
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.XXXX.DOI

Dynamic Security Analysis on Android:
A Systematic Literature Review
THOMAS SUTTER1,2 , TIMO KEHRER1 , MARC RENNHARD2 , BERNHARD
TELLENBACH3 , JACQUES KLEIN4
1University of Bern, Switzerland
2Zurich University of Applied Sciences, Switzerland
3Armasuisse, Cyber-Defense Campus, Switzerland
4University of Luxembourg, Luxembourg

Corresponding author: Thomas Sutter

This work was supported in part by Armasuisse, Cyber-Defense Campus, Switzerland.

ABSTRACT
Dynamic analysis is a technique that is used to fully understand the internals of a system at runtime.
On Android, dynamic security analysis involves real-time assessment and active adaptation of an app’s
behaviour, and is used for various tasks, including network monitoring, system-call tracing, and taint
analysis. The research on dynamic analysis has made significant progress in the past years. However, to
the best of our knowledge, there is a lack in secondary studies that analyse the novel ideas and common
limitations of current security research.
The main aim of this work is to understand dynamic security analysis research on Android to present the
current state of knowledge, highlight research gaps, and provide insights into the existing body of work in
a structured and systematic manner. We conduct a systematic literature review (SLR) on dynamic security
analysis for Android. The systematic review establishes a taxonomy, defines a classification scheme, and
explores the impact of advanced Android app testing tools on security solutions in software engineering and
security research.
The study’s key findings centre on tool usage, research objectives, constraints, and trends. Instrumentation
and network monitoring tools play a crucial role, with research goals focused on app security, privacy, mal-
ware detection, and software testing automation. Identified limitations include code coverage constraints,
security-related analysis obstacles, app selection adequacy, and non-deterministic behaviour.
Our study results deepen the understanding of dynamic analysis in Android security research by an in-
depth review of 43 publications. The study highlights recurring limitations with automated testing tools and
concerns about detecting or obstructing dynamic analysis.

INDEX TERMS Android, dynamic analysis, security, software testing, vulnerabilities, instrumentation,
fuzzing, monitoring, tracing, machine learning

I. INTRODUCTION
The smartphone has emerged as one of the most indispens-
able devices in our everyday life. Smartphones are equipped
to carry out diverse tasks such as instant messaging, emailing,
navigation, web browsing, capturing photographs, and many
more. Users inadvertently expose substantial amounts of per-
sonal information to software and hardware providers.This
Personally Identifiable Information (PII) includes sensitive
data such as residential addresses, dates of birth, and photos
and videos, all of which are commonly stored in the smart-
phone’s storage, thereby increasing the risk of inadvertent
exposure to eavesdropping applications.

Several legislative authorities have recognised the
paramount importance of safeguarding PII from exploitation
and misuse by companies and corporations. Consequently,
multiple regulations such asthe European General Data Pro-
tection Regulation (GDPR) [1] and the California Consumer
Privacy Act (CCPA) [2] have been enacted. In response to
these regulations, large tech conglomerates have gradually
imposed more and more stringent restrictions on the access
and usage of PII data.

Concurrently, for over a decade, researchers have explored
various novel ideas to detect and prevent attacks on Android
and its users to foster smartphone security. In the scientific

VOLUME XXX, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2649-3299
https://orcid.org/0000-0002-2582-5557
https://orcid.org/0000-0001-5105-3258
https://orcid.org/0000-0002-5008-1107
https://orcid.org/0000-0003-4052-475X

literature, there are mainly two classes of approaches for
Android security testing, commonly referred to as static and
dynamic analysis. In static analysis, a program is examined
without actually executing the code in a real or emulated
environment. Instead, the program code is studied by tech-
niques such as taint analysis (e.g., FlowDroid [3]), where the
data flow of the program under test is examined to identify
potential vulnerabilities or privacy issues. Besides the general
limitations of static analysis [4], one specific limitation is
that certain Android apps incorporate functions that enable
the loading and execution of code at runtime, rendering
it infeasible to statically determine a program’s behaviour
[5]. Dynamic analysis tackles this problem by executing a
program in a monitored environment to collect runtime data
(e.g., memory- and file access, network traffic, or system call
traces [6]) which are then analysed for various purposes (e.g.,
to determine if PII is sent to a remote server [7]). A particular
challenge is to guide dynamic analysis techniques towards
an exhaustive exploration of possible program paths [8],
[9], [10], [11], [12]. Hybrid approaches combine both static
and dynamic analyses, and have been shown to outperform
solutions that rely solely on either of both approaches in
certain cases [13].

Either way, there has been a tremendous amount of publi-
cations on Android security research. With the overwhelm-
ing volume of publications, it is time-consuming for both
researchers and practitioners to stay abreast of the latest
cutting-edge techniques, and to identify the most relevant
publications for their research domain or application context.
This calls for a secondary study on Android security testing
for synthesising existing knowledge, identifying future re-
search directions, and supporting decision-making. However,
previous secondary studies have mainly focused on review-
ing static analysis techniques [14], [15] or specific research
domains, such as mobile malware analysis [16], [17], [18].

This research paper employs a systematic and retrospec-
tive analysis of articles published in the last five years to pro-
vide a comprehensive overview of the most recent advances
in Android security research, focusing primarily on dynamic
analysis techniques. Our systematic literature review (SLR)
sheds light on innovative testing methods for Android apps.
It highlights the most prevalent trends in dynamic analysis,
including use cases, techniques, datasets, and novel methods.
After applying our SLR inclusion and exclusion criteria, we
obtained 43 publications for which we conducted an in-depth
analysis to answer the following research questions.

• RQ1 Which novel tools and techniques were published?
We determine for every publication in our corpus if a
novel tool was developed and made publicly available.

• RQ2 What were the underlying objectives and inten-
tions driving the utilisation of dynamic analysis tech-
niques? We identify the primary purpose of every pub-
lication and summarise their ideas and findings.

• RQ3 What are the prevalent constraints and shortcom-
ings inherent in the dynamic analysis techniques? To
identify possible open research questions, we investi-

gate if there are any commonly mentioned limitations or
unresolved challenges, and discuss possible future work
on the topics.

• RQ4 Which areas of research have exhibited prominent
trends and gained significant attention in recent years?
We categorise the literature into topics based on their
research objectives and analyse which open problems
are faced by multiple researchers.

The primary objective of this study is to establish a thor-
ough understanding of the latest advancements in dynamic
analysis methods and techniques. Key contributions of this
research include the following:

• We construct a taxonomy specifically for Android dy-
namic security analysis, categorising publications based
on this taxonomy and the applied dynamic analysis
methods.

• We identify three main security research domains and
classify the selected publications according to the de-
veloped taxonomy and applied dynamic analysis tech-
nique.

• We offer an initial overview of dynamic security tech-
niques and methodologies for Android by reviewing
330 publications. Subsequently, we focus on a detailed
examination of a selection subset, providing an in-depth
analysis of 43 publications from premier software engi-
neering and security venues, where we comprehensively
list objectives, techniques, and tools.

• We determine trends for dynamic analysis techniques
and identify the most and least common techniques of
the last five years.

In Section II, we first give an overview of methods to test
Android apps dynamically. Section III gives an introduction
into the core concepts of dynamic analysis on Android.
Section IV presents details about the methodology of our
SLR. Section V introduces a taxonomy for dynamic analysis
security research. Sections VI to VIII give an in-depth review
of publications in dynamic analysis. We discuss the findings
from this SLR in Section IX. In Section XI the threats
to validity and open research questions are discussed. In
Section XII related work is presented. Section XIII concludes
this SLR with a short summary of our findings.

Webview
Javascript
Interface

Native Code (C/C++)Java Native
Interface (JNI)

Web Client

Android Components ICC / RPC

HTTP

Web API

ICC / RPC

ICC / RPC

Remote Server

App

System App
Native

Interface

App

Code

FIGURE 1. Brief overview of interfaces in an Android app.

2 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 1. Overview of reviewed publications providing software testing tools for automated Android app testing.

Tool Name Dataset used Tools/Algorithms benchmarked Number of Apps
Tested (Range) Test Environment Test Run Time

(minutes)
Number
of Runs

Monkey [19] Not applicable Not applicable Not applicable Not applicable Not applicable Not applicable
ACVTool [20] Not applicable JaCoCo, Sapienz 250-1000 Emulator 180min 5

TimeMachine [8] AndroTest Monkey, Stoat, Sapienz 100-250 VirutalBox,
Android-x86 OS 300min 5

WCTester [21] WeChat app only Previous version of their tool 1-20 Physical Device 720min -

Sapienz [9] AndroTest,
Google Play Store DynoDroid, Monkey 1,000-2,000 Physical Device 60min 1

Stoat [10]
AndroTest,
F-Droid,
Google Play Store

PUMA, Monkey, Sapienz, A3E,
MobiGUITAR 1,000-2,000 Emulator 60min, 180min 1

Toller [22] Google Play Store Chimp, WCTester, Stoat 1-20 Emulator 60min 1

Ares [23] AndroTest

OpenAI Gym, Q-Learn (algorithm),
DDPG (algorithm), Rand (algorithm),
SAC (algorithm), TD3 (algorithm),
TimeMachine, Sapienz, Monkey

20-50 Emulator 60min 10

Q-Testing [24] AndroTest,
Open Source Apps Sapienz, Monkey, Stoat 50-100 Emulator 60min 4

Chimp [12] AndroTest,
Google Play Store Monkey 50-100 Android-x86 OS,

QEMU 6min 10

AndroTest [11] AndroTest SwiftHand, PUMA, GuiRipper,
A3E, DynoDroid, ACTEeve, Monkey 50-100 Emulator,

VirutalBox 60min 10

II. BACKGROUND ON TESTING ANDROID APPS
It is only logical that automated Android app testing plays a
crucial role in most dynamic security analysis approaches as
it is one of the fundamental building blocks for collecting
data points. To fully grasp the capabilities of an Android
app, it is necessary to interact with the app’s Graphical User
Interface (GUI) as well as with the APIs offered by the
Android framework.

Android apps make use of a wide variety of interfaces and
can share data via services, content providers, or broadcast
listeners. Figure I illustrates an example Android app with
possible communication partners to give an overview of
frequently used interfaces. Android apps can include native
code via the Java Native Interface (JNI) or JavaScript code
via the webview interface as shown in Figure I. Apps can
directly communicate with companion apps to exchange
data or interact with system services via Inter-Component-
Communication (ICC) and it is as well possible for apps to
use JNI to interact with native system services.

The usage of these interfaces in combination with ICC of-
ten makes an in-depth analysis of Android apps challenging
because these dependent components need to be analysed in
addition to the app under test.

A. TESTING QUALITY METRICS
To evaluate and compare the performance of Android testing
tools, two quality metrics have been primarily used in the
past: code coverage and number of detected faults (crashes
or bugs).

Code coverage is the primarily used metric to measure
which parts of the code have been executed during testing.
In addition to line coverage sometimes the class, activity, or

method coverage are measured as well.
Fault detection is the other main metric applied when

comparing testing tools. It is used to determine if a tool is
capable of generating an input so that the Application under
test (AUT) would crash or enter an unwanted state.

B. STATE-OF-THE-ART ANDROID APP TESTING TOOLS
Many dynamic analysis methods heavily rely on a number
of testing tools from industry and academia. These tools are
often the basis for security researchers to test certain states
of an application. Thus, we give a brief overview of common
Android app testing tools and their limitations in Table 1. The
tools were chosen after a thorough review of publications on
Android app testing, but the list is not comprehensive.

One of the main tools used is Monkey [19]. It sends
pseudo-random streams of user- and system events for testing
and does not track the state of the app, which makes Monkey
a relatively fast and stateless testing tool. Monkey is actively
maintained and considered to be one of the state-of-the-art
testing tools in industry, even though academic papers have
shown better testing performances with other tools [8], [23],
[24].

There have been several studies on enhancing the capabil-
ities of Monkey [21], [8]. Notably, Dong et al. [8] introduced
TimeMachine, which proposes to find pertinent app states
by going back to previously observed states instead of fo-
cusing on following a number of promising states showing
better code coverage. Alternative solutions to Monkey are
Stoat [10] and Sapienz [9] that have comparable perfor-
mance, but use a search-/model-based approach.

Many studies in the testing domain mainly focused on
improving testing algorithms to enhance code coverage.

VOLUME XXX, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Android Dynamic Analysis Techniques

Fuzzing
(III-A)

Coverage-
Guided Fuzzing

LLM Fuzzing

Binder/ICC
Fuzzing

Network Traffic Analysis
(III-B)

Dynamic Taint Analysis
(III-C)

Memory Decomposition
(III-D)

Instrumentation & Tracing
(III-F)

Log-based Analysis
(III-G)

TLS/SSL
Issues

Package
Inspection

PII Leakage

Certificate
Pinning

Path Slicing

Taint
Optimization

Data Flow
Analysis

Dynamic
Control Flow

Heap
Dumping

Graph
completion

State testing

System Call
Tracing

Debugging

Function
Hooking

Parsing

Normalisation

System Logs

Logcat

Visualisation Assistance
(III-H)

Timing

Relations

Storytelling

Decision
Support

FIGURE 2. Dynamic security analysis techniques.

However, Wang et al. [22] demonstrated that solely focusing
on improving the testing algorithms may not be sufficient.
Instead, their approach, named TOLLER, focused on im-
proving the testing infrastructure, which is often based on
UI Automator [25], to improve the effectiveness of different
testing tools.

Moreover, several machine learning-based solutions have
demonstrated promising testing results and are likely to
outperform Monkey, Stoat, and Sapienz [23], [24]. Notably,
Q-Testing by Pan and Zhang et al. [24], and ARES by
Romdhana et al. [23] are based on the idea of reinforcement
learning (RL) and show promising results.

All of the aforementioned tools can be used to dynami-
cally test Android apps. It should be mentioned that testing
Android apps dynamically is often limited due to external
dependencies. For instance, a chat application might need
to interact with another chat client to reach some specific
states during testing, or the testing environment might not
send specific system events to the AUT. However, it is often
not possible for researchers to analyse all dependent compo-
nents, thus limiting security analysis as we will discuss in
Section IX.

III. DYNAMIC SECURITY ANALYSIS TECHNIQUES
Figure II gives an overview of the dynamic analysis tech-
niques for Android with frequently mentioned topics. In this
section, we explain the main concepts of these dynamic
analysis techniques and give practical examples for Android.

A. FUZZING

Fuzzing or fuzz testing feeds the target program with a large
number of inputs to see how the target programs behaves. The
main idea of fuzzing is to send inputs that trigger unexpected
behaviours, program faults or vulnerabilities by sending
random, invalid, or unexpected inputs. Fuzzing techniques
such as concolic execution, probabilistic grammar fuzzing,
mutation-based fuzzing, or search-based fuzzing have widely
been used to detect vulnerabilities and have proven to be
efficient testing methods. For instance, the OSS-Fuzz [26]
project has reported over 25,000 bugs [27] in open-source
projects by fuzzing.

On Android, fuzzing has dominantly been used to test
native components of the operating system as many fuzzing
techniques show excellent results in detecting memory cor-
ruption bugs [26]. Nevertheless, memory-safe languages
such as Java can also undergo fuzzing, as demonstrated by
tools like Jazzer [28]. Erroneous behaviour in these lan-
guages has the potential to result in similar harm as memory
corruption bugs.

B. NETWORK TRAFFIC ANALYSIS
To monitor or intercept the network traffic of an Android
device or app, it is often necessary to reroute the network
traffic over a proxy that is controlled by the analyst. In many
cases it is necessary for the analyst to disable or work around
existing security mechanisms in order to be able to proxy the
traffic create by an Android app. Two of the main security
mechanisms that researchers need to work around are Certifi-
cate pinning (CP) [29] and Transport Layer Security (TLS).

Nowadays, Android enforces TLS encryption by default
for network connections of Android apps. To perform a deep
packet inspection, the traffic needs to be redirected over a
proxy. To do so, a common technique is to load a custom
Certificate Authority (CA) into the trusted certificate store of
the device. By installing a custom CA certificate, the network
traffic can be redirected to a proxy without breaking the
TLS encryption, which allows analysts to read or modify the
network packets. However, solely rerouting the traffic is often
not sufficient if the AUT uses CP.

CP is a security practice to prevent man-in-the-middle
attacks on TLS. The main idea of CP is to ensure the authen-
ticity of digital certificates by including a set of public key
properties (for example, hashes) that the client (e.g., an An-
droid app or web browser) can verify. When an app uses CP,
solely adding a custom CA certificate isn’t sufficient to proxy
the network traffic because the Android app might check
which CA certificate is used and then refuses connections
(in case a custom CA is detected). Two common approaches
to work around CP on Android are instrumenting to disable
the CP checks during runtime or patching the Android app
to remove the CP checks completely from the code. As
a client-side security mechanism, CP can only secure the
connection and is not resistant to patching the app or against

4 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

instrumentation. Therefore, working around CP is a common
technique that researchers need to master in order to be able
to analyse the traffic of an Android app.

C. DYNAMIC TAINT ANALYSIS
In taint analysis, the execution path (flow) of a program is
tracked to identify the propagation of potentially untrusted
or malicious data (tainted flows). To identify such tainted
flows, static analysis uses a set of functions where data enters
the program (sources) and follows the execution path to a
point within the program (sinks) that could cause harm or
unintended behaviour. Taint analysis then attempts to identify
if there is a path from one of the source functions to the sinks.
In case there is a path, the system can further be checked for
inputs that follow the path.

Taint analysis has various use cases. For instance, vulnera-
bility detection, where a tainted flow might indicate a vulner-
ability. This analysis technique has shown to be effective for
vulnerability detection but has some known limitations; It is
not trivial to define sources and sinks for all kind of applica-
tions, it can be very computation intensive depending on the
size of the program, and it does not allow to automatically
identify if a detected vulnerability is exploitable.

Dynamic taint analysis is an extension to its static counter-
part and attempts to overcome some of these limitations. For
instance, additional execution paths can be detected during
runtime in cases where code is dynamically loaded, which
can help in identifying additional paths. Such additional
paths can lead to previously unseen vulnerabilities. Overall,
the main idea is to use the data collected during runtime to
have a more accurate and powerful taint analysis.

D. MEMORY DECOMPOSITION
Detecting fileless malware, also referred to as memory-only
malware, is one of the objectives of memory-based analysis
techniques [30]. The possibility to read and modify the
memory of a program at runtime opens opportunities for
novel testing methods. The decomposition of the memory at
runtime is often challenging as an in-depth knowledge about
the internal structure of the memory is necessary to fully
understand the state of a program. In addition, the timing of
the analysis is often crucial, as the memory of a program
is frequently changing. Memory-based techniques usually
dump the stack or heap memory of a program at given points
in time to gain additional information about the internal state
of the program. These dumps are then used to facilitate other
dynamic testing techniques or to inject code into the memory
at runtime to trigger specific code blocks.

E. SYSTEM CALLS AND TRACING
System call tracing is a way of collecting run-time informa-
tion about a process. During tracing, system calls and signals
of a process are intercepted and recorded by a tracer. The
main goal of the tracing process is to observe what resources
a process is requesting from the kernel with which arguments.
Commonly used methods for system call tracing on Linux are

the command line tool, strace [31], or the ptrace [32] system
call.

Typical use cases for system call tracing are debugging,
performance analysis, or security auditing. In addition, the
analysis of system calls has been a major subject for many
malware detection systems as we will further discuss in
Section VII.

On Android, apps use mainly IPC events to initiate system
calls. When an app wants to access a system service, it
needs to request the corresponding permissions. In cases,
where the permission was given, an app sends a broadcast
message with an intent action (e.g., "ACTION_SETTINGS")
to request the execution of a system call. Apps on Android
are sandboxed, meaning that based on the permission an app
has, access to specific system services is granted or denied.
The sandbox concept reduces the attack surface significantly,
however, it leads to the fact that system call tracing needs to
consider system events. When an app uses IPC messages to
trigger system calls, the system call is likely executed by a
system service rather then the app itself. Consequently, it is
often necessary to trace parts of the framework in order to
understand which system calls are triggered by an app.

An approach that has been used to trace apps is to attach
strace to the Zygote process [33]. As all app processes are
forks from Zygote on Android, it is possible to use strace
on Zygote to record the traces of an app. However, tracing
Zygote is noisy as it generate a large fraction of records that
are not created by the app itself. Moreover, using strace on
Zygote requires root privileges which might not be available
on all devices.

F. DYNAMIC BINARY INSTRUMENTATION
Dynamic binary instrumentation (DBI) [34], [35], [36], [37],
[38] is a valuable approach for reverse engineering or security
testing Android apps. DBI frameworks are tools for sup-
plementary analysis, debugging, or profiling, as well as for
incorporating optimisations without the need to recompile or
access to the source code. Instrumentation can be a powerful
tool for reverse engineering, as it allows to circumvent client-
side security checks (e.g., CP).

The key idea of instrumentation is to change the control
flow of the application by injecting assembly instructions
(e.g., JMP), which is often referred to as hooking. DBI
injects code into the running target process to facilitate the
analysis process. Sophisticated DBI frameworks use Just-In-
Time (JIT) compilers to update the code at runtime, which
allows the injection at anytime during execution. Depending
on the use case, the control flow is changed so that it is
possible to overwrite existing functions or to monitor the
arguments of a function call.

Many DBI frameworks with support for Android exists.
To name some examples: Frida [36], Valgrind [35], Dy-
namoRIO [38], or QBDI [37]. Most of these instrumentation
frameworks allow researchers to inject custom scripts into the
target process at runtime by setting up some communication
channel (e.g., RPC) to a DBI service running on the target

VOLUME XXX, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

device. An external agent can then communicate with the
DBI service to control the execution of the instrumented
process.

Installing the DBI service often needs privileged access
on the device under test. However, some DBI frameworks
have developed other methods for deployment of the DBI
service that do not need root access. For example, one method
involves the injection of a shared library gadget. In this
approach, the application undergoes a decompilation process,
and subsequently, a shared library containing an initial call is
introduced into the decompiled code. This library contains all
the necessary gadgets to enable code injection into the appli-
cation and is loaded upon the application’s initiation. Acting
as a DBI service, the library establishes communication with
an external agent to receive commands. The decompiled
application is then repackaged into an APK file and signed
with a self-signed certificate before being launched. How-
ever, a notable drawback of this method is that it necessitates
modifying the AUT to facilitate instrumentation.

G. LOG-BASED ANALYSIS

Most applications and services log errors, warnings and
informational events to a log facility. What exactly is logged
is not standardised; however, it is often information that
helps diagnose and reproduce erroneous behaviour of an
application or information that is needed for audit purposes,
e.g. requests for access to protected resources. Therefore, the
extent to which the logs provide insight into the processes
during the execution of the application and whether this
insight is sufficient for the respective analysis goal depends
strongly on the individual application.

On Android, app logs are stored in circular memory buffers
by default and can be access via the command line tool
Logcat [39]. App logs are considered sensitive because they
can contain all kinds of information, including sensitive
data (e.g., device identifiers, passwords, etc.). By default the
access to app logs on Android is only granted to privilege
processes and app logs should only be accessible when an
app is in debug mode.

H. VISUALISATION ASSISTANCE

Visualisation assistance involves utilising tools, techniques,
or technologies to enhance the comprehension and interpre-
tation of data through visual representation. This approach
is employed to communicate and analyse extensive and in-
tricate information effectively. By visualising data, methods
are applied to simplify complexity and highlight specific rela-
tionships, aiding in a clearer understanding of the information
at hand.

These techniques can support decision making. For in-
stance, for malware analysts they may help in detecting
specific code patterns that can be used for the classification
of malicious apps.

IV. LITERATURE REVIEW METHODOLOGY
Figure III-H gives an overview of our SLR selection and re-
viewing process inspired by the guidelines from Kitchenham
and Brereton [40]. We summarise in Table 2 every step of
the selection process and explain the details of every step
hereafter.

First, we defined the following exclusion and selection
criteria to limit our study to peer-reviewed publications:

1) Language: Papers must be written in English.
2) Time: Only publications published between 2017 to

2023
3) Type of publication: Only peer-reviewed publications

that were published in computer science conferences or
journals. No patents, books, or demo publications.

4) Topic: Publications pertinent to our subject matter,
which revolves around Android dynamic security anal-
ysis. In this context, "relevance" denotes the degree
to which publications align with the specific focus of
our study. Therefore, we will only include publications
that directly contribute to or address aspects relevant to
Android dynamic security analysis.

Secondly, to identify publications pertinent to our topic,
we conducted iterative test searches on Google Scholar.
Through multiple iterations, we identified search terms that
consistently produced relevant outcomes, as evidenced by the
relevance of the first 100 search results. Our primary search
term is "Android," employed in conjunction with a set of
secondary terms detailed in Table 3.

Third, we conducted keyword searches on Google Scholar
and exported the results to machine-readable files. For this
purpose we use the tool Publish or Perish [41]. Previous stud-
ies [42] have demonstrated that the usage of Google Scholar
is sufficient to find relevant publications from top computer
science conferences and journals. In addition, using Google
Scholar prevents a bias towards a specific publisher and
identifies publications based on a scoring system.

Fourth, we apply our selection criteria to filter out irrele-
vant publications by year, language, and article form (only
peer reviewed articles, no books, etc.) to reduce the number
of search results. Following the application of filter criteria,
we reviewed the top 1,000 search results, scanning for poten-
tially relevant publications based on their titles and abstracts.
This selection of the initial 1,000 results aimed to balance
comprehensiveness with relevance, taking into account the
practical consideration of managing a sizeable dataset for
thorough analysis. Additionally, this number was chosen to
ensure a broad exploration of the literature landscape while
maintaining feasibility in terms of manual screening efforts.
As a result, we identified 177 potential publications.

Fifth, we review the methodology and results section of
the potential publications to identify articles on Android
dynamic security analysis. In case, we find a fitting article,
we conduct an in-depth review and add it to the SLR.

Sixth, the authors delve into the scope, quality, and rel-
evance of the publications. This is done to prevent any
potential bias from a single author’s perspective. If a situation

6 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Phase 5: Writing and DisseminationPhase 3: Classification and Data Extraction

Phase 2: Screening PublicationsPhase 1: Plan SLR

Define inclusion
and exclusion

criteria

Identify relevant
keywords

Define research
question

Identify relevant
data sources

Screen based on
title and abstract

Screen based
on full text

Identify research
objectives

Extract data from the
selected publications

Conduct search on
Google Scholar

Conduct search on
DBPL

Apply exclusion
criteria

Phase 4: Snowballing

Assess articles in terms
of quality and relevance

Include relevant
references

Analyse trends and
research gaps

Write the review
report

Identify open
challenges

FIGURE 3. Methodology of the systematic literature review

Android Dynamic Analysis Research Domains

App Security, Privacy and Compliance (VI) Malware (VII) OS & Framework Security (VIII)

Topics Objectives

SSL / TLS (VI-A2)

Port Security (VI-A1)

Authentication (VI-A3)

Dyn. Taint Analy. (VI-B)

Leaking PII (VI-C1)

Compliance (VI-C2)

Security Vetting

Library Detection

Policy Enforcement

Machine Learning (VII-B)

Trace detection (VII-A)

Memory detection (VII-C)

Visualisation (VII-D)

Anomaly detection (VII-F)

Dyn. code loading (VII-E)

Fraud Detection

Anomaly Detection

Malware Detection

Fuzzing (VIII-A)

Native services (VIII-A1)

TEE (VIII-A2)

Kernel testing (VIII-B)

Frida detection (VIII-C)

Exploit Detection

Monitoring

Sec. Enhancement

Sensitive Inputs (VI-C3)

Software comp. (VI-D)

Analytics Library (VI-D1)

Permissions (VI-D2)

Mobile Browsers (VI-E1)

App Generators (VI-E2)

Obfuscation (VI-E3)

Malware evolution (VII-G)

Feature SelectionVuln. Analysis

Topics TopicsObjectives Objectives

FIGURE 4. Taxonomy of Android dynamic security analysis research

arises where most of the authors identify an inconsistency
in relation to a particular publication, a decision is reached
regarding its inclusion or exclusion. This determination is
based on a majority vote among the authors.

To identify additional relevant publications, we conducted
a secondary search on top computer science and security
venues to ensure that we do not miss relevant publications. To

do so, we use the computer science bibliography DLBP [43]
as additional data source. Table 5 shows the top computer
science venues according to Google Scholar [44], [45].
Google Scholar uses as a metric for ranking these venues,
the h5-index. The ranking was retrieved on the January 31,
2023. Within DLBP, we search for publications from the
top computer science venues listed in Table 5 and apply the

VOLUME XXX, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 2. SLR Methodology for the selection of publications

SLR Step Description Google Scholar DBLP

Initial Search 19’500 9,676,565
Exclusion by venue (Only peer reviewed journals and conferences) 17’300 6,325,901
Exclusion by language and publication year (only English and publications from 2017 to 2023) 2,395,797
Selection by relevance score or keyword matching 1,000 3014
Exclusion by topic match (skim title and abstract) 177 155

Merged

Merge datasets (removing duplicates) 330
Exclusion by topic relevance (dynamic analysis related) 36
Exclusion by discussion (scope, quality, and relevance) -1
Inclusion by snowballing (forward and backwards) +8

Total 43

TABLE 3. Overview of keywords used for the search process

Description Keywords

Primary Android;

Secondary
Analy*; dynamic; fuzz*; security testing;
DAST; dynamic application security testing;
App Security Testing; Hybrid

same selection process as with Google Scholar. As result, we
identify 155 publications as potential relevant for this SLR.

As last step, we perform forward- and backward snow-
balling to include papers with high relevance or novelty. We
include 8 publications by snowballing into the SLR.

V. TAXONOMY OF ANDROID SECURITY RESEARCH
By analysing the publications in our dataset, three primary
research domains can be identified in the realm of dynamic
security analysis of Android Apps: (i) App Security, Privacy
and Compliance, (ii) Malware, and (iii) OS & Framework.
We use these three domains to group research publications
with similar use cases and objectives. Figure III-H illus-
trates an overview of our taxonomy. It shows the three main
research domains and their connections to related security
topics. It should be noted that many studies have overlapping
use cases or objectives and may fit into more than one
category. However, we assigned publications to the most
fitting category based on their main use-case or objective.

• App security, privacy and compliance (ASPC) en-
compasses publications that are primarily centred
around the development of innovative techniques for
conducting security testing on Android applications.
Furthermore, it includes publications that explore spe-
cific categories of Android apps, such as, for instance,
in-depth analyses of vulnerabilities in mobile banking
apps.

• Malware includes publications on methods for detect-
ing fraudulent or malicious applications and how to

extract or collect features from apps for classification
tasks that can be used for detection techniques.

• OS & Framework (OSF) is mainly about publications
that study the Android framework and its components
from a security perspective. This also includes research
about the security of the Android operating system.

Table 4 lists our 43 papers selected for in-depth review (s.
Section IV) classified by both category and year. 21 , 12 and
10 papers fall into the categories (i), (ii) and (iii), respectively.

In the following Sections VI to VIII, we provide a detailed
overview of the publications grouped by research domains.
We primarily explain the aim and methodology of the publi-
cations. The data source(s) used by the publications, dynamic
analysis techniques, tools used, and other factors are not
explicitly discussed in the text but are recorded in the tables
for the respective subsection. At the end of each section,
we summarise the main takeaways and discuss the most
important limitations.

VI. APP SECURITY, PRIVACY AND COMPLIANCE
RESEARCH
Table 6 shows the list of selected publications for the App
Security, Privacy and Compliance domain. We analysed these
publications in terms of the used dynamic analysis technique,
testing methodology, data sources, as well as number of
tested apps.

A. NETWORK ANALYSIS
There have been several methods described to test the used
network protocols and to identify implementation errors in
common security mechanisms such as TLS. In this section
we discuss studies with a strong focus on network analysis
and summarise their objectives and findings.

1) Open ports
Wu et al. [51] conducted an in-depth study of open ports on
Android. 3,293 users in 136 countries worldwide contributed
to their research by allowing the researchers to continuously
monitor open ports on their smartphones. By installing an

8 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 4. Overview of chosen publications by year and research domain.

Topic 2017 2018 2019 2020 2021 2022 2023 Total

App Security, Privacy
and Compliance [46] [47], [48], [49] [50], [51], [52]

[53], [54] [55], [56], [57], [58] [59] [60], [13] [7], [61], [62]
[63], [64] 21

Malware [65], [66], [67]
[68] [69] [70], [71], [72], [73]

[74], [75], [76] [77] 12

OS & Framework Security [78] [79] [80], [81], [82]
[83], [84] [85] [86] [87] 10

Total 43

TABLE 5. List of top conferences and journals by h5-index.

Rank Name h5-index h5-median

Computer Security & Cryptography
1. ACM Symposium on Computer and Communications Security 98 146
2. IEEE Transactions on Information Forensics and Security 94 135
3. IEEE Symposium on Security and Privacy 89 134
4. USENIX Security Symposium 84 136
5. Computers & Security 78 117
6. Network and Distributed System Security Symposium (NDSS) 72 146
7. IEEE Transactions on Dependable and Secure Computing 63 97
8. International Conference on Theory and Applications of Cryptographic Techniques (EUROCRYPT) 59 96
9. International Cryptology Conference (CRYPTO) 55 98

10. International Conference on Financial Cryptography and Data Security 50 82
11. Journal of Information Security and Applications 47 65
12. IEEE European Symposium on Security and Privacy 46 70
13. IACR Transactions on Cryptographic Hardware and Embedded Systems 46 69
14. Security and Communication Networks 44 60
15. International Conference on The Theory and Application of Cryptology and Information Security (ASIACRYPT) 42 72
16. ACM Asia Conference on Computer and Communications Security 38 60
17. IEEE International Conference on Biometrics: Theory Applications and Systems (BTAS) 36 59
18. IEEE Security & Privacy 35 58
19. Symposium On Usable Privacy and Security 35 51
20. Designs, Codes and Cryptography 33 45

Software Systems
1. ACM/IEEE International Conference on Software Engineering 76 113
2. IEEE Transactions on Software Engineering 66 108
3. Journal of Systems and Software 61 102
4. Information and Software Technology 59 83
5. ACM SIGSOFT International Symposium on Foundations of Software Engineering 57 93
6. Empirical Software Engineering 56 85
7. Proceedings of the ACM on Programming Languages 55 71
8. IEEE Software 47 79
9. IEEE/ACM International Conference on Automated Software Engineering (ASE) 47 77

10. ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI) 47 66
11. Mining Software Repositories 45 68
12. Symposium on Operating Systems Principles 42 102
13. International Conference on Software Analysis, Evolution, and Reengineering (SANER) 42 68
14. Software & Systems Modeling 40 64
15. International Symposium on Software Testing and Analysis 39 72
16. IEEE International Conference on Software Maintenance and Evolution 36 52
17. International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) 35 45
18. Software: Practice and Experience 34 55
19. IEEE Annual Computer Software and Applications Conference (COMPSAC) 30 45
20. IEEE International Requirements Engineering Conference 30 44

Android network monitoring app the researchers were able to
detect and analyse open ports for vulnerabilities and identi-
fied five vulnerable patterns for open ports. Consequently, the
researchers found vulnerabilities in several popular Android
apps (e.g., Instagram, Samsung Gear, Skype) due to open
ports. Moreover, Wu et al. found out that many of the open
ports are solely from SDKs integrated into these apps, which
raises the concern that the app developers are unaware of
these open ports.

2) SSL/TLS verification

SSL/TLS is a fundamental security mechanism that provides
a secure transmission channel. Implementation errors in SS-

L/TLS can expose the risk of man-in-the-middle (MITM)
attacks. To counter these implementation error, Google in-
troduce the network security configuration [89], which is
basically a configuration file for apps to configure the SS-
L/TLS settings, and added additional policies to Google Play
to block insecure apps.

Wang et al.[56] developed DCDroid; a hybrid testing tool
optimised for UI exploration to test 2,213 apps from Google
Play and the 360app [90] store for SSL/TLS bugs. Wang et al.
found 245 (11.07%) apps were actually vulnerable to MITM
attacks due to implementation errors or only opportunistic
security approaches like, for instance, accepting self-signed
certificates.

VOLUME XXX, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 6. Overview of selected App Security, Privacy and Compliance publications. I = Instrumentation & Tracing, N = Network Analysis, V = Visualisation
Assistance, L = Log-based Analysis, D = Dynamic Taint Analysis, M = Memory Decomposition, F = Fuzzing, H = Hybrid (static + dynamic), A = Automated Testing,
SC = Source Code Available, DS = Data Source, NA = Number of Tested Apps (per experiment), ST = Supporting Tools, TE = Testing Environment, TD = Target
Description

Tools / Publications I N V L D M F H A SC DS NA ST TE TD

Tang et al. [55] ✓ ✓ ✓
Drebin,
Google Play Store,
Chinese App Stores

5,547 (Drebin),
10,151 (App Stores)

UI Automator,
Robotium,
Cafe

- Vulnerability detection

Luo et al. [50] ✓ ✓ ✓ ✓ Google Play Store 351 - - Mobile browsers
Oltrogge et al. [47] ✓ ✓ ✓ ✓ Google Play Store 2,291,898 - - Online app generators

NetMon, OPTool [51] ✓ ✓ ✓
System Apps,
Mutliple App Stores 1,650 - Physical Device Open ports

DCDroid [56] ✓ ✓
Google Play Store,
360app 2,213 Apktool Physical Device SSL/TLS

Android Tester [48] ✓ ✓ ✓ ✓ ✓ Google Play Store 13,820 - Emulator SSL/TLS

MoSSOT [52] ✓ ✓ ✓ ✓ ✓
Wandoujia,
Apkpure 550 - Emulator Single sign-on

Heapster [57] ✓ ✓ ✓ Google Play Store 49 Soot,
Spark Physical Device Heap snapshots

Reardon et al. [53] ✓ ✓ ✓ ✓ ✓ Google Play Store 88,000 Monkey Emulator App Permissions
gdpr-consent [59] ✓ ✓ ✓ ✓ ✓ ✓ Google Play Store 86,163 - Physical Device App Consent
Papageorgiou et al. [49] ✓ ✓ Google Play Store 20 - - Mobile Health apps

UiRef [46] ✓ ✓ ✓
PlayDrone
(Google Play Store) 50,162 - Mixed

(Physical + Emulator) Sensitive UI inputs

Alde, ALManager [58] ✓ ✓
Wandoujia,
Google Play Store 300 Xposed,

AndroidViewClient Physical Device Third party libraries

Reaper [54] ✓ ✓ Google Play Store 5,457 AXPLORER,
Raccoon

Mixed
(Physical + Emulator) Permissions

PackDiff [60] ✓ ✓ ✓ ✓
Google Play Store,
F-Droid,
Chinese App Stores

246 - Physical Device Code packers

Fsaflow [13] ✓ ✓ ✓ ✓
Google Play Store,
Huawei App Store 150 VirusTotal Physical Device Taint tracking

Lyons et al. [7] ✓ ✓ ✓ ✓ Gamba et al. [88] 5,000 apktool
Monkey Physical Device App log analysis

Schnitzler et al. [62] ✓ ✓ Instant messenger apps - tPacketCapture
adb Physical Device Instant messengers

ViaLin [64] ✓ ✓ ✓ ✓
Google Play Store
DroidICCBench

209 (DroidICCBench)
16 (Google Play Store)

android-touch-
record-replay Physical Device Taint tracking

T-Recs [63] ✓ ✓ ✓ ✓
Google Play Store
Anzhi
DroidBench

254 apktool
NumPy Physical Device Taint tracking

Similar Liu et al. [48] focused in particular on hybrid mo-
bile apps and their error-handling code for SSL/TLS. Testing
13,820 apps with static analysis resulted in 1,360 apps with
potential vulnerabilities. Liu et al. confirmed with dynamic
analysis that 711 apps were exploitable and demonstrated
that MITM attack are still a problem.

Both studies are similar in their methodology and used
hybrid approaches to identify vulnerabilities. First potential
vulnerabilities were identified with static analysis and then
dynamic analysis was used to confirm apps that are truly
vulnerable. Both studies show that SSL/TLS implementation
errors are still common bugs on Android.

3) Authentication fuzzing
The MoSSOT [52] tool developed by Shi et al. demonstrates
how to automate the testing of single sign on (SSO) authenti-
cation for Android apps. MoSSOT is a blackbox approach
that uses the PyModel [91] library to generate formal test
cases (state-machine testing) for the OAuth SSO protocol.
Analysing the OAuth protocol is challenging due to it’s
complexity, and moreover, due the fact that the protocol can
be customised. Therefore, Shi et al. developed routines to
dynamically detect SSO logins (at runtime) and to extract
a model from the network requests of an app to determine
app-specific customisation’s.

Using the test cases generated by PyModel allowed Shi et
al. to identify vulnerabilities in the OAuth implementation
of several apps. Evaluating MoSSOT against more than 500
Android applications from US and Chinese app markets
showed that around 72.4% of the tested applications incor-
rectly implemented SSO and were vulnerable to at least one
vulnerability on either the client (app) or server side. Some
of these vulnerabilities were indeed exploitable. Therefore,
Shi et al. illustrated that their fuzzing approach is effective in
identifying issues related to the implementation of complex
authentication protocols in Android apps.

B. DYNAMIC TAINT ANALYSIS
Taint analysis has some limitations when it comes to be
sound, precise, and performing. For instance, the usage of
reflection. in Android apps makes static taint analysis incom-
plete in terms that it cannot fully determine how the program
is executed at runtime. To overcome such limitations, dy-
namic taint analysis can be used to some extent. For instance,
Benz et al. [57] developed a method based on heap snapshots
and extended the static taint analysis tool FlowDroid [3] to
be more efficient. A heap snaphot contains a representation of
the program objects at runtime at a selected point in time. The
challenge when using heap snapshots is how to determine
when to take a snapshot and to determine which objects can

10 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

be used to boost the taint analysis. Benz et al. experimented
with different numbers of snapshots and proposed a method
on how and when to use heap snapshots. In summary, Benz
et al. found out that using multiple snapshots is beneficial for
the performance of the taint analysis and that heap snapshots
in general can enhance the precision of taint analysis.

Similar, Yang et al. [13] developed a hybrid solution,
named FSAFlow, that has better precision than the static
analysis tool FlowDroid or the dynamic approach Taint-
Droid [92]. FSAFlow uses a finite state machine for moni-
toring the execution paths of an AUT and provides a state-
reduction strategy to optimise the analysis process.

The usage of memory decomposition techniques like heap
snapshots are novel ideas that might help to further enhance
dynamic taint-analysis. However, not many solutions for
experimentation on Android like FSAFlow exist.

C. PRIVACY AND COMPLIANCE RELATED STUDIES
So far, we have mainly focused on studies that use specific
dynamic analysis techniques to identify vulnerabilities or
to test specific security mechanisms. In this section, we
focus on publications that aim on identifying problems with
regulations or the users privacy.

1) Leaking PII
There are numerous ways to leak PII data of users. One
of the more obvious ways is to send PII information over
the network to a remote server were it can be used for
various purposes such as, for instance, advertising. Network
traffic is often monitored by researchers and practitioners to
identify privacy violations. Therefore, some apps come-up
with clever solutions to hide their PII data harvesting from
the user.

For instance, Reardon et al. [53] found evidence that
some large Chinese enterprises use covered- or side-channels
to harvest PII (e.g., IMEI). In their study, Reardon et al.
analysed 88,000 Android apps from the US Google Play store
and identified various apps that circumvented the Android
permission system. They used static analysis to figure out
which apps should not be able to access specific data (due
a lack of permissions) and then monitored the network traffic
to identify when permission-protected data was sent over the
wire. Using this hybrid observation approach allowed them
to identify various apps that extracted personal information
and are likely not compliant with the FTC or the GDPR as
they have no consent from the users. In any case, the study
shows how far enterprises would go to harvest the PII data
and attempt to stay undetected.

2) User consent not given
Compliance is a wide topic that needs in-depth knowledge
about regulations and best-practices and it is often chal-
lenging to identify violations without an in-depth analysis.
The Android permission framework facilitates the detection
of breaches in privacy to some extend. In cases where a
user has not provided explicit authorisation for an app, yet

access to data safeguarded by the requisite permission is
still obtained, the occurrence of a violation may be inferred.
Violations can occur through the exploitation of permission
system loopholes or the use of UI dark patterns to deceive
users.

A simple way to test for missing user consent was demon-
strated by Nguyen et al. [59]. By just starting an app and
not interacting with it at all, it allowed the researchers to
assume that at no point in time consent was given by the user.
Using a similar approach as Reardon et al. (by monitoring
the network traffic), Nguyen et al. were able to show that the
users consent was often not given before personal data was
sent to third parties. Nguyen et al. analysed 86,163 apps for
their compliance with the GDPR and found out that 24,838
apps did violate the GDPR by sending data to third-parties
when the apps were started (without any user interaction).
Moreover, developers confronted with the violations were
mostly unaware of these violations and showed often a lack in
knowledge about what is considered personal data under the
GDPR. In a different investigation, Papageorgiou et al.[49]
assessed the GDPR compliance of 20 widely-used mobile
health apps, yielding comparable conclusions. Employing
the Fiddler [93] proxy in their research, Papageorgiou et
al. monitored network traffic and identified several instances
where apps violated user privacy by sharing data without
explicit consent.

3) Identifying sensitive inputs
Andow et al. [46] introduced a method for the inadvertent
disclosure of user inputs, such as account passwords. UiRef
represents a hybrid approach, wherein static analysis for the
identification of application layouts is used, and subsequently
dynamic analysis through on-device rendering of these lay-
outs. The efficacy of UiRef was assessed across a corpus of
50,162 applications sourced from the PlayDrone dataset [94],
an archival collection of the Google Play Store circa 2014.
The method proficiently segregated user inputs into a taxon-
omy of nine distinct categories, each signifying a particular
class of sensitive information. The empirical outcomes of
this study underscore the recurrent necessity of user input
for critical data within Android apps and underscore the
feasibility of detecting such inputs by means of information
extraction from the GUI.

D. SOFTWARE DECOMPOSITION ANALYSIS
One of the concerns that have been raised by researchers
is the inclusion of advertising third-party libraries into An-
droid apps as it might expose users to additional security
and privacy risks. While the inclusion of such libraries is
perfectly legitimate - after all, financing an app through
advertising is a valid business model - the legally compliant
implementation of the associated data collection is not easy.
In addition, for financial reasons, there is an incentive to go
as far as is permissible. Because crossing the line is therefore
likely, there is a lot of related work on detecting the use
of such libraries. In general, these works focus on novel

VOLUME XXX, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

methods for software decomposition analysis (e.g., detection
of used library versions) or on identifying the implications of
the integration of a specific third-party library (e.g., policy
violations). Thus, in this section we focus on publications
that use dynamic analysis approaches to identify Android
libraries and their implications for software engineering.

1) Analytics libraries
Liu et al. [58] analysed eight widely used analytic libraries
on a set of 300 popular apps from Google Play and Chinese
app markets. To gather the necessary data for their study, Liu
et al. instrumented API endpoints in combination with static
taint analysis to monitor the access to PII. Consequently,
their investigation revealed instances wherein certain analytic
libraries were inadvertently disclosing PII. This study thus
substantiates the notion that the incorporation of analytic li-
braries carries noteworthy implications for application devel-
opers. Moreover, it underscores the potential lack of aware-
ness among app developers concerning these associated risks.

2) Third-Party library permissions
Starting with Android version 6, app developers are required
to request dangerous permissions at runtime. However, it is
not possible for users to figure out what part of the code
of an application requested the permission - code from a
third-party library or code from the author of the applica-
tion. This fact lead Diamantaris et al. [54] to study how
frequently third-party libraries would request permissions.
Their approach, named Reaper, is able to trace permissions
in realtime in order to map which permissions are used
by third-party libraries. Diamantaris et al. evaluated Reaper
on 5,000 apps and found out that 65% of the permissions
were requested by third-party libraries and that 37.3% of
the evaluated libraries have connections to ads, tracking, and
analytics.

E. RESEARCH WITH FOCUS ON SPECIFIC GROUPS OF
APPS
Testing Android apps for specific security claims often re-
quires to combine several analysis techniques. For instance,
the combination of network monitoring techniques together
with DBI is primarily used to trigger specific features within
the code or to monitor what is sent over the network. To give
some more examples, we present publications that focus on
analysing a specific group of apps as their main objective.

1) Mobile web browsers
Luo et al. [50] developed a test suite with 395 test cases for
mobile web browsers. Their goal was to evaluate the security-
mechanism support of the 20 most popular Android mobile
web browsers. To dynamically test these mobile browsers,
Luo et al. used Hindsight [95]; A tool, which is able to install
and control a Android mobile browsers. As result, Luo et
al. found out that most browsers have continuously added
more support for security-mechanisms over the years but
need more time to adjust than traditional web browser on

desktop computers. They discovered as well a lack in anti-
clickjacking directives in many browsers and concluded that
the use of mobile browsers is less secure than that of desktop
browsers overall.

2) Online app generators
In recent years, there was a demand in no-code and low-code
technologies that allow users without technical knowledge
to create their own software. Such technologies usually use
pre-defined code blocks and are limited in their functionality.
However, users can configure these modules to build simple
software modules which makes them an alternative to hire
a professional software developer. On Android, there have
been companies offering no-code or low-code online tools to
develop simple apps. When using such online generators, the
users trust that these generators construct secure code.

Oltrogge et al. [47] questioned how secure the apps gen-
erated by these online generators were and conducted an
in-depth examination of their security methods. Analysing
2,291,898 apps Oltrogge et al. found out that around 11.1%
of the apps in their dataset were generated with online gen-
erators. Oltrogge et al. analysed the network traffic and file
access of these generated apps. Their findings show that some
apps use dynamically loaded configuration files at runtime.
These configuration files were sent in some cases via HTTP
in plain without any protection, leading to potential reconfig-
uration vulnerabilities. Oltrogge et al. conclude that the usage
of online generators has a negative effect on the security of
the ecosystem because as these generators produce the same
code blocks for thousands of apps, one security vulnerability
can lead to affect thousands of generated apps. However,
in contrast, the security of the ecosystem can be positively
influenced in case were these online generators have high se-
curity standards. Consequently, the online generator service
is responsible to generate secure code.

3) Obfuscated and packed apps
App developers often rely on app packers to hinder reverse
engineering and to enhance the security of their apps in gen-
eral. Packers usually encrypt strings and obfuscate the apps
code. They also try to hinder dynamic analysis by introducing
runtime checks to prevent debugging or instrumentation. For
app developers, it is often opaque what is actually packed into
their app, as many packer services are closed source.

To gain more transparency and figure out what is actually
integrated, Dong et al. [60] studied seven commercial app
packers (free versions), that were used on billions of apps.
Reverse engineering these apps to figure out what protection
mechanisms (e.g., anti-reversing techniques) these packers
integrate is challenging and time consuming. To efficiently
analyse the apps, Dong et al. developed a tool, PackDiff, to
efficiently analyse the protection mechanisms and to monitor
the packers. Examining 200 apps from these seven packers
showed that the majority of packers introduced performance
and compatibility issues. Moreover, Dong et al. found out
that some packers were collecting unnecessary data, such as

12 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

device information (e.g., MAC address, device model, system
version) and app permissions, which lets open the question if
these services respect the privacy of their users. To conclude,
the study by Dong et al. demonstrates that transparency
should be a key factor for integrating packers into an app as
these packers might have unexpected side-effects.

F. SUMMARY AND MAIN FINDINGS
Dynamic analysis is used for various purposes as we have
discussed in the last sections. The objectives are mainly
to identify vulnerabilities and privacy related concerns. We
summarised in Table 6 the used dynamic analysis techniques
and testing methodologies. As shown, the majority of pub-
lications use instrumentation, tracing and network traffic
analysis for their research as these techniques are reasonable
to understand what data an Android app is processing.

To analyse the network traffic, most researchers rely on
proxy tools such as mitmproxy, burp and fiddler. When
it comes to instrumentation tooling most researchers rely
on custom tools or use the Xposed and Frida frameworks.
Instrumentation is mainly used in combination with other
analysis techniques to circumvent security checks or to hook
Java APIs that might allow to monitor the leakage of privacy
related data. In addition, for unpacking and repacking of apps
researchers mainly use the apktool.

Publications in this domain mainly use up-to-date indus-
trial apps for their studies. The primary data source are apps
downloaded from app stores (mainly Google Play) rather
than using any datasets of existing studies. The selection of
apps differs widely in terms of the chosen app categories and
number of apps. However, all of the selected publications rely
on blackbox testing for their studies. We now summarise the
most frequently mentioned limitations for the App Security,
Privacy and Compliance domain:

Limitations introduced by automated testing tools. As pre-
viously mentioned in Section II, a well known limitation is
the fact that the automated testing tools might not reach the
desired state of an app. Researchers were well aware of this
fact and would often develop custom or enhancement tools
for automated testing.

Limitations by static analysis tools. Hybrid analysis so-
lutions frequently mention that their solutions rely on the
reliability of the static analysis tools. Thus, limitations of
the static analysis tools would often apply as well for hybrid
analysis.

Security measures detect or hinder the dynamic analysis.
Android apps might implement security mechanisms (e.g.,
root- or re-package detection) to prevent the dynamic anal-
ysis (e.g., instrumentation) of an app. These hardened apps
require extra effort of the researchers (e.g., manual analysis)
to be tested. Thus, researchers would exclude sometimes
these apps from their studies if they are not mandatory for
their objectives.

Obfuscation might introduce false negatives. Especially
when it comes to analysing network traffic, a general concern
and limitation is the obfuscation of the data in transit. Cases

where the traffic is encoded or encrypted with an unknown
mechanisms might lead to the fact that the researchers would
miss the transmission of interesting data.

App selection not representative. The selected apps for
evaluating the solution (or building the ground truth) might
not be representative for all Android apps or versions. Se-
lections are mainly made by downloading apps from an app
store, and shared datasets are not frequently used in this
domain. As a result, making a fair and sound comparison is
often impossible, and the study results are not comparable.
Moreover, the dependency on external components (e.g.,
server) hinders the repeatability of many experiments.

VII. MALWARE RESEARCH
One of the main use cases for static and dynamic analysis
is the examination and detection of fraudulent apps (mainly
referred to as malware). The definition of what is considered
to be malware is often blur. Solely analysing the capabilities
of a program is not sufficient to determine if an applica-
tion is considered malicious or not. As malware has many
facets and uses similar or even the same capabilities as
genuine programs, it is often hard to categorising malware.
Consequently, different classification definitions for malware
exist. For instance, CARO [96], MAEC [97], the Kasper-
sky classification schema [98], or the Google Play Protect
schema [99]. These standards have their own definitions on
how to categorise and identify malware. For this study, when
we talk about a specific malware type we refer mainly to the
definitions by the Google Play Protect schema for Potentially
Harmful Applications (PHAs).

Table 7 summarises the features of 12 distinct publications,
encapsulating the employed tools, datasets, and methodolo-
gies. This analysis serves to delineate the manner in which
dynamic analysis has been harnessed for the purpose of
malware detection. In the following, we review the selected
publications and discuss their objectives and methodology to
further understand the researchers motives to use dynamic
analysis. We group publications in this domain by their main
detection techniques (e.g., tracing) to give a more compre-
hensive overview of the domain but it should be noted that
many solutions use several detection techniques in combina-
tion, thus rendering the grouping inherently imperfect.

A. TRACE-BASED DETECTION
Malware detection based on system call logs is a form of
behavioural model analysis. The key idea behind such detec-
tion mechanisms is that malicious behaviour is represented
by a sequence of system calls. It is based on the assumption
that genuine and malicious apps have distinguishable system
call sequences. Identifying the potential malicious sequences
is subject to research and many classification systems and
models have been proposed. For instance, Bernardi et al. [69]
proposed to collect information from processes to abstract
a detection model. Such a detection model is then used to
identify the malware family of a sample.

VOLUME XXX, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 7. Overview of the selected publications in the Malware research domain. I = Instrumentation & Tracing, N = Network Analysis, V = Visualisation Assistance,
L = Log-based Analysis, D = Dynamic Taint Analysis, M = Memory Decomposition, F = Fuzzing, H = Hybrid (static + dynamic), A = Automated Testing, SC = Source
Code Available, DS = Data Source, NA = Number of Tested Apps (genuine/malicious), ST = Supporting Tools, TE = Testing Environment, TD = Target Description

Tool / Publication I N V L D M F H A SC DS NA ST TE TD

StaDart [70] ✓ ✓ ✓ ✓ ✓
Google App Store,
Drebin 1,000/1,000 Monkey,

Droidbot Physical Dynamic code loading
Reflection

EspyDroid+ [71] ✓ ✓ ✓ ✓ ✓

F-Droid,
Ripple,
Virustotal,
MalGenome

660 Robotium
(custom) Emulator Dynamic code loading

Reflection

DL-Droid [72] ✓ ✓ ✓ McAfee Labs 19,620/11,505
Monkey,
DroidBot,
DynaLog

Physical DL input generation

D’Angelo et al. [73] ✓ ✓ ✓

Contagion,
MalGenome,
VirusShare,
Playdrone,
Google Play Store

25,500/23,200 MSF,
Matlab Unknown API-images

and autoencoders

VizMal [74] ✓ ✓ ✓
Drebin,
Google Play Store 250/250 Monkeyrunner Physical Visualisation of traces

Droidcat [65] ✓ ✓ ✓ ✓

AndroZoo,
VirusShare,
Google Play Store,
Drebin,
MalGenome

17,365/16,978

Monkey,
DroidFax,
VirusTotal,
Soot

Emulator ICC and
method call classification

SAMADroid [66] ✓ ✓ ✓ ✓
Drebin,
MalGenome 123,453/5560

AAPT
backsmali,
MonkeyRunner

Physical Multiple folds

EnDroid [68] ✓ ✓ ✓
Google Play Store,
Drebin,
AndroZoo

8,806/5,213
5,000/5,000

Droidbox,
MonkeyRunner Emulator Ensemble learning

DAMBA [75] ✓ ✓ ✓ ✓
Genome,
Contagion,
Baidu App Store

1,000/564 - Emulator ORGB

Bernardi et al. [69] ✓ ✓ ✓
Genoma,
Drebin,
Google Play

200/1,801 Droidchameleon,
ADAM Emulator Process mining

Cai et al. [76] ✓ ✓ ✓
AndroZoo,
VirusShare,
Google Play Store

15,451/15,183 Money,
Droidfax Emulator Run-time evolution

Bhat et al. [77] ✓ ✓ ✓ ✓ CICMalDroid 2020 1,795/9,803 CopperDroid Emulator Ensemble learning

B. MACHINE LEARNING-BASED DETECTION
Comprehensive investigations have concentrated on the ex-
amination of ML algorithms employed and the subsequent
comparison of their performances [16], [17], [100]. Never-
theless, in order to address the research questions pertaining
to this domain of research, our focus lies on publications that
present innovative concepts for dynamic analysis techniques,
rather than solely evaluating their performance against exist-
ing methods.

1) Neural networks and deep learning-based detection
Predominantly employed attributes for the training of ma-
chine learning-based classifiers geared towards malware de-
tection encompass permissions, logs of function call activi-
ties (referred to as API logs), and records of intent actions
or events. These attributes are typically collected during
runtime, followed by the application of selection algorithms
to gauge the significance of each attribute. The adoption of a
feature selection algorithm is intended to ensure the inclusion
of solely the most pertinent attributes, thereby optimising the
classification process.

In their study [72], Alzaylaeea et al. undertook an in-depth
analysis of API call logs and permissions for the purpose

of training a deep neural network classifier, denominated
as DL-Droid, employing Droidbot and Monkey as testing
tools, DL-Droid exhibited superior performance compared to
five alternative machine learning-based detection solutions,
as demonstrated on a dataset comprising 31,125 Android
applications. Alzaylaeea et al. operationalized the InfoGain
feature ranking algorithm from the WEKA toolkit as their se-
lection mechanism. Concurrently, D’Angelo et al. proposed
an alternate approach leveraging API call logs [73]. Their
innovation revolves around the conversion of API call se-
quences into sparse matrices, a distinctive strategy they deem
sufficiently distinctive for app fingerprinting. Subsequently,
D’Angelo et al. explored the conversion of these app finger-
prints into two-dimensional matrices, denoted as API images,
which were then employed as input for training a neural
network equipped with autoencoders, aimed at classifying
instances of malware.

Cai et al. [65] (Droidcat) measured execution traces (rela-
tive occurrence frequencies and distribution) to characterise
malicious apps. As result, Cai et al. defined three dimensions
for possible dynamic features: structure, ICC, and security.
For every of these three dimensions, they identified metrics
that then were used as features for a Random Forest classifier.

14 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Droidcat is insofar a novel approach as it showed good results
on obfuscated apps without using system calls as features.

2) Linear support vector machine-based detection
Arshad et al. [66] performed manual user testing in order
to collect accurate system call logs. Their solution, called
SAMADroid, performs a hybrid analysis using a Support
Vector Machine (SVM) classifier. SAMADroid traced ten
different system calls (open, ioctl, brk, read, write, close,
sendto, sendmsg, recvfrom, recvmsg) and combined them
with static features (mainly permissions and API calls) to
create feature vectors. Evaluating their approach on the
Drebin [101] dataset with four different classifiers (SVM,
random forest, decision tree, and naives bayes) showed that
SVM and random forest performed best in their experiment.

3) Ensemble learning-based detection
It is often challenging for researchers to decide which classi-
fier performs best overall for detection purposes. Thus, Feng
et al. [68] experimented how ensemble learning could be ap-
plied. In their study, Feng et al. tested on two distinct datasets
the outcome of ensemble learning with majority voting and
stacking to develop a tool called EnDroid. Stacking uses a
meta-classifier to better generalise a model. It performed on
both datasets better than using a single classifier or majority
voting. As feature vectors for the ensemble learning were the
dynamic features provided by Droidbox in combination with
system call logs provided by strace used. Feng et al. used the
chi-square method for feature selection and evaluated their
approach on two datasets of 8,806/5,213 and 5,000/5,000
apps.

C. MEMORY-BASED DETECTION
Pattern or signature matching has been used for decades to
detect vulnerabilities or malware samples. Many anti-virus
solutions use textual or binary signatures to detect known
malware patterns, for example, by using YARA [102]. In
such cases, a malware analyst generates unique signatures
for specific malware attributes, such as textual features, that
are then used to identify the sample during scanning. Using
these signatures, anti-virus scanners can fast and reliably
detect known malicious files. Pattern matching (e.g., by
hashing) is often trivial to circumvent by adversaries because
many pattern-matching algorithms can only detect previously
known patterns and lack the capability of detecting novel,
previously unseen attack patterns. To overcome such limita-
tions, more sophisticated dynamic analysis approaches were
proposed.

As an illustration, Zhang et al. [75] employed the concep-
tual framework of object reference graph birthmarks (ORGB)
in their research endeavors. Their method, referred to as
DAMBA, derives its analytical foundation from heap dumps.
In the context of their experimentation, heap memory snap-
shots are captured at the time when malicious code is loaded
into memory. These heap memory snapshots encompass a
comprehensive repertoire of insights pertaining to the Java

objects instantiated during runtime. Such insights encompass
diverse relationship attributes including the referee, referrer,
and reference time. Zhang et al. harnessed this repository of
information to construct an object reference graph (ORG),
whereupon they formulated an algorithm tailored to the de-
tection of subgraph isomorphism. Their approach core lies
in the discernment of recognisable patterns characteristic of
known malware lineages, even in the face of code obfus-
cation. This discernment is facilitated by means of ORGB-
to-ORG comparisons. To this end, Zhang et al. developed a
dedicated algorithm for the task of subgraph matching and
demonstrate applicability with high accuracy.

D. RUNTIME VISUALISATION
In general, most ML classifiers are not capable of giving
details on why a specific app was classified as malicious
because ML algorithms are widely seen as blackbox mod-
els. This limitation leads to the fact that the localisation of
malicious features or code within an app is less discussed
even when it is crucial for analysts to check whether the
classification is correct.

Lorenzo et al. [74] propose a system (VizMal) to address
exactly this localisation limitations; helping analysts to iden-
tify when malicious behaviour occurs. Using a Long Short-
Term Memory (LSTM) neuronal network trained on execu-
tion traces, Lorenzo et al. proposed a graphical representation
of traces over time that allows to identify malicious behaviour
during runtime. Their system VizMal classifies traces and
generates images from the output to help analysts detect the
exact time when a malicious trace was detected.

E. REFLECTION & DYNAMIC CODE LOADING
In Java, the reflection and classloader APIs allow an app to
load and execute code during run-time from various sources,
such as, for example, strings, files, or remote servers. Loading
code at run-time allows app developers to implement plugin
systems and to optimise the performance of an app. Even
though Google discourages the usage of dynamically loaded
code (DCL) [103], it is a widely used on Android. It’s a well-
known fact that malware developers use DCL to circumvent
detection–mainly by static analysis tools. State-of-the-art
static analysis tools are capable of analysing if specific Java
APIs for reflection or class loading are used to some extent,
however, they often lack the capabilities to analyse what is
loaded during run-time. This is mainly due to the fact, that
the code might only get downloaded when triggered or the
code is obfuscated and only accessible after loading into the
memory.

Another problem that arises with DCL is the possibility
for privilege escalation vulnerabilities. Threat actors might
hijack files before loading and inject code to elevate their
privileges. Beginning with Android 14, additional security
controls for DCL on Android 14 [104] were introduced,
which enforce that all dynamically loaded files need to be
flagged as read-only in order to be allowed to get loaded into
the memory.

VOLUME XXX, 2023 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

The detection of DCL can help analysts to reveal hidden
code. For instance, Ahmad et al. [70] developed StaDART,
a tool for the purpose of detecting DCL calls in Android
apps. StaDART uses method call graphs to detect malware
that loads code during run-time. Using Droidbot as testing
tool, StaDART combines static- and dynamic techniques to
analyse the arguments of Java reflection calls. They key idea
of StaDART is to create a method call-graph (MCG) with
static analysis tools and extend the MCG during dynamic
analysis. The resulting MCG is then analysed to detect mali-
cious behaviour.

It is crucial for malware analysts that the potential ma-
licious functionality is executed during dynamic analysis.
Since all testing tools have limited code coverage, the meth-
ods of interest might not get executed at testing and the
malicious behaviour stays undetected. As mentioned before,
one of such methods of interest might be the execution
of reflection API calls as it is a known technique to hide
potential malicious program code. Gajrani et al. developed
EspyDroid+ [71] with the objective in mind that reflection
API calls might be missed during testing. A principal am-
bition underlying their endeavour was the formulation of
a tool equipped to engage with reflection calls throughout
testing procedures. Central to their approach is the strategic
slicing of execution paths that do not lead in a reflection API,
thus rendering their method promising in that it facilitates
the manipulation of app behaviour, propelling the invoca-
tion of reflection calls during testing. Evidently, EspyDroid+
possesses the potential to unveil previously concealed code
segments and thereby boasts the capacity to enhance the
coverage of code segments activated during runtime.

F. ANONMALY-BASED DETECTION
Suárez-Tangil et al. [78] experimented with an anomaly
detection approaches. Subsequently, they devised a detec-
tion model named CoME, which harnessed the principles
of multivariate statistical network monitoring (MSNM) to
discern deviations from the norm within the behaviour of
the Android mediaserver. Their idea was to extract data for
detection by monitoring Android with CopperDroid [105].
The mediaserver was often a target for attacks in the past
and Suárez-Tangil et al. demonstrated with CoME that it
is possible to detect mediaserver exploits, which could led
to detection of malicious apps attempting to exploit specific
Android services.

As most anomaly detection models, one of the main lim-
itation of CoME is that the model needs to be trained on
a normality model of the service before it is able to detect
unusual behaviour. However, the development of anomaly
detection methods is not as common as classical malware
detection approaches but shows promising results for novel
defence mechanisms.

G. LONGITUDINAL STUDIES
Cai et al. [76] examined the structure of 15,451 benign and
15,183 malicious apps in a longitudinal study to characterise

how benign and malicious apps behave on different Android
versions over a time span of eight years. Analysing static- and
dynamic features of malicious apps gave them unique insight
into how frequent different Android components or features
were use in benign or malicious apps. Cai et al. found out
that callbacks were not often invoked in malicious apps or
that the amount of third party code is not a good metric for
classification as there seems no major difference in between
benign- and malicious samples.

H. SUMMARY AND MAIN FINDINGS
6 of the malware publications used ML techniques. In gen-
eral, the usage of ML is much more common than in the
other two research domains. As shown in Table 7, all of the
selected publications built their detection methods based on
automated testing tools. The researchers in this domain are
well ware of the limitations of tools such as Monkey. To
overcome some of these limitations, the usage of customised
automation scripts, extended testing tools, or the combination
of multiple automated testing tools is common.

Moreover, we analysed the number of apps used for evalu-
ation and report in Table 7 which datasets or sources were
used. Mainly apps from the Drebin, Genoma, Androzoo,
VirusShare, and Contagion datasets were use in combinations
with apps from the Google Play Store. The number of used
apps varies and usually similar numbers of genuine and
malicious apps were selected for the evaluations. We now
summarise some key limitations of dynamic analysis in the
malware domain.

Lack in long-term testing. We considered for how long
researchers would test individual apps with dynamic anal-
ysis and none of the selected publications tested for more
than three hours. It is a well known fact that malware
uses conditional checks (triggers), such as time- or location
checks [106], to circumvent detection by static analysis tools.
Thus, it is therefore surprising that most detection solutions
do not apply long-term dynamic analysis testing. In-the-lab
experiments would mainly rely on testing times below ten
minutes, which is likely due to the high time-effort necessary
to scale automated tests over days or even weeks.

Triggering malicious behaviour. The limitations intro-
duced by the used automated testing tools greatly limits the
trust in the detection methods. Researchers would often need
to run an apps several times to trigger malicious behaviour,
which limits reproducible. Another concern is the fact that
the testing environment might influence the AUT in a way
that would prevent the app from executing it’s malicious
behaviour.

VIII. ANDROID OS AND FRAMEWORK RESEARCH
In this section, we will discuss novel analysis techniques that
focus on examining the Android OS and parts of the frame-
work for security purposes with dynamic analysis techniques.
Table 8 shows an overview of chosen publications for this
research domain.

16 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TABLE 8. Overview of selected OS & Framework publications. I = Instrumentation & Tracing, N = Network Analysis, V = Visualisation Assistance, L = Log-based
Analysis, D = Dynamic Taint Analysis, M = Memory Decomposition, F = Fuzzing, H = Hybrid (static + dynamic), A = Automated Testing, SC = Source Code
Available, DS = Data Source, NA = Number of Tested Android Apps, ST = Supporting Tools, TE = Testing Environment, TD = Target Description

Tool / Publication I N V L D M F H A SC DS NA ST TE TD

CoMe [78] ✓ ✓ ✓ Zimperium 15,000 MEDA
MSNM Emulator Android media server

and media files

Dynamo [85] ✓ ✓ ✓ ✓ ✓ Android images -

Arcade
ARF
Pscout
Kratos

Mixed
(Physical + Emulator) Android framework

PREV [80] ✓ ✓ ✓ ✓ Google Play Store 1,258
595

Weka
IccTA
Covert

Emulator Android framework
(permissions)

Fans [81] ✓ ✓ ✓ ✓ ✓ ✓ Android images - - Physical Device Android framework
(native services)

Partemu [82] ✓ ✓ ✓ ✓ TEE -

Panda
QEMU
LLVM
TriforceAFL

Emulator Trusted Execution Environments

Sifter [79] ✓ ✓ ✓ ✓ Public CVEs - - Physical Device Android Kernel
EASIER [83] ✓ ✓ 62 drivers - - Evasion Kernel Android Kernel (drivers)

DaVinci [84] ✓ ✓ ✓ Hardened apps 14 RootBeer Mixed
(Physical + Emulator)

App detection and
evasion techniques

Teezz [87] ✓ ✓ ✓ ✓ ✓ ✓ TEE from devices - adb
vendor test suite Physical Trusted Execution Environments

U2-I2 [61] ✓ ✓ ✓ ✓
Android images
(popular devices) - adb Physical User-unresettable Identifiers

Gopper [86] ✓ ✓ ✓ - - - Unknown Detecting Frida

A. FUZZING OS AND FRAMEWORK COMPONENTS

Analysing the framework’s permission is a challenging task
as there are several hurdles to overcome. 1) Permissions fre-
quently change from one Android version to another, making
it elaborate to keep track of new permissions as there exists
over 600 permissions [107] by default. 2) The framework
itself is a large code base which makes it challenging to
map the guarded functions to the specific permissions and to
verify that the guarded function cannot be reached without
having the correct permissions at runtime. 3) Smartphone
vendors customise the Android framework and integrate cus-
tom permissions into the framework which makes it challeng-
ing to have generic tooling.

Generating tests to detect permission re-delegation vulner-
abilities is challenging as the Android framework is too large
to be instrumented with standard tools. Therefore, several
researchers have proposed solutions for test generation and
fuzzing. For instance, Demissie et al. [80] used a combina-
tion of genetic algorithms, natural language processing, and
instrumentation for test generation.

The Dynamo tool [85] takes a different approach by de-
veloping a testing service as a standalone fuzzing app. Their
approach uses Frida in combination with their fuzzing app to
test the API of the framework. This approach allows to fuzz-
test the API at runtime and in parallel on several devices.
Limitations of Dawoud et al. approach are: the analysis is
time-consuming (multiple weeks), needs root rights on the
testing device, and has an unknown error rate as there exists
so far no ground truth for the exact number of framework
APIs and their permissions.

1) Native system services

Liu et al. [81] developed a fuzzer, named Fans, for Android
native system services. On Android, system services are
mainly implemented in Java or C++ and we differentiate
between native (implemented in C++) and normal system
services (implemented in Java). One of the challenges Liu
et al. address is how to extract the interfaces of native system
services and perform generative fuzzing on these interfaces.
Fans was able to identify 30 unique vulnerabilities in native
system services during a 30 days fuzzing run. In addition,
138 unique Java exceptions were found, which could indicate
further vulnerabilities. These results emphasis that fuzzing
on Android is an effective but performance and engineering
intense way of finding vulnerabilities.

2) Trusted Execution Environments

Many Android components are not simple to test as there
exist no public available tools for the dynamic analysis that
could be used out of the box. Therefore, researchers often
develop their own tools for analysing specific components
and make them publicly available for other researchers. This
is insofar important as many of the security-critical compo-
nents, such as for instance, trusted execution environments
(TEE), are usually closed-source and can only be tested in
black-box settings, which makes fuzzing these components
challenging.

Trusted execution environments are in particular inter-
esting for security research as many fundamental security
concepts rely on them to execute cryptographic functions
securely (e.g., secure boot). As TEEs are widely used in
billions of Android devices, it is important that TEEs are
independently tested to detect vulnerabilities and make them

VOLUME XXX, 2023 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

more secure. As most Android devices are based on ARM
technology, TEE implementations based on TrustZone are
frequent.

To test TEEs, Harrison and Vijayakumar et al. [82] de-
veloped PartEmu, an emulator capable of emulating TEE
implementations based ARM’s TrustZone. By developing
their own emulator (based on QEMU and PANDA), Harrison
and Vijayakumar et al. were able to apply feedback-driven
fuzz-testing (using AFL) to identify vulnerabilities in four
different implementations of TrustZone. Several of the found
vulnerabilities are not theoretical and could be exploited
by adversaries, demonstrating that testing these close-source
components is feasible and important.

B. KERNEL AND DRIVER TESTING
Kernel vulnerabilities have often high severity as they might
give an attacker privileged access rights. Thus, kernel secu-
rity is an important research domain that focus on specific
mitigation techniques for securing the kernels APIs such as
system calls.

For instance, a recent study by Hung et al. [79] introduce a
novel method to minimise the attack surface of kernel mod-
ules. As kernel modules such as drivers are often developed
by third party vendors it is challenging to test and secure
them effectively against adversaries. Therefore, Hung et al.
developed Sifter, a filter based approach to mitigate kernel
module vulnerabilities. Surprisingly, filter policies seem to
be an effective way to mitigate attacks as Hung et al. showed
that implementing a filter system could defeat many system
call based exploits without any prior knowledge about the
exploits.

Pustogarov et al. [83] describes another method to analyse
kernel drivers by loading them into a so called evasion kernel.
On Android, many drivers are loadable Linux modules. Test-
ing Linux drivers come often with the hurdle that researchers
need to possess the hardware to fully test a driver at runtime.
Pustogarov et al. tested the possibility of loading drivers from
foreign hosts into a Linux kernel to test the drivers without
having to rely on the hardware. Their analysis tool, Easier,
inherits routines to handle incompatibilities or dependencies
on soft- and hardware requirements. Combining fuzzing and
symbolic execution techniques, Easier demonstrates that it
is feasible to test Android drivers with an evasion kernel
method to some extend; 48/62 (77%) drivers from three
Android kernels were successfully tested.

C. DETECTING INSTRUMENTATION
Cutting-edge fortification techniques employed in Android
apps, such as obfuscation and packers, often impose a sub-
stantial time investment when attempting to comprehend the
inner workings of an Android app through reverse engi-
neering. Furthermore, analysts commonly rely on tools like
Frida and Xposed for instrumentation, aiding in the rever-
sal process. Nonetheless, as these tools have become fre-
quently used, applications have started implementing detec-
tion mechanisms in an endeavour to thwart instrumentation.

For example, Soriano-Salvador and Guardiola-Múzquiz [86]
describe diverse Frida detection methods, such as inspecting
loaded libraries, verifying package signatures, and detecting
artefacts in both disk and memory.

Instrumentation techniques are mainly executed in the
user-world. Thus, making it possible for other applications
to detect them. To overcome the possibility for detection,
Druffel and Heid [84] propose to use a kernel model, called
DaVinci, for instrumentation instead. Using a kernel module
has the benefit that apps executed in the user-world are
unlikely to detect the instrumentation because of the lack in
privileges and the possibility of the kernel to better hide its
activities. However, the main disadvantage is that the analyst
needs root access to load the kernel module, which is in some
cases not feasible. DaVinci include a couple of techniques to
hide its present. For instance, filtering network traffic, hiding
specific files, and creating virtual filesystem overlays.

D. SUMMARY AND MAIN FINDINGS
The usage of fuzzing techniques is common in this domain
as most of the selected publications have a strong focus
on developing and applying fuzzing techniques to native
Android services. The research targets have a broader scope
than in the other domains because the Android OS and
framework have a large number of components that are
interesting for security research and are not solely focused on
Android apps. However, analysing the Android framework
and it’s permission system seems to be one of the frequently
discussed topics and there have been various ideas to further
enhance existing permission mapping techniques. Following
we discuss the common limitations of the selected publica-
tions of this domain.

Hardware/Vendor support. A common limitation that re-
searcher face, is that it is often necessary for them to invest
significant amount of time to develop supporting tools in
order to test specific components for their research. The
lack of public documentation and the nature of close-source
software often makes it challenging to develop these tools. In
addition, it was frequently mentioned that vendor customi-
sation’s makes it elaborate to support different devices or
versions.

Limited fuzzing support. Most studies are focusing to test
existing software components and do not have access to
the source-code. The lack of source-code access limits the
usage of specific fuzzing techniques (e.g., coverage-guided
fuzzing).

Performance and reproducibility. Implementing custom
tools for instrumentation or other analysing techniques often
introduces a runtime overhead, which many researchers see
as limiting factor of their studies. In addition, as the testing
of specific software components can be non-deterministic the
results some experiments might change over time and are not
repeatable which greatly limits the possibility to replicate the
studies results.

Lack of public exploits/vulnerabilities for verification.
Studies that attempt to enhance existing security controls

18 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

mostly have the problem that their approach needs to be
tested against exploits to evaluate if their new security control
is effective. However, collecting enough fitting exploits is
often not trivial, due the lack of public disclosed exploits,
which makes it often not possible to really evaluate how
effective these novel ideas are in practice.

IX. DISCUSSION
In this Systematic Literature Review (SLR), we provide an
overview of the current state of research in the domain of
dynamic analysis applied to the Android platform, with a
specific focus on publications employing dynamic analysis
for security research. To answer our research questions, it
is assumed that the reviewed publications are representa-
tive. Our examination encompassed 43 publications, wherein
we sought to identify innovative methodologies, tools, and
conceptual frameworks. Additionally, we aimed to elucidate
common limitations and identify research gaps within the
field. The establishment of a taxonomy and a classification
scheme, detailed in Section V, enabled the categorisation of
identified works into three primary research domains.

To assemble our dataset, we conducted searches on
the Google Scholar and DLPB databases, targeting peer-
reviewed conferences and journals as delineated in Sec-
tion IV. Figure IX presents a visual representation of the
distribution of publications across various conferences and
journals, offering a comprehensive overview of the selected
venues. In total, our inclusive approach covered publications
from 28 distinct venues, comprising 13 journals and 15
conferences.

RQ1 Which novel tools and techniques were published?
Instrumentation and monitoring tools are the primary fo-

cal point within the community’s interest. The community
concentrates on the advancement of custom-made instrumen-
tation tools or the adoption of pre-existing solutions for the
purpose of measurement and tracing. Tables 1 and 6 to 8,
present an overview of cutting-edge publications alongside
the designations of newly formulated dynamic analysis solu-
tions and tools. In contrast to static analysis, which exhibits
frequent utilisation of specific tools in research endeavours,
the realm of dynamic analysis in the context of Android
security lacks a dominant set of supportive tools. Prominent
among the dynamic analysis tools repeatedly referenced are
Frida, XPOSED, mitmproxy, and fiddler. Nonetheless, a ma-
jority of publications rely upon automated software testing
tools, with Monkey serving as the principal choice for testing
purposes.

Moreover, we list which of the novel tools were made
publicly available and which datasets or sources were used
for the evaluation of the studies.

Frida, XPOSED, mitmproxy, and fiddler are commonly
used pre-existing testing tools for security analysis pur-
poses. Monkey is still one of the most prominent solutions
applied as testing tool, despite the fact that other testing
solutions exist.

RQ2 What were the underlying objectives and intentions
driving the utilisation of dynamic analysis techniques?

We developed a taxonomy and classified the publications
into three main security research domains. For every domain,
topics and objectives were summarised and overview was
illustrated (see Figure III-H). The number of reviewed and
selected papers shows clearly that most research in the past
years have focused on app security and especially on malware
detection techniques.

Dynamic analysis techniques are mainly applied to over-
come limitations by static analysis techniques or to gain a
more in-depth view of the internal behaviour of an Android
system.

RQ3 What are the prevalent constraints and short-
comings inherent in the dynamic analysis techniques?

To answer this question, we listed for every research
domain the most frequently mentioned limitations (see sec-
tions VI-F, VII-H and VIII-D). We summarise the main
shortcomings and concerns overall as follows.

• Limited code coverage. Several studies attempt to
overcome this shortcoming by implementing additional
testing routes. However, the majority of studies relies on
existing automated testing tools and is well aware of the
fact that these tools have limited testing abilities.

• Security measures hinder the analysis. Client hard-
ening techniques, such as packing and obfuscation are
common problems that researchers face and have to
overcome. In cases, where the aim of the study is not
focused on these hardened apps, they are frequently re-
moved from studies. Mainly, because the ratio between
effort and gain is too small for the researchers.

• Selection of apps might not be sufficient. The ma-
jority of research endeavours depend upon applications
sourced from the Google Play Store. Additionally, a
subset of applications extracted from research datasets,
is incorporated into the analysis. Due to uncertainty
regarding the adequacy of the chosen subset with respect
to the research aims, it is commonly acknowledged that
the efficacy of the devised methodology may not be uni-
versally transferable to alternative Android applications.

• Non-deterministic behaviour. Researchers are well
aware that Android apps have dependencies and might
react differently between test runs depending on the en-
vironment or network conditions. Moreover, it is a wide
concern that malicious apps might behave differently
when tested on an emulator.

One of the most common mentioned shortcomings is the
limitations introduced by automated testing tools or the
concern that the dynamic analysis is detected or hindered
by the AUT.

VOLUME XXX, 2023 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Instrumentation & Tracing

Network Analysis

Visualisation Assistance

Log-based Analysis

Dynamic Taint Analysis

Memory Decomposition

Fuzzing

[55], [46], [58], [54], [80], [86], [61]
[47], [84], [86]

[53], [59], [60], [48]

[13], [70], [71]

[68], [64], [62]

[74]

[65], [66], [69], [76], [78], [7], [77]

[85]

[79]

[83]

[72]

[73]

[75] [81], [82]

[51], [56], [52], [49], [62]

[50]

[52]

[57]

FIGURE 5. Venn diagram of selected publications and their applied dynamic analysis techniques.

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000 130,000
#. evaluated apps

FIGURE 6. Distribution of evaluated Android apps for the selected publications. Note: Only publications shown that evaluate Android apps and one outliner (with
2,291,898 apps) was removed due to space restrictions.

RQ4 Which areas of research have exhibited prominent
trends and gained significant attention in the recent years?

To better answer this question, we illustrate an overview
of used dynamic analysis methodologies in Figure IX. The
venn diagram shows an overview of the selected publications
and the applied dynamic analysis techniques. It can be seen
that Instrumentation & Tracing are most commonly used,
followed by network- and log-based analysis approaches.
Surprisingly, fuzzing techniques are not that popular when
it comes to analysing Android apps. We assume this is due
the fact that fuzzing native code is said to be a more effective
way to detect memory corruption bugs than to fuzz Java code,

where memory corruption vulnerabilities are unlikely to be
found. In addition, publications that use the heap memory or
visualisation approaches are less common.

Furthermore, Figure IX illustrated the distribution of eval-
uated Android apps of the selected publications. It shows that
the number of apps varies but the majority of publications
used between 1 and 18k of Android apps and the median is
1,564. The highest number of evaluated apps was used by
Oltrogge et al. [47] with 2,291,898 apps.

20 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

TS
T;

 2
%

ND
SS

; 1
2%

IEEE S&P; 9%

JSS; 5%

WWW; 2%ACM ASIACCS; 2%ICSE; 2%

USENIX; 12%

IEEE Access; 9%AC
M

 W
iS

ec
; 2

%

IE
EE

 IT
M

V;
 2

%

CODASP
Y;

2%

ESEC/FSE; 5
%

COSE; 7%

JPDC; 2%

JISA; 2%

IEEE TIFS; 2%

IEEE Trel; 2%

IJOIS; 2%

INST; 2%

IET ISE2; 2%
ESE; 2%

SoCC; 2%
ACN

S; 2%
JCVHT; 2%

FIGURE 7. Distribution conferences and journals for the publication selection.

Instrumentation & Tracing are the most widely applied
dynamic analysis techniques for Android in the past years.
It is mainly applied in combination with network traffic and
log-based analysis techniques.

X. FUTURE DIRECTIONS AND RECOMMENDATIONS

Based on the reviewed papers, we discuss where researchers
see potential for future work. We summarise the main di-
rections and trends frequently mentioned by researchers as
follows:

• Evasion: Techniques that change the behaviour of the
AUT pose significant limitations for many security stud-
ies on Android. Especially, for the Malware research
domain where advisories often attempt to hide their
activities. Methods that are able to detect evasion tech-
niques hold still considerable potential to significantly
impact the field for both researchers and practitioners.

• Context-awareness: Privacy and vulnerability method-
ologies frequently employ black-box models, rendering
them context-unaware; in other words, they lack meta-
data about the AUT. For example, the purpose of the
app is typically unknown before testing. Consequently,
many methodologies are tailored for specific sets of
apps but falter in generalisation. For instance, tech-
niques utilising risk metrics for mobile health apps may
not be suitable for analysing social media apps. Overall,
there appears to be significant potential in methodolo-
gies capable of context awareness and generalisation
in this field, especially because many studies focus on
similar approaches on different data samples.

• Machine-Learning: One evident trend observed across
all three research domains is the utilisation of ML-based
techniques. The use of ML is particularly intriguing for
the testing domain described in Section II, as there are
already tools like Q-Testing [24] demonstrating superior
code coverage compared to their predecessors. We be-
lieve it is likely that this trend will continue to influence
security testing in the near future.

One aspect left open for future work in our study is the
in-depth analysis of the root causes for certain limitations.
Given that common limitations across all research domains
have been identified, it would make sense to further extend
our work into an in-depth analysis of common root causes
and potential solutions.

A. ETHICAL CONSIDERATIONS
As certain tools or methods can be misused for illegal or

unethical purposes, such as unauthorised access to an An-
droid app or exploiting PII for monetary gain, it is pertinent to
consider how researchers report their security findings. While
our study does not primarily focus on this aspect, we will
discuss some ethical considerations in this section for the
sake of completeness, leaving a detailed analysis for future
research.

Based on Section VI the research community in this par-
ticular field has a strong focus on studies that research on
the ethically and legality of certain privacy or data collecting
aspects, for instance, how PII is used in general. Studies in
this field often discuss and report their findings and give
recommendations.

The focus of other domains (see Sections VI and VII)
may place less emphasis on ethical considerations, but from
our perspective, responsibility in action is still crucial. For
example, researchers often adhere to responsible disclosure
practices or intentionally omit certain details in their publi-
cations to prevent the abuse of their methods. However, upon
reviewing the publications, it is evident that there is in general
a lack of proactive discussion on the potential abuse of the
developed methods or tools, which we consider an area for
potential improvement in future studies.

B. RECOMMENDATIONS
We propose certain key points to help researchers in using

dynamic security analysis for their studies in the following.
• Multiple testing tools: Monkey-based and manual test-

ing are frequently used in studies, despite the fact that
the latest software testing tools for Android show supe-
rior code coverage compared to Monkey– This might be
due to the ease of setting up Monkey, but it can greatly
limit the exploration space. Therefore, we recommend
the usage of multiple tools in combination to further
strengthen the automated testing of Android apps.

• Multiple test runs: Given that non-deterministic be-
haviour can influence the testing of Android apps, it is
crucial to establish a baseline through multiple test runs

VOLUME XXX, 2023 21

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

to minimise the margin of error in the results. While
most reviewed publications suggest testing duration’s
ranging from 5 to 60 minutes, it is advisable to aim for
a minimum of 60 minutes per test run, or to target a spe-
cific level of code coverage as an alternative approach.

• App selection: Well-established and frequently updated
projects, that allow the open and free sharing of Android
apps for research (like, for instance, Androzoo [108]),
should be used in favour of creating custom, closed-
source, or outdated datasets for studies. This allows the
research to be reproducible to a certain degree and helps
studies compare their results.

XI. THREATS TO VALIDITY
A systematic literature review gives only insights into a small
subset of available publications and has a limited scope.
We reviewed in this SLR publications using or developing
dynamic analysis techniques for Android. To the best of
our knowledge, we critically selected only publications that
have novel and innovative approaches from top computer
science conferences or journals. As described in Section IV,
we followed strictly the defined SLR methodology and in-
cluded only publications according to our selection criteria.
Nevertheless, since our search strategy is based on keywords
and snowballing references, it is possible that we may have
missed some relevant publications. In addition, since some
of the selection criteria are relative to the reviewers assess-
ments, it is as well possible that we have made errors in the
selection process by including or excluding some primary
publications.

We used Google Scholar and the DBLP computer science
bibliography to prevent a bias towards one of the computer
science conferences or journals. We conducted a backward
and forward reference search to identify additional publi-
cations and several reviewers have crossed-checked the in-
cluded/excluded publications to minimise the risk of errors.
We selected 43 publications, which is a reasonable size for
an SLR in software engineering as discussed by Wang et
al. [109]. Figure IX shows the distribution of the venues they
were published in. It can be seen that even if some publication
venues are more strongly represented, there is no specific
preference for certain publication venues. A possible bias
due to the focus on individual venues can therefore be ruled
out. However, one limitation of our selection process is that
less common tools, frameworks, techniques, or theoretical
approaches might not have been found by our keyword based
search. Thus, certain topics might not be discussed in-detail
due to their frequency in the dataset.

XII. RELATED WORK
To the best of our knowledge, there has not been any system-
atic literature review or survey focusing on Android dynamic
security analysis. Our study is the first to systematically anal-
yse dynamic security testing. However, several secondary
studies exists with a focus on static analysis, malware or vul-

nerability detection and following we discuss some selected
studies.

Security Testing. Li et al. [14] conducted a systematic
literature review of static analysis techniques for Android
app analysis. Their work has a strong focus on static analysis
concepts and their implementation for security research on
Android apps. Li et al. reviewed 124 research publications
and explained many still state-of-the-art static analysis tech-
niques.

Senanayake et al. [110] studied 118 papers that focus on
Android source code vulnerability detection. The authors
evaluate the effectiveness of existing vulnerability detection
techniques and tools and investigate mainly ML-based meth-
ods. Comparable Garg and Baliyan [111] have reviewed
papers from 2013 to 2020 to identify the state-of-the-art
vulnerability detection approaches for Android.

Android malware analysis. There have been several sys-
tematic literature reviews about different aspects of An-
droid malware detection techniques [16], [100], [17], [112],
[112], [113], [114], [115], [116], [117], [118]. For instance,
Senanayake et al. [16] wrote about ML techniques in general,
whereas Liue et al. [100] and Qiu et al. [112] focused on com-
paring deep learning detection techniques. Pan et al. [17] set
their research focus on static-analysis techniques. Ehsan et
al. [114] also analysed static-analysis techniques but set their
main objective on studying methods that use app permissions
for detection.

In contrast, P. Yan and Z. Yan [116] carried out a system-
atic review of articles that focus on dynamic malware de-
tection techniques. More recently, Sharma and Rattan [113]
analysed 380 research articles and identified the most com-
mon static and dynamic features used for detection. In ad-
dition, the paper analysed as well the used ML algorithms
and compared their performance over the years on the Drebin
dataset. Similarly, Dave and Rathod [115] reviewed articles
from 2017 to 2020 and assessed which features were mainly
used in previous studies and Acharya et al. [118] studied
malware articles with an emphasis on stealth techniques.

Razgallah et al. [117] examined peer-reviewed publica-
tions from 2009 to 2020, analysing 22 articles to compare
their methodologies. From their analysis, the researchers
identified ways to improve the tools, methods, and evaluation
approaches used in these articles, and they summarised their
findings in 16 recommendations for future research on the
topic.

Privacy and third-party libraries. As discussed in Sec-
tion VI-D, there have been several studies on third-party
library detection and the implications on privacy and secu-
rity of using third-party libraries in Android apps. Zhan et
al. [119] identified 74 articles and analysed the articles in four
research dimensions (research objectives, targeted libraries,
type of third-party libraries, type of program analysis). They
reviewed research articles from 2012 to 2020 and they came
to the conclusion that current research on third-party vulner-
ability detection is very limited. In addition, future research
should focus more on the detection of native third-party

22 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

libraries and their isolation approaches from the main app.
GUI-based test automation for Android. Nie et al. [120]

identified the main research communities with publications
in graphical user interface testing. Within their study, Nie et
al. selected 114 primary research articles and determined the
most influential authors by calculating and adjusting citation
scores. Kong et al. [121] reviewed user interface testing
approaches until 2016 and found out that most publications
in their literature selection used real devices for testing.

Nass et al. [122] studied a set of 49 publications for
graphical user interface testing approaches. Their systematic
literature review identified the main challenges that have been
reported by researchers in the past twenty years. Demon-
strating that some of the challenges for GUI-based test au-
tomation are still unsolved and relevant for web- and mobile
applications.

XIII. CONCLUSION
In this systematic literature review (SLR), we conducted a
thorough exploration of dynamic analysis in Android secu-
rity research, illuminating significant trends and key aspects
within the field. We give an overview of the applied analysis
techniques in the field and show which techniques are fre-
quently combined. By meticulously examining 43 carefully
selected publications from diverse venues, we identified and
analysed innovative methodologies, tools, and ideas related
to dynamic analysis for security purposes. The development
of a taxonomy yielded three primary research domains,
providing a structured framework for comprehending the
dynamic analysis landscape in Android security.

1) App Security, Privacy and Compliance.
2) Malware Research Domain. Publications in this domain

have a strong focus on malware detection, evasion or
reverse-engineering techniques.

3) Android OS and Framework. Publications in this do-
main primarily revolve around kernel testing, fuzzing
OS components, and detection methods for instrumen-
tation.

To give an overview of the latest research and analysis
techniques for these domains, we examined 21 publications
for the first domain, 12 for the second, and 11 for the third
domain.

In general, the research objectives observed across the se-
lected publications predominantly revolve around enhancing
app security, detecting malware, and automating software
testing. For each research line, we pinpointed and sum-
marised main challenges and areas ripe for improvement, in-
cluding code coverage, security measures impeding analysis,
representative datasets, and the handling of non-deterministic
behaviour.

The analysis of dynamic analysis techniques revealed
that instrumentation & tracing stands out as the prevail-
ing choice, often complemented by other methodologies.
Notably, fuzzing techniques have seen limited adoption in
Android app research, potentially due to their constrained

effectiveness when applied to Java code. However, we antic-
ipate a potential shift in this landscape as fuzzing techniques
demonstrate improvements across various research domains.

As a comprehensive resource, this study offers valuable
insights for researchers and practitioners in the domain. It
serves as a reference point for prevailing trends, challenges,
and potential directions for future studies, providing added
value to the ongoing discourse in dynamic analysis for An-
droid security.

ACKNOWLEDGEMENTS
This work was partially funded by armasuisse Science and
Technology under the research program Cyberspace, project
Security Analysis of Firmware of mobile Devices (aramis Nr.
AR-F03-003).

REFERENCES
[1] Proton AG, “Complete guide to gdpr compliance,” misc, 2023, accessed:

2023-04-26. [Online]. Available: https://gdpr.eu/
[2] PState of California Department of Justice, “California consumer privacy

act (ccpa),” misc, 2023, accessed: 2023-04-26. [Online]. Available:
https://www.oag.ca.gov/privacy/ccpa

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
259–269. [Online]. Available: https://doi.org/10.1145/2594291.2594299

[4] L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and L. Grunske, “Vudenc:
vulnerability detection with deep learning on a natural codebase for
python,” Information and Software Technology, vol. 144, p. 106809,
2022.

[5] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and
F. Massacci, “Stadyna: Addressing the problem of dynamic code
updates in the security analysis of android applications,” in Proceedings
of the 5th ACM Conference on Data and Application Security and
Privacy, ser. CODASPY ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 37–48. [Online]. Available:
https://doi.org/10.1145/2699026.2699105

[6] S. Kumar, D. Mishra, B. Panda, and S. K. Shukla, “Inviseal: A stealthy
dynamic analysis framework for android systems,” Digital Threats,
vol. 4, no. 1, mar 2023. [Online]. Available: https://doi.org/10.1145/
3567599

[7] A. Lyons, J. Gamba, A. Shawaga, J. Reardon, J. Tapiador, S. Egelman,
N. Vallina-Rodriguez et al., “Log: It’s big, it’s heavy, it’s filled with
personal data! measuring the logging of sensitive information in the
android ecosystem,” in Usenix Security Symposium, 2023.

[8] Z. Dong, M. Böhme, L. Cojocaru, and A. Roychoudhury, “Time-travel
testing of android apps,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 481–
492, accessed: 2023-04-26, Github: https://github.com/DroidTest/Tim
eMachine. [Online]. Available: https://dl.acm.org/doi/10.1145/3377811.
3380402

[9] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: Association for Computing Machinery, 2016, p.
94–105. [Online]. Available: https://doi.org/10.1145/2931037.2931054

[10] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
and Z. Su, “Guided, stochastic model-based gui testing of android
apps,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA:
Association for Computing Machinery, 2017, p. 245–256. [Online].
Available: https://doi.org/10.1145/3106237.3106298

[11] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input generation
for android: Are we there yet?(e),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2015, pp.
429–440.

VOLUME XXX, 2023 23

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://gdpr.eu/
https://www.oag.ca.gov/privacy/ccpa
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2699026.2699105
https://doi.org/10.1145/3567599
https://doi.org/10.1145/3567599
https://github.com/DroidTest/TimeMachine
https://github.com/DroidTest/TimeMachine
https://dl.acm.org/doi/10.1145/3377811.3380402
https://dl.acm.org/doi/10.1145/3377811.3380402
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/3106237.3106298

[12] M. Almeida, M. Bilal, A. Finamore, I. Leontiadis, Y. Grunenberger,
M. Varvello, and J. Blackburn, “Chimp: Crowdsourcing human inputs for
mobile phones,” in Proceedings of the 2018 World Wide Web Conference,
2018, pp. 45–54.

[13] Z. Yang, Z. Yuan, S. Jin, X. Chen, L. Sun, X. Du, W. Li, and H. Zhang,
“Fsaflow: Lightweight and fast dynamic path tracking and control for
privacy protection on android using hybrid analysis with state-reduction
strategy,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE,
2022, pp. 2114–2129.

[14] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Software
Technology, vol. 88, pp. 67–95, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584917302987

[15] Z. Wu, X. Chen, and S. U.-J. Lee, “A systematic literature review on
android-specific smells,” Journal of Systems and Software, vol. 201, p.
111677, 2023. [Online]. Available: https://www.sciencedirect.com/scie
nce/article/pii/S0164121223000729

[16] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri, “Android
mobile malware detection using machine learning: A systematic
review,” Electronics, vol. 10, no. 13, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/13/1606

[17] Y. Pan, X. Ge, C. Fang, and Y. Fan, “A systematic literature review of
android malware detection using static analysis,” IEEE Access, vol. 8,
pp. 116 363–116 379, 2020.

[18] H. Rathore, S. Chari, N. Verma, S. K. Sahay, and M. Sewak, “Android
malware detection based on static analysis and data mining techniques: A
systematic literature review,” in Broadband Communications, Networks,
and Systems, W. Wang and J. Wu, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 51–71.

[19] Google, “Ui/application exerciser monkey,” misc, 2023, accessed: 2023-
04-26. [Online]. Available: https://developer.android.com/studio/test/mo
nkey.html

[20] A. Pilgun, O. Gadyatskaya, Y. Zhauniarovich, S. Dashevskyi, A. Kush-
niarou, and S. Mauw, “Fine-grained code coverage measurement in
automated black-box android testing,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–35, 2020,
tool available: https://github.com/pilgun/acvtool.

[21] H. Zheng, D. Li, B. Liang, X. Zeng, W. Zheng, Y. Deng, W. Lam,
W. Yang, and T. Xie, “Automated test input generation for android:
towards getting there in an industrial case,” in 2017 IEEE/ACM 39th In-
ternational Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP), 2017, pp. 253–262.

[22] W. Wang, W. Lam, and T. Xie, “An infrastructure approach to
improving effectiveness of android ui testing tools,” in Proceedings of
the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2021. New York, NY, USA: Association
for Computing Machinery, 2021, p. 165–176. [Online]. Available:
https://doi.org/10.1145/3460319.3464828

[23] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep
reinforcement learning for black-box testing of android apps,” ACM
Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 4, jul 2022. [Online]. Available: https://doi.org/10.1145/
3502868

[24] M. Pan, A. Huang, G. Wang, T. Zhang, and X. Li, “Reinforcement
learning based curiosity-driven testing of android applications,” in
Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 153–164,
github: https://github.com/anlalalu/Q-testing. [Online]. Available: https:
//doi.org/10.1145/3395363.3397354

[25] Google, “Write automated tests with ui automator,” misc, 2023, accessed:
2023-04-26. [Online]. Available: https://developer.android.com/training
/testing/other-components/ui-automator

[26] ——, “Oss-fuzz: Continuous fuzzing for open source software,” misc,
2023, accessed: 2023-04-26. [Online]. Available: https://github.com/goo
gle/oss-fuzz

[27] ——, “Fuzzing java in oss-fuzz,” misc, March 2021, accessed: 2023-04-
26. [Online]. Available: https://security.googleblog.com/2021/03/fuzzin
g-java-in-oss-fuzz.html

[28] “Jazzer,” misc, 2023, accessed: 2023-01-31. [Online]. Available:
https://github.com/CodeIntelligenceTesting/jazzer

[29] “Owasp: Certificate and public key pinning,” misc, 2023, accessed:

2023-01-31. [Online]. Available: https://owasp.org/www-community/co
ntrols/Certificate_and_Public_Key_Pinning

[30] I. Kara, “Fileless malware threats: Recent advances, analysis approach
through memory forensics and research challenges,” Expert Systems
with Applications, vol. 214, p. 119133, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422021510

[31] Strace.io, “Strace - linux syscall tracer,” misc, 2023, accessed:
2023-04-26. [Online]. Available: https://strace.io/

[32] Man7.org, “ptrace — linux manual page,” misc, 2023, accessed:
2023-04-26. [Online]. Available: https://man7.org/linux/man-pages/ma
n2/ptrace.2.html

[33] “Android developer: Share memory,” misc, 2023, accessed: 2023-01-
31. [Online]. Available: https://developer.android.com/topic/performanc
e/memory-overview#SharingRAM

[34] B. Buddhdev, R. Bhan, M. S. Gaur, and V. Laxmi, “Dynadroid: Dynamic
binary instrumentation based app behavior monitoring framework,”
in Proceedings of the 8th International Conference on Security of
Information and Networks, ser. SIN ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 322–325. [Online].
Available: https://doi.org/10.1145/2799979.2800036

[35] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” SIGPLAN Not., vol. 42, no. 6, p.
89–100, jun 2007. [Online]. Available: https://doi.org/10.1145/1273442.
1250746

[36] Ole André V. Ravnås and Håvard Sørbø, “Frida source code,” https://gith
ub.com/frida/frida, July 2014.

[37] Quarkslab, “Quarkslab dynamic binary instrumentation,” misc, 2023,
accessed: 2023-04-26. [Online]. Available: https://qbdi.quarkslab.com/#
about

[38] MIT, “Dynamorio,” misc, 2023, accessed: 2023-04-26. [Online].
Available: https://dynamorio.org/

[39] Google, “Logcat command-line tool,” misc, 2023, accessed: 2023-04-26.
[Online]. Available: https://developer.android.com/tools/logcat

[40] B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Information and
Software Technology, vol. 55, no. 12, pp. 2049–2075, 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584913001560

[41] Anne-Wil Harzing., “Publish or perish,” misc, 2022, accessed: 2023-04-
26. [Online]. Available: https://harzing.com/resources/publish-or-perish/

[42] A. Yasin, R. Fatima, L. Wen, W. Afzal, M. Azhar, and R. Torkar, “On
using grey literature and google scholar in systematic literature reviews
in software engineering,” IEEE Access, vol. 8, pp. 36 226–36 243, 2020.

[43] “DBLP computer science bibliography,” misc, 2023, accessed: 2023-
01-31, Release: dblp-2023-01-03.xml.gz. [Online]. Available: https:
//dblp.org/xml/release/

[44] “Google scholar: Top publications software systems,” misc, 2023,
accessed: 2023-01-31. [Online]. Available: https://scholar.google.com/c
itations?view_op=top_venues&hl=en&vq=eng_softwaresystems

[45] “Google scholar: Top publications computer security &
crypography,” misc, 2023, accessed: 2023-01-31. [Online].
Available: https://scholar.google.com/citations?view_op=top_venues&hl
=en&vq=eng_computersecuritycryptography

[46] B. Andow, A. Acharya, D. Li, W. Enck, K. Singh, and T. Xie,
“Uiref: Analysis of sensitive user inputs in android applications,” in
Proceedings of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, ser. WiSec ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p. 23–34. [Online].
Available: https://doi.org/10.1145/3098243.3098247

[47] M. Oltrogge, E. Derr, C. Stransky, Y. Acar, S. Fahl, C. Rossow, G. Pel-
legrino, S. Bugiel, and M. Backes, “The rise of the citizen developer:
Assessing the security impact of online app generators,” in 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018, pp. 634–647.

[48] Y. Liu, C. Zuo, Z. Zhang, S. Guo, and X. Xu, “An automatically vetting
mechanism for ssl error-handling vulnerability in android hybrid web
apps,” World Wide Web, vol. 21, pp. 127–150, 2018.

[49] A. Papageorgiou, M. Strigkos, E. Politou, E. Alepis, A. Solanas, and
C. Patsakis, “Security and privacy analysis of mobile health applications:
the alarming state of practice,” Ieee Access, vol. 6, pp. 9390–9403, 2018.

[50] M. Luo, P. Laperdrix, N. Honarmand, and N. Nikiforakis, “Time does not
heal all wounds: A longitudinal analysis of security-mechanism support
in mobile browsers,” in Proceedings of the 26th Network and Distributed
System Security Symposium (NDSS), 2019.

24 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.sciencedirect.com/science/article/pii/S0950584917302987
https://www.sciencedirect.com/science/article/pii/S0950584917302987
https://www.sciencedirect.com/science/article/pii/S0164121223000729
https://www.sciencedirect.com/science/article/pii/S0164121223000729
https://www.mdpi.com/2079-9292/10/13/1606
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://github.com/pilgun/acvtool
https://doi.org/10.1145/3460319.3464828
https://doi.org/10.1145/3502868
https://doi.org/10.1145/3502868
https://github.com/anlalalu/Q-testing
https://doi.org/10.1145/3395363.3397354
https://doi.org/10.1145/3395363.3397354
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://security.googleblog.com/2021/03/fuzzing-java-in-oss-fuzz.html
https://security.googleblog.com/2021/03/fuzzing-java-in-oss-fuzz.html
https://github.com/CodeIntelligenceTesting/jazzer
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://owasp.org/www-community/controls/Certificate_and_Public_Key_Pinning
https://www.sciencedirect.com/science/article/pii/S0957417422021510
https://strace.io/
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://doi.org/10.1145/2799979.2800036
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/1273442.1250746
https://github.com/frida/frida
https://github.com/frida/frida
https://qbdi.quarkslab.com/#about
https://qbdi.quarkslab.com/#about
https://dynamorio.org/
https://developer.android.com/tools/logcat
https://www.sciencedirect.com/science/article/pii/S0950584913001560
https://www.sciencedirect.com/science/article/pii/S0950584913001560
https://harzing.com/resources/publish-or-perish/
https://dblp.org/xml/release/
https://dblp.org/xml/release/
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_softwaresystems
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_computersecuritycryptography
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng_computersecuritycryptography
https://doi.org/10.1145/3098243.3098247

[51] D. Wu, D. Gao, R. K. C. Chang, E. He, E. K. T. Cheng, and R. H. Deng,
“Understanding open ports in android applications: Discovery, diagnosis,
and security assessment,” Proceedings 2019 Network and Distributed
System Security Symposium, 2019.

[52] S. Shi, X. Wang, and W. C. Lau, “Mossot: An automated blackbox
tester for single sign-on vulnerabilities in mobile applications,” in
Proceedings of the 2019 ACM Asia Conference on Computer and
Communications Security, ser. Asia CCS ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 269–282. [Online].
Available: https://doi.org/10.1145/3321705.3329801

[53] J. Reardon, Á. Feal, P. Wijesekera, A. E. B. On, N. Vallina-Rodriguez,
and S. Egelman, “50 ways to leak your data: An exploration of apps’
circumvention of the android permissions system,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 603–620. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/reardon

[54] M. Diamantaris, E. P. Papadopoulos, E. P. Markatos, S. Ioannidis, and
J. Polakis, “Reaper: real-time app analysis for augmenting the android
permission system,” in Proceedings of the Ninth ACM Conference on
Data and Application Security and Privacy, 2019, pp. 37–48.

[55] J. Tang, R. Li, K. Wang, X. Gu, and Z. Xu, “A novel hybrid method
to analyze security vulnerabilities in android applications,” Tsinghua
Science and Technology, vol. 25, no. 5, pp. 589–603, 2020.

[56] Y. Wang, G. Xu, X. Liu, W. Mao, C. Si, W. Pedrycz, and W. Wang,
“Identifying vulnerabilities of ssl/tls certificate verification in android
apps with static and dynamic analysis,” Journal of Systems and Software,
vol. 167, p. 110609, 2020.

[57] M. Benz, E. K. Kristensen, L. Luo, N. P. Borges, E. Bodden, and
A. Zeller, “Heaps’n leaks: How heap snapshots improve android
taint analysis,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, ser. ICSE ’20. New York, NY,
USA: Association for Computing Machinery, 2020, p. 1061–1072.
[Online]. Available: https://doi.org/10.1145/3377811.3380438

[58] X. Liu, J. Liu, S. Zhu, W. Wang, and X. Zhang, “Privacy risk analysis
and mitigation of analytics libraries in the android ecosystem,” IEEE
Transactions on Mobile Computing, vol. 19, no. 5, pp. 1184–1199, 2019.

[59] T. T. Nguyen, M. Backes, N. Marnau, and B. Stock, “Share first, ask later
(or never?) studying violations of GDPR’s explicit consent in android
apps,” in 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, Aug. 2021, pp. 3667–3684. [Online]. Available: ht
tps://www.usenix.org/conference/usenixsecurity21/presentation/nguyen

[60] Z. Dong, H. Liu, L. Wang, X. Luo, Y. Guo, G. Xu, X. Xiao, and
H. Wang, “What did you pack in my app? a systematic analysis of
commercial android packers,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1430–1440.
[Online]. Available: https://doi.org/10.1145/3540250.3558969

[61] M. H. Meng, Q. Zhang, G. Xia, Y. Zheng, Y. Zhang, G. Bai, Z. Liu,
S. G. Teo, and J. S. Dong, “Post-gdpr threat hunting on android phones:
dissecting os-level safeguards of user-unresettable identifiers,” in The
Network and Distributed System Security Symposium (NDSS), 2023.

[62] Hope of Felivery: Extracting user locations from mobile instant
messengers, 2023. [Online]. Available: https://www.ndss-symposium.o
rg/wp-content/uploads/2023/02/ndss2023_s188_paper.pdf

[63] H. Inayoshi, S. Kakei, and S. Saito, “Execution recording and recon-
struction for detecting information flows in android apps,” IEEE Access,
vol. 11, pp. 10 730–10 750, 2023.

[64] K. Ahmed, Y. Wang, M. Lis, and J. Rubin, “ViaLin: Path-Aware Dy-
namic Taint Analysis for Android,” in Proc. of the ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (FSE), 2023.

[65] H. Cai, N. Meng, B. Ryder, and D. Yao, “Droidcat: Effective android
malware detection and categorization via app-level profiling,” IEEE
Transactions on Information Forensics and Security, vol. 14, no. 6, pp.
1455–1470, 2018.

[66] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu,
“Samadroid: A novel 3-level hybrid malware detection model for android
operating system,” IEEE Access, vol. 6, pp. 4321–4339, 2018.

[67] K. Xu, Y. Li, R. H. Deng, and K. Chen, “Deeprefiner: Multi-layer android
malware detection system applying deep neural networks,” in 2018 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE, 2018,
pp. 473–487.

[68] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, “A novel dynamic android
malware detection system with ensemble learning,” IEEE Access, vol. 6,
pp. 30 996–31 011, 2018.

[69] M. L. Bernardi, M. Cimitile, D. Distante, F. Martinelli, and F. Mercaldo,
“Dynamic malware detection and phylogeny analysis using process min-
ing,” International Journal of Information Security, vol. 18, pp. 257–284,
2019.

[70] M. Ahmad, V. Costamagna, B. Crispo, F. Bergadano, and
Y. Zhauniarovich, “Stadart: Addressing the problem of dynamic
code updates in the security analysis of android applications,” Journal of
Systems and Software, vol. 159, p. 110386, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121219301530

[71] J. Gajrani, U. Agarwal, V. Laxmi, B. Bezawada, M. S. Gaur,
M. Tripathi, and A. Zemmari, “Espydroid+: Precise reflection analysis
of android apps,” Computers & Security, vol. 90, p. 101688, 2020.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404819302251

[72] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dl-droid: Deep learning
based android malware detection using real devices,” Computers &
Security, vol. 89, p. 101663, 2020.

[73] G. D’Angelo, M. Ficco, and F. Palmieri, “Malware detection in mobile
environments based on autoencoders and api-images,” Journal of Parallel
and Distributed Computing, vol. 137, pp. 26–33, 2020.

[74] A. De Lorenzo, F. Martinelli, E. Medvet, F. Mercaldo, and A. Santone,
“Visualizing the outcome of dynamic analysis of android malware with
vizmal,” Journal of Information Security and Applications, vol. 50, p.
102423, 2020.

[75] W. Zhang, H. Wang, H. He, and P. Liu, “Damba: Detecting android
malware by orgb analysis,” IEEE Transactions on Reliability, vol. 69,
no. 1, pp. 55–69, 2020.

[76] H. Cai, X. Fu, and A. Hamou-Lhadj, “A study of run-time behavioral
evolution of benign versus malicious apps in android,” Information and
Software Technology, vol. 122, p. 106291, 2020.

[77] P. Bhat, S. Behal, and K. Dutta, “A system call-based android malware
detection approach with homogeneous & heterogeneous ensemble
machine learning,” Computers & Security, vol. 130, p. 103277, 2023.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167404823001876

[78] G. Suárez-Tangil, S. K. Dash, P. García-Teodoro, J. Camacho, and
L. Cavallaro, “Anomaly-based exploratory analysis and detection of
exploits in android mediaserver,” IET Information Security, vol. 12,
no. 5, p. 404–413, sep 2018. [Online]. Available: https://doi.org/10.1049/
iet-ifs.2017.0460

[79] H.-W. Hung, Y. Liu, and A. A. Sani, “Sifter: Protecting security-
critical kernel modules in android through attack surface reduction,” in
Proceedings of the 28th Annual International Conference on Mobile
Computing And Networking, ser. MobiCom ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 623–635. [Online].
Available: https://doi.org/10.1145/3495243.3560548

[80] B. F. Demissie, M. Ceccato, and L. K. Shar, “Security analysis of permis-
sion re-delegation vulnerabilities in android apps,” Empirical Software
Engineering, vol. 25, pp. 5084–5136, 2020.

[81] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge, “Fans:
Fuzzing android native system services via automated interface analysis,”
in Proceedings of the 29th USENIX Conference on Security Symposium,
ser. SEC’20. USA: USENIX Association, 2020.

[82] L. Harrison, H. Vijayakumar, R. Padhye, K. Sen, and M. Grace,
“Partemu: Enabling dynamic analysis of real-world trustzone software
using emulation,” in Proceedings of the 29th USENIX Conference on
Security Symposium, 2020, pp. 789–806.

[83] I. Pustogarov, Q. Wu, and D. Lie, “Ex-vivo dynamic analysis framework
for android device drivers,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 1088–1105.

[84] A. Druffel and K. Heid, “Davinci: Android app analysis beyond frida
via dynamic system call instrumentation,” in Applied Cryptography and
Network Security Workshops: ACNS 2020 Satellite Workshops, AIBlock,
AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy,
October 19–22, 2020, Proceedings 18. Springer, 2020, pp. 473–489.

[85] A. Dawoud and S. Bugiel, “Bringing balance to the force:
Dynamic analysis of the android application framework,” Bringing
Balance to the Force: Dynamic Analysis of the Android
Application Framework, 2021, Code Available: https://github.com
/abdawoud/Dynamo, https://github.com/abdawoud/DynamoTestingApp.

VOLUME XXX, 2023 25

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/3321705.3329801
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://doi.org/10.1145/3377811.3380438
https://www.usenix.org/conference/usenixsecurity21/presentation/nguyen
https://www.usenix.org/conference/usenixsecurity21/presentation/nguyen
https://doi.org/10.1145/3540250.3558969
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s188_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2023/02/ndss2023_s188_paper.pdf
https://www.sciencedirect.com/science/article/pii/S0164121219301530
https://www.sciencedirect.com/science/article/pii/S0167404819302251
https://www.sciencedirect.com/science/article/pii/S0167404819302251
https://www.sciencedirect.com/science/article/pii/S0167404823001876
https://www.sciencedirect.com/science/article/pii/S0167404823001876
https://doi.org/10.1049/iet-ifs.2017.0460
https://doi.org/10.1049/iet-ifs.2017.0460
https://doi.org/10.1145/3495243.3560548
https://github.com/abdawoud/Dynamo
https://github.com/abdawoud/Dynamo
https://github.com/abdawoud/DynamoTestingApp

[Online]. Available: https://www.ndss-symposium.org/wp-content/uplo
ads/ndss2021_2B-1_23106_paper.pdf

[86] E. Soriano-Salvador and G. Guardiola Múzquiz, “Detecting and bypass-
ing frida dynamic function call tracing: exploitation and mitigation,”
Journal of Computer Virology and Hacking Techniques, 12 2022.

[87] M. Busch, A. Machiry, C. Spensky, G. Vigna, C. Kruegel, and M. Payer,
“Teezz: Fuzzing trusted applications on cots android devices,” in 2023
IEEE Symposium on Security and Privacy (SP)(SP), 2023, pp. 220–235.

[88] J. Gamba, M. Rashed, A. Razaghpanah, J. Tapiador, and N. Vallina-
Rodriguez, “An analysis of pre-installed android software,” in 2020 IEEE
symposium on security and privacy (SP). IEEE, 2020, pp. 1039–1055.

[89] Google, “Network security configuration,” misc, 2023, accessed: 2023-
04-26. [Online]. Available: https://developer.android.com/training/article
s/security-config

[90] “360 app store,” misc, 2023, accessed: 2023-01-31. [Online]. Available:
https://zhushou.360.cn/

[91] Jonathan Jacky, “Pymodel,” misc, 2022, accessed: 2023-04-26. [Online].
Available: https://github.com/zlorb/PyModel

[92] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Trans. Comput. Syst., vol. 32, no. 2, jun 2014. [Online]. Available:
https://doi.org/10.1145/2619091

[93] “Fiddler network proxy,” misc, 2023, accessed: 2023-01-31. [Online].
Available: https://www.telerik.com/fiddler

[94] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, p. 221–233, jun
2014. [Online]. Available: https://doi.org/10.1145/2637364.2592003

[95] M. Luo, O. Starov, N. Honarmand, and N. Nikiforakis, “Hindsight:
Understanding the evolution of ui vulnerabilities in mobile browsers,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 149–162. [Online].
Available: https://doi.org/10.1145/3133956.3133987

[96] Microsoft, “Malware names,” misc, 2023, accessed: 2023-04-26.
[Online]. Available: https://learn.microsoft.com/en-us/microsoft-365/se
curity/intelligence/malware-naming?view=o365-worldwide

[97] MITRE, “Malware attribute enumeration and characterization (maec),”
misc, 2022, accessed: 2023-04-26. [Online]. Available: https://maecproj
ect.github.io/

[98] Kaspersky, “Types of malware,” misc, 2023, accessed: 2023-04-26.
[Online]. Available: https://usa.kaspersky.com/resource-center/threats/
malware-classifications

[99] Google, “Malware categories,” misc, 2023, accessed: 2023-04-26.
[Online]. Available: https://developers.google.com/android/play-protect
/phacategories

[100] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Deep learning
for android malware defenses: A systematic literature review,” ACM
Comput. Surv., vol. 55, no. 8, dec 2022. [Online]. Available:
https://doi.org/10.1145/3544968

[101] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, “Drebin: Effective and explainable detection of android
malware in your pocket.” in Ndss, vol. 14, 2014, pp. 23–26.

[102] Virustotal, “Yara in a nutshell,” misc, 2023, accessed: 2023-04-26.
[Online]. Available: https://github.com/VirusTotal/yara

[103] “Security with dynamically loaded code.” [Online]. Available: https:
//developer.android.com/training/articles/security-tips#DynamicCode

[104] “Safer dynamic code loading.” [Online]. Avail-
able: https://developer.android.com/about/versions/14/behavior-changes
-14#safer-dynamic-code-loading

[105] K. Tam, S. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Automatic
reconstruction of android malware behaviors,” in Ndss, 01 2015.

[106] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 377–396.

[107] Google, “Manifest.permission,” misc, 2023, accessed: 2023-04-26.
[Online]. Available: https://developer.android.com/reference/android/Ma
nifest.permission

[108] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 468–
471. [Online]. Available: http://doi.acm.org/10.1145/2901739.2903508

[109] X. Wang, H. Edison, D. Khanna, and U. Rafiq, “How many papers
should you review? a research synthesis of systematic literature reviews
in software engineering,” in 2023 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 2023, pp.
1–6.

[110] J. Senanayake, H. Kalutarage, M. O. Al-Kadri, A. Petrovski, and
L. Piras, “Android source code vulnerability detection: A systematic
literature review,” ACM Comput. Surv., vol. 55, no. 9, jan 2023. [Online].
Available: https://doi.org/10.1145/3556974

[111] S. Garg and N. Baliyan, “Android security assessment: A review,
taxonomy and research gap study,” Computers & Security, vol. 100, p.
102087, 2021. [Online]. Available: https://www.sciencedirect.com/scie
nce/article/pii/S0167404820303606

[112] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A
survey of android malware detection with deep neural models,”
ACM Comput. Surv., vol. 53, no. 6, dec 2020. [Online]. Available:
https://doi.org/10.1145/3417978

[113] T. Sharma and D. Rattan, “Malicious application detection in android
— a systematic literature review,” Computer Science Review, vol. 40,
p. 100373, 2021. [Online]. Available: https://www.sciencedirect.com/sc
ience/article/pii/S1574013721000137

[114] A. Ehsan, C. Catal, and A. Mishra, “Detecting malware by analyzing
app permissions on android platform: A systematic literature review,”
Sensors, vol. 22, no. 20, 2022. [Online]. Available: https://www.mdpi.c
om/1424-8220/22/20/7928

[115] D. D. Dave and D. Rathod, “Systematic review on various techniques of
android malware detection,” in Computing Science, Communication and
Security, N. Chaubey, S. M. Thampi, and N. Z. Jhanjhi, Eds. Cham:
Springer International Publishing, 2022, pp. 82–99.

[116] P. Yan and Z. Yan, “A survey on dynamic mobile malware detection,”
Software Quality Journal, vol. 26, no. 3, pp. 891–919, 2018.

[117] A. Razgallah, R. Khoury, S. Hallé, and K. Khanmohammadi, “A survey
of malware detection in android apps: Recommendations and perspec-
tives for future research,” Computer Science Review, vol. 39, p. 100358,
2021.

[118] S. Acharya, U. Rawat, R. Bhatnagar, and B. Bhushan, “A comprehensive
review of android security: Threats, vulnerabilities, malware detection,
and analysis,” Sec. and Commun. Netw., vol. 2022, jan 2022. [Online].
Available: https://doi.org/10.1155/2022/7775917

[119] X. Zhan, T. Liu, L. Fan, L. Li, S. Chen, X. Luo, and Y. Liu, “Research
on third-party libraries in android apps: A taxonomy and systematic
literature review,” IEEE Transactions on Software Engineering, vol. 48,
no. 10, pp. 4181–4213, 2022.

[120] L. Nie, K. S. Said, L. Ma, Y. Zheng, and Y. Zhao, “A systematic mapping
study for graphical user interface testing on mobile apps,” IET Software,
2023.

[121] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Automated
testing of android apps: A systematic literature review,” IEEE Transac-
tions on Reliability, vol. 68, no. 1, pp. 45–66, 2019.

[122] M. Nass, E. Alégroth, and R. Feldt, “Why many challenges
with gui test automation (will) remain,” Information and Software
Technology, vol. 138, p. 106625, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584921000963

26 VOLUME XXX, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.ndss-symposium.org/wp-content/uploads/ndss2021_2B-1_23106_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/ndss2021_2B-1_23106_paper.pdf
https://developer.android.com/training/articles/security-config
https://developer.android.com/training/articles/security-config
https://zhushou.360.cn/
https://github.com/zlorb/PyModel
https://doi.org/10.1145/2619091
https://www.telerik.com/fiddler
https://doi.org/10.1145/2637364.2592003
https://doi.org/10.1145/3133956.3133987
https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/malware-naming?view=o365-worldwide
https://learn.microsoft.com/en-us/microsoft-365/security/intelligence/malware-naming?view=o365-worldwide
https://maecproject.github.io/
https://maecproject.github.io/
https://usa.kaspersky.com/resource-center/threats/malware-classifications
https://usa.kaspersky.com/resource-center/threats/malware-classifications
https://developers.google.com/android/play-protect/phacategories
https://developers.google.com/android/play-protect/phacategories
https://doi.org/10.1145/3544968
https://github.com/VirusTotal/yara
https://developer.android.com/training/articles/security-tips#DynamicCode
https://developer.android.com/training/articles/security-tips#DynamicCode
https://developer.android.com/about/versions/14/behavior-changes-14#safer-dynamic-code-loading
https://developer.android.com/about/versions/14/behavior-changes-14#safer-dynamic-code-loading
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
http://doi.acm.org/10.1145/2901739.2903508
https://doi.org/10.1145/3556974
https://www.sciencedirect.com/science/article/pii/S0167404820303606
https://www.sciencedirect.com/science/article/pii/S0167404820303606
https://doi.org/10.1145/3417978
https://www.sciencedirect.com/science/article/pii/S1574013721000137
https://www.sciencedirect.com/science/article/pii/S1574013721000137
https://www.mdpi.com/1424-8220/22/20/7928
https://www.mdpi.com/1424-8220/22/20/7928
https://doi.org/10.1155/2022/7775917
https://www.sciencedirect.com/science/article/pii/S0950584921000963
https://www.sciencedirect.com/science/article/pii/S0950584921000963

ABOUT THE AUTHORS

THOMAS SUTTER was born in Sankt Gallen,
Switzerland, in 1991. He received a B.Sc. and
an M.Sc. in Computer Science from the Zurich
University of Applied Sciences (ZHAW), Zurich,
Switzerland, in 2021. He is currently pursuing a
Ph.D. in Computer Science at the University of
Bern and works as a research associate in the
information security group at ZHAW. His research
interests include information security with a focus
on mobile security research.

TIMO KEHRER is a professor at the Institute
of Computer Science of the University of Bern
(CH), chairing the Software Engineering Research
and Teaching Group. With a PhD from the Uni-
versity of Siegen (DE) and after holding a post-
doctoral research fellow position at Politecnico
di Milano (IT), he previously was an assistant
professor at the Department of Computer Science
at Humboldt-Universität zu Berlin (DE). Kehrer
has active research interests in various fields of

software engineering, including software testing and analysis.

MARC RENNHARD is a professor of com-
puter science and head of the Department In-
formation Technology, Electrical Engineering and
Mechatronics at the School of Engineering of the
Zurich University of Applied Sciences (ZHAW),
Winterthur, Switzerland. He received M.Sc. and
Ph.D. degrees in Electrical Engineering from ETH
Zurich. His main research interests include secure
software, security engineering, and automated se-
curity testing.

BERNHARD TELLENBACH was born in
Berne, Switzerland in 1979. He holds a Master
(2005) and Doctor of Science (2012) degree from
ETH Zurich in electrical engineering and infor-
mation technologies. He is currently the head of
cyber security at the Cyber-Defence Campus at
armasuisse Science and Technology. His research
interest includes network security, vulnerability
research, red- and blue team automation, and op-
erating system security. Bernhard leads the Swiss

Cyber Storm association, represents Switzerland in the steering committee
of the European Cybersecurity Challenge coordinated by ENISA, and is a
member of the Cyber Security Advisory Board of SATW.

JACQUES KLEIN is an full Professor with SnT,
University of Luxembourg. He coleads a group
of about 25 researchers focusing on software se-
curity, software reliability, and intelligent soft-
ware. He has standing experience and expertise
in (1) successfully running industrial projects, (2)
Android security, including both static analysis
techniques for tracking privacy leaks and machine
learning for identifying malware, and (3) program
repair. He published almost 200 research papers in

top journals/conferences.

VOLUME XXX, 2023 27

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3390612

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	Introduction
	Background on Testing Android Apps
	Testing quality metrics
	State-of-the-art Android app testing tools

	Dynamic security analysis techniques
	Fuzzing
	Network Traffic Analysis
	Dynamic Taint Analysis
	Memory Decomposition
	System calls and tracing
	Dynamic binary instrumentation
	Log-based analysis
	Visualisation Assistance

	Literature Review Methodology
	Taxonomy of Android security research
	App Security, Privacy and Compliance Research
	Network analysis
	Open ports
	SSL/TLS verification
	Authentication fuzzing

	Dynamic Taint Analysis
	Privacy and compliance related studies
	Leaking PII
	User consent not given
	Identifying sensitive inputs

	Software Decomposition Analysis
	Analytics libraries
	Third-Party library permissions

	Research with focus on specific groups of apps
	Mobile web browsers
	Online app generators
	Obfuscated and packed apps

	Summary and Main Findings

	Malware Research
	Trace-based detection
	Machine Learning-based detection
	Neural networks and deep learning-based detection
	Linear support vector machine-based detection
	Ensemble learning-based detection

	Memory-based detection
	Runtime Visualisation
	Reflection & Dynamic code loading
	Anonmaly-based detection
	Longitudinal studies
	Summary and Main findings

	Android OS and Framework Research
	Fuzzing OS and framework components
	Native system services
	Trusted Execution Environments

	Kernel and Driver testing
	Detecting instrumentation
	Summary and Main Findings

	Discussion
	Future Directions and Recommendations
	Ethical Considerations
	Recommendations

	Threats to validity
	Related Work
	Conclusion
	REFERENCES
	Thomas Sutter
	Timo Kehrer
	Marc Rennhard
	Bernhard Tellenbach
	Jacques Klein

