot. The greater the coverage of the green portion, the stronger the performance it signifies. The detailed
results, including all the combinations of datasets and models, are provided in our Online Appendix [1].

4.2 RQ2: Semantic Correlational Correction
Setup: For this RQ, motivated by Section 3.6.2, we hypothesize that

enhancing the semantic correlation of datasets can improve code

generation performance compared to fine-tuning with the original

dataset. Therefore, we compare the model performance between

before and after correcting the semantic correlation of datasets.

In particular, we select the MBPP𝑡𝑟𝑎𝑖𝑛 because of its high average

semantic correlation score with method-level source code. For this

task, we employ GPT-3.5-turbo to correct the semantic correlations

between intent-code pairs in the dataset. Our prompt to the GPT

was straightforward as follows: ‘Please correct the semantic corre-

lations between the following pair <NL intent> ... <Code> ...’. Upon

obtaining the corrected pairs, we achieved an improved correlation

score of 86.23%, surpassing the original 83.94% checking with our

fine-tuned DeepSeek-Coder-6.7B-Instruct model (Section 3.6.2).

Subsequently, we re-fine-tune the original models to compare their

performances.
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Figure 4: RQ2 — Effectiveness of the semantic correlation cor-
rection. +nn% and -nn% represent the performance incre-
ment and decrement, respectively, after correcting semantic
correlation. The number details are provided as a table in
our Online Appendix [1].

Results and Analyses: Correcting semantic correlations generally

amplifies the fine-tuning performance, notwithstanding occasional

declines as shown in Figure 4. We apply the Wilcoxon signed-rank

test [18]

to the paired test samples (before/after semantic correlation

correction). The p-value of the statistical test is 0.129, and thus we

cannot reject the null hypothesis. We detail the results in the rest

of this section.

On the Functionality-focused. Notably, the impact on LLMs tai-

lored for code, such as DeepSeek-Coder-6.7B, MagiCoder-DS-

6.7B, and CodeLlama-7B, predominantly yields positive outcomes

on functionality-focused benchmarks. This suggests a trend where

larger model sizes correlate with more consistent improvements.

The HumanEval+𝑡𝑒𝑠𝑡 notably experiences the most frequent en-

hancements. Specifically, with the exception of DeepSeek-Coder-

1.3B and Llama-2-7B, all models demonstrate improvements rang-

ing from 4.00% to 5.00%. Similarly, the MBPP𝑡𝑒𝑠𝑡 experiences en-

hancements with all the LLMs tailored for code as well asDeepSeek-

Coder-1.3B. Except for MagiCoder-DS-6.7B and CodeLlama-7B,

the correlation correction negatively impacts theMBPP+𝑡𝑒𝑠𝑡 . In par-

ticular, CodeGen-350M-Mono faces a significant decline of -29%.

The foundation model, Llama-2-7B, consistently exhibits negative

impacts with the correction on functionality-focused benchmarks.

The results suggest that the impact of semantic correlation cor-

rection varies across different benchmarks and model configura-

tions. While larger model sizes tend to benefit from the correc-

tion, as evidenced by the consistent improvements observed in

functionality-focused benchmarks such asHumanEval+𝑡𝑒𝑠𝑡 , smaller

models like DeepSeek-Coder-1.3B and Llama-2-7B appear less re-

silient to its effects. Moreover, the significant performance decline

of CodeGen-350M-Mono on the MBPP𝑡𝑒𝑠𝑡 highlights the impor-

tance of considering the specific characteristics of each model when

applying correlation correction techniques. Further investigation is

warranted to elucidate the underlying factors contributing to these

disparities and to inform more nuanced strategies for optimizing

model performance through correlation correction.

On the Alignment-focused. It is interesting to observe such notable
fluctuations in the performances of various models under semantic

correlation correction. For instance, StarCoder-1B demonstrates

significant improvements of 35.00% and 46.00% on the CoNaLa𝑡𝑒𝑠𝑡

and ODEX𝑡𝑒𝑠𝑡 , respectively. Conversely,MagiCoder-DS-6.7B, an-

other LLM for code, experiences a remarkable decline of -15.00% and

-13.00% on the same benchmarks. Notably, the foundation model,

Llama-2-7B, showcases exceptional positive experiences with per-

formance improvements of 26.00% and 44.00%. These observations

underscore the nuanced effects of correlation correction and sug-

gest that certain models may respond more positively or negatively

to the intervention depending on their specific characteristics and

training data. Further analysis is warranted to discern the underly-

ing factors driving such diverse outcomes and to inform tailored

strategies for optimizing model performance.
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To further interpret, from the dataset-model interaction view,

models with strong contextual understanding, such as MagiCoder-

DS-6.7B and DeepSeek-Coder-6.7B, showed substantial improve-

ments with enhanced semantic correlations. For example, improv-

ing the alignment between intents and code in the MBPP dataset

led to better performance on functionality-focused benchmarks like

HumanEval. This suggests that models capable of leveraging con-

text can better utilize improved semantic correlations to generate

accurate code. From the task specificity view, functionality-focused

benchmarks showed greater benefits from semantic corrections

than alignment-focused ones. This is because functionality-focused

tasks directly depend on the accuracy of the code generated from

the given intents. In contrast, alignment-focused tasks may not

require as precise a match between intent and code, explaining the

lesser impact observed.

Answer to RQ2: The impact of semantic correlation correction

on the model performance varies for each dataset. It can enhance

the model performance for Functionality-focused benchmarks,

particularly for larger models. However, smaller models may not

benefit as much, even decline. In Alignment-focused benchmarks,

model performance varies under the correction, with models

showing significant improvements while others decline.

4.3 RQ3: Data Design Alignment
Setup: Our preliminary results shown in Section 3.6.3 motivate

this research question and we hypothesize that design choices have

an impact on the performance of code generation models through

fine-tuning. Particularly, we craft a dataset design based on our

preliminary investigations and literature review as follows. First,

the findings in Section 3.6.3 suggest that datasets organized at the

method-level, such as MBPP, hold promise for enhancing lan-

guage models’ comprehension of context, consequently leading

to improved code generation performance overall (See Section 3.)

Additionally, prior studies [7, 36] have highlighted the benefits of

method-level granularity in accurately capturing the intent and

functionality of code. Notably, the widely recognized CodeBERT

model [21], a benchmark for code-related tasks, has been trained us-

ing method-level data. Second, previous work [85] has underscored

the significance of method signatures, suggesting that models

may struggle to generate new methods from scratch without this

crucial information [56]. Finally, several studies [30, 46, 84] empha-

size the importance of annotations in streamlining the training

process, as they provide explicit semantic links between code and

natural language, thereby enhancing learning efficiency.

To test our hypothesis, we specifically apply our design to a

dataset, CodeAlpaca𝑡𝑟𝑎𝑖𝑛 , creating CodeAlpaca𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 , due to its

suboptimal performance in code generation when used to fine-tune

our target models. One-line-based datasets, such as CoNaLa𝑡𝑟𝑎𝑖𝑛

and ODEX𝑡𝑟𝑎𝑖𝑛 , present challenges in conversion due to their in-

herent limitations on contextual information within both the intent

and code segments. To expedite the process and ensure the creation

of accurate datasets, we utilize GPT-4 to convert the 2.19K data

points. This conversion process involves prompting the model with

specific instructions, such as ‘Here is a specific format of a data point:
<NL intent> ... <Code> ... Please convert the following data point to
match this design.’ It is worth noting that we have the flexibility to

perform manual conversions, either through manual labor or any

LLM-assisted approaches. Curated examples can be found in [1].

Results and Analyses: Improving dataset design choices has a sig-

nificant impact on the model performance. We compare the model

performance before, i.e., CodeAlpaca𝑡𝑟𝑎𝑖𝑛 , and after applying new

design choices, i.e., CodeAlpaca𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 to each dataset. The results

are represented in Figure 5.We also apply theWilcoxon signed-rank

test [18] to the paired test samples (before/after semantic correla-

tion correction). The p-value of the statistical test is 0.000061; thus,

we can reject the null hypothesis.

On the Functionality-focused. The first four charts in Figure 5

illustrate a consistent trend across all our target benchmarks: Each

model with the re-designed CodeAlpaca𝑡𝑟𝑎𝑖𝑛 consistently outper-

forms those fine-tuned with the original dataset. On average, the

normal-sized LMs exhibit superior performance improvements,

with the exception of Llama-2-7B. Specifically, across all functionality-

focused benchmarks, we observed average improvement rates of

63.13%, 51.78%, 35.22%, 14.21%, 32.93%, 35.56%, and 271.05% for

CodeGen-350M-Mono, StarCoder-1B, DeepSeek-Coder-1.3B,

DeepSeek-Coder-6.7B, MagiCoder-DS-6.7B, CodeLlama-7B, and

Llama-2-7B, respectively. Notably, performance enhancement rates

vary significantly, ranging from 7.70% (observed in the case of

DeepSeek-Coder-6.7B on the HumanEval𝑡𝑒𝑠𝑡 ) to 422.39% (observed

in the case of Llama-2-7B on the MBPP+𝑡𝑒𝑠𝑡 ).

Intriguingly, the observation that MagiCoder-DS-6.7B exhibits

more pronounced and positive impacts on design alignment com-

pared to DeepSeek-Coder-6.7B, despite their similar original per-

formances, suggests that certain models may be more sensitive to

dataset modifications. This finding underscores the importance of

not only evaluating model performance but also understanding

the underlying mechanisms driving performance improvements.

Overall, these results provide valuable insights into the impact of

dataset design on model performance in code generation tasks and

highlight avenues for further research and optimization.

On the Alignment-focused. Similar to the functionality-focused

benchmark results, the performance is consistently better than

those with the original dataset. Specifically, across two Alignment-

focused benchmarks, we obtained average enhancement rates of

21.60%, 108.95%, 44.71%, 37.41%, 19.38%, 93.03%, and 179.88% for

CodeGen-350M-Mono, StarCoder-1B, DeepSeek-Coder-1.3B,

DeepSeek-Coder-6.7B, MagiCoder-DS-6.7B, CodeLlama-7B, and

Llama-2-7B, respectively.

Unlike the phenomenon observed in Functionality-focused bench-

marks, where normal-sized LMs showed better improvement rates,

we did not observe a similar trend in Alignment-focused bench-

marks. This suggests that the impact of dataset design on model per-

formance may vary depending on the nature of the benchmark and

the specific characteristics of the tasks involved. Furthermore, the

contrasting results betweenMagiCoder-DS-6.7B and DeepSeek-

Coder-6.7B in Alignment-focused versus Functionality-focused

benchmarks highlight the complexity of model-dataset interactions.

Specifically, whileMagiCoder-DS-6.7B exhibitedmore pronounced

impacts on design alignment in the Functionality-focused bench-

marks, DeepSeek-Coder-6.7B showed a better improvement rate

for Alignment-focused benchmarks.
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Figure 5: RQ3 - Effectiveness of design alignment. The Y-axis shows the values of the metrics (Pass@1 for the left four plots
and BLEU for the right two plots). The X-axis of each subplot represents the datasets before (left-hand side: CodeAlpaca𝑡𝑟𝑎𝑖𝑛)
and after (right-hand side: CodeAlpaca𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑 ) applying design alignment. Both datasets are applied to each target model to
fine-tune it. Detailed values are available in [1].

Overall, these results highlight the effectiveness of our curated

dataset design in improving model performance across a range

of source code generation tasks. The consistently superior per-

formance of models fine-tuned with the curated dataset suggests

that specific features and characteristics within the dataset are con-

ducive to better model training and performance. Furthermore, the

varying improvement rates across different models and benchmarks

underscore the importance of considering model-specific character-

istics and task complexities when evaluating dataset effectiveness.

Answer to RQ3: Updating dataset design significantly enhances
model performance. Notably, while normal-sized LMs demon-

strated better improvement rates in Functionality-focused bench-
marks, no such trend was observed in Alignment-focused bench-
marks. These findings highlight the critical role of dataset design

in enhancing model performance for code generation.

5 DISCUSSION
Performance dropping dataset. While fine-tuning is widely used

to enhance performance in many language model tasks, it can

also lead to performance declines in certain cases. Surprisingly,

Table 1 reveals that fine-tuning with original datasets resulted in

average increase/decrease rates of -13.37%, -15.69%, -24.59%, 49.96%,

11.17%, and 13.32% for HumanEval, HumanEval+, MBPP, MBPP+,

CoNaLa, and ODEX benchmarks, respectively. The increase rates

observed for each benchmark were 23.83% (combining StarCoder-

1B with ODEX𝑡𝑟𝑎𝑖𝑛), 21.79% (combining DeepSeek-Coder-1.3B

with DS-1000𝑡𝑟𝑎𝑖𝑛), 8.7% (combining CodeGen-350M-Mono with

MBPP𝑡𝑟𝑎𝑖𝑛), 194.71% (combining Llama-2-7Bwith MBPP𝑡𝑟𝑎𝑖𝑛), and

200.05% and 268.36% for the last two benchmarks when combining

CodeGen-350M-Mono with ODEX𝑡𝑟𝑎𝑖𝑛 . However, the decrease

rates were observed with a specific model, Llama-2-7B, when

fine-tuned with the CoNaLa𝑡𝑟𝑎𝑖𝑛 for all the Functionality-focused

benchmarks and the CodeAlpaca𝑡𝑟𝑎𝑖𝑛 for all the Alignment-focused

benchmarks. The significant fluctuations in performance under-

score the importance of the dataset quality and this observation

highlights the critical need for rigorous dataset curation to ensure

optimal model performance in code generation tasks. Further re-

search into dataset refinement strategies is essential to address this

limitation and unlock the full definition of the high-quality dataset

for CodeLLMs.

Comparing against the Zero-shot. We intentionally excluded com-

parisons against zero-shot model performances, except for prelim-

inary analysis, as our focus is on evaluating dataset quality and

identifying potential enhancement techniques. While these compar-

isons are somewhat tangential to our primary aim, they may offer

insights into techniques that are superior to the original dataset

quality as well. In the case of our dataset design curation, most

of the combinations show superior performances, when addition-

ally considering zero-shot performances. For Functionality-focused

benchmarks, the average increase rates against Zero-shot were

18.93%, 18.94%, 1.89%, and 97.51% for HumanEval, HumanEval+,

MBPP, and MBPP+ while the results show a slight decrease on av-

erage with Alignment-focused benchmarks (i.e., -4.27% and -3.90%

on both CoNaLa and ODEX datasets). This further emphasizes the

impact of dataset design choices. By carefully selecting and refin-

ing datasets based on their characteristics and suitability for the

intended application, researchers and practitioners can optimize

model training and improve real-world performance outcomes.

Generalization of the Study. While we acknowledge the importance

of generalizability in studies, our research specifically aimed to

investigate the impact of fine-tuning dataset quality on the perfor-

mance of CodeLLMs for natural language text-to-code generation.

This focused approach allowed us to conduct a deep and thorough

analysis of this particular application. We believe that our insights

into fine-tuning dataset quality, andwe also believe that our insights

can easily extend to other CodeLLMs because other tasks are also

trained by the same method, fine-tuning the pre-trained models.

Furthermore, our current study focused on Python due to its wide-

spread use in both software and machine learning communities,

and the availability of rich and diverse datasets. Difficulties that

should be considered for other programming languages like Java

and Go would be as follows: 1) collecting vast amounts of training

datasets, 2) we would also need to establish new benchmarks and

evaluation metrics tailored to these languages, and 3) the process

of fine-tuning is computationally intensive and it requires careful

evaluation to ensure performance parity across languages.
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6 THREATS TO VALIDITY
External validity. There may be generalizability issues and selection

bias regarding the applicability of the training datasets used in the

study, as there are more datasets used for code generation tasks

in model training. However, we mitigated such issues by carefully

selecting a diverse range of datasets that represent different code

generation scenarios and domains as described in Section 3.1. The

controlled experimental environment may lack the complexity and

diversity of real-world tasks, posing a threat to ecological validity.

This threat has been automatically mitigated as the selected datasets

and benchmarks are collected from real-world open-source projects

and communities.

Internal validity. We acknowledge that there may be potential er-

rors in assessing dataset features and model performance metrics,

so we relied on standardized procedures and official sources from

reputable AI communities like HuggingFace
12
. This ensured consis-

tency and reliability in our experimental process. We also controlled

for environmental factors such as GPU clusters and hyperparam-

eters to maintain consistency across experiments. While there’s

a possibility of overlooking certain features that impact dataset

quality, we mitigated this by leveraging well-known detection tools

and refactoring libraries tailored for dataset assessment. These tools

enabled systematic evaluation of dataset quality aspects, enhancing

the reliability of our findings and the internal validity of the study.

7 RELATED WORK
Data Characteristic Analysis. Researchers have conducted numer-

ous studies analyzing data characteristics for software-related tasks.

Frantzeskou et al. [22, 23] specifically focused on software devel-

oper copyrights. They categorized key features as variable, method,

class, package naming, layout, and comments to identify authorship,

aiming to aid in triage processes or protect intellectual property

rights. Calleja et al. [12] compiled a dataset of malware and con-

ducted an investigation to reveal correlations between code reuse

and malware creation. Their analysis focused on the number of

duplicates, length, and complexity of source code, discovering a

strong correlation, with both the length and complexity of the code

increasing linearly over time. Zhang et al. [90] introduced a dataset

analysis framework for bug fixing, the framework incorporates

error-related features such as error type, error line length, aver-

age line depth, and more. Subsequently, Pujar et al. [59] developed

a bug detection model using this framework. Their findings sug-

gested that characteristic analysis facilitated the model in detecting

a higher number of bugs. Recently, several researchers [38, 72, 73]

studied the characteristic analysis of the generated source code by

the language models. The results indicated that characteristic anal-

ysis is mandatory for comprehensively understanding the quality

and potential of the datasets for software-related tasks as well as

training language models. In contrast, our study focuses specifically

on dataset characteristics for training language models. We aim to

uncover high-quality datasets suitable for training language models

and to explore potential approaches to enhance code generation

performance.

12
https://huggingface.co/

Language Model Fine-tuning. In addition to examining data charac-

teristics, researchers also focus on fine-tuning language models, a

process that entails additional training of pre-trained models with

smaller, task-specific datasets to enhance their performance on

particular tasks [17, 19]. Fine-tuning techniques have been used

for many tasks in the field of Software Engineering such as code

generation [67, 80], code search [64, 77], and code review [40, 45].

Regarding the dataset quality, it may be crucial for the success-

ful fine-tuning of language models. Ahmed et al. [5] highlight the

importance of dataset quality, particularly the diversity and rep-

resentativeness of different programming languages and coding

styles. Additionally, Martin et al [48] stress the significance of us-

ing high-quality datasets for fine-tuning models, as cleaner data

leads to better model performance and more accurate API sequence

predictions. Berabi et al. [10] proposed TFix, which leverages a

high-quality dataset for fine-tuning, encompassing a broad range

of coding errors extracted from GitHub commits. These indicate

the fine-tuning performance depends on what the language model

learns such as diverse patterns and solutions. Furthermore, dataset

quality impacts the generalization ability of the models. We delve

deeper into the mechanisms by which features affect the dataset

quality for fine-tuning CodeLLMs and explore the potential ap-

proaches to enhance the model performance.

8 CONCLUSION AND FUTURE WORK
The ascent of CodeLLMs is reshaping the landscape of software

development, yet concerns linger regarding the handling of data,

chiefly driven by apprehensions about data quality. We emphasize

the paramount importance of high-quality datasets in training LLMs

for specific tasks, exploring various features such as code-related

issues, pair-wise semantic correlation, and design nuances. Our

deep dive into dataset characteristics sheds light on factors critical

to model performance, particularly in the realm of source code

generation. Furthermore, we probe the effectiveness of potential

solutions to enhance code generation performance. Our findings

not only provide a blueprint for augmenting LLM efficacy through

enhanced dataset quality but also furnish researchers and practi-

tioners with invaluable insights for harnessing the full potential of

LLMs in real-world software engineering applications. Given the

potential opportunities for further enhancing model performance

through sequence training and the combination of processing meth-

ods, we actively plan to conduct additional studies in this area. Our

future work also includes the quality of pre-training datasets for

CodeLLMs so that we can thoroughly cover pre-training as well as

fine-tuning.
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