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ABSTRACT
Text-to-SQL, the task of translating natural language questions into
SQL queries, is part of various business processes. Its automation,
which is an emerging challenge, will empower software practition-
ers to seamlessly interact with relational databases using natural
language, thereby bridging the gap between business needs and
software capabilities.

In this paper, we consider Large Language Models (LLMs), which
have achieved state of the art for various NLP tasks. Specifically, we
benchmark Text-to-SQL performance, the evaluation methodolo-
gies, as well as input optimization (e.g., prompting). In light of the
empirical observations that we have made, we propose two novel
metrics that were designed to adequately measure the similarity
between SQL queries.

Overall, we share with the community various findings, notably
on how to select the right LLM on Text-to-SQL tasks. We further
demonstrate that a tree-based edit distance constitutes a reliable
metric for assessing the similarity between generated SQL queries
and the oracle for benchmarking Text2SQL approaches. This metric
is important as it relieves researchers from the need to perform
computationally expensive experiments such as executing gener-
ated queries as done in prior works. Our work implements financial
domain use cases and, therefore contributes to the advancement of
Text2SQL systems and their practical adoption in this domain.

1 INTRODUCTION
Advances in natural language processing (NLP), notably with the
advent of large language models (LLMs), have led to significant
performance improvements in various Text-to-Code generation
tasks. Among these, Text-to-SQL, i.e., the process of translating
natural language queries into SQL queries, is an emerging task,
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with various applications in businesses. Implementing reliable Test-
to-SQL automation is expected to empower practitioners, i.e., users
and non-tech agents, to seamlessly interact with business relational
databases using their own natural language. Breaking through the
challenge of translating text to SQL code will bridge an important
gap between business needs and software capabilities, and unlock
new possibilities for software integration.

Our work focuses on Text2SQL with a specific emphasis on the
financial domain. Leveraging the promising capabilities of LLMs,
which have garnered widespread adoption across various domains,
including code generation, our research showcases several pressing
challenges in this field.

To this end, this paper contributes to the advancement of Text2SQL
systems and their practical utility. We turn our attention to three
primary areas: performance benchmarking, evaluation method-
ologies, and input optimization. Within these domains, we pro-
pose two novel metrics designed to measure SQL query similarity,
demonstrating impressive efficacy. Additionally, we conduct rigor-
ous benchmarking exercises to evaluate the performance of LLMs
while also exploring the impact of rephrased questions and two
distinct prompt types. Furthermore, we curate a specialized sub-
dataset focused on bank operations, replete with complex questions
that pose a formidable challenge to state-of-the-art models. In doing
so, our work not only sheds light on the potential enhancements to
Text2SQL systems but also offers valuable insights into the broader
landscape of NLP applications in software engineering, especially
in domains with complex and domain-specific requirements.
Contributions. In this paper, we present three primary contribu-
tions. Firstly, we perform an empirical study on a publicly available
dataset for the Text2SQL task and benchmark several SOTA LLMs.
We provide some insights into model selection in the financial do-
main. Secondly, we create a set of new and challenging test cases
specifically tailored to transaction-related queries, filling a critical
gap in the availability of realistic dataset resources for banking
operations. Thirdly, we propose two innovative evaluation metrics
designed to accurately assess the performance of Text2SQL models.
These metrics exhibit a high correlation with execution matching,
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eliminating the need to execute code on the database and offer-
ing more efficient and practical means of model evaluation in the
context of banking applications. Additionally, we propose ques-
tion optimization methods that improve performance for Text2SQL
models.
Findings. Our work holds 2 important findings for practice: First,
we conclude that for Text-to-SQL applications in financial business
scenarios, choosing LLM with more code training data has better
performance, such as nsql-6B and CodeGen2. Second, we found that
the new metric we proposed, Tree Similarity of Editing Distance
(TSED), is currently the best Text-to-SQL evaluation metric when
the original database cannot be used for result evaluation.

2 BACKGROUND AND RELATEDWORK
This section presents the necessary background for our solutions
and further discusses the related literature in SE and NLP.
Large Language Models. LLMs, including models like GPT-4 and
PaLM, represent a transformative advancement in the field of NLP.
These models are characterized by their extensive scale, boasting
millions to billions of parameters, enabling them to learn intricate
linguistic patterns and relationships from vast amounts of text data.
This capacity allows them to generate human-like text and perform
a wide array of language-related tasks, from text generation and
machine translation to sentiment analysis and question answering.
Their pre-trained nature, combined with fine-tuning on specific
tasks, has led to groundbreaking progress in NLP. As LLMs continue
to evolve, they promise to redefine the landscape of NLP by fostering
more nuanced understanding, interaction, and generation of text.

The development of LLMs finds a common ancestry in Trans-
former proposed in 2017 [31], as illustrated in Figure 1. These
models have diversified due to differences in deep neural network
structure and training strategies, with diverse optimization and su-
pervised fine-tuning techniques like LoRA [8] and P-Tuning v2 [18]
alleviating training complexities. The HuggingFace LLM leader-
board [9], for instance, featured approximately 75 models in May
2023, but by mid-August 2023, this number had surged to over 600,
marking the "explosion of LLMs" in the field. A recurring trend in
contemporary LLMs is the exponential growth in the number of
model parameters, with models like GPT-4 (presumed) expanding
their parameter count by up to 105 times when compared to the
BERT model, as depicted in Figure 1. The question of whether this
increase in model size translates to diminishing marginal returns
in terms of performance remains an enigma, but some papers, such
as LLaMA [29] and Chinchilla [7], have suggested that the pre-
training corpus may need to scale proportionally to the number of
parameters, a practice not always followed by modern LLMs.
The Text-to-SQL task, serving as a vital link between human lan-
guage and structured databases, has gained prominence in the field
of natural language processing. Some survey papers, including con-
tributions by Qin [24] and Katsogiannis [10], introduce some of the
latest advances up to the first half of 2023. It involves translating
natural language queries into structured SQL queries for database
execution, aligning with the imperative for AI systems to under-
stand and process user queries in a human-like manner. This task
has its roots in semantic parsing and question answering, initially

explored through rule-based and template-based approaches. How-
ever, the advent of deep learning, especially sequence-to-sequence
models like Seq2Seq with attention mechanisms, marked a signifi-
cant turning point, enabling more precise and adaptable conversion
of natural language into SQL. Datasets such as WikiSQL and ATIS
established standardized benchmarks for evaluating Text2SQL mod-
els [6, 34], while the SPIDER dataset [33], meticulously annotated
by Yale students, further accelerated progress.

In the Text2SQL domain, cutting-edge models have emerged to
address the challenge of converting natural language queries into
SQL queries. PICARD, introduced by Scholak et al. [25], combines a
beam-search-like processor with the T5 model to effectively under-
stand and generate SQL queries. Some remarkable post-PICARD
advancements in existing methodologies, exemplified by RESD-
SQL [15] and Graphix-3B [16]. However, it remains essential to scru-
tinize the performance of LLMs, particularly in Zero-Shot settings.
Anticipating ongoing optimization and fine-tuning on Text2SQL
datasets, it is evident that this task continues to evolve and hold a
significant position in the NLP landscape.

In the realm of natural language processing, several Text2SQL
datasets have emerged as pivotal resources for advancing the ca-
pabilities of semantic parsing models. Datasets such as WikiSQL,
ATIS, and the recently introduced CoSQL, each contribute unique
challenges and linguistic nuances from various domains [3, 32, 34].
However, the SPIDER dataset stands out due to its expansive com-
plexity and cross-domain nature, making it a preferred choice for
research and development in this field [33]. Notably, the SPIDER
dataset benefits from the involvement of 7 Yale students who metic-
ulously annotated the data, enhancing its accuracy and quality.

In Text2SQL evaluation, two crucial metrics are employed from
SPIDER paper [33]: Execution Match, which assesses query utility
by executing it against a database; Exact Match, which measures
both semantic and syntactic accuracy. Besides, the BLEU score,
adapted from machine translation evaluation, gauges query flu-
ency and relevance [21]. Additionally, the use of Abstract Syntax
Trees (AST) aids in evaluating structural similarity [13], offering
deeper insights into a system’s ability to capture underlying query
structures.

3 SCENARIO AND CHALLENGES
Together with our industrial partner from the financial domain,
we aimed to enhance a question-answering chatbot. To that end,
we have incorporated a Text2SQL module. This module serves as
a crucial component, enabling smooth interactions and ensuring
our chatbot’s ability to accurately retrieve data from the relational
database and construct precise responses. The Text2SQL module
acts as an intermediary, converting natural language queries from
users into SQL queries that can be directly executed on the bank’s
database. Then we need to add an evaluation part to the module to
check if the results are correct or not. This allows the company can
easily integrate it into its chatbot system and keep polishing it.

3.1 Text to SQL Pipeline
This paper aims to assess the performance of several LLMs on
the Text2SQL task by considering practical constraints. These con-
straints lead to several challenges that are elicited in Section 3.2.
In this section, we detail the Text2SQL pipeline used to assess the



Enhancing Text-to-SQL Translation for Financial System Design ICSE-SEIP ’24, April 14–20, 2024, Lisbon, Portugal

GPT GPT-2 GPT-3
GPT-4

BERT

Transformer

108 109 1010 1011

LLaMA ALPACA

KOALA

LLaMA-2 MPT

GPT-Neo-X

PaLM

T-5 Flan T-5

Pythia

Parameters

Year

CodeGen

StarCoder

1012

2018 2019 2020 2021 2022 2023 

Figure 1: Development of Large Language Models from Year 2018-2023

various LLMS. The entire pipeline is shown in Figure 2. For several
of our experiments, we rely on the SPIDER dataset [33], which
provides databases, questions in natural language, and the corre-
sponding "ground truth" SQL queries. For a given question, the goal
of the Text2SQLmodel is to generate a SQL query that generates the
same result as the SQL query from the Ground Truth. To assess the
quality of the generated SQL queries, several metrics are computed
(detailed in Section 5). Some of these metrics are computed directly
from the code (i.e., we compare the generated SQL queries against
the ground truth queries), and others are computed based on the
result of the execution of the queries. The pipeline also includes
some key steps inside the Text2SQL model:

• Preprocessing: The incoming natural language query is
tokenized and transformed into numerical representations
as embedding vectors.

• Encoding: The tokenized and numerical representation of
the natural language query is fed into the trained Encoder
of the Seq-to-Seq model.

• Context Vector: The Encoder processes the input query
and generates a fixed-size context vector that captures the
semantic information of the query.

• Decoding: The context vector is passed to the trained De-
coder of the Seq-to-Seq model. The Decoder generates the
SQL query token by token based on the information encoded
in the context vector.

• SQL Query: As the Decoder generates SQL tokens, they are
combined to form the final SQL query.

The Text2SQL module, using a Seq-to-Seq model, directly learns
the mapping between natural language queries and SQL queries.
Through a process of encoding the natural language input and
decoding the corresponding SQL output, it enables seamless com-
munication between users and the bank’s database, allowing users
to interact using natural language queries via the chatbot interface.

3.2 Challenges
The implementation of a Text2SQL module for a banking chatbot
comes with several challenges. In this subsection, we discuss the
main challenges and potential approaches to address them:
Model Selection: With the emergence of new Language Model
architectures, such as LLMs mentioned in Section 2, it becomes
challenging to determine which model would yield the best perfor-
mance for the Text2SQL task. Selecting the most appropriate model
requires careful consideration of factors like model size, training
data, computational resources, and performance on the specific

task. Conducting comparative experiments and model evaluations
will be essential to identify the optimal model for our use case.

Transactions

PK Transaction_ID

Find the total number of transaction in
Transactions Table.

<<Question>>

Text2SQL Model

SELECT COUNT(*)
FROM Transactions 

<<Query>>

SELECT COUNT(*)
FROM Transactions 

<<Ground Truth>>

Evaluation Metrics from Code

SQL Execution MetricsSPIDER Dataset

Results

Database

...
Amount
Client_ID

Figure 2: Pipeline of Text to SQL Evaluation Practice

Optimizing Generated Questions: The chatbot system’s gener-
ated questions may not always be in the most effective format for
the Text2SQL module. Optimizing the generated questions to align
better with the model’s input expectations can improve overall
performance. Techniques such as data augmentation, paraphrasing,
or using intermediate templates may be explored to enhance the
quality of user queries and ensure better Text2SQL conversion.
Cost-Performance Trade-off:Most of the companies and research
groups have limited computing and financial resources. Thus, achiev-
ing a high performance-to-cost ratio is crucial. LLMs and extensive
training datasets can be computationally expensive and resource-
intensive. Exploring smaller, more efficient models, and leveraging
transfer learning techniques could be potential solutions to bal-
ance performance and resource constraints. In addition to cost
considerations, solutions that consume fewer resources also offer
environmental advantages.
Evaluation Metrics and Database Access: Evaluating the perfor-
mance of the Text2SQL module becomes challenging when direct
access to the real database is limited or restricted, like when we
working on a bank database. It is essential to define suitable evalu-
ation metrics that can measure the module’s effectiveness without
the need for executing queries on the actual database. Metrics such
as logical form matching and semantic correctness can provide
insights into the module’s performance even when direct execution
is not feasible.
Limited Banking Domain Dataset: Availability of a sufficient
dataset specifically tailored to the banking domain is crucial for
training a reliable Text2SQL model. Collecting domain-specific data
can be time-consuming and may require domain experts. Leverag-
ing transfer learning with pre-trained models on larger datasets
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and incorporating domain-specific fine-tuning can help mitigate
the data scarcity issue.
To address these challenges effectively, we propose a combination
of strategies, including thorough experimentation with different
models, techniques for question optimization, efficient resource uti-
lization, well-defined evaluation metrics, and creative data augmen-
tation methods. Additionally, collaborating with domain experts
and exploring partnerships with other organizations in the banking
domain could help access more relevant data and resources to im-
prove the Text2SQL module’s performance for the bank’s chatbot.

4 EMPIRICAL SET UP
In this section, we propose the research questions and our practice
set up to resolve them.

4.1 Research Questions
Our evaluation tackles the following 5 research questions (RQs):
RQ1. Which LLM is the most accurate for the Text2SQL task?
RQ2. What is the effect of the question rephrasing, prompt opti-
mization, and post-processing steps on the performance of LLMs?

RQ3. Which LLM is the most efficient regarding execution time
and computational resources?
RQ4. When the database is not reachable, can we propose metrics
to evaluate the quality of the generated SQL queries that are as
accurate as the Execution Match metric?
RQ5. Text2SQL tasks in financial scenarios (especially banks) are
lacking in existing datasets. How should we solve it?

4.2 Model Selection
Our selection of LLMs is basically based on the selection of metrics
in three directions, including the overall ranking list of LLMs, the
ranking of Spider datasets, and LLMs with superior performance
on Stack datasets.

As the undisputed performance ceiling, we choose ChatGPT
based on GPT-4 as one of our research targets, and an interesting
topic is how big the gap between other models and ChatGPT and
GPT-4 [2] or GPT-3.5-Turbo.
HuggingFace Ranking After LLMs gained enough attention, the
HuggingFace platform launched a LeaderBoard1, where we ob-
served that some models are considered ’breakthroughs’ in this
ranking, while others are optimized and fine-tuned versions of
these models [4]. In order to avoid interference, we chose the orig-
inal models (standalone releases) as we can find it. We also se-
lected the most current models according to Figure 1 of the LLM
development history, including LLaMA [29], GPT-NeoX, and so
on. Based on the background above, we have chosen six LLMs to
test against OpenAI models: MPT [27], ALPACA [26], KOALA [5],
OpenAssistant-Pythia [12] [1], LLaMA-2 [30], and ORCA [19].
Spider Dataset Leaderboard Our test SPIDER dataset has a fre-
quently updated benchmark performance ranking2. We selected
the two models PICARD [25] and RESDSQL [15] as a baseline of
non-LLM models.
1https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
2https://yale-lily.github.io/spider

The Stack Database The Stack dataset is one of the richest code-
based corpora containing programming languages available. There-
fore, we selected several LLMs as candidates based on their perfor-
mance on the Stack dataset [11]. We used several typical models
as the Supervised group (models that have been pre-trained on
programming languages), taking into account the existing research
like CodeGen2 [20], StarCoder [17], and nsql [14].

4.3 Data Selection
We run our experiments on two Datasets.

❶ The SPIDER Dataset: We selected the "dev" evaluation sub-
set from the SPIDER dataset for our evaluation. This subset contains
20 databases, with questions in natural language together with the
corresponding ground truth SQL queries. The 20 databases cover
four domains: Business (4), Entertainment (7), Education (4), and
Travel and Leisure (5). Ground-truth queries in this subset are ex-
ecutable, as confirmed in related work. The databases are evenly
distributed, with nearly half (9) having four tables, 4 containing
three tables or fewer, 4 featuring five tables, and the remaining
databases consisting of five or more tables. This diverse dataset al-
lows for a thorough evaluation of Text2SQL models across different
domains and database complexities.

Questions in natural language and Difficulty Level: The Text2SQL
task manifests varying degrees of complexity depending on the
difficulty of the questions in natural language. The questions are
spread over four distinct difficulty levels:
Level 1: This simplest level involves uncomplicated queries where
users retrieve straightforward information from a single table.
Level 2:Moving up the complexity ladder, Level 2 introduces basic
statistical operations such as SUM, AVG, and COUNT. This requires
the translation of these arithmetic operations into corresponding
SQL expressions.
Level 3: Progressing to Level 3, the complexity deepens with the
inclusion of GROUP BY clauses. This necessitates an understanding
of aggregate functions applied to grouped data.
Level 4: The highest echelon of complexity is reached at Level 4,
where JOIN operations are introduced. This challenges the model to
grasp relationships between multiple tables and generate intricate
SQL statements that seamlessly connect data from different sources.

After classification, we have 267 level 1 questions, 239 level 2
questions, 120 level 3 questions, 408 level 4 questions in SPIDER
dev-set.

❷ A new small size Financial Dataset:We designed a specific
dataset for the Text2SQL task on the financial scene, which is a
bank transactions database with 30 questions. We aim to challenge
all SOTA models and find the gap between in-practice tests and
research evaluation. The database structure is depicted in Figure
3. The database schema encapsulates the relationships within a
financial domain, embodying the interplay of clients, beneficiaries,
and transactions. Organized into three distinct tables—’Source’,
’Beneficiary’, and ’Transactions’—the schema orchestrates the nu-
anced connections between primary keys, foreign keys, and regular
columns. This schema not only delineates the core attributes asso-
ciated with each entity but also employs color-coded annotations
to differentiate primary keys, foreign keys, and standard columns.
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Questions in natural language and Difficulty Level: We asked for
expert help and manually rephrased all questions to follow ethics
standards and avoid business conflicts.We created 30 questions with
various difficulty levels: 8 Level-1 questions, 6 Level-2 questions, 5
Level-3 questions, and 7 Level-4 questions.

We release this new financial dataset to the public at the follow-
ing address: https://github.com/Etamin/FinChallenge

Source
Client_ID
Type

Branch_ID
Contract_ID
BIC_Code
IBAN

Beneficiary
Beneficiary_ID
Bank_Branch_ID
Country_Code
Country_Name

BIC_Code
IBAN

Transactions
Transaction_ID

Time
Client_ID

Beneficiary_ID
Currency
Amount

Transaction_Type

Figure 3: Financial Dataset for Text-to-SQL (green cells indi-
cate foreign keys)

4.4 Rephrased Dataset
During our preliminary evaluation encompassing all SPIDER Dev
datasets, it became evident that 9.4% of questions posed signif-
icant challenges for all models we tested, resulting in incorrect
responses across diverse categories. These questions, which appear
to be inadequately formed or ambiguous, can be classified as ’bad
expressions’. To address this issue, two potential avenues emerge:
manual rectification or leveraging automated models to curate im-
proved question formulations; Given the tedious task of rectifying
a substantial number of questions, we opted to explore the efficacy
of the automated approach. For all questions of the SPIDER dataset,
we choose 5 rephrased questions via ChatGPT, and if any one of
them can get a better execution match and semantic similarity, we
will choose this "correct" question to replace the original one.

4.5 Experiment Settings
4.5.1 Environment. We have limited computing resources, Only
one NVIDIA® DGX-1(4*V100(32GB)) can be used for inference. It
includes a Intel® Xeon® E5-2698 v4 @ 2.20GHz CPU and 4 NVIDIA
Tesla V100 GPU with 32Gib Memory.

This environment limits us to using smaller models such as the
LLaMA model with 13 billion parameters for the testing. However,
being restricted to the same number of parameters allows us to
compare all of these models horizontally. And use int-8 inference
mode if possible, which reduces GPU memory occupation to 1/4.

4.5.2 Prompt for LLMs. In this study, we address the prompt influ-
ence challenge by designing an instructive prompt format tailored
to the Text2SQL task. Our proposed format entails a structured ar-
rangement that beginswith a task description, followed by pertinent
database information, and concluding with the natural language
question. This format aims to guide the LLMs explicitly, providing a
clear outline of the required information and context. By segment-
ing the prompt into distinct sections, we intend to enhance the
model’s understanding of the task and streamline its generation of
accurate SQL queries.

In a notable case study showcasing the significant influence of
prompts on Text2SQL model performance, we examined the origi-
nal ALPACA model. We introduced two distinct prompt types for

evaluation: Type I in Figure 4, aligned with the input format design
of the T5 SOTA model, and Type II in Figure 5, structured accord-
ing to the CodeX-Davinci input format. Strikingly, this change in
input format led to a remarkable performance boost, with execu-
tion match rates soaring from 11.2% to 20.8%. This underscores
the pivotal role that prompt design plays in shaping model out-
comes. However, it is important to note that not all models respond
equally to such prompts. Models like OpenAssistant, for instance,
encounter difficulties in comprehending Type II prompts, resulting
in a meager 5% execution match rate—a clear illustration of the
nuances and challenges posed by varying prompt structures in the
Text2SQL task.

Given the database structure as "| table_1: column_1, column_2, ... | ..." , given
the following database:
concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest,
average | singer : singer_id, name, country, song_name, song_release_year,
age, is_male | concert : concert_id, concert_name, theme, stadium_id, year |
singer_in_concert : concert_id, singer_id|
Give me only the SQLite query of the question(only raw text of the code):

Figure 4: Type I

###
SQLite SQL tables, with their properties:
#
# stadium(Stadium_ID, Location, Name, Capacity, ...)
# singer(Singer_ID, Name, Country, Song_Name, ...)
# concert(concert_ID, concert_Name, Theme, ...)
# singer in concert(concert_ID, Singer_ID)
#
### Show name, country, age for all singers ordered by age from the oldest to
the youngest.
Answer:
SELECT

Figure 5: Type II

4.5.3 Post-Processor. Our post-processing procedure is a multi-
step approach aimed at enhancing the reliability and security of the
output generated by LLMs during Text2SQL tasks. In the first part,
we implement a robust strategy by running the LLM five times to
mitigate potential instability in its output, ensuring a more con-
sistent and dependable result. In the second part, we meticulously
filter out any extraneous elements that are not integral to the SQL
query, streamlining the output for improved clarity and accuracy.
Finally, in the third part, we rigorously examine the output to elimi-
nate any potentially harmful or risky code, such as "DROP TABLE"
commands, safeguarding the integrity and safety of the generated
SQL queries. This comprehensive post-processing workflow not
only enhances the quality of the LLM-generated SQL queries but
also bolsters their security, making them more suitable for practical
applications in database management and query processing.

5 EVALUATION METRICS
Let us consider the SQL query generated by the LLM under test and
the ground-truth query from the dataset: we set the prediction query
as token sequence𝑌 ′, and the ground-truth query as token sequence

https://github.com/Etamin/FinChallenge
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𝑌 . The model is 𝑓 (𝑄) = 𝑌 ′, in which Q represents the question
written in natural language. Based on Qin’s survey paper [24] on
Text2SQL, we selected the evaluation metrics below.

• Exact Match
Being the simplest metric in our study, Exact Match (EM) is
set to 1 if 𝑌 = 𝑌 ′, otherwise it is set to 0.

• Executable
Assuming the SQL execution progress on input𝑌 ′ is 𝑃 (𝑌 ′) =
𝑍 , and when 𝑍 ≠ 𝑁𝑈𝐿𝐿∥𝐸𝑟𝑟𝑜𝑟 , the executable rate is set to
1, otherwise 0.

• Execution Match
It is the most common metric when we talk about Text2SQL
tasks. We set 𝑃 () is the execution procedure. When 𝑃 (𝑌 ) =
𝑃 (𝑌 ′) execution match is set to 1, otherwise 0.

• BLEU Score
The BLEU (Bilingual Evaluation Understudy) score we men-
tioned in the Related Work section, is a widely used metric
for evaluating the quality of machine-generated translations
in natural language processing andmachine translation tasks.
We normalize it to 0 to 1, 1 is best, 0 is worst.

The financial industry operates within a stringent regulatory
framework, given the potentially devastating socio-economic reper-
cussions that may arise from mishandling data or making risky
decisions. For example, beyond financial regulations, the General
Data Protection Regulation (GDPR) has a significant impact on
financial institutions operating within the European Union (EU) or
processing the personal data of EU residents. Therefore, SQL queries
generated automatically cannot be executed on the databases with-
out proper GDPR checks. This means that performance of Text2SQL
methods should be evaluated based on static (no-execution) metrics.
Such metrics will further better assess the performance of Text2SQL
in a non-binary manner: some models may generate incomplete or
non-executable SQL queries that are still valuable as they are very
close to the ground truth, hence to what the operator wished to
have. Measuring the similarity of queries, in a reliable way, appears
as a promising alternative for assessment. In this work, we propose
the following two metrics:

• SQAM (SQL Query Analysis Metric)
This is the first SQL evaluation metric we propose, it eval-
uates input queries by breaking them down into their core
components using regular expressions, including SELECT,
FROM,WHERE, GROUPBY, HAVING, andORDERBY clauses.
It then further dissects these components into subcompo-
nents, such as select columns and table names. The resulting
accuracy score ranging from 0 to 1 is based on the subcom-
ponents match rate.

• TSED (Tree Similarity of Editing Distance)
This is the second SQL evaluation metric we propose, using
abstract syntax tree (AST) as features, calculating the editing
difference between 2 ASTs from the prediction query and the
ground-truth query. Then we calculate the TSED based on
the editing distance 𝐷 and the node numbers 𝑁 of the larger
AST from predict or ground truth. 𝑇𝑆𝐸𝐷 = 𝐷/𝑁 . Similarly
to SQAM, this metric also ranges from 0 to 1, 1 being the
best and 0 the worst.

In the following subsections, we will introduce them in detail.

5.1 SQAM
The SQL Query Analysis Metric (SQAM)3 evaluation method op-
erates through a systematic process of dissecting input queries
into their fundamental components, such as the SELECT, FROM,
WHERE, GROUP BY, HAVING, and ORDER BY clauses, employing
regular expressions. These primary segments are further decon-
structed into their subcomponents, including select columns, table
names, and where conditions, through the application of additional
regular expressions.

Subsequently, the SQAM evaluation metric computes an accu-
racy score by juxtaposing the subcomponents present in the input
query with those found in the ground truth query. Notably, this
comparison considers the hierarchical importance of each subcom-
ponent within the query structure. For instance, components like
the SELECT clause carry greater weight in the evaluation com-
pared to others like the ORDER BY clause. The accuracy score, a
crucial output of this process, is quantified as the percentage of
matched subcomponents, thoughtfully weighted by their respective
significance in shaping the overall query. This nuanced approach
to evaluating query similarity through SQAM underscores its pre-
cision in assessing the alignment of essential query components,
thereby providing a robust measure of query correspondence.

5.2 Tree Similarity of Editing Distance (TSED)
We propose a novel metric that we name Tree Similarity of Editing
Distance (TSED)4 to assess the similarity between two SQL queries.
This innovative approach, illustrated in Figure 6, encompasses three
distinct stages to provide a comprehensive evaluation. The initial
stage involves the transformation of the two SQL queries into Ab-
stract Syntax Trees (ASTs), facilitating a structured comparison.
Following this, we calculate the editing distance between these
ASTs, capturing the extent of their dissimilarity. The final step in-
volves normalizing this distance measure to a scale between 0 and
1, allowing for a straightforward and interpretable assessment of
query similarity.

Query 1

Query 2

SQ
L 
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g

Tree 1

Tree 2

Distance
Computation

Strategy
Computation

Strategy S
Tree Edit Distance

MaxNodeNum
TSED

APTED Algorithm
Editing Distance Computation

Normalization

Figure 6: Pipeline of TSED Evaluation Metric

SQL Parsing: A Mathematical Perspective SQL (Structured
Query Language), as a domain-specific language tailored for rela-
tional database management, inherently possesses a rich syntactic
structure. The critical step of converting raw SQL text into its associ-
ated Abstract Syntax Tree (AST) is often referred to as SQL parsing.
This conversion can be aptly modelled as a function, denoted as
3https://github.com/ezzini/SQAM
4https://github.com/Etamin/TSED
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𝑃 . Given the space of all SQL queries, Q, and the corresponding
space of ASTs, A, the function 𝑃 establishes a mapping between
these two spaces. For any particular query 𝑞 that belongs to Q, its
corresponding AST is:

𝐴(𝑞) = 𝑃 (𝑞) where 𝐴(𝑞) ∈ A and𝑞 ∈ Q (1)
Given the vast spectrum of SQL syntax, enriched with its numer-

ous variations and intricacies, the process of parsing is undeniably
intricate. A parser is tasked with navigating and interpreting di-
verse clauses, conditions, and embedded ambiguities within the
SQL text.
Modern Solutions: One of the contemporary tools addressing
this challenge is the @florajs/sql-parser5. Beyond traditional
parsing, this tool embeds a nuanced transformation function . If
we consider S as the space encompassing all SQL strings, this
transformation function creates a bridge from any SQL string 𝑠 in
S to its corresponding AST, 𝑎, in A:

𝑎 = 𝑇 (𝑠) where 𝑠 ∈ S and𝑎 ∈ A (2)
We describe its cardinality, |A|, using an indicator function 𝛿 to
highlight the uniqueness of each AST:

|A| =
𝑛∑︁
𝑖=1

𝛿 (𝐴𝑖 ) where 𝛿 (𝐴𝑖 ) =
{
1, if 𝐴𝑖 is unique within A
0, otherwise

(3)
Hierarchical Transformation from JSON to AST. Upon trans-
lating an SQL query into its AST, which is then expressed as a JSON
structure, we proceed to represent this AST as a tree. The tree offers
a clear hierarchical perspective, encapsulating the relational and
logical intricacies of SQL queries.

We introduce a bijective function 𝐶 : 𝐽 → 𝑇 , which is responsi-
ble for mapping every JSON object 𝐽 into a tree representation, 𝑇 ,
where 𝑇 is represented as: 𝑇 = {𝑁, 𝐸}, where 𝑁 = {𝑛1, 𝑛2, ..., 𝑛𝑘 }
and 𝐸 = {𝑒12, 𝑒13, ..., 𝑒 (𝑘−1)𝑘 }.

Given this, the relationship between nodes 𝑛𝑖 and 𝑛 𝑗 through
the edge 𝑒𝑖 𝑗 can be described by a matrix representation𝑀 :

𝑀 (𝑛𝑖 , 𝑛 𝑗 ) =
{
1, if 𝑒𝑖 𝑗 ∈ 𝐸

0, otherwise
(4)

The tree’s depth, 𝑑𝑒𝑝𝑡ℎ(𝑇 ), corresponds to the maximum nested
level, 𝑑 , in 𝐽 . This depth is intrinsically linked to the longest path 𝑃

in 𝑇 :

𝑑 (𝐽 ) = max
∀𝑝𝑎𝑡ℎ𝑠 𝑃

length(𝑃) (5)

Our synthesis approach employs a recursive methodology. As
we iterate over each key-value pair in 𝐽 , nodes are birthed in 𝑁 .
When encountering a nested JSON object or array, the function
delves recursively to ensure that the hierarchies in 𝐽 and 𝑇 are
synchronized. Now, let 𝐵(𝑛) represent the set of children nodes
for node 𝑛. The tree’s branching factor, 𝑏, can be formulated as:
𝑏 = max𝑛∈𝑁 |𝐵(𝑛) |.
Tree Distance Computation. One of the fundamental challenges
in comparing trees, especially those derived from SQL queries, is
5https://github.com/florajs/sql-parser

quantifying their similarity or difference. Here, the concept of tree
edit distance comes into play.

The tree edit distance between two trees 𝑇1 and 𝑇2 measures the
minimum number of basic edit operations (insertion, deletion, and
renaming of nodes) required to transform𝑇1 into𝑇2. Mathematically,
the tree edit distance function Δ can be defined as:

Δ(𝑇1,𝑇2) = min
𝑜𝑝𝑠

𝑛∑︁
𝑖=1

𝑤 (𝑜𝑝𝑖 ) (6)

where ops is a sequence of n edit operations that transform𝑇1 to𝑇2,
and𝑤 (𝑜𝑝𝑖 ) is the cost associated with the 𝑖𝑡ℎ operation. The goal
is to find the sequence of operations that minimizes the total cost.

However, computing the tree editing distance is computationally
intensive. The problem is NP-hard, and naive algorithms have a
time complexity that is doubly exponential in the size of the trees.
Let |𝑇1 | and |𝑇2 | denote the sizes of trees𝑇1 and𝑇2 respectively. The
computational complexity C can be represented as:

C(|𝑇1 |, |𝑇2 |) = O
(
22

|𝑇1 |+|𝑇2 |
)

(7)

Given the need for efficient computation, we employ the ‘APTED’
algorithm [23] [22], a state-of-the-art tool designed for tree edit
distance computation. The library optimizes the process using ad-
vanced algorithms and data structures, significantly reducing com-
putational time. In our project, the ‘APTED’ function compute the
distance, the return 𝛿 will be an integer: 𝛿 = 𝐴𝑃𝑇𝐸𝐷 (𝑇1,𝑇2), where
𝛿 represents the tree edit distance between 𝑇1 and 𝑇2.

In essence, tree edit distance provides a robust metric to quantify
the similarity between SQL query structures, and the ‘apted’ library
facilitates its efficient computation, enabling a deeper understand-
ing and comparison of different SQL queries.

Normalization.
Beyond merely calculating the raw editing distance, we take into

account the complexity of the queries by normalizing the distance
using the maximum number of tree nodes:

𝑇𝑆𝐸𝐷 = 𝛿/𝑀𝑎𝑥𝑁𝑜𝑑𝑒𝑠 (𝑇1,𝑇2) (8)

This normalization allows us to obtain a more comprehensive and
meaningful final result, as it accounts for variations in query com-
plexity and structure. By computing the distance-to-maximum-
nodes ratio, we arrive at a final evaluation metric that offers a nu-
anced perspective on the accuracy and efficiency of our Text2SQL
conversion techniques. This approach ensures that our assessments
are not only sensitive to the accuracy of the conversions but also
consider the relative complexity of queries, enabling a more bal-
anced and informative measure of performance.

6 EXPERIMENT RESULTS
6.1 Benchmarks
Execution Match Score on the SPIDER dataset

In our experimentation, we organized the models into three
distinct groups as illustrated in Table 1: general purpose LLMs,
Code-Specific LLMs, and Sequence-to-Sequence models. Table 1
further presents the Execution Match score on the SPIDER dataset
for each studied LLM and for each of the four difficulty levels. Note
that for all LLMs, we run our experiments with both Type I and
Type II prompts (cf. 4.5.2), and we always select best performance.
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Model Type Model Name Parameter Size Level 1 Level 2 Level 3 Level 4 All

General LLM

ChatGPT-3.5-turbo 175B 0.760 0.799 0.408 0.493 0.623
DIN-SQL+GPT-4 1.76T 0.861 0.866 0.700 0.654 0.762
CodeX-Davinci-3 175B 0.730 0.799 0.392 0.382 0.570
MPT-7B-instruct 7B 0.262 0.381 0.117 0.091 0.205
ALPACA 7B 0.311 0.460 0.192 0.083 0.242
KOALA 7B 0.195 0.218 0.017 0.071 0.131
OpenAssistant-pythia 12B 0.202 0.322 0.025 0.069 0.157
ORCA-mini 7B 0.243 0.280 0.101 0.076 0.169
LLaMA-2 7B 0.225 0.393 0.101 0.081 0.192

Code Specific LLM

CodeGen2 7B 0.375 0.498 0.167 0.066 0.257
Starcoder 15.5B 0.584 0.628 0.275 0.208 0.410
Vicuna 7B 0.060 0.134 0.008 0.042 0.064
nsql 6B 0.772 0.732 0.608 0.277 0.548

Seq-to-Seq Model
T5(tscholak/cxmefzzi) 3B 0.828 0.782 0.650 0.434 0.641
PICARD+T5 3B 0.790 0.799 0.558 0.502 0.652
RESDSQL 3B 0.872 0.857 0.666 0.696 0.775

Table 1: Benchmark Results of Execution Match of all Models we tested on the "dev" SPIDER dataset

The overall winner is the GPT-4 + DIN approach which emerged
as the most effective choice across all General LLMs. Furthermore,
when focusing on models with fewer than 7 billion parameters,
ALPACA stood out as the top-performing option following prompt
optimization.

Within the Code-Specific LLMs group, nsql-6b took the lead
as the superior model, with the entire subgroup showcasing sig-
nificantly improved performance compared to other LLM models
of a similar parameter size. This finding underscores the value of
specialized models in handling domain-specific tasks effectively.

Meanwhile, the Seq-to-Seq models demonstrated a consistently
high level of performance, closely resembling the capabilities of
models like RESDSQL. However, we anticipate that these Seq-to-Seq
models may face formidable competition in the near future.

RQ1: Which LLM is the most accurate for the Text2SQL task?

Answer: The super giant GPT-4 model is the best-performing
LLM. However, the results suggest that specific training datasets
and "focused" LLMs can also perform well. For example, nsql-6b
performs better than other models with 7 billion parameters. This
means that general LLM is not a silver bullet. We also notice that
the Level-4 questions are always hard for every model, and Level-
1 and Level-2 questions usually lead to similar performances for
these models.

Time and Memory performances of Three typical LLMs
To investigate the time and memory performance of LLMs, we

selected three typical LLMs that we can download and run on
our local machine. We selected T5 (with 3B parameters) and two
versions of LLaMA (7B and 70B parameters).

As indicated in Table 2 above, it is evident that the 70-billion-
parameter model consumes a substantial 70 gigabytes of GPU mem-
ory, rendering it impractical for use on our modest DGX work-
station with limited memory capacity. Furthermore, the inference
time for this model exceeds a staggering 100 seconds per instance.
These findings underscore the critical importance of evaluating the
performance and resource requirements of LLMs, as they demand
considerable computational resources that may not be feasible or
efficient for certain hardware setups and use cases.

Model Time GPU Memory
T5-3B(fp32) ∼1.6s ∼12GiB
LLaMA-7B(int-8) ∼5.5s ∼7GiB
LLaMA-70B(int-8) ∼100s ∼70GiB

Table 2: Inference Time & Memory for Different Parameters

RQ3: Which LLM is the most efficient regarding execution time
and computational resources?

Answer: We highly recommend the adoption of the 7-billion-
parameter model for small-sized businesses or research groups.
When considering the performance of nsql-6b, with dedicated
attention to training data and prompt optimization, the 6-billion-
parameter model can surpass the capabilities of certain 13-billion-
parameter or larger models. This presents a cost-effective and
efficient alternative for organizations seeking high-performing
language models without the extensive computational overhead
associated with larger counterparts.

6.2 Rephrase SPIDER
This experiment aims to assess whether rephrasing a question helps
generate better SQL queries. As explained in Section 4.4, thanks to
ChatGPT, we first generate 5 variants of the initial questions. One
critical challenge to conduct this experiment is that a typical LLM
does not generate always the same answer, even if the question is
always the same. Consequently, if a generated SQL query is better
with a rephrased question, we do not know whether the query is
better because of the rephrasing or because of the random nature
of the LLM. To overcome this issue, we perform this experiment
with the only model that stays "constant", i.e., which always gen-
erates the same answer each time we ask the same question. This
model is PICARD. According to the result presented in Table 3, the
dataset with rephrased questions yields better results than the orig-
inal SPIDER dataset. This result suggests that a research direction
on question optimization is worthy of consideration. Oftentimes,
models just respond "badly" to "bad" problems.
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Batch Exec Match BLEU SQAM TSED
Original 0.651 0.249 0.847 0.617
Rephrase 0.797 0.271 0.891 0.725

Table 3: Rephrase Results on PICARD

RQ2: What is the effect of the question rephrasing, prompt opti-
mization, and post-processing steps on the performance of the
LLM?
Answer: Results from Sections 4.5 and this SubSection suggest
that optimizing questions and prompts is very effective and can
significantly improve performance in certain scenarios. Perfor-
mance improvements of 5% and 14% were achieved on ALPACA
and PICARD respectively.

6.3 TSED & SQAM
In this experiment, we study the effectiveness of the two metrics
we proposed, TSED and SQAM, in measuring the quality of the
generated SQL queries. We consider a metric as effective if the
metric is "close" to the Execution Match metric, which is the best
metric (among the ones we consider in this study) to measure
semantic similarity between a generated SQL query and the ground
truth SQL query. As a reminder, as explained in Section 5, the
executionmatchmetric cannot always be used under the constraints
of our industrial partner. This is why we proposed TSED and SQAM,
which can be computed without executing the generated queries.

TSED and SQAM scores (as well as Bleu Score, Exact Match,
and Executable) are presented in Table 4. Impressively, both TSED
and SQAM metrics exhibited very high Pearson product-moment
correlation coefficients (PCCs) with execution match, averaging
around an exceptional 0.95 as shown in Table 5. Notably, TSED
demonstrated a slight edge over SQAM in terms of PCC. However,
what sets TSED apart is its remarkable performance in the SSD (Sum
of Squares of Deviations) metric, where lower values are indicative
of superior accuracy. As depicted in Figure 7, both TSED and SQAM
exhibited trends closely aligned with execution match, with TSED
displaying an even closer correlation. Notably, we observed that the
BLEU score for the higher performance part proved to be unreliable
in this context.

In a noteworthy special case, we observe that TSED (Tree Simi-
larity for Editing Distance) proves to be more effective than BLEU
when evaluating the similarity of SQL queries. Let us consider two
SQL queries: Query 1:
SELECT stadium.name, count()
FROM concert
JOIN stadium
ON concert.Stadium_ID = stadium.Stadium_ID
GROUP BY concert.stadium_id;

and Query 2:
SELECT T2.name, count()
FROM concert AS T1
JOIN stadium AS T2
ON T1.stadium_id = T2.stadium_id
GROUP BY T1.stadium_id;

Remarkably, both queries achieve a perfect execution match
with a score of 1.0, indicating that they produce identical results
when executed. However, when assessed using the TSED metric,

Model Name BLEU SQAM TSED EAble EM
ChatGPT-3.5 0.347 0.728 0.510 0.885 0.219
DIN-SQL+GPT4 0.508 0.821 0.651 0.988 0.319
Davinci 0.348 0.564 0.575 0.844 0.235
MPT-7B 0.193 0.557 0.343 0.465 0.020
ALPACA-7B 0.205 0.572 0.384 0.552 0.126
KOALA-7B 0.109 0.444 0.240 0.305 0.022
OpenAssistant 0.160 0.491 0.260 0.348 0.050
ORCA 0.163 0.457 0.258 0.399 0.047
LLaMA-2 0.193 0.561 0.298 0.417 0.074
CodeGen2-7B 0.264 0.615 0.367 0.583 0.124
Starcoder-15.5B 0.287 0.649 0.448 0.769 0.160
Vicuna-7B 0.122 0.428 0.063 0.102 0.026
nsql-6B 0.443 0.814 0.602 0.741 0.308
T5-3B 0.243 0.843 0.671 0.863 0.409
PICARD+T5/3B 0.249 0.847 0.617 0.904 0.371
RESDSQL 0.210 0.784 0.621 0.998 0.037

Table 4: Evaluation Metrics: Bleu Score, SQAM, TSED, Exe-
cutable (EAble), and ExactMatch (EM), on the SPIDERdataset.
Scores are computed as an average of the scores for the 4 ques-
tion difficulty levels.

BLEU SQAM TSED
𝑃𝐶𝐶 ↑ 0.681 0.948 0.951
𝑆𝑆𝐷 ↓ 0.804 1.022 0.129

Table 5: Correlation and statistical difference between 3 eval-
uation metrics and Execution Match
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Figure 7: Distribution of Evaluation Metrics

these queries exhibit a similarity score of 0.864, signifying a high
degree of structural similarity in their abstract syntax trees (ASTs).
In contrast, the BLEU score, which ranges from 0 to 1, reaches
only a modest 0.257. This intriguing case underscores the nuanced
nature of query evaluation metrics and highlights how TSED excels
at capturing structural similarities that BLEU may overlook.
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RQ4: When the database is not reachable, can we propose metrics
to evaluate the quality of the generated SQL queries that are as
accurate as the Execution Match metric?
Answer: TSED is a good metric that can effectively evaluate SQL
queries without access to the database.

6.4 Experiments on the New Financial Dataset
For this experiment, we selected ChatGPT (GPT-4), ALPACA, and
nsql-6B, which performed the best according to Table 1 for their
respective Model Type group. Regarding Seq-to-Seq models, we
selected PICARD+T5 instead of RESDSQL because RESDSQL per-
formed poorly on the new financial dataset.

We run the 4 LLMs on our financial dataset for the Text2SQL
task, and Table 6 presents the results. Despite some models being
specially designed for SQL generation in natural language process-
ing, ChatGPT continues to stand as the state-of-the-art (SOTA)
model for this task. However, when confronted with the challenges
posed by this distinct dataset, which does not conform to the struc-
tured format of the SPIDER dataset, our model comparison revealed
some intriguing results. Specifically, the PICARD model, which has
shown exceptional promise in previous evaluations, failed to reach
the same level of performance as ChatGPT. Even more notably, our
minor dataset proved to be a formidable challenge for both language
models, including non-Language Models (non-LLMs) and Language
Models (LLMs). None of the models achieved an execution match
surpassing the 70% threshold, underscoring the complexity of our
bank transaction sub-dataset and the need for further research and
innovation in Text2SQL tasks under non-standardized domains.

Model BLEU SQAM TSED EM
ChatGPT-3.5 0.582 0.696 0.599 0.633
ALPACA-7B 0.417 0.596 0.425 0.300
NSQL-6B 0.444 0.678 0.486 0.433
PICARD-3B 0.057 0.705 0.484 0.566

Table 6: Results of Banking sub-dataset for Text2SQL, EM is
Execution Match

RQ5: Text2SQL tasks in financial scenarios (especially banks) are
lacking in existing datasets. How should we solve it?

Answer: We introduce an efficient new financial dataset and
assess it using several state-of-the-art (SOTA) models. This newly
crafted dataset poses a substantial challenge, featuring a notably
higher incidence of level 4 complexity problems compared to
the widely recognized SPIDER dataset. This observation under-
scores the significance of encouraging companies to engage in
the creation and evaluation of such sub-datasets.

7 THREATS TO VALIDITY
The validity concerns most pertinent to our evaluation are internal
and external validity.
Internal Validity. In this research, internal validity would encom-
pass ensuring that the differences in performance observed among
the selected LLMs on the provided datasets can be confidently attrib-
uted to the variations in model capabilities and not influenced by

confounding factors or unintended biases. In the realm of internal
validity, the research strategically harnesses multi-time output aver-
aging to mitigate the inherent variability in LLM outputs proposed
by Tian et al [28]. Recognizing the potential for erratic responses,
this approach tempers the impact of occasional instability, thereby
fostering more reliable and consistent performance measurements.
Furthermore, the study introduces a meticulously designed post-
processor tailored to the idiosyncrasies of LLM output.
External Validity. External validity would involve evaluating
whether the outcomes observed among the chosen LLMs on the
given datasets can be extended to a broader range of scenarios,
datasets, or real-world applications. On the front of external validity,
the research extends its purview to encompass banking scenarios,
thereby transcending the initial domain boundaries. By juxtaposing
the performance of the selected LLMs against the original SPIDER
dataset, the study ventures beyond its initial context and broadens
the applicability of its findings.
Construct Validity. Construct validity would involve ensuring
that the chosen LLMs, evaluation metrics, and datasets accurately
capture the dimensions of interest related to Text2SQL performance.
In terms of construct validity, the research takes a comprehensive
approach by evaluating the performance of LLMs across five distinct
evaluation metrics. By encompassing multiple dimensions of assess-
ment, the study robustly captures the nuances of LLM-generated
SQL queries.

8 CONCLUSION
In this paper, we investigated five research questions focusing on
the practice of the text2SQL models in financial scenarios. We eval-
uate a number of LLMs on the SPIDER dataset for the text2SQL
task, study challenges from financial practice, evaluate metrics that
do not need to run the SQL queries, and optimize some of the ques-
tions and prompts. We contribute a benchmark that can be used for
model selection, 2 open-source evaluation metrics called SQAM and
TSED, and present a small text2SQL challenge of the bank database.
We find three main research findings: ❶ We found that in the case
of general-purpose 7B LLMs perform poorly on Text2SQL tasks and
require more SQL-related training data. The nsql-6B LLM appears
to be a good alternative to giant general-purpose LLMs. ❷ The
dataset needs to be optimized, especially the quality of questions,
and find effective prompts. ❸ The TSED metric is effective in mea-
suring the quality of generated SQL queries.
In our ongoing project, we have exciting plans for future work.
We intend to extend the application of our innovative evaluation
metrics beyond the banking domain and apply them to major code
generation tasks, thereby broadening the scope of their utility. Ad-
ditionally, we are in the process of developing an automatic toolkit
tailored for Text-to-Code evaluation. This toolkit will not only
streamline the evaluation process but also contribute to the stan-
dardization of evaluation procedures in the field.
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