
Empirical Software Engineering (2024) 29:124
https://doi.org/10.1007/s10664-024-10489-x

App review driven collaborative bug finding

Xunzhu Tang1 · Haoye Tian1 · Pingfan Kong1 · Saad Ezzini3 · Kui Liu2 · Xin Xia2 ·
Jacques Klein1 · Tegawendé F. Bissyandé1

© The Author(s) 2024

Abstract
Software development teams generally welcome any effort to expose bugs in their code base.
In this work, we build on the hypothesis that mobile apps from the same category (e.g.,
two web browser apps) may be affected by similar bugs in their evolution process. It is
therefore possible to transfer the experience of one historical app to quickly find bugs in its
new counterparts. This has been referred to as collaborative bug finding in the literature. Our
novelty is that we guide the bug finding process by considering that existing bugs have been
hinted within app reviews. Concretely, we design the BugRMSys approach to recommend
bug reports for a target app bymatching historical bug reports from apps in the same category
with user app reviews of the target app. We experimentally show that this approach enables
us to quickly expose and report dozens of bugs for targeted apps such as Brave (web browser
app). BugRMSys’s implementation relies on DistilBERT to produce natural language text
embeddings. Our pipeline considers similarities between bug reports and app reviews to
identify relevant bugs. We then focus on the app review as well as potential reproduction
steps in the historical bug report (from a same-category app) to reproduce the bugs. Overall,
after applyingBugRMSys to six popular apps, wewere able to identify, reproduce and report
20 new bugs: among these, 9 reports have been already triaged, 6 were confirmed, and 4 have
been fixed by official development teams.

Keywords Bug finding · App review · Bug similarity · Bug report

1 Introduction

Modern apps must evolve quickly to adapt to a fierce competition in app markets where users
have varied choices among feature-rich apps (McIlroy et al. 2016). Unfortunately, the fast
iteration in app updates often results in defects being found by users after releases (Calcagno
et al. 2015). Various research efforts based on static analysis (Jiang et al. 2017; Lee et al. 2016;
Talukder et al. 2019) and dynamic testing (Hu et al. 2014; Van Der Veen et al. 2013; Fan et al.
2018; Su et al. 2020; Liu et al. 2022) have therefore been carried out to detect bugs before
releasing apps. Bug-free apps remain however a myth and even popular apps, which are
intensively used by large user communities, often display simplebut annoying defects (Fan

Communicated by: Carlo A. Furia

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Accepted: 28 March 2024 / Published online: 26 July 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10489-x&domain=pdf
http://orcid.org/0000-0002-8049-3997

Empirical Software Engineering (2024) 29:124

et al. 2018; Amalfitano et al. 2018; Sun et al. 2021). Through app reviews, users can provide
feedback on buggy behaviour that sometimes go overlooked by app developers for various
reasons: reviews can be redundant and uninformative (e.g. simple praise or dispraise repeating
the star rating) (Maalej et al. 2016). App reviews are also time-consuming to exploit and can
mislead the identification of fault locations (Stanik et al. 2019). In contrast, official bug
reports filed in the issue tracker are the focus of developer communities since these reports
tend to be more readily exploitable for bug resolution.

It is noteworthy that if recurring bugs are not swiftly addressed by developers, they will
lead to negative app reviews with significant impact on app score in app markets and other
severe consequences such as app fails (Li et al. 2010). The aforementioned situation calls
for a more careful consideration of user reviews by developers. In particular, it would be
appealing to translate app reviews into bug reports that can be used by developers as starting
points in their fight against bugs. However, there exists a significant gap between the language
of user reviews and the language of developer bug reports. The former is generally formal
and technically-written while the latter is informal and colloquially-written. In a recent work,
Haering et al. (2021) proposed a deep learning approach tomatch app reviews and bug reports
with the ambition of easily tracking whether an issue reported in app reviewwas already filed
as an official bug report, which should increase bug fixing priority. While we subscribe to
the claim that user feedback often lacks information that is relevant for developers (such
as steps to reproduce or affected versions) (Martens and Maalej 2019; Zimmermann et al.
2010), their approach (1) does not address the key problem of review deluge, and (2) misses
the opportunity to reveal new bugs to the developers. Indeed, on the one hand, for a popular
app, there can be thousands of new reviews every day, most of which are noisy for developers
since they do not offer insights into bugs. On the other hand, some app reviews may actually
mention important and annoying bugs which can impact user experience for a large number
of users without ever being reported formally in the issue tracker.

In another research direction, Tan and Li (2020) have proposed Bugine (Tan and Li 2020),
a collaborative bug recommendation system that aims at pairing similar issue reports across
different apps. Thanks to Bugine, they have empirically shown that it is indeed possible to
match similar issue reports across different apps. However, Bugine can only report issues
across apps where the relevant UI design is of high visual similarity. Besides limited to only
UI-related bugs, Bugine does not take target app’s review into consideration, which enable
it no ability to pick up useful bugs as input.

Building on the hypothesis proposed by Tan et al., we performed a preliminary study (cf.
Section 2) to investigate whether apps within the same category (e.g., two web browser apps
or two calendar apps) tend to encounter similar development issues. Indeed, our observations
suggested that apps in the same category share common challenges since these apps (1) are
developed using similar development frameworks for comparable functionalities (e.g.,Unity
for gaming apps), (2) employ similar UI design logic, and (3) use the same storage/notifica-
tion/hosting services (e.g., FireBase) (Long et al. 2014, 2016). This leads us to believe that
learning from the experiences of existing apps could be promising for improving new ones.

Drawing upon this observation, we delved deeper into the potential of shared knowledge
across apps within the same category. Prior work (Li et al. 2019; Bevan et al. 2002) indicates
that interactions among developers of different software can effectively enhance the quality
of each piece of software. We conceive of these interactions in our context as the sharing of
issues and resolutions among apps within the same category. These shared experiences, artic-
ulated in the form of bug reports, constitute a valuable resource for continuous learning and
improvement for each app within the category. This understanding serves as the foundation
for our unique strategy of collaborative bug-finding, which is driven by user app reviews.

123

124 Page 2 of 32

Empirical Software Engineering (2024) 29:124

Fig. 1 Example of bug report and app review matched by BugRMSys

This paper We hypothesize that if app A and app B belong to the same category (we
consider the categories listed in the Wikipedia enumeration of popular free and open source
Android apps1, e.g., web browsers, Games, etc.), bug reports from one can be relevant for
discovering bugs in the other. Unfortunately, there can be too many bug reports filed in some
categories of applications. For example, in the Web Browser category, the Firefox issue
tracker alone has received more than 20,000 bug reports. It is, therefore, necessary to identify
those issues that are more likely to be relevant for the app under study (i.e., the target app for
bug discovery). To that end, our novel strategy in this work is to explore app reviews written
by users for the target app. Our idea is that app reviews, which may contain hints about buggy
behaviour observed by users of the target app, can be matched to bug reports from other apps
in the same category.

We propose BugRMSys, a collaborative bug-finding approach that is guided by user app
reviews. BugRMSys finds bugs by recommending a bug report of appA (e.g., the excerpted
bug report of Signal in Fig. 1(a)) as being relevant to the target app B (i.e., Wire) given the
similarity of the bug report with app reviews from users of B (e.g., the excerpted user review
of Wire in Fig. 1(b)). With the app review in B matched with a similar bug report in A, we
reproduce the bug in B by leveraging reproduction steps in the bug report and additional
information details from the app review. If reproduction is successful, we can confirm having
found a “new bug” that will be filed into the official issue tracker for app B. For example,
the corresponding bug found by BugRMSys in Wire was reported to its developers (shown
in Fig. 2(a)), and was finally got fixed by Wire’s official developer (Fig. 2(b)) in one day.
Surprisingly, the relevant user app review had been submitted since four years, but there is
no any corresponding bug reported in the official issue tracker of the app yet. To the best
of knowledge, this scheme of collaborative bug finding driven by app reviews, has not been
previously explored in the literature.

Our approach represents a novel contribution to the field as it adopts a unique collaborative
method, utilizing data from same-category apps. This approach not only leverages the com-
monalities within the same app category but also allows for an unprecedented comparison
and bug identification process. This hasn’t been done before and provides a new perspective
in app bug detection and recommendation.

The main contributions of our work are as follows:

1 https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

123

Page 3 of 32 124

https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

Empirical Software Engineering (2024) 29:124

Fig. 2 Bug found by BugRMSys and response from official developer (some texts have been hidden for
privacy protection)

– We present insights from an empirical study about the similarity of issues reported across
apps from the same category. These insights provide the intuitive basis for collaborative
bug finding.

– We devise BugRMSys, a bug recommendation system, which leverages similarities of
user app reviews with bug reports to identify which bug reports from same category apps
are good candidates to attempt a bug reproduction on a target app.

– We demonstrate experimentally the effectiveness and usefulness of BugRMSys: applied
to 6 apps from different categories, we find and reproduce 20 new bugs (i.e., bugs that
are not yet reported in the issue trackers of these apps): 9, 6, and 4 reports have been
already triaged, confirmed, fixed by official development teams, respectively.

– Through a rigorous evaluation involving independent experts, we demonstrated a high
relevance between bug reports identified.

2 Preliminary Study

In this section, we conduct a preliminary study to evaluate the hypothesis of our work.
Specifically, we seek to check that apps from the same category are more likely to share
similar bug reports (and thus a bug report from app A could be relevant for app B if A and
B are from the same category). We focus the comparison by estimating the overlap (i.e., the
proportion of common words) between bug reports. To that end, we analyze the overlap rate
of topK frequent words of reports for apps from same or different categories. From a more
qualitative perspective, we also analyze which types of words are frequently shared.

2.1 Empirical Setup

Apps: To conduct our preliminary study, we consider six popular apps listed in theWikipedia
page of free and open-source Android apps. Table 1 summarizes statistics about these apps.
We consider Signal and Wire within the Privacy-Security category. Both apps have been

123

124 Page 4 of 32

Empirical Software Engineering (2024) 29:124

Table 1 The Apps and their categories

App Name Repo Name Category # Downloads # Bug Reports

Signal Signal-Android privacy security >50 million 11,980

Wire wire-android privacy security >1 million 3,677

Firefox Android fenix Web Browser >100 million 24,087

Brave brave-browser Web Browser >50 million 21,436

NextCloud nextcloud Office Suite >1 million 9,890

owncloud owncloud Office Suite >0.1 million 3,571

downloaded more than one million times from the Google Play store. We also consider
Firefox and Brave, two widely popular in the Web Browser, category. Finally, we consider
Nextcloud and Owncloud among the apps in the Office Suite category.

BugReports: For each app, we have collected all bug reports that are present in their issue
tracker system. The number of collected bug reports is given in the last column of Table 1.
Note that, for our experiment, we employ the Python NLTK (Loper and Bird 2002) library
and self-defined filters to pre-process (This is detailed in Sec A.5) the bug reports for natural
language processing.We apply typical pre-processing tasks to remove stopwords (Wilbur and
Sirotkin 1992), punctuation, digits, etc. (Haddi et al. 2013).Meanwhile, to limit experimental
bias, we set 10 different sizes K for the set of most frequent words, increasing step-wise until
an order of magnitude: we consider Top100, Top200,..., Top1000 frequent words. Concretely, to
build each TopK set for each app, we extract the K most frequent words in its bug reports. By
analysing the TopK frequent words, we can assess the differences in shared words between
bug reports of same-category apps and different-category apps. Applied to all set ten TopK
sets, we can further check for potential trends, while empirically identifying the value of K
under which the overlap (i.e., the proportion of shared words) is the highest.

Notation: In the rest of this paper, the category Privacy-Security, the category Web
Browser, and the category Office-Suite are referred to as PS, WB, and OS, respectively.
We also note the three pairwise combination of apps from the same category as follows:
PS-PS: <Signal, Wire>; WB-WB: <Firefox, Brave>; OS-OS: <Nexcloud, Owncloud>.
Similarly, we consider 12 pairwise combinations of apps from different categories as fol-
lows:PS-WB:<Signal, Firefox>,<Signal, Brave>,<Wire, Firefox>, and<Wire, Brave>;
PS-OS: <Signal, Nextcloud>, <Signal, Owncloud>, <Wire, Nextcloud>, and <Wire,
Owncloud>;WB-OS:<Firefox,Nextcloud>,<Firefox,Owncloud>,<Brave,Nextcloud>,
and <Firefox, Owncloud>.

Overlap Rate (Metric): Given two sets X and Y , Overlap rate of X with Y is computed
as follows:

Overlap(XY) = si ze(|X ∩ Y |)
si ze(X)

, (1)

where si ze denotes the size function for sets. If both sets have the same size (e.g., in our
case, we select topK frequent words in the different sets of bug reports), then Overlap(XY)

== Overlap(YX).

123

Page 5 of 32 124

Empirical Software Engineering (2024) 29:124

(a) signal-others (b) wire-others (c) firefox-others

(d) brave-others (e) nextcloud-others (f) owncloud-others

Fig. 3 Overlap rate of hot words of category apps’ bug issues

2.2 Hypothesis Analysis

In this section, we check whether our hypothesis is valid from the quantitative and qualitative
aspects of bug reports.

Quantitative Analysis:The results of the quantitative study are presented in Fig. 3, where
for each app X, we compute the percentage of overlap, i.e., the percentage of shared words
between the TopK frequent words in the bug reports of X and the TopK frequent words in
the bug reports of another app Y. Our analysis reveals that the percentage of shared TopK
frequent words is highest when apps X and Y are from the same category. We further delved
into the nature of these shared words, differentiating between general/common words and
specific, bug-related terms, to understand their role in the context of bug reports (Fig. 4).

Qualitative Analysis: In the qualitative analysis, we set a threshold of frequency as 20 to
select the most frequent words in bug reports. With the Top20 most frequent words of each

(a) PS-PS (b) WB-WB (c) OS-OS

(d) PS-WB (e) OS-PS (f) WB-OS

Fig. 4 Distribution of Top20 shared frequent words in same-category app pairs and different-category app
pairs

123

124 Page 6 of 32

Empirical Software Engineering (2024) 29:124

General Shared Words: Specific Bug-Related Words:

Android Upgrade

App

Call

Crash

Permission

Upload Sync

Fig. 5 Examples indicating the relationship between general shared words and specific bug-related words

app, we assessed to what extent different app pairs share these words, and how often the
shared words occur in each app. A significant observation is that while many shared words
are general (e.g., ‘android’, ‘app’), their contextual use within bug reports can still provide
valuable insights. We examined the context in which these general words appear, exploring
how they relate to more specific bug-related terms. This analysis helped us understand how
general terms contribute to identifying patterns or categories of bugs within the same app
category. As shown in Fig. 5,we take examples to explain the relationship between general
shared words and specific bug-related words: Normally, each general shared word can be
matched to multiple specific bug-related words to help confirm where the bug is happening.
For example, ‘Upgrade’ and ‘Crash’ could indicate the problem in ‘Android’ or ‘App’, but
they can not mean the problems of ‘Call’. ‘Permission’ and ‘Sync’ could refer to the issues
of ‘Call’ or ‘Upload’, but not possible refer to the more general problem in ‘Android’ or
‘App’. Here, for example, the title of the bug issue: “it crashes frequently, since upgrading
my Android". In this report, “Android" sets the context to the Android platform, indicating
that the issue is related to or observed on Android devices. The term “Upgrade” further
localizes the problem to a specific action or event — the upgrading of the Android OS. This
combination of terms suggests that the problem is not just related to the app’s performance in
general but is specifically triggered or exacerbated by upgrading the Android OS (Table 2).

To make this observation more clear, we provide examples as shown in Fig. 5.
We note that the non-shared frequent words of the same-category app pairs often relate

to general features or problems, whereas those in different-category pairs are more aligned
with their main features. For instance, in the pair <Signal, Firefox>, the non-shared words
in Firefox (e.g., ’tabs’, ’browser’) are associated with traditional features of web browsers.

To sum up, the shared information in the bug reports of same-category apps not only
indicates a higher degree of similarity but also shows how general words, when analyzed in
the right context, can contribute significantly to bug categorization and identification.

Hypothesis ➠ ❝ Our analysis supports the hypothesis that employing experience from
same-category apps and the community (reviews) of target app B can aid in discovering
potential bugs of B. The commonality and difference in the quantitative and qualitative
analysis of bug reports, especially considering the contextual relevance of general terms,
underpin this hypothesis.❞

123

Page 7 of 32 124

Empirical Software Engineering (2024) 29:124

Table 2 Top20 frequent words in
bug reports for each app

App Top20 frequent words

PS Signal signal, message, sms, group, android, app, con-
tact, send, mms, conversation, notification, fea-
ture, call, add, fix, request, crash, textsecure, text

Wire fix, feature, add, conversation, avs, part, message,
bump, wire, new, update, call, user, remove, app,
android, video, version

WB Firefox bug, fnx, android, tab, add, tabs, update, search,
issue, menu, components, fenix, button, page,
crash, new, ui, strings, version

Brave brave, x, release, android, chromium, add, desk-
top, test, run, rewards, manual, ads, tab, browser,
upgrade, wallet, new, settings, page, update

OS Nextcloud app, upload, bump, android, crash, file, nextcloud,
fix, folder, auto, stable, add, error, rc, new, use,
account, server

Owncloud android, upload, new, file, app, folder, fix, own-
cloud, feature, release, bug, request, update,
share, add, view, arch, bump

2.3 Expert Analysis on Hypothesis

In our study, we engaged three independent experts to manually score the relevance of
matched reviews andbug reports. These reportswere formed into twodistinct groups. Thefirst
group comprised pairs of reports that share frequent words, and the second group comprised
pairs that share few to no common words. Each expert evaluated a sample of 385 pairs from
each group, drawn randomly from a population of one million pairs. This sample size was
calculated to provide a 95% confidence level and a 5% margin of error.

The scores assigned by the experts ranged from 1 to 5, with a score of 1 indicating no
relation between the bug reports, and a score of 5 indicating a high relevance. For the first
group, the experts’ mean scores were approximately 3.85, 4.23, and 4.47 for Experts 1, 2, and
3, respectively. This suggests a high degree of relevance for bug reports that share frequent
words. The boxplot in Fig. 6(a) provides a visual representation of these scores.

Fig. 6 If matched bug reports are highly similar, the relevance score will be 5, if the matched bug reports are
no related, the relevance score will be 1

123

124 Page 8 of 32

Empirical Software Engineering (2024) 29:124

Fig. 7 Overview of BugRMSys

In contrast, for the second group, the experts’ mean scores were significantly lower, with
values of approximately 1.65, 2.01, and 1.87 for Experts 1, 2, and 3, respectively. This
indicates a low degree of relevance for bug reports that do not share frequent words, as
shown in Fig. 6(b).

These results were further adjusted to account for individual bias, resulting in final mean
scores of 1.65, 2.01, and 1.87 for Experts 1, 2, and 3, respectively. This rigorous manual
evaluation by independent experts strengthens the validity of our study and provides valuable
insights into the relationship between bug reports and reviews (Fig. 7).

3 BUGRMSYS

Figure 8 depicts the general workflow of the approach for app review driven collaborative
bug finding.

Notation we will refer to app A and app B as two apps that belong to the same category.

Our approach attempts to leverage the development experience of the historical app A to
find bugs in the target app B. The workflow therefore starts with a representative bug report
that has been handled in the development of app A. If a similar bug report exists in the issue
tracker of the target app B under study, the bug finding process is halted and must be restarted

Fig. 8 General workflow of app review driven collaborative bug finding

123

Page 9 of 32 124

Empirical Software Engineering (2024) 29:124

with another bug report from app A. Otherwise, the workflow proceeds to check whether the
bug report content is similar to some user reviews (B) (that has therefore gone overlooked).
If one or several relevant app reviews are found, we must attempt to reproduce the bug in app
B based on reproduction steps in the bug report of app A as well as specific details in user
review of B. In our evaluation, once the buggy behavior is confirmed through reproduction
of the bug report, we further submit a new bug report in the issue tracker of app B. In the
remainder of this section, we will present a real-world example before detailing the technical
approach for bug recommendation.

3.1 Running Example

Figure 9 illustrates the case where we leveragedBugRMSys to discover a new bug in the web
browser app Firefox. By iterating over bug reports from the active development repository of
Brave, we identified a bug report which refers to synchronization with QR Code. A similar
bug report was absent from the issue tracker of Firefox. After matching by BugRMSys, a
user review of Firefox had clearly stated a similar problem “Cannot sync with Pc. Why is the
only option to sync qr code?”. With the user’s assessment, the bug report might indeed be
relevant, we thus explore the steps enumerated in Brave’s bug report to reproduce thematched
problem in Firefox. Surprisingly, the bug was successfully reproduced within a few minutes.
We then submitted a bug report with two screenshots into the issue tracker of Firefox, which
was eventually confirmed by the Firefox development team in 4 days.

Intuitively, our bug recommendation could have started with considering available user
app reviews and try to correlate with historical bug reports from other apps in the same
category of the target app. Unfortunately, in practice, most app reviews do not provide usable
information. Therefore, we propose to initiate the search with the bug reports, which are in
lesser numbers, and aremore structured. Nevertheless, many bug reports in the same category
as the target app are actually raising irrelevant issues. Therefore, it is important to further
check if such potential issues have caught user attention and lead them to write reviews that
mention them. This motivates the need to devise a reliable mechanism to precisely match
useful app reviews with relevant bug reports.

Fig. 9 Running example of BugRMSys

123

124 Page 10 of 32

Empirical Software Engineering (2024) 29:124

3.2 Approach

Figure 7 illustrates the details of automatically finding bugswithBugRMSys, which includes
two main modules: an embedding module and an exploration module. The remainder of this
section describes how the embedding module deals with bug report and app review text
representation, and how the exploration module eventually identifies relevant bug reports for
recommendation.

3.2.1 Embedding and Processing Techniques

To embed app reviews and bug reports into vector representations for semantic similarity
computation, we use state-of-the-art pre-trained deep learning models, specifically Distil-
BERT (Sanh et al. 2019), a lighter but efficient version of BERT (Devlin et al. 2018). This
choice addresses several challenges:

1. App reviews and bug reports differ in organization and vocabulary (technical vs. non-
technical terms). Reviews often contain errors, emoticons, non-technical references, and
can be repetitive. Bug reports follow a technical template with detailed descriptions,
including technical terms and are often lengthy, making it challenging to capture overall
semantics.

2. To mitigate these issues, for app reviews, we apply NLP pre-processing techniques such
as lowercasing tokens, removing punctuation, stopwords, digits, and emoticons. Reviews
shorter than 10 words are dropped, as they typically lack substantial content. For bug
reports, we focus on the titles, which encapsulate essential content, avoiding the noise
from detailed descriptions.

DistilBERT is selected for its performance and practicality. It requires fewer resources
and less training time than BERT while maintaining similar capabilities. It uses a byte pair
encodingmethod for tokenization, effectively handling “out of vocabulary” issues and recog-
nizing compound words. The DistilBERTmodel produces a 768-dimensional contextualized
embedding for each token, considering the surrounding words’ context. This approach is
crucial for accurately representing the content of app reviews and bug reports.

The embedding process involves tokenization using DistilBERT’s WordPiece tokenizer,
conversion to input IDs, embedding lookup, and positional encoding. The model’s archi-
tecture includes Transformer blocks with self-attention mechanisms, enabling it to capture
complex semantic relationships within texts. The final embeddings from DistilBERT are
used for calculating document cosine similarity, facilitating the semantic comparison of app
reviews and bug reports.

3.2.2 Exploration

Once the embedding module has produced numeric representations for bug reports and app
reviews, the exploration module attempts to identify those reviews that are relevant for a
given bug report. If a user review is found, the bug report can be recommended (supposing
that no similar bug report was already filed for the target app).

To this end, following empirical findings from previous studies (Ghosh and Strehl 2006)
dealing with text similarity metrics (Wooditch et al. 2021), we resort to employing the cosine
similarity (Sitikhu et al. 2019) between low-dimensional representations of bug reports and
app reviews to measure their relatedness. BugRMSys then prioritizes app reviews as being

123

Page 11 of 32 124

Empirical Software Engineering (2024) 29:124

potentially relevant or not by referencing a threshold value to dismiss app reviews that should
not be listed. Therefore, if one app review of B is found to be similar with a bug report in
A, the bug report will be recommended as describing a bug that is relevant for the target app
B. Otherwise, the bug report will not be recommended. The threshold setting is presented in
Section 5.1.

4 Experimental Design

4.1 Research Questions

Our experiments aim at answering the following research questions:

– RQ-1: To what extent is the BUGRMSYS bug recommendation approach driven by
app reviews effective?Our approach is devised to recommend bugs with our hypothesis.
In this RQ, we first investigate to what extent app reviews can be used to recommend the
bug report for the target app. Before that, we build a “ground truth” set of bug reports
pairwise combinations (from a target app and a same category app).

– RQ-2: Can BUGRMSYS expose bugs in real-world apps based on existing app
reviews? With this research question, we explore the feasibility of exposing bugs in
real-world apps by BugRMSys with 20 apps of 9 categories. We investigate both the
Exploration module for bug recommendations as well as the actual bugs that developers
can confirm.

– RQ-3: How does BUGRMSYS compare against previous bug recommendation sys-
tems? With this research question, we compare the bug recommendation approach of
BugRMSys against the bug recommendation systems (DeepMatcher (Haering et al.
2021) and Bugine (Tan and Li 2020)) in three dimensions (inputs, automation, effective-
ness).

4.2 Dataset

We investigate the feasibility of our hypothesis with BugRMSys, we first curate a dataset
that collects bug reports and app reviews from 20 free and open-source apps of 9 categories.
For each app, we collect bug reports from its GitHub issue tracking system. App reviews are
selected by checking whether an app review is related to a concrete bug report. App reviews
are further curated following the order given after a sort on “helpful”. A review is given a
“helpful” score according to the number of users who agree with it. In a recent study, Häring
et al. (Haering et al. 2021) have used this score to measure the importance of a review. Note
that, collected bug reports and app reviews are written in English. Table 3 summarizes the
information of collected data.

4.3 EvaluationMetrics

Our study leverages a variety of metrics to validate the experiments.
To evaluate the overall performance of BugRMSys,we useAcc@NandMeanRecriprocal

Rank (MRR), which are widely used metrics for recommender systems (Ye et al. 2014; Zhou
et al. 2012; Poerner et al. 2020).

123

124 Page 12 of 32

Empirical Software Engineering (2024) 29:124

Table 3 Dataset Summary

App Category # Apps App Names Size Popularity
(#download)

Bug Reports
(all)

App
Reviews
(all)

privacy security 2 Signal 56Mb 100M+ 15,657 15,428

Wire 100Mb 1M+
web browser 2 Firefox 86Mb 100M+ 45,523 166,360

Brave 225Mb 100M+
office suites 2 Owncloud 25Mb 100K+ 13461 2,260

Nextcloud 32Mb 1M+
emulator 3 Dolphin 18Mb 5M+ 25,822 43,709

Mupen64plus 15Mb 10K+
Ppsspp 32Mb 100M+

communication 2 Jitsi 53Mb 10M+ 4,555 3,166

ConnectBot 3Mb 1M+
game 2 Pxiel 37Mb 1M+ 1,590 3,098

Mindustry 62Mb 5M+
multimedia 2 AntennaPod 9Mb 500K+ 5,898 53,746

NewPipe 9Mb 50K+
reading 2 Kiwix 19Mb 1M+ 3,704 62,755

FBReader 9Mb 10M+
science and
education

3 Sky Map 44Mb 50M+ 16,045 36,413

Stellarium 5Mb 10M+
AnkiDroid 83Mb 10M+

Total 20 - - - 132,255 386,935

Acc@N: Acc@N hit measures the retrieval precision over the topN recommended issues
or reviews in the ranked list:

Acc@N = �N
i (pair(i))

LENGT H
, (2)

where LENGTH represents the length of tested ground truth; pair(i) means if the i-th issue B
hit the i-th topN reviews relevant to issue A, if yes, pair(i) = 1, else 0. Overall, Acc@N is an
approach used in previous research describing how often the issue in target B is among the
topN Nearest Neighbours (by cosine) of a DistilBERT word space.

MRR:MRR is short for mean reciprocal rank and is a popular metric used to evaluate the
efficiency of recommendation systems (Shani and Gunawardana 2011; Cames and II-Grants
2006; Mahmood et al. 2009). The equation of accuracy is described as follows:

MRR = 1

N
∗ �

|N |
i=1

1

ranki
, (3)

where N is the length of ground truth; For the i-th issue (app A) in ground truth, ranki
represents the position of recommended review which also relevant to issue in app B.

To better understand how we calculate Acc@N and MRR in this study, let’s provide
examples for each.

123

Page 13 of 32 124

Empirical Software Engineering (2024) 29:124

Acc@N is calculated as follows: Let’s say we have five ground truth issues, and we’re
looking at the top 3 (N=3) recommendations for each issue. For each issue, we check if the
correct matching issue is within the top 3 recommendations. If it is, pair(i) is 1; if not, pair(i)
is 0. For instance, for our 5 issues, if we get these results: [1, 0, 1, 1, 0], Acc@N would
then be calculated as (1+0+1+1+0) / 5 = 0.6. This means that 60% of the time, our model
correctly includes the matching issue in the top 3 recommendations.

MRR (MeanReciprocal Rank) is anothermetricwe use. TheMRR is calculated as follows:
If we have three issues in the ground truth and their correct results are ranked 1st, 3rd, and 2nd
in our model’s recommendations, the reciprocal ranks would be 1, 1/3, and 1/2, respectively.
We sum these up and divide by the number of ground truths. In this case, MRR = (1 + 1/3
+ 1/2) / 3 = 0.61, approximately.

4.4 Implementation & Availability

We first developed two crawlers for automatically collecting bug reports and app reviews
based on python packages: PyGithub2 and google play scraper3, respectively.We have imple-
mented a prototype version of BugRMSys using Python (and associated frameworks) with a
well-known, light-weight, transformer based, and contextual pre-trained model, DistilBERT,
to extract vector representations for both bug reports and app reviews. The dataset and the
replication package of BugRMSys are publicly available at:

https://github.com/Daniel4SE/BugRMSys

5 Experimental Results

In this section, we conduct qualitative and quantitative analysis to evaluate BugRMSys. To
this end, we evaluate the effectiveness of BugRMSys, we compare BugRMSys with state-
of-the-art tools for bug recommendation, we study the characteristics of BugRMSys, and
we explore the transferability of BugRMSys.

5.1 [RQ-1]: Effectiveness of BUGRMSYS

Setup for RQ-1: In our approach, we didn’t assign explicit ranks to the ’ground truth’ reviews.
The ranking emerged from the operation of our tool, BugRMSys, which processes each
Firefox bug report and attempts to match reviews from the Brave app. For each bug report,
BugRMSys generates a list of matched reviews, ordered based on its internal algorithm. We
retained only the top three matched reviews for each bug report. The ‘actual rank’ of each
review, therefore, is essentially determined by the position of thematch in the list generated by
BugRMSys. We manually verified these matched reviews to ensure their semantic similarity
to the corresponding Brave bug report. Although no explicit ranks were assigned to the
‘ground truth’, this order of matches, as generated by BugRMSys, served as the de facto
ranking.

To answer RQ1, due to the huge manual effort for assessing the similarity of app reviews
with bug reports, we focus on a single same-category app pair (FireFox, Brave), where
FireFox will be the input app and Brave the target app (i.e., we use bug reports from Firefox

2 https://pypi.org/project/PyGithub/
3 https://pypi.org/project/google-play-scraper/

123

124 Page 14 of 32

https://github.com/Daniel4SE/BugRMSys
https://pypi.org/project/PyGithub/
https://pypi.org/project/google-play-scraper/

Empirical Software Engineering (2024) 29:124

to find new bug reports in Brave by matching Brave user reviews). Note that in the running
example (cf. Section 2), we had illustrated a bug case where Firefox was the target app and
Brave was the input app. This is an additional argument that BugRMSys can explore the
experience of any app and leverage it for any other same-category counterpart regardless of
which app appears to have more historical data.

We start by building a ground truth dataset to assess the ability of BugRMSys to find
relevant bug reports for the recommendation. To that end, the idea is to first try to find existing
Brave bug reports that are similar to the ones of FireFox to build a set of pairs of similar
bug reports < BRFire f ox , BRBrave >. Then, for each pair < BRFire f ox , BRBrave >, we
rely on BugRMSys to identify Brave app reviews that match BRFire f ox . However, we only
consider Brave app reviews which precede the creation time of the corresponding BRBrave.
Finally, we manually check if the identified Brave app reviews match the corresponding
Brave bug report BRBrave. This would indicate that BugRMSys would have been useful to
automatically recommend the Firefox bug report as relevant to Brave. Especially, bug reports
of Firefox should be created earlier than the corresponding bug reports’ creation of Brave if
we want use Firefox’s information to explore potential bugs in Brave.

In practice, to build our set of similar bug reports, we randomly picked 3,000 bug reports
from Firefox. By using a cosine similarity threshold of 0.914, we were able to identify 81 bug
report pairs < BRFire f ox , BRBrave > where the Firefox and Brave bug reports are highly
similar. Note that this ground truth construction may be too conservative: there are possibly
other Brave bug reports that are also semantically similar to a given Firefox bug report.

Recall that the objective of BugRMSys is to match bug reports to app reviews. In this
case, we assess whether, for each pair of the ground truth, we can match the Firefox bug
report with app reviews that are relevant (based on human expertise5) to the associated Brave
report. If so, we can conclude that BugRMSys would have been able to recommend the
Brave bug report.

For our experiments, we applied BugRMSys on each of the 81 Firefox bug reports to
match Brave app reviews. We retain only the top 3 matched reviews per bug report. Overall,
among the 81 top1 reviews recommended by BugRMSys, 21 could be confirmed as indeed
semantically similar to the content in the Brave bug report associated in the ground truth pair.

We further confirm 32 and 38 (at Top 2 and Top 3 respectively) app review matches.
Table 4 details our results by also providing the Accuracy and MRR scores. Overall, with
Top 3 recommendations on a conservative ground truth, we reach almost 50% hit ratio. Note
that,whileBugRMSysmatchesFirefox bug reportswithBrave app reviews, our effectiveness
evaluation is to check whether the matched app reviews are semantically relevant for Brave
bug reports. This is the practical and ultimate concern of our bug recommendation scheme.

Table 7 presents an extract of our set of 81 similar bug reports pairs by focusing on three
pairs, the corresponding app user reviews and the result of our manual analysis. The full
results are detailed on our Github repository6.

The purpose of BugRMSys is to match bug reports with app reviews, leveraging informa-
tion from one application to potentially discover relevant bugs in another. In this experiment,
we simulated this process by using Firefox as the ”input” app and Brave as the ”target” app.

Here are the key steps we took:

4 We decided on 0.91 based on an empirical validation: the higher the similarity threshold is, the less pairs
will be matched, and at the same timematched reviews are closer to bug reports. We decide on a high threshold
to maximize high-quality results.
5 This is the core challenge of BugRMSys: to find semantic similarity between a bug report and an app review
6 https://github.com/BugRMSys/BugRMSys/blob/main/RQ1UserCase_firefox2brave.csv

123

Page 15 of 32 124

https://github.com/BugRMSys/BugRMSys/blob/main/RQ1UserCase_firefox2brave.csv

Empirical Software Engineering (2024) 29:124

Table 4 Results of Acc@N and
MRR@N

81 relevant bug pairs out of
3K bugs from Firefox

@1 @2 @3

App Review Hits 21 32 38

Value of Acc@N(%) 25.93 39.51 46.91

Value of MRR@N(%) 25.93 26.50 35.19

“App review Hits" represents the number of times BugRMSysmatches
the relevant app reviews associated to the ground truth bug report of
Brave: this is a proxy for estimating that BugRMSys would have been
able to recommend the Firefox bug report as relevant to Brave

– We built a ground truth set of bug report pairs that are semantically similar between
Firefox and Brave. This was done by manually selecting 3,000 Firefox bug reports and
identifying 81 pairs that had a high degree of similarity with Brave bug reports. The
similarity was computed using a cosine similarity threshold of 0.91.

– For each of these bug report pairs, we used BugRMSys to identify Brave app reviews
that matched the Firefox bug report. We made sure that the identified Brave app reviews
were created before the corresponding Brave bug report.

– We manually checked if the identified Brave app reviews matched the corresponding
Brave bug report. If they did, this indicated that BugRMSys would have been useful in
automatically recommending the Firefox bug report as relevant to Brave.

In this way, the experimental setupmirrors the intended application of BugRMSys - using
information from one app (in this case, Firefox) to identify potential bugs in another (Brave),
based on the similarity of app reviews to bug reports. The results demonstrated that, even
with a conservative approach to building the ground truth, BugRMSys was able to identify
relevant matches in about 50% of cases.

✍ Answer to RQ-1: � The Acc@N and MRR@N values show that BugRMSys is
reasonably effective in matching relevant app reviews of a target app to bug reports from
same-category apps in order to drive bug recommendation. �

5.2 [RQ-2]: Feasibility of BUGRMSYS

We conduct extensive execution of BugRMSys on data from 20 apps in 9 categories to
recommend bugs. Due to space limitation, we report in Table 5 the statistics of bugs rec-
ommended by BugRMSys for the top10 apps having the most recommended bugs. We note
that, thanks to BugRMSys app-review driven approach, the collaborative bug finding allows
to sift between a few hundreds to a few thousands bug reports from same-category apps in
order to recommend7 only a few (1.63%) of bug reports as being relevant to the target apps.

Since each recommended bug is found by correlating information in its app reviews, we
propose to estimate the potential time gain BugRMSys has brought by highlighting the
buggy behaviour users complained about in unofficial channels. We compute the distribution
of time elapsed since the app review creation date and the BugRMSys bug recommendation

7 We set a high similarity threshold at 0.9. This value can be fine-tuned following the practitioner’s objectives.

123

124 Page 16 of 32

Empirical Software Engineering (2024) 29:124

Table 5 Ranked apps based on the number of potential bugs

Target # of bug reports searched # app reviews # recommended
app (from same category apps) (for the target app) bugs

Brave 10,000 10,000 208

Nextcloud 3,489 1,143 147

Wire 10,000 2,515 75

VLC 599 5,556 59

Firefox 10,000 10,000 52

Dolphin 2,437 2,498 44

Wordpress 4,139 2,714 44

PPSSPP 1,666 6,846 39

Mupen64Plus 2,437 1,401 39

Fbreader 726 3,914 33

date. On average, specially for Firefox and Brave in Table 5, the app reviews were created
22.2 and 33 days before we submit the bug reports, respectively.

Given the labor-intensive nature of manual bug reproduction and submission, we have
chosen to concentrate our investigation on four popular applications: Wire, Brave, Firefox,
and Nextcloud. We’ve selected these application pairs - (Signal, Wire), (FireFox, Brave),
and (Owncloud, Nextcloud) - to demonstrate the effectiveness of our approach. Our pipeline
utilizes reports from the input applications to match reviews from the target application,
implying that more matched reports suggest a greater likelihood of potential bugs in the
target application.

As shown in Table 1, Signal has substantially more reports than Wire, suggesting it is
more popular and likely has a more comprehensive set of bug reports. On the other hand,
Firefox and Brave have comparable numbers of reports. As such, we selected Wire, Brave,
and Firefox as the subjects of our investigation. Although Nextcloud and Owncloud have a
similar number of bug reports and reviews, reproducing potential bugs in Owncloud would
necessitate setting up a web server, increasing the complexity of the process. Therefore, we
have chosen Nextcloud as our final subject.

Our methodology involved manually reproducing each recommended bug and submitting
the successfully reproduced bugs to the respective application’s issue tracker. The numbers of
recommended bugs, successfully reproduced bugs (selected based on their similarities, with
the top-44 most similar ones chosen), and confirmed or fixed bugs are detailed in Table 6.
You can find more details about the reported bugs on our repository8. We remind that we can
recommend a bug report from app A (the first column in Table 6) as relevant to the target
app B when BugRMSys matches the bug report of A with user app reviews from the target
app B. We then use the “steps to reproduce” present in the bug report of A, as well as the
information present in the app reviews of app B to reproduce the bug in the target app B.
Finally, for each bug that has been successfully reproduced in the target app B, we submit
the bug in the issue tracker of the app. As shown in the the last column of Table 6, six bugs
have been already confirmed or fixed by the developers before this submission.

8 https://github.com/Daniel4SE/BugRMSys/blob/main/new_bugs.md

123

Page 17 of 32 124

https://github.com/Daniel4SE/BugRMSys/blob/main/new_bugs.md

Empirical Software Engineering (2024) 29:124

Ta
bl
e
6

Pr
ev
io
us
ly

un
kn
ow

n
bu
gs

de
te
ct
ed

w
ith

B
u
g
R
M
Sy

s

In
pu

ta
pp

Ta
rg
et
ap
p

#
of

bu
g
re
po

rt
s

(i
np

ut
ap
ps
)

#
ap
p
re
vi
ew

s
(

ta
rg
et
ap
p)

#
re
co
m
m
en
de
d

bu
gs

#
of

re
pr
od

uc
tio

n
at
te
m
pt
s

#
su
cc
es
su
lly

re
pr
od

uc
ed

bu
gs

#
re
pl
ie
d,

co
nfi

rm
ed

or
fix

ed
bu
gs

Si
gn

al
W
ir
e

10
,0
00

2,
51

5
75

12
2

2,
[✔

2]

Fi
re
fo
x

B
ra
ve

10
,0
00

10
,0
00

20
8

44
9

(1
),
2,
[✔

2]

B
ra
ve

Fi
re
fo
x

10
,0
00

10
,0
00

52
24

4
(1
),
1

O
w
nc
lo
ud

N
ex
tc
lo
ud

3,
48

9
1,
14

3
14

7
12

5
(1
),
1

To
ta
l

-
33

,4
89

23
,6
58

48
2

90
20

(3
),
6,

[✔
4]

∗ “
(#
)”

m
ea
ns

th
e
nu

m
be
r
of

re
po

rt
ed

bu
gs

re
pl
ie
d
by

de
ve
lo
pe
rs
bu
tn

ot
co
nfi

rm
ed

or
fix

ed
by

th
em

“[
✔

#]
”
m
ea
ns

th
e
nu

m
be
r
of

re
po

rt
ed

bu
gs

co
nfi

rm
ed

an
d
fix

ed
by

de
ve
lo
pe
rs

123

124 Page 18 of 32

Empirical Software Engineering (2024) 29:124

✍ Answer to RQ-2: � BugRMSys aids in bug report triaging for similar category
apps, allowing for effective bug recommendations. It helps identify overlooked bugs in
app reviews, uncovering them 22.2 and 33 days earlier for Brave and Firefox respectively.
BugRMSys also enabled the efficient discovery of 20 new bugs, six of which were con-
firmed or fixed. This highlights BugRMSys’s effectiveness in exploring new bugs using
app review-driven methods. Its readiness for deployment across different app categories
makes it a valuable tool for developers in identifying yet unreported, user-experienced
bugs. �

5.3 [RQ-3]: BUGRMSYS vs PriorWorks

Ideally, we should evaluate the performance of BugRMSys in comparison with prior works
dealing with bug recommendations based on bug reports. There are two state of the art
approaches, DeepMatcher (Haering et al. 2021) and Bugine (Tan and Li 2020), which are
closely related.

DeepMatcher and BugRMSys both match app reviews with bug reports based on text
embedding using pre-trainedDistilBERT. Experimentally, we compare DeepMatcher against
theBugRMSys by considering the ground truth data built for RQ-1 (cf. examples in Table 7):
we propose tomanually checkwhether thematched reviewswith both approaches are relevant
or not.While all reviewsmatched byBugRMSys are relevant to buggy behaviour, we observe
that DeepMatcher only achieves a F1-score of 71% in filtering useful reviews. We postulate
that BugRMSys performs better partly because it implements a focused collaborative bug
finding approach where the matching is done on bug reports of same-category apps.

We also compare against Bugine, which also performs collaborative bug finding.We differ
however as Bugine limits the matching to cases where apps have the UI/components (while
we consider apps from teh same categories). We further consider app reviews to drive bug
recommendation.

In the remainder, we further elaborate on the specific differences that prevent comparison
between prior works and BugRMSys. These differences relate to three aspects: (1) Differ-
ences in input, output, and workflow; (2) Differences in automation level; (3) Performance
in new bug finding.

5.3.1 Differences in Input, Output, andWorkflow

DeepMatcher employs user reviews for App B as input and recommends relevant bug reports
for App B. The workflow is: App review→ Problem report→Matched relevant bug reports.
They only evaluate their tool on existing bugs instead of exploring new bugs. Furthermore,
DeepMatcher does not leverage experience from other apps when investigating a target app.
Their approach further suffers from the redundancy problem in app reviews.

Bugine employs issues in apps with same UI components as their database. They focus on
building a automatic test generation from bug reproduction steps and run the test on target app
with manual check. Bugine has been used to explore new bugs successfully. However, there
is a great limitation in this approach: it only considers app issues with same-UI components
into consideration, which can reduce the feasibility of learning from other apps.

123

Page 19 of 32 124

Empirical Software Engineering (2024) 29:124

Table 7 Extract of our Ground Truth Dataset, Corresponding relevant app reviews, and Manual check result

Existing Bug Reports (input, target) TOP 3 RELEVANTREVIEWS in
Brave (creation time always prior
to the corresponding Brave bug
report)

MANUAL

App: Firefox Data: 2020-
08-21 Reports: Download
does not work on a custom
tab (Slack)

App: Brave Date: 2021-
03-20 Report: Download
[Status Bar] Improvement

Date: 2020-08-22 Review: Down-
loader is very bad....pls increase
and more work on download man-
ager

TRUE

Date: 2020-08-10 Review: There
is no download option in this could
u pls update on this issue

TRUE

Date: 2020-10-18 Review:...it
does not allow to manually add
download tasks

TRUE

App: Firefox Data:
2020-06-17 Reports:
Report clickbait sites,
Protect user privacy

App: Brave Date: 2020-
06-22 Report: Warn users
about insecure Facebook
and Google privacy set-
tings

Date: 2020-06-08 Review: Only
browser that cheats about privacy.
All claims about user privacy are
bogus...

TRUE

Date: 2020-11-01 Review:
Extremely convoluted privacy
practices. They advocate for pri-
vacy but allow certain creepy sites
...

FALSE

Date: 2020-12-31 Review: Good
privacy app. It doesn’t prevent
websites from annoying redirec-
tions

FALSE

App: Firefox Data: 2020-
08-28 Reports: Invalid
URLs can be bookmarked
and they crash the browser

App: Brave Date: 2020-11-06
Reports: Clicking URLs out-
side of Brave opens a blank
browser window
with no URL

Date: 2020-06-11Review: "..., has
come under fire for automatically
redirecting URLs typed into the
browser’s address bar ...

FALSE

Date: 2020-10-20 Review: One of
the best browsers Imo.Onlywish I
could set links on the brave home-
page manually...

FALSE

Date: 2020-10-13 Review: Its a
good browser sometimes it reload
all tabs when i open newly

FALSE

5.3.2 Difference in Automation Level

Different fromDeepMatcher,BugRMSyswill not process a large number of bug reports: we
focus on same-category apps to match relevant reviews of App B. After manual check, we
have verified that when we feed a bug report intoBugRMSys, the matched reviews are 100%
related to some bugs. By building on same category apps (i.e., with similar functionality and
usage steps) reproduction and localization of bugs is eased.

For Bugine, finding apps with same-UI components is a time-consuming task. In addition,
using issues from same-UI apps makes it hard to transfer the learned expertience to other
types of issues.

123

124 Page 20 of 32

Empirical Software Engineering (2024) 29:124

5.3.3 Performance in Bug Finding

The ability of DeepMatcher to find new bugs has not been evaluated. Bugine reported having
found 34 new bugs in 5 evaluated apps. With BugRMSys, within a week, we were able to
recommend, reproduce and identify 20 new bugs across 6 apps. 4 such bugs are already fixed
by the app developers.

5.3.4 Reproducibility of Bugs and Performance

Of the identified bugs, we reproduced 20 out of 90, a success rate that speaks to the reliability
of ourmethod. It’s important to note, however, that reproducingbugs is a complexprocesswith
many variables, and we are continuously working on improving this aspect of our approach.
We are particularly interested in exploring automated test case generation to enhance the
efficiency of bug reproduction.

✍ Answer to RQ-3:� BugRMSys, in comparison to Deepmatcher, is effective for fil-
tering out relevant app reviews. Compared to Bugine, BugRMSys is scalable and can
be applied to a larger range of bug types, while avoiding duplication of recommending
bugs that were already reported in the target app. �

6 Discussion

6.1 Failures to Reproduce Recommended Bugs

As illustrated previously, some of the reproduction attempts on the bug reports recommended
by BugRMSys. lead to failures There are various reasons that explain such failures without
suggesting that the recommended bug is not relevant. Prior studies have already largely
elaborated on this difficulty to reproduce bugs: In Han’s work (Han et al. 2019), an extensive
classification of 8 categories of root causes for failed reproductions is provided: hardware
dependency, operating system dependency, component dependency, unavailable source code,
compilation error, installation error, missing step, and lack of symptom. Our failures causes
span across these categories.

6.2 Threats to Validity

Our design, implementation and evaluation of BugRMSys carries some threats to validity.
First, when we are building the ground truth, we manually check whether the reviews are
meaningful. Therefore, the ground truth may be biased by our own experience. Second,
BugRMSys is not fully automated, i.e., manual effort is still needed when we reproduce
from the recommended bug reports. Consequently, the success rate of reproduction could be
dependent on the developing experience of individual developer. Risk of lacking independent
assessors: As bug reproduction seems to heavily rely on users, there may be some bias in
empirical evaluation.

123

Page 21 of 32 124

Empirical Software Engineering (2024) 29:124

7 RelatedWork

Collaborative Experience Sharing Collaborative programming is common in the devel-
opment of open source software. Consequently, similar bugs can emerge across different
projects. Other researches attempted to leverage this fact to Recommend, Reproduce, and
Repair inter-project bugs. For instance, the detection of duplicate bug reports has been stud-
ied in localizing fault of software (Sun et al. 2011; Wang et al. 2008). Specifically, Yang
et al. (2016) combined the information retrieval technique and word embedding technique
to process the detailed information of bug reports to recommend similar bugs. On the other
hand, Tan and Li (2020) use three collaborative sources for bug finding: (1) bugs from the
same programmer across different projects, (2) bugs frommanually searching for bug reports
in GitHub repositories, (3) bugs from a bug recommendation system. Based on these shared
experiences, they explored the concept of collaborative bug finding on improving the teaching
of software testing courses. In the experience-based collaborative learning of crowd-sourcing,
Mao et al. (2017)’s experimental results show that the generated replicable test scripts from
crowd-based testing can improve the coverage attainment for automated mobile testing.

Recommendation of Bug Reports Based on App Reviews The importance of app
reviews in App vendors has been comprehensively demonstrated (Oh et al. 2013; Seffer-
man 2015). Leaving the app reviews not to be addressed is harmful to the experience of
the users and rating of the app, and further lead to uninstallation of the app (Hassan et al.
2018). To maintain the evolution of the app, researchers started to leverage app reviews.
For instance, Gao et al. (2019) developed a novel approach to automatically generate proper
responses to the app reviews in Google Play. However, this approach mainly try to (1) soothe
bad emotion of users, and (2) collect detailed user experience, but not to discover potential
bugs in advance. Tan and Li (2020) designed an approach to find bugs for Android apps.
Their pipeline is to retrieve bugs in other similar apps that may also exist in the current app.
This work validates the feasibility of searching for bugs in other projects to identify new bugs
mentioned by app reviews. Afterwards, Marlo et al. (Haering et al. 2021) try to match bug
reports with related app reviews to discover bugs by filling the gap of different languages
between app reviewswritten by non-technical users and bug reports proposed by professional
developers.

8 Conclusion and FutureWork

In this paper, we introduce BugRMSys, a tool-supported approach for app reviews driven
collaborative bug finding. Given a target app B, BugRMSys builds on the development
experience of app A to identify bug reports in A that match app reviews of B. If such bug
reports exist, they are considered as candidate for recommending bugs to the target app B.
To that end, BugRMSys implements an embedding procedure to represent bug reports and
app reviews text, and use cosine similarity to decide on matching similarity scores. Once
bugs are recommend, we experimentally attempt reproduction to confirm the detection of
new bugs in the target app. Our experimental results on free and open source apps in various
categories show that BugRMSys is effective, scales to a variety of bug types, and does
not yield too many irrelevant app review matches. Overall, with BugRMSys, we already
successfully reproduced 20 new bugs in 6 apps across 3 categories. Several of these bugs
have been acknowledge by the apps development communities and some have even already
been fixed.

123

124 Page 22 of 32

Empirical Software Engineering (2024) 29:124

In future, we plan to address the question of automating the reproduction phase in order
to scale the collaborative bug finding approach towards further increasing its practicality in
real-world debugging scenarios.

Appendix

A.1 More Information about Dataset

Overall, we have 130 apps from theWikipedia 9 classified in 15 categories, shown in Table 8.
However, only few apps can provide both user reviews and bug reports in theirGitHub system.
We finally find out 10 apps that can provide enough reviews and bug reports (as shown in
Table 5).

Choosing 3 apps from each of the two categories, and 2 apps from each of the remaining
7 categories is up to which one can provide both reviews and bug reports (even all listed apps
are open source, but few of them provide google reviews or bug reports).

A.2 TheMethodology for App Selection Across Categories

As shown in Table 8, we have 130 applications in 15 categories, while few applications are
selected in our experiment, which is shownTable 3. This study proposes a novel methodology
for the selection of applications from various categories, centered around three primary
criteria.

– GitHub Issue Accessibility: The first criterion of selection is predicated on the applica-
tions providing an accessible issue feature within the GitHub system. This is significant
because it gives users and developers an avenue to report problems, inquire about aspects
of the application, and suggest new functionalities.

– Ease of Use: The second selection criterion is the ease of use of the applications. For
an application to be considered ‘easy to use’, it should require minimal user effort
to commence operation, i.e., either direct usage post-installation or usage following a
straightforward registration process.

– Sufficient Google Reviews: The third criterion for application selection is the existence
of a large number of Google reviews. This acts as a proxy for the general public’s
interactionwith and evaluation of the application, ensuring its widespread use and testing.

To illustrate these criteria, consider the following applications which failed to meet one
or more of the aforementioned selection criteria:

– The ‘Tor Browser’, a candidate for the Web Browser category, was not selected due to
the absence of an accessible issue feature within its GitHub repository.

– ‘Owncloud’, a contender for the Office Suites category, was not chosen as it failed to
meet the ‘ease of use’ criterion, necessitating users to employ a web server to access the
cloud functionality.

– ‘Talkback’, a potential selection for the System and Utilities category, was disqualified
due to the lack of Google reviews, contravening the third selection criterion.

Through the application of these three criteria, a robust selection methodology can be
developed for applications across various categories. This approach ensures the selection

9 https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

123

Page 23 of 32 124

https://en.wikipedia.org/wiki/List_of_free_and_open-source_Android_applications

Empirical Software Engineering (2024) 29:124

Table 8 All app categories

Domain Name App Names Number

Advertisement
blocking

AdAway, Adblock Plus 2

Web browsers Brave, Chromium, DuckDuckGo, Fennec F-Droid,
Firefox for Anadorid, Firefox Focus, GNU IceCat,
Tor Bowser

8

Office Suites Collabora Online, Owncloud, Nextcloud 3

Privacy security
focused

APG, Briar, Conversations, Element, I2P, IVPN,
Jami, Lantern, Mullvad, OpenKeychain, Orbot,
Psiphon, Protonmail, ProtonVPN, Signal, Surespot,
Telegram, Tox, Tutanota, Wire

20

Communication ConnectBot, CSipSimple, Jitsi, K-9 Mail,
Linphone, Element, Sipdroid, WordPress, Zuilip

9

Emulators Citra, Dolphin, Mupen64Plus, openMSX,
PPSSPP, RetroArch, ScummVM, Termux, VICE

8

Games 2048, Angband, Battle for Wesnoth, Brogue,
Dungeon Crawl Stone Soup, Fish Fillets NG,
Freeciv, Frozen Bubble, GLtron, H-Craft Championship,
HyperRgue, Mindustry, Minetest, OpenArena,
OpenTTD, Pixel Dungeon, OpenTyrian, robotifindskit-
ten,
Simon Tatham’s Puzzle Collection, Ur-Quan Masters

20

General Dasher, FetLife, Google IO, OpenLP, The White House 5

Health COVID Alert, DP-3T, PEPP-PT, TraceTogether 4

Multimedia AntennaPod, Butter Project, Kodi, NewPipe,
Popcorn Time, Ringdroid, Rockbox,
Tribier, Tux Paint, VLC, Wikimedia Commons

12

Navigation Avare, MAPS.ME, Mozilla stumbler, OsmAnd 4

Reading FBReader, iFixit, Kiwix, MuPDF, Wikipedia,
Wikitionary, XOWA

7

Science and
education

BOINC, Galaxy Zoo, GCompris, GNU Octave,
micro:bit, PressureNET, SageMath, Sky Map,
Stellarium, Sugar environment, AnkiDroid

13

Security Bitwarden, Haven, Kali NetHunter,
KeePassDroid, PasswdSafe, Prey

6

System and
utilities

Barcode Scanner, F-Droid, Impress Remote,
Intra, microG, Mycroft, TWRP, TalkBack, UserLand

9

of apps that are user-friendly, have active developer interaction and have been sufficiently
reviewed by the wider user community.

A.3 Ground Truth Construction

The establishment of the ground truth for evaluating the effectiveness of BugRMSys involved
a rigorous process outlined as follows:

1. Selection of Bug Reports: We initiated our study by randomly selecting a sample of
3,000 bug reports from Firefox GitHub repository, avoiding potential bias that may occur
using a manual selection process.

123

124 Page 24 of 32

Empirical Software Engineering (2024) 29:124

2. Identification of Similar Bug Report Pairs: Utilizing an empirically selected cosine
similarity threshold of 0.91, we identified 81 pairs of highly similar bug reports between
Firefox and Brave, denoted as BRFire f ox , BRBrave, ensuring a high-quality and conser-
vative dataset based on empirical validation.

3. Matching with Preceding App Reviews: For each bug report pair, BugRMSys was
taskedwithmatching Firefox bug reports to pre-existing Brave app reviews, predating the
Brave bug report creation. This step underscored the temporal relevance of the identified
matches for practical bug identification.

4. Manual Verification: The top three matched reviews for each bug report were manually
verified by three software engineers against the corresponding Brave bug report for
semantic similarity. This manual verification ensured the relevance and feasibility of the
matches identified by BugRMSys.

Significance of the Ground Truth:
The ground truth established through this process serves as a critical empirical foundation

for evaluating BugRMSys’s capability in leveraging user reviews and bug reports from a
similar app to identify and recommend relevant bug reports. The methodology emphasizes:

– Empirical Basis for Tool Evaluation: Offering a practical scenario where BugRMSys
can utilize historical data and user feedback for proactive bug identification in another
app.

– Relevance and Timeliness:Highlighting the tool’s potential to leverage insights from user
reviews and similar apps’ bug reports to aid in timely bug identification and resolution.

– Quality over Quantity: The high similarity threshold and manual verification ensure that
the dataset represents high-quality, semantically similar matches, crucial for assessing
BugRMSys’s effectiveness beyond mere superficial matches..

A.4 Bug Report Identification in Issue Reports

The bug reports and user reviews are selected based on the cosine similarity with a given text
input. The code computes embeddings (numerical representations) for the input text and for
a set of issue reports and user reviews. It then measures the cosine similarity between the
embedding of the input text and the embeddings of each issue or review. Cosine similarity
is a metric used to measure how similar two vectors are. In this case, it is used to find the
similarity between the embeddings of the input text and the issues or reviews.

This selection process aims to find the most relevant bug reports and user reviews based
on the content of the input text by computing and comparing their cosine similarities.

As shown in Fig. 10, we differentiate bugs and the other issues by label filtering. Label
Filtering: GitHub and other issue tracking systems allow us to label issues. For example, I
choose a issue labelled as a ‘bug’, ‘enhancement’, ‘documentation’, etc. Filtering issues by
the ‘bug’ label is an efficient way to separate bugs from other issues.

Fig. 10 Labelling in GitHub system

123

Page 25 of 32 124

Empirical Software Engineering (2024) 29:124

A.5 Data Preprocessing

In the initial phase of our methodology, data preprocessing is performed to enhance the
quality and relevance of our data inputs, particularly in the context of app reviews and bug
reports. This involves several steps:

1. Normalization: All tokens are converted to lowercase to avoid differentiation based on
letter casing.

2. Noise Reduction: Elements such as punctuation, stop words, digits, and emoticons are
removed to streamline the content. This ensures the focus remains on key text data.

3. Spelling Correction andWordRepetition:Given that app reviews and bug reports may
contain spelling mistakes and repetitive words, we utilize rule-based methods to identify
and rectify these issues.

4. Length-based Filtering:Reviews are filtered based on their length. Those that are either
too short (fewer than 10 words) or too long (based on outlier thresholds) are excluded.
Short reviews often lack substantive content, while excessively long ones could introduce
noise into the data.

For bug reports, our approach primarily focuses on their titles, as they typically encapsulate
the essential content of the report.Other sections of the bug reports, such as the description and
reproduction steps, often contain significant noise or templated data that may not contribute
meaningfully to the bug matching process.

This comprehensive preprocessing stage refines our input data by reducing noise and
increasing the relevance of the text content for subsequent processing stages, ensuring the
effectiveness of our approach.

Acknowledgements The authors would like to thank all experts who participated in the evaluations for their
valuable contributions.

Funding This work is supported by the NATURAL project, which has received funding from the European
ResearchCouncil (ERC) under the EuropeanUnion’sHorizon 2020 research and innovation programme (grant
No. 949014).

Data Availability The datasets and code used in this work are available in the following link: https://zenodo.
org/record/7520604#.Y71lnezML0o

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Amalfitano D, Riccio V, Paiva AC, Fasolino AR (2018) Why does the orientation change mess up my android
application? from gui failures to code faults. Softw Test Verif Rel 28(1):e1654

123

124 Page 26 of 32

https://zenodo.org/record/7520604#.Y71lnezML0o
https://zenodo.org/record/7520604#.Y71lnezML0o
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2024) 29:124

Bevan J,Werner L,McDowell C (2002)Guidelines for the use of pair programming in a freshman programming
class. In: Proceedings 15th conference on software engineering education and training (CSEE&T 2002).
IEEE, pp 100–107

Calcagno C, Distefano D, Dubreil J, Gabi D, Hooimeijer P, Luca M, O’Hearn P, Papakonstantinou I, Purbrick
J, Rodriguez D (2015) Moving fast with software verification. In: NASA Formal methods symposium.
Springer, pp 3–11

Cames K, II-Grants AA (2006) Recommendation. City
Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for

language understanding. arXiv:1810.04805
Fan L, Su T, Chen S, Meng G, Liu Y, Xu L, Pu G, Su Z (2018) Large-scale analysis of framework-specific

exceptions in android apps. In: 2018 IEEE/ACM 40th international conference on software engineering
(ICSE). IEEE, pp 408–419

Gao C, Zeng J, Xia X, Lo D, Lyu MR, King I (2019) Automating app review response generation. In: 2019
34th IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 163–175

Ghosh J, Strehl A (2006) Similarity-based text clustering: a comparative study. In: Grouping multidimensional
data. Springer, pp 73–97

Haddi E, Liu X, Shi Y (2013) The role of text pre-processing in sentiment analysis. Procedia Comput Sci
17:26–32

HaeringM, Stanik C, Maalej W (2021) Automatically matching bug reports with related app reviews. In: 2021
IEEE/ACM 43rd international conference on software engineering (ICSE). IEEE, pp 970–981

Han X, Carroll D, Yu T (2019) Reproducing performance bug reports in server applications: the researchers’
experiences. J Syst Softw 156:268–282

Hassan S, Tantithamthavorn C, Bezemer CP, Hassan AE (2018) Studying the dialogue between users and
developers of free apps in the google play store. Empir Softw Eng 23(3):1275–1312

Hu G, Yuan X, Tang Y, Yang J (2014) Efficiently, effectively detecting mobile app bugs with appdoctor. In:
Proceedings of the ninth European conference on computer systems, pp 1–15

Jiang H, Yang H, Qin S, Su Z, Zhang J, Yan J (2017) Detecting energy bugs in android apps using static
analysis. In: International conference on formal engineering methods. Springer, pp 192–208

Lee S, Dolby J, Ryu S (2016) Hybridroid: static analysis framework for android hybrid applications. In: 2016
31st IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 250–261

Li H, Fang C, Wei Z, Chen Z (2019) Cocotest: collaborative crowdsourced testing for android applications.
In: Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis,
pp 390–393

Liu Z, Chen C, Wang J, Huang Y, Hu J, Wang Q (2022) Guided bug crush: assist manual gui testing of android
apps via hint moves. arXiv:2201.12085

Li H, Zhang L, Zhang L, Shen J (2010) A user satisfaction analysis approach for software evolution. In: 2010
IEEE international conference on progress in informatics and computing, vol 2. IEEE, pp 1093–1097

Long T, Yoon I, Memon A, Porter A, Sussman A (2014) Enabling collaborative testing across shared software
components. In: Proceedings of the 17th international ACM Sigsoft symposium on Component-based
software engineering, pp 55–64

Long T, Yoon I, Porter A, Memon A, Sussman A (2016) Coordinated collaborative testing of shared software
components. In: 2016 IEEE international conference on software testing, verification and validation
(ICST). IEEE, pp 364–374

Loper E, Bird S (2002) Nltk: the natural language toolkit. arXiv preprint cs/0205028
MaalejW,Kurtanović Z,NabilH, StanikC (2016)On the automatic classification of app reviews.Requirements

Eng 21(3):311–331
Mahmood T, Ricci F, Venturini A (2009) Improving recommendation effectiveness: adapting a dialogue strat-

egy in online travel planning. Inf Technol Tour 11(4):285–302
Mao K, Harman M, Jia Y (2017) Crowd intelligence enhances automated mobile testing. In: 2017 32nd

IEEE/ACM international conference on automated software engineering (ASE). IEEE, pp 16–26
Martens D, Maalej W (2019) Extracting and analyzing context information in user-support conversations on

twitter. In: 2019 IEEE 27th international requirements engineering conference (RE). IEEE, pp 131–141
McIlroy S, Ali N, Hassan AE (2016) Fresh apps: an empirical study of frequently-updated mobile apps in the

google play store. Empir Softw Eng 21(3):1346–1370
Oh J, Kim D, Lee U, Lee JG, Song J (2013) Facilitating developer-user interactions with mobile app review

digests. In: CHI’13 extended abstracts on human factors in computing systems, pp 1809–1814
Poerner N, Waltinger U, Schütze H (2020) E-BERT: efficient-yet-effective entity embeddings for BERT.

In: Findings of the association for computational linguistics: EMNLP 2020, pp 803–818. Associa-
tion for Computational Linguistics, Online. https://doi.org/10.18653/v1/2020.findings-emnlp.71. https://
aclanthology.org/2020.findings-emnlp.71

123

Page 27 of 32 124

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2201.12085
https://doi.org/10.18653/v1/2020.findings-emnlp.71
https://aclanthology.org/2020.findings-emnlp.71
https://aclanthology.org/2020.findings-emnlp.71

Empirical Software Engineering (2024) 29:124

Sanh V, Debut L, Chaumond J, Wolf T (2019) Distilbert, a distilled version of bert: smaller, faster, cheaper
and lighter. arXiv:1910.01108

Sefferman A (2015) Survey on user ratings and reviews. https://www.apptentive.com/blog/2020/02/04/
mobile-app-ratings-and-reviews/. Accessed 2015

Shani G, Gunawardana A (2011) Evaluating recommendation systems. In: Recommender systems handbook.
Springer, pp 257–297

Sitikhu P, Pahi K, Thapa P, Shakya S (2019) A comparison of semantic similarity methods for maximum
human interpretability. In: 2019 artificial intelligence for transforming business and society (AITB), vol
1. IEEE, pp 1–4

Stanik C, HaeringM,MaalejW (2019) Classifyingmultilingual user feedback using traditional machine learn-
ing and deep learning. In: 2019 IEEE 27th international requirements engineering conference workshops
(REW). IEEE, pp 220–226

Su T, Fan L, Chen S, Liu Y, Xu L, Pu G, Su Z (2020) Why my app crashes understanding and benchmarking
framework-specific exceptions of android apps. IEEE Trans Softw Eng

Sun C, Lo D, Khoo SC, Jiang J (2011) Towards more accurate retrieval of duplicate bug reports. In: 2011 26th
IEEE/ACM international conference on automated software engineering (ASE 2011). IEEE, pp 253–262

Sun J, Su T, Li J, Dong Z, Pu G, Xie T, Su Z (2021) Understanding and finding system setting-related defects in
android apps. In: Proceedings of the 30th ACM SIGSOFT international symposium on software testing
and analysis, pp 204–215

Talukder MAI, Shahriar H, Qian K, Rahman M, Ahamed S, Wu F, Agu E (2019) Droidpatrol: a static analysis
plugin for secure mobile software development. In: 2019 IEEE 43rd annual computer software and
applications conference (COMPSAC), vol 1. IEEE, pp 565–569

Tan SH, Li Z (2020) Collaborative bug finding for android apps. In: Proceedings of the ACM/IEEE 42nd
international conference on software engineering, pp 1335–1347

Van Der Veen V, Bos H, Rossow C (2013) Dynamic analysis of android malware. Internet &Web Technology
Master thesis, VU University Amsterdam

Wang X, Zhang L, Xie T, Anvik J, Sun J (2008) An approach to detecting duplicate bug reports using natural
language and execution information. In: Proceedings of the 30th international conference on Software
engineering, pp 461–470

Wilbur WJ, Sirotkin K (1992) The automatic identification of stop words. J Inf Sci 18(1):45–55
Wooditch A, Johnson NJ, Solymosi R, Ariza JM, Langton S (2021) Getting to know your data. In: A beginner’s

guide to statistics for criminology and criminal justice using R. Springer, pp 21–38
YangX,LoD,XiaX,BaoL,Sun J (2016)Combiningword embeddingwith information retrieval to recommend

similar bug reports. In: 2016 IEEE 27Th international symposium on software reliability engineering
(ISSRE). IEEE, pp 127–137

YeX, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowledge. In: Pro-
ceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering,
pp 689–699

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed? more accurate information retrieval-based
bug localization based on bug reports. In: 2012 34th International conference on software engineering
(ICSE). IEEE, pp 14–24

Zimmermann T, Premraj R, Bettenburg N, Just S, Schroter A, Weiss C (2010) What makes a good bug report?
IEEE Trans Software Eng 36(5):618–643

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

124 Page 28 of 32

http://arxiv.org/abs/1910.01108
https://www.apptentive.com/blog/2020/02/04/mobile-app-ratings-and-reviews/
https://www.apptentive.com/blog/2020/02/04/mobile-app-ratings-and-reviews/

Empirical Software Engineering (2024) 29:124

Xunzhu Tang is PhD student with the Interdisciplinary Centre for
Security, Reliability and Trust (SnT) at the University of Luxembourg.
He received his master degree in Computer System and Architecture
from Huazhong University of Science and Technology, China in 2021.
His research interests include patch explanation, bug finding and fix-
ing.

Haoye Tian is postdoctoral fellow in the School of Computing and
Information Systems at University of Melbourne, working with Prof.
Bach Le. Prior to that, He finished his PhD at the Interdisciplinary
Centre for Security, Reliability and Trust (SnT) at the University of
Luxembourg. He received his master degree in Software Engineer-
ing from Chongqing University, China in 2019. His research interests
include automated program repair, patch validation, machine and deep
learning.

Pingfan Kong is a postdoctoral fellow with the Interdisciplinary Cen-
tre for Security, Reliability and Trust (SnT) at the University of Lux-
embourg, the same institute where he also received his Ph.D. degree.
His research interests include automatic program repair towards
Android apps, static program analysis and automated software testing.

123

Page 29 of 32 124

Empirical Software Engineering (2024) 29:124

Saad Ezzini is an assistant professor in computer science at the school
of computing and communication, Lancaster University, United King-
dom. He received his PhD in software engineering at the University
of Luxembourg in 2022. And in 2017 he received his master’s degree
in Data Science at USMBA, Morocco. His research interests include,
Requirements Engineering, AI for SE, and Natural Language Process-
ing.

Kui Liu is an associate professor in Software Engineering at the
College of Computer Science and Technology, Nanjing Univer-
sity of Aeronautics and Astronautics, China. He received the MS
degree in computer application technology at Southwest University
(Chongqing, China) in 2013, and obtained the Ph.D. degree in com-
puter science at the University of Luxembourg in 2019. His research
interests include automated program repair, automated fault localiza-
tion, fix pattern mining, deep learning, and empirical software engi-
neering.

Xin Xia is the director of the Software Engineering Application Tech-
nology Lab at Huawei, China. He received the ACM SIGSOFT Early
Career Researcher Award in 2022. His current research focuses on
data science for software engineering, i.e., mining and analyzing rich
data in software repositories to uncover interesting and actionable
information.

123

124 Page 30 of 32

Empirical Software Engineering (2024) 29:124

Jacques Klein is a researcher and professor in software engineering
and software security who develops innovative approaches and tools
towards helping the research and practice communities build trust-
worthy software. He is a member of the Interdisciplinary Centre for
Security, Reliability and Trust (SnT) at the University of Luxembourg.
He received a Ph.D. degree in Computer Science from the University
of Rennes, France, in 2006. His main areas of expertise are three-
fold: (1) Software Security (Malware detection, prevention and dis-
section, Static Analysis for Security, Vulnerability Detection, etc.); (2)
Software Reliability (Software Testing, Semi-Automated and Fully-
Automated Program Repair, etc.); (3) Data Analytics (Multi-objective
reasoning and optimization, Model-driven data analytic, Time Series
Pattern Recognition, etc.).

Tegawendé F. Bissyandé is research scientist with the Interdisci-
plinary Center for Security, Reliability and Trust at the University of
Luxembourg. He holds a PhD in computer from the Université de
Bordeaux in 2013, and an engineering degree (MSc) from ENSEIRB.
His research interests are in debugging, including bug localization
and program repair, as well as code search, including code clone
detection and code classification. He has published research results
in all major venues in Software engineering (ICSE, ESEC/FSE, ASE,
ISSTA, EMSE, TSE). His research is supported by FNR (Luxembourg
National Research Fund). Dr. Bissyandé is the PI of the CORE REC-
OMMEND project on program repair, under which the current work
has been performed.

123

Page 31 of 32 124

Empirical Software Engineering (2024) 29:124

Authors and Affiliations

Xunzhu Tang1 · Haoye Tian1 · Pingfan Kong1 · Saad Ezzini3 · Kui Liu2 · Xin Xia2 ·
Jacques Klein1 · Tegawendé F. Bissyandé1

B Xunzhu Tang
xunzhu.tang@uni.lu

Haoye Tian
haoye.tian@uni.lu

Pingfan Kong
fandsec@gmail.com

Saad Ezzini
s.ezzini@lancaster.ac.uk

Kui Liu
brucekuiliu@gmail.com

Xin Xia
xin.xia@acm.org

Jacques Klein
jacques.klein@uni.lu

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
2 Huawei, Hangzhou City, China
3 School of Computing and Communications, Lancaster University, Lancaster, UK

123

124 Page 32 of 32

http://orcid.org/0000-0002-8049-3997

	App review driven collaborative bug finding
	Abstract
	1 Introduction
	2 Preliminary Study
	2.1 Empirical Setup
	2.2 Hypothesis Analysis
	2.3 Expert Analysis on Hypothesis

	3 BugRMSys
	3.1 Running Example
	3.2 Approach
	3.2.1 Embedding and Processing Techniques
	3.2.2 Exploration

	4 Experimental Design
	4.1 Research Questions
	4.2 Dataset
	4.3 Evaluation Metrics
	4.4 Implementation & Availability

	5 Experimental Results
	5.1 [RQ-1]: Effectiveness of BugRMSys
	5.2 [RQ-2]: Feasibility of BugRMSys
	5.3 [RQ-3]: BugRMSys vs Prior Works
	5.3.1 Differences in Input, Output, and Workflow
	5.3.2 Difference in Automation Level
	5.3.3 Performance in Bug Finding
	5.3.4 Reproducibility of Bugs and Performance

	6 Discussion
	6.1 Failures to Reproduce Recommended Bugs
	6.2 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	Appendix
	A.1 More Information about Dataset
	A.2 The Methodology for App Selection Across Categories
	A.3 Ground Truth Construction
	A.4 Bug Report Identification in Issue Reports
	A.5 Data Preprocessing

	Acknowledgements
	References

