
Revisiting Android App Categorization
Marco Alecci

SnT, University of Luxembourg,

Luxembourg, Luxembourg

marco.alecci@uni.lu

Jordan Samhi

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

jordan.samhi@cispa.de

Tegawendé F. Bissyandé

SnT, University of Luxembourg,

Luxembourg, Luxembourg

tegawende.bissyande@uni.lu

Jacques Klein

SnT, University of Luxembourg,

Luxembourg, Luxembourg

jacques.klein@uni.lu

ABSTRACT

Numerous tools rely on automatic categorization of Android apps

as part of their methodology. However, incorrect categorization can

lead to inaccurate outcomes, such as a malware detector wrongly

flagging a benign app as malicious. One such example is the SlideIT

Free Keyboard app, which has over 500 000 downloads on Google

Play. Despite being a "Keyboard" app, it is oftenwrongly categorized

alongside "Language" apps due to the app’s description focusing

heavily on language support, resulting in incorrect analysis out-

comes, including mislabeling it as a potential malware when it

is actually a benign app. Hence, there is a need to improve the

categorization of Android apps to benefit all the tools relying on it.

In this paper, we present a comprehensive evaluation of existing

Android app categorization approaches using our new ground-

truth dataset. Our evaluation demonstrates the notable superior-

ity of approaches that utilize app descriptions over those solely

relying on data extracted from the APK file, while also leaving

space for potential improvement in the former category. Thus, we

propose two innovative approaches that effectively outperform

the performance of existing methods in both description-based

and APK-based methodologies. Finally, by employing our novel

description-based approach, we have successfully demonstrated

that adopting a higher-performing categorization method can sig-

nificantly benefit tools reliant on app categorization, leading to an

improvement in their overall performance. This highlights the sig-

nificance of developing advanced and efficient app categorization

methodologies for improved results in software engineering tasks.

CCS CONCEPTS

• Computing methodologies → Machine learning; • Security

and privacy→ Software and application security.

KEYWORDS

Android Security, Static Analysis, App Categorization

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3639094

ACM Reference Format:

Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein.

2024. Revisiting Android App Categorization. In 2024 IEEE/ACM 46th Inter-

national Conference on Software Engineering (ICSE ’24), April 14–20, 2024,

Lisbon, Portugal. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3597503.3639094

1 INTRODUCTION

Automatic categorization of Android apps has proven to be a use-

ful tool for addressing numerous software engineering tasks. The

applications of categorization encompass a wide range of tasks,

including but not limited to anomaly detection [8, 22, 61], detec-

tion of miscategorized apps [6, 55], malware detection [31, 60], or

classifying malware into distinct families [28, 35, 37].

One of the most popular examples is the CHABADA frame-

work developed by Gorla et al. [22], which focuses on detecting

applications that exhibit behavior inconsistent with their provided

descriptions in order to find potential malicious apps. CHABADA

leverages app descriptions to categorize Android apps, and subse-

quently employs unsupervised One-Class SVM anomaly detection

to identify outliers based on API usage patterns. However, an inad-

equate categorization approach can significantly impact the overall

accuracy of CHABADA, leading to numerous false positives (i.e.,

a goodware detected as a malware) and/or false negatives. For ex-

ample, the authors themselves acknowledged in their paper that

the app SlideIT Free Keyboard, which allows users to insert text by

sliding their finger along the keyboard, was categorized alongside

language apps because over half of the app’s description focuses on

language support. The appwas wrongly detected as an anomaly and

potential malware, despite its harmless nature, due to the wrong

categorization. However, without a manual inspection, similar to

the one conducted by the authors of CHABADA for this app, it

becomes challenging to determine whether factors like the number

of false positives are primarily influenced by the app categorization

module or the anomaly detection phase, as we can only evaluate

the combined effect of both.

Inaccurate categorization, as seen in SlideIT Free Keyboard, under-

scores the need for a more precise categorization to minimize such

errors. Hence, as a starting point, we initiated our research on au-

tomatic app categorization with a comprehensive literature search

to gather existing categorization approaches with the primary aim

of evaluating and effectively comparing their performance. How-

ever, during our attempt to compare the existing approaches that

we retrieved, we encountered a significant obstacle: how can we

https://doi.org/10.1145/3597503.3639094
https://doi.org/10.1145/3597503.3639094
https://doi.org/10.1145/3597503.3639094


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

evaluate and compare their performances? Indeed, despite the ex-

tensive research conducted on automatic app categorization, there

remains a lack of a ground-truth dataset, as highlighted in previous

studies [3, 18]. Thus, this hinders the evaluation and comparison

of different categorization approaches.

Some researchers attempted to overcome this limitation by using

Google Play categories as a basis for evaluating their approaches [28,

38]. However, both previous studies and our own research (Sec-

tion 3.2), demonstrate that apps within the same Google Play cat-

egory exhibit only a broad sense of similarity, with significant

variations in granularity observed across different categories. [4, 22,

32, 55]. For example, the HOUSE_AND_HOME category on Google Play

encompasses apps for buying/renting houses and controlling Smart

Home IoT devices. Although both relate to "House," their purposes

differ, rendering this categorization unsuitable as a ground-truth.

Therefore, a reasonable and up-to-date alternative to evaluating

a categorization approach is to create a dataset that relies on human

judgment to manually categorize the apps. Previous researchers

have evaluated their approaches on datasets that were manually

crafted but often limited in either the number of apps, like Subaihin

et al. [3] which only manually analyzed 300 apps in their research,

or in the number of categories, with Ebrahimi et al. [18] testing

only two categories. In contrast, our paper addresses this limitation

by developing AndroCatSet: the first ground-truth dataset for

app categorization, which comprises 5000 apps categorized into 50

classes. To prevent confusion with Google Play’s "categories," we

use the term "classes" to define clusters of appswith shared purposes

and functionalities (e.g., calculators, navigation apps, weather apps,

etc.).

Leveraging our new ground truth AndroCatSet, we were able

to confirm, at first, the observations made in prior studies con-

cerning the inefficiency of the Google Play Store categorization

schema [4, 22, 32, 55] and secondarily, compare the effectiveness

of current categorization approaches. Our comparison of existing

approaches has revealed the remarkable superiority of categoriza-

tion methods that leverage app descriptions compared to those that

rely solely on data extracted from the APK file, such as method

names or strings used by the app. However, despite the success

of description-based approaches, our evaluation also revealed that

there is still room for improvementwithin thesemethods. Therefore,

we developed two innovative approaches: one description-based

and the other APK-based, and thoroughly evaluated them usingAn-

droCatSet, providing a comparison with existing methodologies.

The results of our evaluation demonstrated a significant improve-

ment in performance for both the description-based and APK-based

methodologies, as compared to the existing approaches.

One particularly noteworthy approach is our new description-

basedmethod, whichwe namedG-CatA:Gpt-basedCATegorization
of Android apps, as it relies on Gpt-based models developed by Ope-

nAI
1
(as we will describe in detail in Section 5.2). When using

G-CatA, the app SlideIT Free Keyboard, previously discussed, can

be appropriately categorized alongside other keyboard apps. This

correction addresses the error made by CHABADA, which erro-

neously categorized it under language apps, thus highlighting how

G-CatA can benefit tools relying on automatic categorization like

1
https://openai.com/

CHABADA. To prove this point further, we conducted an additional

experiment where we implemented the complete CHABADA frame-

work, incorporating both the original and G-CatA approaches to

categorize apps. Results indicate that our approach G-CatA ex-

hibited greater precision in detecting anomalies compared to the

original CHABADA approach.

The main contributions of our work are as follows:

• We release AndroCatSet: the first ground-truth dataset for

evaluating Android app categorization approaches.

• We show that apps belonging to the same Google Play cate-

gory exhibit only a general sense of similarity, confirming

previous studies on the subject.

• We conduct a comparative analysis of existing categorization

approaches, revealing that description-based approaches out-

perform APK-based ones.

• We propose two novel approaches, one description-based

(G-CatA) and one APK-based, that improve the performance

of existing methods.

• We demonstrate that our new description-based approach

G-CatA can offer significant benefits to tools that depend

on app categorization, such as CHABADA.

Data Availability. Our ground-truth dataset AndroCatSet, our

new approach G-CatA, and all our artifacts are available at:

https:/github.com/Trustworthy-Software/Revisiting-Android-

App-Categorization

2 BACKGROUND

In this section, we introduce terms and concepts used throughout

our paper. First, we describe the clustering evaluation metric we re-

lied on. Second, we provide an overview of text-embedding models,

as they are employed in both existing categorization approaches

and the new ones we are proposing.

Clustering Evaluation Metrics. Clustering evaluation metrics

serve to assess the performance of clustering algorithms, and they

can be categorized into two primary groups: intrinsic and extrinsic

metrics [5]. Intrinsic metrics assess cluster quality and cohesion,

focusing on the internal structure of the clusters, without relying on

external information or ground truth. Examples of intrinsic metrics

include the Silhouette Coefficient [48], Davies-Bouldin Index [15],

and Calinski-Harabasz Index [12]. On the other side, extrinsic met-

rics are used to measure the similarity between two data clusterings,

where one of the clusterings may consist of a ground-truth made

of known labels. Examples of extrinsic metrics include the Rand

Index [47] and Fowlkes-Mallows Index [20].

In our paper, we primarily use the Adjusted Rand Index (ARI) [24]

as our main metric. The ARI is an extrinsic metric that adjusts the

Rand Index for chance and yields a value between -1 and 1. A value

of 1 indicates perfect agreement between the two clusterings, 0

indicates random agreement, and -1 indicates complete dissimilar-

ity between the two clusterings. More in detail, given a set of n

elements, and two partitions (e.g., clusterings) of these elements,

namely 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑟 } and 𝑌 = {𝑌1, 𝑌2, . . . , 𝑌𝑠 } the overlap
between X and Y can be summarized in a contingency table

[
𝑛𝑖 𝑗

]
,

as shown in (1). Each entry 𝑛𝑖 𝑗 denotes the number of objects in

https://github.com/Trustworthy-Software/Revisiting-Android-App-Categorization
https://github.com/Trustworthy-Software/Revisiting-Android-App-Categorization


Revisiting Android App Categorization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

common between 𝑋𝑖 and 𝑌𝑗 :𝑛𝑖 𝑗 =
��𝑋𝑖 ∩ 𝑌𝑗

��
.

𝑋𝑌 𝑌1 𝑌2 · · · 𝑌𝑠 sums

𝑋1 𝑛11 𝑛12 · · · 𝑛1𝑠 𝑎1
𝑋2 𝑛21 𝑛22 · · · 𝑛2𝑠 𝑎2
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

𝑋𝑟 𝑛𝑟1 𝑛𝑟2 · · · 𝑛𝑟𝑠 𝑎𝑟

sums 𝑏1 𝑏2 · · · 𝑏𝑠

(1)

Once the contingency table is defined, the ARI is computed as

follows:

𝐴𝑅𝐼 (𝑋,𝑌 ) =

∑
𝑖 𝑗

(𝑛𝑖 𝑗
2

)
−
[∑

𝑖

(𝑎𝑖
2

) ∑
𝑗

(𝑏 𝑗

2

) ]
/
(𝑛
2

)
1

2

[∑
𝑖

(𝑎𝑖
2

)
+∑

𝑗

(𝑏 𝑗

2

) ]
−
[∑

𝑖

(𝑎𝑖
2

) ∑
𝑗

(𝑏 𝑗

2

) ]
/
(𝑛
2

) (2)

where 𝑛𝑖 𝑗 , 𝑎𝑖 , 𝑏 𝑗 are values from the contingency table. For instance,

in our paper, we consider 𝑋 as the categorization approach that

we want to evaluate and 𝑌 as our ground-truth against which we

compare the approach.

Text Embedding. Text embedding models are an advanced ap-

proach to convert textual information into numerical representa-

tions. Thesemodels, such asWord2Vec [33], FastText [9], GloVe [45],

and BERT [17], capture the semantic and syntactic meaning of

words, sentences, or entire documents by mapping them to dense

vector spaces. WhileWord2Vec, FastText, and GloVe primarily focus

on word-level embeddings, transformer-based models such as BERT

can handle not only individual words but also whole sentences or

documents. Moreover, OpenAI, the company behind ChatGPT, has

released their own text embedding models [39], which are readily

accessible through their official API. They can be leveraged for

numerous applications, including search, clustering, recommenda-

tions, anomaly detection, and classification, as stated in the official

documentation [43]. The text embedding models are based on pre-

trained GPT (Generative Pre-trained Transformer) models [36],

which are a class of transformer-based models developed by Ope-

nAI [11]. These models, such as GPT-3 or the most recent GPT-4

[40], are built upon the powerful transformer architecture and have

achieved significant breakthroughs across various NLP tasks [11].

3 GROUND-TRUTH DATASET

Existing studies have brought attention to the lack of a ground-

truth dataset for assessing categorization approaches [3, 18]. Fur-

thermore, additional studies have pointed out that utilizing Google

Play categories for such evaluations is unsuitable since apps within

the same Google Play category demonstrate only a broad sense

of similarity, with significant variations in granularity across the

different categories [4, 22, 32, 55].

To bridge this gap, we developedAndroCatSet: the first ground-

truth dataset, specifically designed to evaluate categorization ap-

proaches, comprising 5000 apps distributed across 50 classes, with

100 apps for each class. Unlike Google Play’s utilization of the term

"category," we have opted for the term "class" to denote a cluster of

applications that share a common purpose and similar functionali-

ties. Some examples are calculator apps, navigation apps, weather

apps, and more. Throughout this paper, we will consistently use

the term "classes" to refer to the distinct groups of apps within

Figure 1: Searching for a calculator app on Google Play often

leads to a mix of genuine and fake ones.

our ground-truth dataset. This choice is deliberate, aimed at dis-

tinguishing them from the Google Play "categories," despite their

similar meaning.

In our dataset, we have collected information for each app, includ-

ing its package name, the Google Play Category ID (which uniquely

identifies the app’s category), and the app’s description. Table 1

provides a comprehensive list of all defined classes in the dataset.

On average, the apps have an APK size of around 20.38 MB, with

a standard deviation of 18.19, indicating variations in size across

the apps. The average length of app descriptions is approximately

2083 characters, with a standard deviation of 1087, suggesting dif-

ferences in the level of detail provided (bearing in mind Google

Play’s 4000-character limit for descriptions). For more details, a

table showing the average APK size and average description length

for each class can be found in the repository.

In Section 3.1, we outline, step by step, the process of construct-

ing our new ground-truth dataset. Then, in Section 3.2, we provide

some interesting insights about the (non)alignment between app

categorization in the Google Play Store and AndroCatSet.

3.1 Dataset Creation

Due to the need for high-quality data, relying on a fully automated

process for creating the dataset was not feasible. Indeed, simply

searching on Google Play for apps with the desired purpose, e.g.,

searching for "calculator", would have been inadequate due to the

presence of apps intentionally disguising themselves as something

else. For example, conducting a search for "calculator" on Google

Play would yield numerous apps that appear to be regular calcula-

tors but actually allow users to hide their photos within them, as

illustrated in Figure 1. This highlights the importance of implement-

ing a manual verification process during the dataset construction

phase, as each app requires individual manual checking.

The dataset was created according to the following steps, which

were repeated for each one of the 50 classes:

(1) Class Definition. We define a class, e.g. "calculator", trying to

be as specific as possible to ensure fine granularity with respect

to Google Play Categorization. Some examples of classes in-

clude weather apps, translator apps, dating apps, and more. We

intentionally decided not to define any classes related to games

because their functionalities tend to vary too much, requiring

excessive manual work to build our ground truth.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

Table 1: The 50 classes present in our ground-truth dataset.

Ground-Truth Classes

Airlines Alarm Antivirus Astrology Banking

BarcodeAndQRcodeScanner BikeAndScooterSharing BooksReader Browser BuyAndRentHome

Calculator Calendar CarBuying Dating Dialer

Drawing Email ExpenseTracker FileManager FoodDelivery

FoodDiary HikingAndTrekking Insurance Investment JobSearch

Keyboard LanguageLearning Launcher Messenger MusicProduction

Navigator News Notepad OnlineTravelAgency PhotoEditor

PromoAndDeals PublicTransit Radio Recipes RemoteControl

Shopping SmartHome Streaming Translator TravelGuide

VideoPlayer Vpn Wallpaper Weather WorkoutAndTraining

(2) Apps Collection.We use a custom Python script leveraging

the google-play-scraper
2
to gather apps from Google Play by

searching for keywords related to the class we want to pop-

ulate. As google-play-scraper restricts the maximum number

of apps returned to 30, it is advisable to search for multiple

keywords for each class to gather a more comprehensive set

of apps. For instance, in the case of the "Notepad" class, we

conduct searches for both "notebook" and "notepad". Addition-

ally, to overcome this limitation, we leverage two parameters

of google-play-scraper : country and lang. The country param-

eter represents the two-letter country code (defaulted to "us")

used for application retrieval, while the lang parameter denotes

the two-letter language code (defaulted to "en") to be used. By

modifying the country parameter while keeping lang fixed

at "en", we retrieve more applications for each class, ensuring

consistency with only English descriptions.

(3) Filtering out malicious apps. To ensure that each app in our

class functions exactly as intended, we carefully exclude any

possible malicious behavior that could alter its functionality and

misalign the app with the rest of the class. To accomplish this,

we search for the package name of each app in the AndroZoo

dataset [2] [1] and keep only apps with a VirusTotal [56] score

equal to zero, i.e., benign apps.

(4) Manual Verification. We then conduct a manual verification

process for each app that remains after the previous steps, to

determine whether it qualifies as a member of the respective

class. This involves a thorough examination of the Google Play

page, including the app’s name, description, screenshots, and

user reviews. In instances of uncertainty, we took an extra step

by installing the app ourselves and personally verifying its

functionalities. We stop the manual verification process once

we reach a total of 100 apps for each class.

(5) Download and Information Retrieving. We complete the

process by downloading all the apps from AndroZoo [2] [1].

Moreover, we save in a file the package name, the Google Play

Category ID, and the description of the app, previously retrieved

using google-play-scraper.

3.2 Dataset Insights.

After creating the AndroCatSet ground-truth, we conducted an

analysis of the categories assigned by the Google Play Store to

the apps included in it. Now, we present the insights yielded by

2
https://github.com/JoMingyu/google-play-scraper

this analysis regarding the granularity level of Google Play’s cat-

egorization as well as instances of miscategorized apps that were

revealed.

Granularity Level. In Figure 2, we focus on the Google Play

categories TOOLS and HOUSE_AND_HOME. For each category, we pro-

vide the count of apps assigned to that specific category, segmented

into the classes they belong to within AndroCatSet. Regarding

the TOOLS category (Fig. 2a), our ground-truth includes a total of

690 apps distributed among 28 distinct classes. To enhance visual

clarity, we have grouped classes that constitute less than 3% of the

total under the "Other" class.

We can clearly see a contrast in the level of granularity between

the two Play Store categories, emphasizing that apps within the

same category only share a general sense of similarity, as noted in

previous studies [4, 32]. The Google Play Category TOOL serves as

a perfect illustration of this phenomenon, as it contains numerous

apps that, despite falling under the umbrella of "tools", exhibit signif-

icant variations in their functionality and similarity. Furthermore,

even within the seemingly more specific category HOUSE_AND_HOME
there exist apps with vastly different purposes. For instance, there

are apps available for purchasing and renting houses, as well as

apps designed for managing Smart Home IoT Devices. This empha-

sizes the inadequacy of using the categorization system provided by

the Google Play Store, especially in anomaly detection approaches.

Indeed, in order to get better results, it is preferable to employ

custom categorization approaches, such as the ones relying on the

description as already observed by Gorla et al. [22].

Miscategorization. Another issue regarding the current cat-

egorization system of the Google Play Store is the presence of

miscategorized apps, as previously highlighted by Surian et al. [55].

Upon reviewing the apps within our ground-truth data under the

Google Play Category TOOLS, we have identified a clear instance of

a miscategorized app in the Google Play Store. The app in question,

Daily Weather
3
, functions as a weather forecast app. In our ground-

truth, we appropriately manually assigned it to the "weather" class.

However, the app is currently listed under the Google Play Cate-

gory TOOLS, which indicates a case of miscategorization since the

category WEATHER already exists in the Google Play Store. For in-

stance, 98% of the apps classified as "weather" in AndroCatSet are

appropriately categorized under the Google Play category WEATHER.

3
https://play.google.com/store/apps/details?id=com.rlk.weathers



Revisiting Android App Categorization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Antivirus

12.7%
(88)

RemoteControl

12.3%
(85)

Vpn

11.4%
(79)

FileManager

10.7%
(74)

BarcodeScanner

8.8%
(61)

Other

8.7%
(60)

Calculator

8.1%
(56)

Alarm

6.8%
(47)

Translator

5.5%
(38)

Keyboard

4.3%
(30)

SmartHome

3.9%
(27)

Browser

3.6%
(25)

Dialer

3.2%
(22)

(a) TOOLS.

BuyAndRentHome

70.8%
(68)

SmartHome

21.9%
(21)

RemoteControl

7.3%
(7)

(b) HOUSE_AND_HOME.

Figure 2: Number of apps assigned to a Google Play Store category, segmented into the classes they belong to within our dataset.

4 COMPARISON OF EXISTING APPROACHES.

In this section, our objective is to compare various existing catego-

rization approaches and address the following research question:

RQ1: What is the performance of the existing categorization

approaches on AndroCatSet?

In Section 4.1, we outline our systematic literature search methodol-

ogy to gather existing categorization approaches from the literature.

Section 4.2 elaborates on our approach selection criteria, explain-

ing how we identified the approaches to be evaluated. Finally, in

Section 4.3, we present the evaluation results to answer RQ1.

4.1 Systematic Literature Search

We conducted a systematic literature search to explore the various

existing methodologies employed for categorizing Android Apps.

Our goal is to systematically retrieve existing approaches in a struc-

tured manner to evaluate them on our ground-truth dataset. We

conducted our search by exploring three widely used paper repos-

itories: ACM Digital Library [29], IEEE Xplore [25], and Google

Scholar [50]. To ensure comprehensive coverage, we formulated a

set of six queries. These queries comprised terms connected by the

logical operator "AND," mandating the presence of both terms and

terms enclosed in quotation marks, specifying an exact match. The

following are the queries we utilized:

• android AND "apps categorization"

• android AND "apps clustering"

• "android app" AND "topic modeling"

• "android app" AND "description analysis"

• "android app" AND "behavior classification"

• "android app" AND "miscategorization"

Results. In Table 2, we present the outcomes of our literature

search. The Hits column indicates the total number of papers gath-

ered during the process. We then proceeded to eliminate irrelevant

publications. Title represents the number of papers after removing

publications that are clearly irrelevant based on the title. Abstract

indicates the papers remaining after inspecting the abstracts and

removing the not relevant papers. In the final row of the table, we

present the overall count of papers corresponding to each step. Fi-

nally, we eliminated duplicate papers identified by multiple queries,

obtaining a collection of 40 distinct papers.

Literature Search Insights. In our retrieved collection of pa-

pers, we have come across surveys that provide valuable insights

into multiple categorization approaches simultaneously [32, 51].

Table 2: Paper filtered for each step of the literature search.

Query Hits Title Abstract

android AND "apps categorization" 170 46 22

android AND "app clustering" 69 26 14

"android app" AND "topic modelling" 236 45 17

"android app" AND "description analysis" 62 19 12

"android app" AND "behavior classification" 88 14 3

"android app" AND "miscategorization" 34 12 2

Total 659 162 66

Removing Duplicates 40

We have discovered numerous papers that utilize app categoriza-

tion for a variety of purposes, including but not limited to malware

detection [22, 60], finding miscategorized apps [6, 55], and even

classifying malware into distinct families [28, 35, 37]. As mentioned

earlier in Section 1, these findings reinforce the significance and

practicality of app categorization.

Within the collection of papers we have gathered, two major

trends can be identified. The first trend centers around the ab-

sence of a reliable ground-truth for evaluating app categoriza-

tion approaches. Numerous papers rely on the Google Play cat-

egories [23, 28, 38], but as previous studies have indicated and as

we discussed in Section 3.2, these categories are overly generalized

to be considered accurate [4, 32]. Additionally, some papers com-

pare their approaches using the same dataset used by others, which

hampers the research community’s ability to gain a comprehensive

overview based on a consistent dataset. For instance, Shamsujjoha

et al. [52] attempted to compare their approach, REACT, against

CHABADA [22], but they were only able to retrieve 75% of the apps

utilized in the study by Gorla et al. [22]. Others have attempted to

overcome the lack of a ground-truth by relying on human judg-

ment, but the inherent time constraints associated with this method

only allow for relatively small datasets to be manually verified. For

example, Ebrahimi et al. [18] conducted a study involving 600 apps

divided into two categories, whereas Al-Subaihin et al. [4] manually

evaluated 300 apps in their research. The second trend pertains

to the reliance of several papers on a supervised approach, often

utilizing Google Play categories as labels [19, 34, 49, 58]. As a re-

sult, the number of unsupervised approaches employed for app

categorization is significantly reduced.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

4.2 Approaches Selection.

To identify existing categorization approaches to be evaluated on

our ground-truth dataset, we began by re-filtering the 40 distinct

papers related to app categorization. Out of the initial 40 papers,

only 28 propose a specific approach for app categorization, while

the remaining papers consist of reviews discussing multiple ap-

proaches or papers relying directly on the categorization already

provided by Google Play. Among the 28 remaining papers, only

9 included available code for implementation. However, the links

provided for 3 out of the 9 papers were broken [13, 35, 55]. Despite

making several attempts to contact the authors, we either received

no response, or communication ceased after a few emails. More-

over, we tried reaching out to some of the authors of papers that

initially did not share their code, but unfortunately, these attempts

were also unsuccessful. For our last step, we excluded one [27] of

the 6 remaining papers since its authors overlapped with another

paper and utilized the same approach (the provided link led to the

same web page[57]). In the repository, a table showcasing the code

availability, utilized features, and reasons for exclusion for each of

the 40 papers can be found, providing more in-depth information.

Eventually, the five approaches selected are the following:

• CHABADA by Gorla et.al [22]. The objective of CHABADA is

to identify applications that do not align with their descriptions.

To categorize the apps, they follow a two-step process: cluster-

ing the apps using LDA to extract topics from descriptions, and

applying K-means for further clustering.

• REACT by Shamsujjoha et al. [52]. In this paper, the authors

present REACT as an alternative approach to CHABADA for

scenarios where descriptions are unavailable. Their proposed

method follows the same strategy as CHABADA but leverages

different sources of information, such as method names, XML

data, and GUI text values.

• Ebrahimi et al. [18]. The authors conducted a comparison of

various word embedding models to create numerical semantic

representations of app descriptions. These representations were

then utilized for the classification of app categories. As our paper

primarily focuses on the unsupervised categorization of apps,

we adopted the initial part of their methodology and applied

K-Means clustering on the embeddings to compare it with other

approaches. Out of the word embedding models utilized by the

authors, we specifically chose GloVe [45], as they demonstrated

that it yielded the most favorable outcomes.

• Sun et al. [54] The authors introduced a novel mobile app clus-

tering scheme that utilizes various features extracted from the

APK file. These features include activity names, certificate is-

suer information, and sets of keywords. By employing Affinity

Propagation [21], they demonstrated that clustering based on the

similarity of keywords, which represent app functionality, yields

superior performance. Hence, for our evaluation, we exclusively

focused on the keyword set of strings.

• Yang et al. [60] In this paper, the authors introduce a novel

method for characterizing malicious apps by analyzing their

descriptions and data-flow information. They employ LDA to ex-

tract topics from app descriptions. However, unlike CHABADA [22],

they directly cluster apps based on the most relevant topic.

4.3 RQ1 Results.

To assess the performance of the selected approaches, we rely on

the ARI Score, which we extensively discussed in Section 2. The ARI

Score is a straightforward metric that provides a measure of how

well the categorization approach aligns with a ground truth. A score

closer to 1 indicates a higher overlap with the ground truth and,

therefore, better performance, while a score closer to 0 suggests

random clustering and poorer performance.

In Figure 3, we present the ARI Score for each of the five ap-

proaches, showing a clear and significant distinction among the

evaluated methods. The approaches that rely on the description

(CHABADA and the ones proposed by Ebrahimi et al. and Yang et

al.) demonstrate high performance, while the other two approaches

(REACT and the one proposed by Sun et al.) exhibit poor per-

formance when evaluated against on AndroCatSet. Both of the

poorly performing approaches do not rely on the description. In-

stead, they extract data from the APK file of an app, including XML

values, Method Names, GUI Text for REACT, and Strings used by

the app for the approach from Sun et al. An explanation for this be-

havior has already been proposed by the authors of REACT in their

paper [52]. They observed that in Android apps, method names

and XML data values can be influenced by data obfuscation and

encryption. Moreover, as demonstrated in their paper [52], it is

possible for two distinctly different types of Android apps to have

a significant overlap in terms of XML data values.

REACT CHABADA Ebrahimi
et al.

Sun
et al.

Yang
et al.

Approach

0.0

0.2

0.4

0.6

0.8

1.0

AR
I S

co
re

0.02

0.70
0.59

0.01

0.68

Figure 3: ARI Scores of existing categorization approaches.

Answer to RQ1:We evaluated five existing approaches using

AndroCatSet. The approaches relying on app descriptions show

relatively high performance, while those extracting data from

APK files perform poorly.

5 IMPROVEMENTS OF DESCRIPTION-BASED

CATEGORIZATION APPROACHES

RQ1 revealed the superiority of description-based approaches but

also acknowledged the potential for further improvement within

this methodology. Thus, in this section, we explore possible ad-

vancements in description-based approaches. In Section 5.1, we

introduce G-CatA: our innovative method that leverages app de-

scriptions. Then, in Section 5.2, we evaluate our own approach,

addressing the following research question:



Revisiting Android App Categorization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

RQ2: Can the performance of app categorization approaches

leveraging app descriptions be improved?

5.1 Novel Description-based Approach.

We propose our approach G-CatA, which stands for Gpt-based
CATegorization of Android apps. The main idea behind our new

description-based approach is to leverage OpenAI’s powerful GPT-

based text embedding models [39], which have been introduced

in Section 2, to effectively process and represent app descriptions,

enabling automatic categorization of the apps.

Prior to generating the embeddings, we leverage standard NLP

techniques to preprocess the app descriptions, following the ap-

proach adopted by similar studies [4, 22, 55]. Our preprocessing

steps involve removing non-textual items, eliminating stop-words

(e.g., "the," "is," "at," etc.), and performing lemmatization. Lemma-

tization, unlike stemming, considers the grammatical context and

aims to produce meaningful and valid base forms (e.g., "caring" to

"care" and not "car" like stemming).

After completing the preprocessing stage, we use the OpenAI

second-generationmodel text-embedding-ada-002 [42]. This new
embedding model significantly outperforms first-generation mod-

els initially introduced by OpenAI in various NLP tasks, such as

natural language processing and code tasks, as highlighted in Ope-

nAI’s official blog post announcement [42]. This model employs the

cl100k_base tokenizer, which is the same tokenizer used in Chat-

GPT3.5 and ChatGPT4 [41]. It allows for a maximum input context

length of 8192. Notably, the embeddings generated by this model

have 1536 dimensions, and their cost is reduced by 90% compared

to first-generation models [42].

Finally, we use the Scikit-learn [44] implementation of the K-

Means [30] clustering algorithm as the final step to partition the

apps into 50 clusters.

5.2 RQ2 Results.

To address RQ2, we compared our new approach G-CatA against

existing description-based approaches that were already evaluated

in Section 4.3. In Figure 4, we present a comparison of ARI scores

among four approaches: G-CatA (shown in red) and three existing

approaches previously evaluated in RQ1 (shown in green). G-CatA

outperforms the other three, achieving an impressive ARI score of

0.91, which represents a remarkable 32% improvement compared to

the previous leadingmethod, CHABADA. Notably, the achievedARI

score is remarkably close to 1, indicating a nearly perfect alignment

with the ground truth. This result underscores the effectiveness of

combining descriptions with powerful models like OpenAI’s text

embedding models.

Answer to RQ2: We have proposed G-CatA, a novel approach

for categorizing Android apps by leveraging app descriptions

and OpenAI’s powerful embedding models. G-CatA achieved an

impressive ARI score of 0.91, outperforming existing description-

based approaches.

CHABADA Ebrahimi
et al.

Yang
et al.

G-CATA

Approach

0.0

0.2

0.4

0.6

0.8

1.0

AR
I S

co
re

0.70
0.59

0.68

0.91

Figure 4: ARI scores of our new approach G-CatA (red) com-

pared to existing description-based approaches (green).

6 IMPROVEMENTS OF APK-BASED

CATEGORIZATION APPROACHES

RQ1 demonstrated the inadequate performance of categorization

approaches relying on APK file data. However, app descriptions

may not always be accessible or undergo changes [52], emphasizing

the need to categorize apps using only data within the APK. In

this section, we explore advancements in APK-based approaches

and propose two alternative solutions, both centered around the

concept of expanding the set of features used in conventional APK-

based methods. These solutions are now presented individually in

Section 6.1 and Section 6.2.

6.1 Leveraging Existing App Representations

from Unrelated Tasks.

One simple idea is to leverage existing tools from other unrelated

tasks, such as malware detection, to gather diverse app represen-

tations (i.e., representations that differ from the one presented in

RQ1). These diverse representations can then be used for our cate-

gorization task. Let’s consider the example of DREBIN [7], one of

the most popular Android malware detectors. Instead of using it to

distinguish between benign and malicious apps, we can repurpose

the same app representation for categorizing apps. This approach

requires minimal implementation effort since we can utilize existing

features from the malware detection process.

Thus, we aim to answer the following question:

RQ3: How do different approaches for app representation,

borrowed from unrelated tasks, impact the performance of

app categorization?

To address this RQ, we investigated various app representations

proposed in the research literature, aiming to diversify the types of

representations explored. In particular, we investigate the following

four types of representations that can be generated by available

tools.

• Feature-based app representation. For the "traditional" feature-

based representation, we employ DREBIN by Arp et al. [7], which

performs extensive static analysis by extracting various appli-

cation features. These features are then organized in a unified

vector space to distinguish between benign and malicious apps.

Specifically, DREBIN employs eight distinct feature sets, namely:



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

Hardware features, Requested permissions, App components, Fil-

tered intents, Restricted API calls, Used permissions, Suspicious

API calls, and Network addresses.

• Image-based app representation. The image-based represen-

tation is obtained using DexRay by Daoudi et al. [14]. DexRay

takes the bytecode from the app’s DEX files and transforms them

into grayscale images. These images are then utilized by a 1D

Convolutional Neural Network (CNN) model to identify malware.

• Icon-based app representation. To derive this representation,

we implement the method proposed by Rajasegaran et al. [46].

They introduced a novel icon encoding technique that efficiently

detects potential counterfeits for a specific app. This method

leverages neural embeddings from CNNs, enhancing search ac-

curacy.

• BERT-based app representation. To obtain this representation,

we adopt LaFiCMIL by Sun et al. [53]. The proposed approach,

LaFiCMIL, offers a versatile framework that can be effectively

applied to diverse BERT-based large file classification tasks, in-

cluding Android Malware Detection.

RQ3 Results. In Table 3, we present the ARI scores for the four

app representations we previously selected. All four approaches

exhibit scores close to zero, which indicates clustering results simi-

lar to random chance. Notably, these outcomes align with the two

APK-based approaches we discussed in RQ1. Despite our efforts

to expand our approaches by leveraging various representations

based on diverse features such as app icons, app components, per-

missions, and bytecode image representations, we were unable to

achieve improved performance. However, it is essential to note that

we relied on existing tools to extract the app representations from

the apps in our dataset, without making any modifications to the

feature extraction process or the employed embedding techniques.

Table 3: ARI scores using various app representations.

Approach Representation ARI Score

DREBIN Features-based 0.02

DexRay Image-based 0.01

Rajasegaran et al. Icon-based 0.02

LaFiCMIL BERT-based 0.01

Answer to RQ3:We leveraged various app representations from

diverse approaches unrelated to app categorization, e.g., malware

detection. Our observations indicate that these representations do

not enhance the categorization performance.

6.2 Novel APK-based Approach.

The second option involves creating a new approach from scratch,

independent of existing tools, while drawing inspiration from valu-

able insights offered by the aforementioned app representations

used in other, unrelated tasks. In this case, our research question is

as follows:

RQ4: Which specific types of features extracted from the

APK file, demonstrate the most significant impact on app

categorization performance?

To answer this question, we first compiled a list of data that can be

extracted from an Android APK file and is consistently available,

unlike metadata such as the description. Our selected data includes:

(1) Name: The name/title of the application.

(2) Permissions: The permissions requested by the app.

(3) Restricted API Calls: The API calls protected by permissions.

(4) Strings: The textual content used within the app.

(5) Icon: The graphical representation of the app.

(6) Libraries: The list of libraries utilized by the app.

We have defined this specific list of data with the intention

of characterizing apps in a similar manner as the authors of RE-

ACT [52] and also taking inspiration from the existing tools that

we presented in Section 6.1. This data is expected to assist us in

identifying commonalities among apps with similar purposes. For

example, when comparing two "calculator" apps, we expect to find

similarities in their app names, rely on a similar set of permissions,

and the presence of shared strings within the apps. These shared

strings could include terms related to mathematics, such as "calc",

"plus", "minus", and similar expressions.

To extract the desired data from the app within our dataset, we

have developed a set of custom Python scripts that automate the

usage of tools such as Androguard [16] and ApkTool [59]. Our

repository also includes these valuable scripts, which are readily

available for others to utilize. Androguard, a Python-based software

developed for analyzing Android applications, was used to extract

essential information, including the app’s name, icon, and other

pertinent details. In some specific instances, we leveraged ApkTool

for reverse engineering Android apps and then parsing XML and

DEX files to extract the necessary data.

To handle the diverse nature of the collected information, we

employed various techniques to generate numerical feature vectors

from the extracted data. When dealing with the names of the apps,

we utilized the text embedding models from OpenAI, which were

also employed for the descriptions in Section 5.1. However, we

encountered a limitation with the OpenAI text embedding model’s

maximum input length, preventing us from generating embeddings

for other types of features. For the app icon, we adopted the same

approach of Rajasegaran et al. [46](already presented in Section 6.1).

However, in contrast to their method, we only embedded the con-

tent of the app icon, as we believe this provides more value for cat-

egorization purposes. All the remaining data can be conveniently

represented as a list of strings. This suggests how a simple TF-IDF

vectorization can effectively measure the significance of individual

strings, such as permission names or library usage.

Finally, following the approach we employed for the descriptions,

we leveraged the K-Means clustering algorithm as the final step

to divide the apps into 50 clusters for each of the six types of data

we proposed. This allowed us to assess the effectiveness of these

features in categorizing the apps on an individual basis.

RQ4 Results. Figure 5 illustrates a comparison of ARI Scores for

various feature types used in our categorization, represented in red,

contrasting with the two existing APK-based methods evaluated in

RQ1 shown in green. Aswe can observe, using the app icon, the used

libraries, and restricted API calls yield results comparable to the

two existing APK-based approaches. Instead, notable performance

improvements can be achieved when leveraging the app strings,



Revisiting Android App Categorization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

REACT Strings APIs Icon
Sun et al. Name Permissions Libraries

Approach

0.0

0.1

0.2

0.3

0.4

0.5
AR

I S
co

re

0.02 0.01

0.19

0.36

0.02
0.09

0.03 0.03

Figure 5: ARI scores of our new categorization approach (red)

compared to existing APK-based approaches (green).

app name, and the requested permissions. Indeed, even if the ARI

score obtained through the App Name is still distant from the scores

obtained with the description-based approaches, it represents an

impressive increase of 1700% compared to the previous leading APK-

based approach, REACT. The remarkable improvement observed

can likely be attributed to the utilization of OpenAI’s powerful text

embedding models, as already discussed for RQ2.

Another key factor worth highlighting is the remarkable perfor-

mance improvement achieved by leveraging the strings used by

the apps, in contrast to the existing APK-based methods that rely

on similar characteristics. This emphasizes the substantial influ-

ence of embedding techniques and the clustering algorithm on task

performance, even when utilizing the same feature set.

Combining multiple features extracted from the APK file.

After evaluating the various types of features individually, as shown

in Figure 5, and observing their positive impacts, we attempted

to further enhance the overall performance by combining all the

features simultaneously. To achieve this, we concatenated all the

previously generated feature vectors and applied normalization

using the MinMaxScaler from Scikit-learn [44]. Next, we employed

Principal Component Analysis (PCA) [26] for dimensionality reduc-

tion and subsequently utilized the K-Means algorithm to cluster the

apps once more. Unfortunately, our efforts did not produce the ex-

pected improvement. The ARI score obtained was 0.14 when using

all six feature types and 0.30 when using only the top three per-

forming ones. These scores did not surpass the best score achieved

using only the app name, thus, we decided not to include this score

in Figure 5. This outcome implies that the different feature types

may be capturing similar underlying relationships among the apps.

For future research, exploring alternative methods to leverage all

features, such as employing ensemble clustering techniques [10],

could be beneficial.

Answer to RQ4: We tested various APK-based features for app

categorization and discovered that combining the app name with

OpenAI’s model achieved the best performance. Our approach

outperformed the leading APK-based method achieving a score

of 0.36.

7 DOWNSTREAM TASKS IMPROVEMENT.

In Section 4.3, we demonstrated the superiority of our new ap-

proach G-CatA over existing methods. Building on that, our focus

shifts toward examining the potential impact of an enhanced cat-

egorization approach on the overall performance of tools reliant

on automatic app categorization. We seek to address the following

RQ:

RQ5: How does the performance of tools relying on app

categorization improve with a better categorization

approach?

In particular, Section 7.1 details the experiments we conducted using

G-CatA on top of CHABADA. Then, in Section 7.2, we provide the

findings and answer RQ5.

7.1 Testing CHABADA as Malware Detector.

CHABADA by Gorla et al. [22] can be used to find potential ma-

licious apps by identifying inconsistencies between the exhibited

behavior and the app descriptions. It consists of two phases: app

categorization, which involves utilizing app descriptions, and La-

tent Dirichlet Allocation (LDA), followed by unsupervised anomaly

detection using the One-Class SVM algorithm. This process helps

identify outliers based on API usage patterns.

We evaluated the effectiveness of CHABADA in detecting poten-

tial malicious apps when employing two different categorization

approaches. The objective was to understand how these approaches

influence the anomaly detection phase of CHABADA. We trained

OC-SVM models on benign apps and used them as classifiers on

a test set containing both benign apps and known malware apps,

following the methodology of the original paper [22]. However,

we first relied on the original categorization approach based on

LDA (i.e., the one presented in [18]) before relaunching all the ex-

periments using our novel approach G-CatA. Below, we provide

comprehensive details about the experiments conducted.

(1) Dataset. We started by organizing AndroCatSet into a Train-

ing Set and a Test Set. The Training Set consisted of 4500 apps,

with 90 apps representing each of the 50 classes, with the Test

Set comprising the remaining 500 apps. Since our AndroCat-

Set consists solely of benign apps, we expanded our Test Set

by including 500 malicious apps sourced from the AndroZoo

repository. We gathered apps that were flagged as malware by

at least ten antivirus scanners in VirusTotal [56], and also those

that were available on the Google Play Store, in order to easily

access their descriptions.

(2) Clustering. Once we organized the dataset and retrieved the

descriptions of all the apps, we proceeded to cluster the Training

Set into 50 clusters using both the CHABADA original approach

and G-CatA. While clustering the apps, we made sure to save

the machine learning models for future reuse during the testing

process.

(3) Sensitive APIs Extraction. For all the apps in both the Train-

ing and Test sets, we extracted the sensitive API calls, which are

API calls that require Android permission settings for protection

and can access sensitive information (e.g., camera, microphone,

etc.) or perform sensitive tasks (e.g., altering system settings,

sendingmessages, etc.). For example, the getLastKnownLocation()
API call is protected by ACCESS_FINE_LOCATION permission.



ICSE ’24, April 14–20, 2024, Lisbon, Portugal Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

Table 4: Performance of CHABADA as a malware detector:

original approach vs. G-CatA (𝐹1 = 𝑇𝑃

𝑇𝑃+ 1

2
(𝐹𝑃+𝐹𝑁 ) ).

TN Rate FP Rate FN Rate TP Rate F1

Chabada 86.40% 13.60% 80.40% 19.60% 0.29

G-CatA 92.00% 8.00% 69.20% 30.80% 0.44

To extract all sensitive API calls, including the number of call

sites for each API, we used static analysis tools such as Andro-

guard [16] and ApkTool [59].

(4) Training. CHABADA leverages sensitive APIs as binary fea-

tures and employs a One-Class SVM (OC-SVM) to train distinct

models for each cluster of similar applications. These models

are specifically tailored for detecting anomalies or novelties,

which, in our case, refer to applications whose API usage sig-

nificantly deviates from the established norm within their re-

spective clusters. As described in the CHABADA paper, we

trained an OC-SVM for each cluster of benign apps found in

the training set, aiming to learn their "normal" behavior. We

repeated this step first by using the clusters produced using the

original CHABADA approach and then by using the clusters

produced by G-CatA (with a total of 50+50 models).

(5) Testing. Finally, we used the cluster-specific OC-SVM models

as malware detectors. We assign each app in the Test Set to one

of the 50 clusters using the models saved from the clustering

phase. This enables us to select the appropriate OC-SVM model

to be used as an anomaly detector. Then, we verify whether

the malicious apps are identified as anomalies, indicating dif-

ferences in their APIs compared to the typical usage of the

API within the same cluster. On the contrary, we expect the

benign apps in the Test Set not to be flagged as anomalies i.e.,

potentially malicious, since their behavior should align with

the common behavior of the specific cluster.

7.2 RQ5 Results.

The primary goal of RQ5 is to explore the potential advantages

of G-CatA when applied to tools reliant on automated app cat-

egorization, such as CHABADA. The results of our experiments

are presented in Table 4. As in the original CHABADA paper, we

consider a malicious app detected as an anomaly as a True Positive,

and a benign app not flagged as an anomaly as a True Negative [22].

The remaining definition of False Positive and False Negative, come

easily. G-CatA demonstrates improvements in both the False Posi-

tive Rate and the True Positive Rate. In the case of the False Positive

Rate, we observed a slight reduction from 13.60% to 8.00%, indicat-

ing fewer benign apps being incorrectly identified as malicious. On

the other hand, there has been a significant improvement in the

True Positive Rate, which increased from 19.60% to 30.80%. This

increase of 57.14% clearly demonstrates the impact of G-CatA in

identifying a larger number of malicious apps, when CHABADA re-

lies on it. In terms of overall performance, the F1 Score has increased

from 0.29 to 0.44, confirming the positive impact of G-CatA, as

just mentioned. Moreover, it is important to note that the OC-SVM

models, which do not have any prior knowledge about malicious

apps, can also be used to detect unknown malware, making the

results even more remarkable.

Answer to RQ5: We demonstrated that relying on a better cat-

egorization approach, such as G-CatA, can yield a substantial

influence on the final outcome of tools that depend on categoriza-

tion, such as CHABADA.

8 LIMITATIONS AND THREATS TO VALIDITY.

Like any other study, our research is susceptible to threats to valid-

ity, which arise from various limitations in our approach. Below,

we outline the most significant threats and limitations.

Human error and subjectivity. Constructing the first ground-

truth dataset from scratch posed challenges as we could only rely

on manual verification to ensure high-quality data. It is important

to note that despite following a consistent process for building

AndroCatSet, human subjectivity may still influence certain as-

pects. To mitigate this threat to validity we share AndroCatSet,

as well as the tools and scripts used to create it, with the research

community.

Not exhaustive literature search. Our literature search for cate-

gorization approaches, based on the six queries we defined in 4.1,

may not be exhaustive. However, as it serves as a systematic means

to identify existing approaches in a structured manner, our de-

cision was primarily driven by practical considerations. Indeed,

including broader queries would have been impractical due to the

overwhelming number of papers retrieved. For instance, the query

"app clustering" returns over 200 000 results on Google Scholar,

making it impractical to manually select the relevant approaches

for evaluation.

Approaches selection and code availability. The selection of

categorization approaches for evaluation, carried out in Section 4.2,

was mainly influenced by code availability. The lack of code hin-

dered a comprehensive performance overview, highlighting how

much important it is to provide code alongside the paper to benefit

the entire research community.

9 RELATEDWORK

To the best of our knowledge, we are the first to provide a com-

prehensive ground-truth dataset for evaluating Android app cat-

egorization. However, we now present a concise summary of the

primary findings derived from previous research conducted on this

topic.

The previous research conducted by Al-Subaihin et al. [3] is

highly relevant to our work as it presents an empirical comparison

of various text-based app clustering techniques such as Latent

Dirichlet Allocation (LDA), as well as keyword feature extraction

methods. They experimented with 12 664 Google Play Store apps

sampled from 24 categories. They utilized intrinsic measures such

as the Silhouette Score and human judgment (analyzing 300 apps in

total) due to the absence of a ground-truth, as outlined in their paper.

Our work assumes even greater significance due to the creation of

AndroCatSet, which could have proven immensely valuable in

evaluating studies like the one conducted by Al-Subaihin et al. [3].

Furthermore, in our paper, we not only assessed approaches that

rely solely on app descriptions for categorization but also tried to

distinguish between the features utilized by the evaluated methods.

For instance, we took into consideration all types of data that can



Revisiting Android App Categorization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

be extracted from the APK in order to provide a comprehensive

evaluation.

Martin et al. [32] conducted a comprehensive survey on App

Store Analysis, which included a dedicated section on App Clus-

tering approaches. In this section, they presented an overview of

various techniques and features utilized in clustering apps highlight-

ing how the app descriptions are commonly leveraged to categorize

apps according to their functionality. In their review, about Android

Security using NLP, Sen et al. [51] provide a concise overview of

categorization approaches commonly employed in malware detec-

tion tasks, which typically rely on the descriptions of the apps.

Although our literature search may not have been as comprehen-

sive as the studies conducted by Martin et al. [32] and Sen et al. [51],

we have gone beyond by not only offering an overview of existing

approaches but also assessing their performance on AndroCatSet

ground-truth.

Several research papers have consistently highlighted the inad-

equacy of Google Play’s current app categorization system. Apps

within the same category often exhibit only a vague sense of simi-

larity, indicating a significant lack of effective categorization [4, 22,

32, 55]. In our paper, we conducted a comprehensive analysis of our

own original dataset affirming the findings of the just cited prior

studies. We even provided concrete evidence of a misclassified app,

as defined by Surian et al. in their paper [55].

10 CONCLUSION

In our study, we conducted a comprehensive evaluation of vari-

ous Android app categorization approaches found in the existing

literature. Our analysis emphasized the remarkable superiority of

approaches that utilize app descriptions, as opposed to those relying

solely on data extracted from theAPKfile. This evaluationwasmade

possible thanks to our newAndroCatSet ground-truth.We believe

this dataset will be a valuable resource for future research in this

field, addressing a gap that has been previously highlighted by sim-

ilar studies [3, 18]. Furthermore, we developed two innovative ap-

proaches that effectively improve the performance of existing meth-

ods in both description-based and APK-based methodologies. No-

tably, for what concerns our description-based approach G-CatA,

we achieved an impressive ARI score of 0.91 by leveraging the

powerful text embedding models provided by OpenAI. In our final

experiments, we demonstrated the impact of a better-performing

categorization approach when implemented within a tool reliant

on automatic app categorization, such as CHABADA [22]. This

highlights how G-CatA can provide substantial benefits to future

software engineering tools that rely on automatic categorization,

emphasizing the importance of developing advanced and efficient

app categorization methodologies.

Future work may involve expanding AndroCatSet by incorpo-

rating additional apps and classes, as well as intensifying efforts to

address the existing disparity between APK-based and description-

based approaches. By offering valuable insights, introducing a new

ground-truth dataset, and presenting two innovative approaches

to address existing limitations in the literature, our research aims

to make a significant contribution to the field of automatic app

categorization in software engineering.

11 DATA AVAILABILITY

The repository including all artifacts is available at:

https://github.com/Trustworthy-Software/Revisiting-Android-

App-Categorization

12 ACKNOWLEDGEMENT

This research was funded in part by the Luxembourg National

Research Fund (FNR), grant reference NCER22/IS/16570468/NCER-

FT and REPROCESS grant reference C21/IS/16344458.

REFERENCES

[1] Marco Alecci, Pedro J. R. Jiménez, Kevin Allix, Tegawendé F. Bissyandé, and

Jacques Klein. 2024. AndroZoo: A Retrospective with a Glimpse into the Future.

In 2024 IEEE/ACM 21st International Conference on Mining Software Repositories

(MSR). IEEE Computer Society.

[2] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

AndroZoo: Collecting Millions of Android Apps for the Research Community. In

Proceedings of the 13th International Conference on Mining Software Repositories

(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/

10.1145/2901739.2903508

[3] Afnan Alsubaihin, Federica Sarro, Sue Black, and Licia Capra. 2019. Empirical

comparison of text-basedmobile apps similaritymeasurement techniques. Empiri-

cal Software Engineering 24 (12 2019). https://doi.org/10.1007/s10664-019-09726-5

[4] Afnan Alsubaihin, Federica Sarro, Sue Black, L. Capra, Mark Harman, Yue Jia,

and Y. Zhang. 2016. Clustering Mobile Apps Based on Mined Textual Features.

1–10. https://doi.org/10.1145/2961111.2962600

[5] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009. A com-

parison of extrinsic clustering evaluation metrics based on formal constraints.

Information Retrieval 12, 4 (Aug 2009), 461–486. https://doi.org/10.1007/s10791-

008-9066-8

[6] Azmi Aminordin, Mohd Faizal Abdollah, Robiah Yusof, and Rabiah Ahmad. 2018.

Preliminary Findings: Revising Developer Guideline Using Word Frequency for

Identifying Apps Miscategorization. In Proceedings of the Second International

Conference on the Future of ASEAN (ICoFA) 2017 – Volume 2, Rizauddin Saian and

Mohd Azwan Abbas (Eds.). Springer Singapore, Singapore, 123–131.

[7] Dan Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck.

2014. DREBIN: Effective and Explainable Detection of Android Malware in Your

Pocket. In Network and Distributed System Security Symposium.

[8] Vitalii Avdiienko, Konstantin Kuznetsov, Isabelle Rommelfanger, Andreas Rau,

Alessandra Gorla, and Andreas Zeller. 2017. Detecting Behavior Anomalies in

Graphical User Interfaces. In Proceedings of the 39th International Conference on

Software Engineering Companion (Buenos Aires, Argentina) (ICSE-C ’17). IEEE

Press, 201–203. https://doi.org/10.1109/ICSE-C.2017.130

[9] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-

riching Word Vectors with Subword Information. Transactions of the Association

for Computational Linguistics 5 (2017), 135–146. https://doi.org/10.1162/tacl_a_

00051

[10] Tossapon Boongoen and Natthakan Iam-On. 2018. Cluster ensembles: A survey

of approaches with recent extensions and applications. Computer Science Review

28 (2018), 1–25. https://doi.org/10.1016/j.cosrev.2018.01.003

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.

arXiv:2005.14165 [cs.CL]

[12] T. Caliński and J Harabasz. 1974. A dendrite method for cluster analysis. Commu-

nications in Statistics 3, 1 (1974), 1–27. https://doi.org/10.1080/03610927408827101

[13] Ning Chen, Steven Hoi, Shaohua Li, and Xiaokui Xiao. 2015. SimApp: A Frame-

work for Detecting Similar Mobile Applications by Online Kernel Learning.

WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search

and Data Mining. https://doi.org/10.1145/2684822.2685305

[14] Nadia Daoudi, Jordan Samhi, Abdoul Kader Kabore, Kevin Allix, Tegawendé F.

Bissyandé, and Jacques Klein. 2021. DexRay: A Simple, yet Effective Deep Learn-

ing Approach to Android Malware Detection Based on Image Representation

of Bytecode. In Deployable Machine Learning for Security Defense, Gang Wang,

Arridhana Ciptadi, and Ali Ahmadzadeh (Eds.). Springer International Publishing,

Cham, 81–106.

[15] David L. Davies and Donald W. Bouldin. 1979. A Cluster Separation Measure.

IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1, 2 (1979),

224–227. https://doi.org/10.1109/TPAMI.1979.4766909

https://github.com/Trustworthy-Software/Revisiting-Android-App-Categorization
https://github.com/Trustworthy-Software/Revisiting-Android-App-Categorization
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1007/s10664-019-09726-5
https://doi.org/10.1145/2961111.2962600
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1109/ICSE-C.2017.130
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1016/j.cosrev.2018.01.003
https://arxiv.org/abs/2005.14165
https://doi.org/10.1080/03610927408827101
https://doi.org/10.1145/2684822.2685305
https://doi.org/10.1109/TPAMI.1979.4766909


ICSE ’24, April 14–20, 2024, Lisbon, Portugal Marco Alecci, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

[16] Anthony Desnos. 2011. https://github.com/androguard/androguard.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv:1810.04805 [cs.CL]

[18] Fahimeh Ebrahimi, Miroslav Tushev, and Anas Mahmoud. 2021. Classifying

Mobile Applications Using Word Embeddings. ACM Trans. Softw. Eng. Methodol.

31, 2, Article 20 (nov 2021), 30 pages. https://doi.org/10.1145/3474827

[19] Wenhao Fan, Yeh g Chen, Yuan’an Liu, and Fan Wu. 2019. DroidARA: Android

Application Automatic Categorization Based on API Relationship Analysis. IEEE

Access 7 (2019), 157987–157996.

[20] E. B. Fowlkes and C. L. Mallows. 1983. AMethod for Comparing Two Hierarchical

Clusterings. J. Amer. Statist. Assoc. 78, 383 (1983), 553–569. https://doi.org/10.

1080/01621459.1983.10478008

[21] Brendan J. Frey and Delbert Dueck. 2007. Clustering by Passing Messages

Between Data Points. Science 315, 5814 (2007), 972–976. https://doi.org/10.1126/

science.1136800 arXiv:https://www.science.org/doi/pdf/10.1126/science.1136800

[22] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014.

Checking App Behavior Against App Descriptions. In ICSE ’14: Proceedings of the

2014 International Conference on Software Engineering (Hyderabad, India). ACM

Press, 292–302.

[23] Nils Gruschka, Luigi Lo Iacono, and Jan Tolsdorf. 2018. Classification of Android

App Permissions.

[24] Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. Journal

of Classification 2, 1 (Dec 1985), 193–218. https://doi.org/10.1007/BF01908075

Company: Springer Distributor: Springer Institution: Springer Label: Springer

number: 1 publisher: Springer-Verlag.

[25] IEEEXplore. 2023. https://ieeexplore.ieee.org/Xplore/home.jsp.

[26] Ian T Jolliffe and Jorge Cadima. 2016. Principal component analysis: a review

and recent developments. Philosophical transactions of the royal society A: Mathe-

matical, Physical and Engineering Sciences 374, 2065 (2016), 20150202.

[27] Konstantin Kuznetsov, Vitalii Avdiienko, Alessandra Gorla, and Andreas Zeller.

2016. Checking App User Interfaces against App Descriptions. In Proceedings of

the International Workshop on App Market Analytics (Seattle, WA, USA) (WAMA

2016). Association for Computing Machinery, New York, NY, USA, 1–7. https:

//doi.org/10.1145/2993259.2993265

[28] Anran Li, Shuangshuang Xue, Xiang-Yang Li, Lan Zhang, and Jianwei Qian. 2022.

AppDNA: Profiling App Behavior via Deep-Learning Function Call Graphs. IEEE

Transactions on Emerging Topics in Computing 10, 1 (2022), 414–427. https:

//doi.org/10.1109/TETC.2020.3026335

[29] ACM Digital Library. 2023. https://dl.acm.org/.

[30] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Informa-

tion Theory 28, 2 (1982), 129–137. https://doi.org/10.1109/TIT.1982.1056489

[31] Arvind Mahindru and Amrit Sangal. 2021. SemiDroid: a behavioral malware

detector based on unsupervised machine learning techniques using feature selec-

tion approaches. International Journal of Machine Learning and Cybernetics 12

(05 2021). https://doi.org/10.1007/s13042-020-01238-9

[32] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.

2017. A Survey of App Store Analysis for Software Engineering. IEEE Transactions

on Software Engineering 43, 9 (2017), 817–847. https://doi.org/10.1109/TSE.2016.

2630689

[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositional-

ity. In Advances in Neural Information Processing Systems, C.J. Burges, L. Bot-

tou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (Eds.), Vol. 26. Cur-

ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2013/file/

9aa42b31882ec039965f3c4923ce901b-Paper.pdf

[34] A. Mohammad Ebrahimi, M. Saber Gholami, Saeedeh Momtazi, M. R. Meybodi,

and A. Abdollahzadeh Barforoush. 2020. Correlation Analysis of Applications’

Features: A Case Study on Google Play. In Data Science: From Research to Applica-

tion, Mahdi Bohlouli, Bahram Sadeghi Bigham, Zahra Narimani, Mahdi Vasighi,

and Ebrahim Ansari (Eds.). Springer International Publishing, Cham, 202–216.

[35] Annamalai Narayanan, Charlie Soh, Lihui Chen, Yang Liu, and Lipo Wang. 2018.

Apk2vec: Semi-Supervised Multi-view Representation Learning for Profiling

Android Applications. In 2018 IEEE International Conference on Data Mining

(ICDM). 357–366. https://doi.org/10.1109/ICDM.2018.00051

[36] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry

Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes

Heidecke, Pranav Shyam, Boris Power, Tyna Eloundou Nekoul, Girish Sastry,

Gretchen Krueger, David Schnurr, Felipe Petroski Such, Kenny Hsu, Madeleine

Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter Welinder, and

Lilian Weng. 2022. Text and Code Embeddings by Contrastive Pre-Training.

arXiv:2201.10005 [cs.CL]

[37] Robin Nix and Jian Zhang. 2017. Classification of Android apps and malware

using deep neural networks. In 2017 International Joint Conference on Neural

Networks (IJCNN). 1871–1878. https://doi.org/10.1109/IJCNN.2017.7966078

[38] Babatunde Olabenjo. 2016. Applying Naive Bayes Classification to Google Play

Apps Categorization. arXiv:1608.08574 [cs.LG]

[39] OpenAI. 2022. https://openai.com/blog/introducing-text-and-code-embeddings.

[40] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[41] OpenAI. 2023. https://github.com/openai/openai-cookbook/blob/main/examples/

How_to_count_tokens_with_tiktoken.ipynb.

[42] OpenAI. 2023. https://openai.com/blog/new-and-improved-embedding-model.

[43] OpenAI. 2023. https://platform.openai.com/docs/guides/embeddings.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[45] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe:

Global Vectors for Word Representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP). Association for

Computational Linguistics, Doha, Qatar, 1532–1543. https://doi.org/10.3115/v1/

D14-1162

[46] Jathushan Rajasegaran, Naveen Karunanayake, Ashanie Gunathillake, Suranga

Seneviratne, and Guillaume Jourjon. 2019. AMulti-Modal Neural Embeddings Ap-

proach for Detecting Mobile Counterfeit Apps. In TheWorld WideWeb Conference

(San Francisco, CA, USA) (WWW ’19). Association for Computing Machinery,

New York, NY, USA, 3165–3171. https://doi.org/10.1145/3308558.3313427

[47] William M. Rand. 1971. Objective Criteria for the Evaluation of Clustering

Methods. J. Amer. Statist. Assoc. 66, 336 (1971), 846–850. https://doi.org/10.1080/

01621459.1971.10482356

[48] Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation

and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.

https://doi.org/10.1016/0377-0427(87)90125-7

[49] Mukund Rungta, Praneet Prabhakar Sherki, Mehak Preet Dhaliwal, Hemant

Tiwari, and Vanraj Vala. 2020. Two-Phase Multimodal Neural Network for App

Categorization using APK Resources. In 2020 IEEE 14th International Conference

on Semantic Computing (ICSC). 162–165. https://doi.org/10.1109/ICSC.2020.00032

[50] Google Scholar. 2023. https://scholar.google.com/.

[51] Sevil Sen and Burcu Can. 2021. Android Security using NLP Techniques: A

Review. arXiv:2107.03072 [cs.CR]

[52] Md. Shamsujjoha, John Grundy, Li Li, Hourieh Khalajzadeh, and Qinghua Lu.

2021. Checking App Behavior Against App Descriptions: What If There are No

App Descriptions?. In 2021 IEEE/ACM 29th International Conference on Program

Comprehension (ICPC). 422–432. https://doi.org/10.1109/ICPC52881.2021.00050

[53] Tiezhu Sun, Weiguo Pian, Nadia Daoudi, Kevin Allix, Tegawendé F. Bissyandé,

and Jacques Klein. 2023. LaFiCMIL: Rethinking Large File Classification from the

Perspective of Correlated Multiple Instance Learning. arXiv:2308.01413 [cs.CL]

[54] Wenqi Sun, Songyang Wu, and Zhi Xue. 2020. Clustering Mobile Apps based

on Design and Manufacturing Genre. In 2020 IEEE 6th International Conference

on Computer and Communications (ICCC). 1956–1960. https://doi.org/10.1109/

ICCC51575.2020.9344944

[55] Didi Surian, Suranga Seneviratne, Aruna Seneviratne, and Sanjay Chawla. 2017.

AppMiscategorization Detection: A Case Study on Google Play. IEEE Transactions

on Knowledge and Data Engineering 29, 8 (2017), 1591–1604. https://doi.org/10.

1109/TKDE.2017.2686851

[56] Virus Total. 2020. Virus total free online virus, malware and url scanner. https:

//www.virustotal.com/en

[57] Saarland University. 2014. https://www.st.cs.uni-saarland.de/appmining/.

[58] Wei Wang, Yuanyuan Li, Xing Wang, Jiqiang Liu, and Xiangliang Zhang. 2018.

Detecting Android malicious apps and categorizing benign apps with ensemble

of classifiers. Future Generation Computer Systems 78 (2018), 987–994. https:

//doi.org/10.1016/j.future.2017.01.019

[59] Ryszard Wiśniewski. 2016. https://ibotpeaches.github.io/Apktool/.

[60] Xinli Yang, David Lo, Li Li, Xin Xia, Tegawendé F. Bissyandé, and Jacques Klein.

2017. Characterizing malicious Android apps by mining topic-specific data

flow signatures. Information and Software Technology 90 (2017), 27–39. https:

//doi.org/10.1016/j.infsof.2017.04.007

[61] Chengpeng Zhang, Haoyu Wang, Ran Wang, Yao Guo, and Guoai Xu. 2018. Re-

checking App Behavior against App Description in the Context of Third-party

Libraries. 665–710. https://doi.org/10.18293/SEKE2018-180

https://github.com/androguard/androguard
https://arxiv.org/abs/1810.04805
https://doi.org/10.1145/3474827
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1080/01621459.1983.10478008
https://doi.org/10.1126/science.1136800
https://doi.org/10.1126/science.1136800
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1136800
https://doi.org/10.1007/BF01908075
https://ieeexplore.ieee.org/Xplore/home.jsp
https://doi.org/10.1145/2993259.2993265
https://doi.org/10.1145/2993259.2993265
https://doi.org/10.1109/TETC.2020.3026335
https://doi.org/10.1109/TETC.2020.3026335
https://dl.acm.org/
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/s13042-020-01238-9
https://doi.org/10.1109/TSE.2016.2630689
https://doi.org/10.1109/TSE.2016.2630689
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf
https://doi.org/10.1109/ICDM.2018.00051
https://arxiv.org/abs/2201.10005
https://doi.org/10.1109/IJCNN.2017.7966078
https://arxiv.org/abs/1608.08574
https://openai.com/blog/introducing-text-and-code-embeddings
https://arxiv.org/abs/2303.08774
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
https://openai.com/blog/new-and-improved-embedding-model
https://platform.openai.com/docs/guides/embeddings
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.1145/3308558.3313427
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1080/01621459.1971.10482356
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1109/ICSC.2020.00032
https://scholar.google.com/
https://arxiv.org/abs/2107.03072
https://doi.org/10.1109/ICPC52881.2021.00050
https://arxiv.org/abs/2308.01413
https://doi.org/10.1109/ICCC51575.2020.9344944
https://doi.org/10.1109/ICCC51575.2020.9344944
https://doi.org/10.1109/TKDE.2017.2686851
https://doi.org/10.1109/TKDE.2017.2686851
https://www. virustotal.com/en
https://www. virustotal.com/en
https://www.st.cs.uni-saarland.de/appmining/
https://doi.org/10.1016/j.future.2017.01.019
https://doi.org/10.1016/j.future.2017.01.019
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1016/j.infsof.2017.04.007
https://doi.org/10.1016/j.infsof.2017.04.007
https://doi.org/10.18293/SEKE2018-180

	Abstract
	1 Introduction
	2 Background
	3 Ground-Truth Dataset
	3.1 Dataset Creation
	3.2 Dataset Insights.

	4 Comparison of Existing Approaches.
	4.1 Systematic Literature Search
	4.2 Approaches Selection.
	4.3 RQ1 Results.

	5 Improvements of Description-Based Categorization Approaches
	5.1 Novel Description-based Approach.
	5.2 RQ2 Results.

	6 Improvements of APK-Based categorization approaches
	6.1 Leveraging Existing App Representations from Unrelated Tasks.
	6.2 Novel APK-based Approach.

	7 Downstream Tasks Improvement.
	7.1 Testing CHABADA as Malware Detector.
	7.2 RQ5 Results.

	8 Limitations and Threats to Validity.
	9 Related Work
	10 Conclusion
	11 Data Availability
	12 Acknowledgement
	References

