
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Improving Logic Bomb Identification in
Android Apps via Context-Aware Anomaly Detection

Marco Alecci, Jordan Samhi, Li Li, Tegawendé F. Bissyandé, Jacques Klein

Abstract—One prominent tactic used to keep malicious behavior from being detected during dynamic test campaigns is logic bombs, where
malicious operations are triggered only when specific conditions are satisfied. Defusing logic bombs remains an unsolved problem in the literature.
In this work, we propose to investigate Suspicious Hidden Sensitive Operations (SHSOs) as a step toward triaging logic bombs. To that end,
we develop a novel hybrid approach that combines static analysis and context-aware anomaly detection techniques to uncover SHSOs, which
we predict as likely implementations of logic bombs. Concretely, DIFUZER++ identifies SHSO entry-points using an instrumentation engine and
conducting an inter-procedural data-flow analysis. Subsequently, it extracts trigger-specific features to characterize SHSOs. To detect abnormal
triggers, we utilize multiple One-Class SVM models, each trained on distinct sets of similar apps to more effectively capture normal behavior
patterns. To assess the added value of the context-aware analysis, we compare DIFUZER++ against a baseline approach with no context (that
we name DIFUZER). We show that the context-aware analysis leads to a significant improvement in both the precision and F1 score. Furthermore,
the probability of successfully triaging logic bombs among SHSOs increases from 29.7% to 58.8%. All our artifacts are released to the community.

Index Terms—Logic Bomb, Malware, Android Security, Static Analysis, Clustering, Anomaly Detection

✦

1 INTRODUCTION

SECURITY and privacy in Android have become paramount
given its pervasive use in a wide range of user devices, be it

handheld, at home, or in the office [1]. Yet, regularly, new threats
are discovered, even in the official Google Play app store [2].
Typically, thousands of apps are regularly flagged by antivirus
engines: for the year 2022 alone, the ANDROZOO [3] repository
has collected over 3825000 apps, among which over 145000
apps are flagged by at least five antivirus engines hosted by
VirusTotal [4]. Addressing the spread of malware in app markets
is therefore a prime concern for researchers and practitioners. In
the last decade, several approaches have been proposed in the
literature to automate malware identification. These approaches
explore static analysis techniques [5], [6], [7], [8], [9], [10], dy-
namic execution [11], [12], [13], or a combination of both [14],
[15], [16], as well as the use of machine-learning [17], [18].

While the aforementioned techniques have been proven
effective on benchmarks, attacks evolve rapidly with increasingly
sophisticated evasion techniques. Typically, malware writers rely
on code obfuscation [19] to bypass static analyses. To evade de-
tection during dynamic analysis, attackers seek to hide malicious
code behind triggering conditions. These are known as logic
bombs, the triggering conditions of which being varied. For ex-
ample, a logic bomb could execute malicious instructions only at
a specific time that is not likely to be reached when market main-
tainers dynamically analyze the software before it is distributed.

Logic bombs can be used for any malicious activity such as
adware [20], trojan [21], ransomware [22], spyware [23], etc. [24].
Furthermore, as the trigger and the malicious code are generally

‚ M. Alecci, J. Samhi, T. F. Bissyandé, and J. Klein are with SnT, University of
Luxembourg, L-1359 Luxembourg, Luxembourg.
E-mail: [name.surname]@uni.lu]

‚ L. Li is with the Faculty of Information Technology, Monash University,
Clayton, VIC 3800, Australia.
E-mail: li.li@monash.edu

independent of the core application code (i.e., their context
differ), logic bombs can easily be added in legitimate apps
and repackaged for distribution [25], [26], [27], [28]. Therefore,
detecting logic bombs is of great importance, especially in
mobile devices that carry much personal information. However,
due to the undecidable nature of this detection problem in
general [29], and the fact that dynamic analyses will likely fail to
detect such behaviors [30], analysts explore static-analysis based
heuristic or machine learning approaches to detect logic bombs.

A logic bomb is characterized by the fact that it implements
a hidden sensitive operation. Therefore, recent works addressing
logic bombs have focused on the identification of Hidden Sen-
sitive Operations (HSOs) as a target [31]. However, not all HSOs
are logic bombs. Indeed, an HSO may be neither intentional nor
malicious, while logic bombs always are. In this work, we pro-
pose to identify Suspicious HSOs (SHSO) towards triaging logic
bombs among HSOs. We hypothesize that logic bomb code is
decoupled from apps’ code, since these apps can be infected with
pre-existing logic bomb code, which makes the logic bomb code
more suspicious than any piece of code in the app. As an exam-
ple, suppose a logic bomb’s triggering condition relies on location
data, implemented through the getLastKnownLocation()
Android API method, and the infected app is a calculator. In that
case, both the triggering condition and the code executed would
be regarded as highly suspicious and even abnormal in the
context of a calculator app. Consequently, we suggest utilizing a
context-aware detection technique to identify suspicious HSOs,
thereby improving the probability of detecting logic bombs.

Further note that, in this study, we do not attempt to address
a binary classification problem of discriminating malware
from benign apps (e.g., by using logic bombs as a key criteria
of maliciousness). Instead, our ambition is to improve the
detection of logic bombs, which are considered sweet spots for
targeting the understanding of malware’s malicious behaviors.
Indeed, while the literature proposes a variety of approaches for
predicting Android apps’ maliciousness (i.e., malware detection),

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the community still seeks to make significant breakthroughs
in the localization of malicious code parts. Detecting logic
bombs thus provides an opportunity to localize and characterize
malicious code implemented as hidden sensitive operations.

Recent literature on Android has already approached the
problem of detecting sensitive behavior triggered only when
certain conditions are met. Such triggers are referred hereafter
as sensitive triggers. TRIGGERSCOPE [32] was proposed as a
static analysis tool to detect logic bombs: its analyses are based
on heuristics and are thus limited to certain trigger types (i.e.,
time-related, location-related, and SMS-related triggers). TRIG-
GERSCOPE further relies on symbolic execution, which reduces
its capacity to scale to massive datasets. Unlike TRIGGERSCOPE,
HSOMINER [31] leverages a supervised learning approach with
engineered features to reveal sensitive triggers. HSOMINER,
however, does not specifically target malicious triggers: it flags
up to 20% of apps (including a large portion of benign apps),
which makes it inefficient for isolating dangerous triggers in
the wild; it also takes on average 13 min/app, which makes it
challenging to exploit for large-scale experiments.

HSO triggering conditions are typically implemented
by if statements. A given app code, however, may contain
from hundreds to thousands of such conditional statements.
Therefore, a major challenge in the research around HSO is
to reduce the search space for accurately spotting suspicious
sensitive triggers. Our core idea towards achieving this ambition
is to model specific trigger characteristics to spot SHSOs.

In this work, we propose a novel approach to identify
suspicious hidden sensitive operations where we rely on an
unsupervised learning technique to perform anomaly detection.
We intend to detect suspicious triggers deviating from the
normality of the myriads of conditional checks performed in
typical apps. To do so, we explore specific trigger/behavior
features to guide our detection system towards enumerating
truly suspicious triggers and thus refine the search space for
uncovering logic bombs. We propose DIFUZER++, a novel
hybrid approach that combines ❶ code instrumentation to
insert particular statements required for taint analysis, ❷

inter-procedural static taint analysis to find suspicious sensitive
triggers, and ❸ context-aware anomaly detection to reveal
Suspicious Hidden Sensitive Operations in Android apps.

While the literature includes work [31] that proposed
supervised learning techniques for detecting HSOs, DIFUZER++
relies on unsupervised learning to spot “abnormal” triggers.
Moreover, towards ensuring that the model is accurate in the
detection of suspicious HSOs: DIFUZER++, on the one hand,
utilizes specifically-engineered features that capture the semantic
properties of maliciousness. On the other hand, it groups apps
based on their context using clustering techniques to ensure that
anomaly detection is performed with a contextual approach,
i.e., on multiple sets of similar apps rather than a single set of
unrelated apps. Previous research has shown the advantages of
grouping similar apps to identify malicious behavior [33] and to
profile malicious apps based on their data flow signatures [34].

The main contributions of our work are as follows:
‚ We propose DIFUZER++, a novel approach to detect

SHSOs in Android apps. DIFUZER++ combines code
instrumentation, static inter-procedural taint tracking, and
context-aware anomaly detection techniques.

‚ We evaluate DIFUZER++ and show its ability to reveal
SHSOs with a 98.56% precision in less than 48 seconds on

average per app, outperforming previous approaches.
‚ We demonstrate that the trigger- and behavior-specific

features are relevant for triaging logic bombs among HSOs.
‚ We demonstrate that the context of apps is relevant to

triage logic bombs among SHSOs: while DIFUZER (i.e.,
a version of DIFUZER++ with not context information)
uncovers 29.7% of logic bombs among the detected SHSOs,
DIFUZER++ uncovers 58.82% of logic bombs.

‚ We show that DIFUZER, our baseline approach is enough
to outperform the state-of-the-art logic bomb detector,
TRIGGERSCOPE. Indeed, DIFUZER reveals more logic bombs
than TRIGGERSCOPE while yielding fewer false positives.

‚ We release the DIFUZER++ prototype in open-source and
further make available to the research community a new
Android logic bomb dataset, called DATABOMB++:

github.com/Trustworthy-Software/DifuzerPlusPlus
Extension Disclaimer. This paper is an extension of our previous
work [35] which was published at the 44th International
Conference on Software Engineering 2022 (ICSE 2022). In our
previous work, we presented DIFUZER, a novel hybrid approach
that employs a combination of data flow analysis techniques and
anomaly detection to discriminate logic bombs among SHSOs
within Android apps. This extension expands upon our previous
work by incorporating contextual information about apps to
enhance the training of anomaly detectors and improve the
distinction between normal and abnormal behavior. Our new
approach will be referred to as DIFUZER++, in contrast to our
baseline approach, which we will simply refer to as DIFUZER.

2 BACKGROUND AND DEFINITIONS

In this section, we first introduce Taint Analysis and Anomaly
Detection, two techniques used in our approach. Then, we briefly
present the two algorithms used to incorporate the context in
our approach, categorizing the apps into groups of similar apps:
Latent Dirichlet Allocation (LDA) and K-Means. In the last part of
the section, we carefully define important concepts and finally,
succinctly give the context for our study.

Taint analysis: Taint analysis is a dataflow analysis that fol-
lows the flow of specific values within a program. A variableV is
tainted when it gets a value from specific functions called sources.
The taint is propagated to other variables if they receive a deriva-
tion of the value in V . If a tainted variable is used as a parameter
of specific functions called sinks, it means that during execution,
the value derived from a source can be used as a parameter of a
sink. In this paper’s context, we rely on taint analysis to check if
the conditional expression involves sensitive data value(s).

Anomaly detection: When analyzing data of the same class,
several items can significantly differ from the majority. They
are called outliers and can be viewed as abnormal. There are
numerous techniques in the state-of-the-art for achieving this
outlier detection in sets of data [36]. This paper relies on One-
Class Support Vector Machine (OC-SVM) [37], an unsupervised
learning algorithm that learns common behavior based on
features extracted in an initial dataset. Once the model is learned,
a prediction is performed by checking whether a new sample
features make it more or less abnormal w.r.t. the common model.
In this paper’s context, an anomaly is computed by considering
distances among vectors representing triggers, i.e., a condition
along with the behavior triggered.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/Trustworthy-Software/DifuzerPlusPlus

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(a) Trigger
Definitions 1, 2, 3

(b) Hidden Sensitive Operation
Definition 4, 5

(c) Logic Bomb
Definition 6

if(π)cPΣ

Γ“

TcYΦc

τ

Tc Φc

if(π)

η

SĎTc_SĎΦc

Sensitive
Behavior

if(π)

λ

MĎS
Malicious
Behavior

Fig. 1. Definitions illustrations. The graphs represent the Control-Flow Graph
of the same function.

Apps categorization: Applications available on the Google
Play Store are sorted into specific categories to provide users
with an idea of their functionality. However, alternative methods
can also be used to group apps together based on similarities,
such as analyzing the app’s description or other kinds of data.
Latent Dirichlet Allocation (LDA) [38] is a probabilistic topic
modeling algorithm that discovers hidden topics within a large
corpus of text data. It assumes that each document is a mixture
of topics, and each topic is a probability distribution over a set of
words. LDA works by iteratively assigning words to topics and
updating the topic distributions until convergence. The resulting
topic distribution for each document and word distribution for
each topic can be used for analysis and classification. K-means [39]
is an unsupervised machine learning method that partitions
a dataset into k clusters. It randomly selects k initial centers,
assigns data points to their nearest center, and computes new
centers as the mean of their assigned points until convergence
or a maximum number of iterations is reached. Both LDA and k-
means are unsupervised machine learning algorithms that group
similar data together; LDA groups similar text documents into
topics based on word distributions, while k-means groups data
points into clusters based on similarity or distance measures.

Definitions: We define terms that will be used and referred
to throughout the paper. Figure 1 visually depicts our definitions.

Definition 1 (Trigger). A trigger is a piece of code that activates
operations under certain conditions. In Figure 1a, the trigger τ
(dashed rectangle) is represented by the condition c (rounded
rectangle node), the true branch Tc and the false branch Φc.
The true branch Tc represents all the statements (nodes) for
which each path from the entry-point must go through c and are
executed if and only if π is true. The false branch Φc represents
all the statements for which each path from the entry-point must
go through c and are executed if and only if π is false. Note that
every path from the entry-point to the hatched node must go
through c. In other words, c strictly dominates the hatched node.
However, the hatched node can be executed if π is true or false.
Therefore it is not part of Tc nor Φc.

More formally, let Σ be the set of statements of a function
(nodes in Fig. 1). Let cPΣ be a conditional statement (i.e., an if
statement, rectangle nodes in Fig. 1). Let π be c’s predicate. Let
ε be the conditional execution function such as εpπ,σq is true if
σPΣ is executed if and only if π is true. Let δ be the dominator
function such as δpd,σq is true if dPΣ strictly dominates σPΣ,
false otherwise.

Let Tc and Φc be the true and the false branch 1 of c such as:

Tc“tσ|σPΣ^δpc,σq^εpπ,σqu
Φc“tσ|σPΣ^δpc,σq^εp␣π,σqu

Then, a trigger τ is defined as a triplet: τ“pc,Tc,Φcq.
Definition 2 (Guarded code). Let τ be a trigger such as:
τ“pc,Tc,Φcq. Then, the code guarded by c is: Γ“TcYΦc.
Definition 3 (Trigger entry-point). We define a trigger entry-
point as the condition triggering the guarded code. More for-
mally, given a trigger τ“pc,Tc,Φcq, c is defined as its entry-point.
Definition 4 (Hidden Sensitive Operation (HSO)). An HSO
is a piece of code that represents a set of instructions, which
(1) implement a security-sensitive operation and (2) are only
executed when specific criteria are met (cf. Figure 1b). More
formally, let η“pc,Tc,Φcq be a trigger and S a piece of sensitive
behavior such as SĂΣ. Then, η is a hidden sensitive operation
if SĎTc_SĎΦc.
Definition 5 (Suspicious Hidden Sensitive Operation (SHSO)).
An SHSO refers to an HSO that implements a sensitive operation
that appears to be suspicious given the context of the app. For
example, a navigation app may legitimately retrieve user location
information (which is a sensitive operation), while a calculator
is suspicious if it attempts to retrieve such sensitive data.
Definition 6 (Logic bomb). A logic bomb is a piece of malicious
code triggered under specific circumstances. More formally, let
λ“ pc,Tc,Φcq be an SHSO, S its sensitive behavior, and M a
piece of malicious code such as MĂΣ. Then, λ is a logic bomb
if MĎS (cf. Figure 1c). In other words, a logic bomb is an SHSO
which suspicious sensitive behavior is malicious.
1 // Example simplified for reading, with renamed methods
2 public static String m1() {
3 int phoneType = telephonyManager.getPhoneType();
4 if (phoneType == 1) {
5 GsmCellLocation gsmCellLocation

= telephonyManager.getCellLocation();ãÑ

6 int a = gsmCellLocation.getCid();
7 int b = gsmCellLocation.getLac();
8 String str1 = a + b;
9 else { String str1 = ""; }

10 return str1;
11 }
12

13 public static void m2() {
14 if (m1().isEmpty()){
15 performSomeActivity(str2);
16 }
17 else{
18 performMaliciousActivity(str2);
19 }
20 }

Listing 1: Logic bomb identified by DIFUZER++ in
”com.xxooapp.bubbleshot” app.

Listing 1 provides an overview of a real-world example of
a logic bomb that DIFUZER++ detected in an application called
”com.xxooapp.bubbleshot.” This application is a member of the
”Bubble Shooter” game family and has a straightforward game-
play. However, an analysis of its code revealed that it attempts to
retrieve the Cell ID (CID) and Location Area Code (LAC) using
the getCid() and getLac() methods, respectively. In the
context of mobile network communication, the CID and LAC
are used to identify the specific cell tower to which a mobile
device is connected, which can help determine its approximate
location. This is highly unusual behavior for a simple arcade
game, highlighting the need for context-aware analysis.

1. Note that in case there is no false branch, Φc“H.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

In this example, the different parts of the SHSO, including
triggering condition checks, are split across methods m1 and
m2. The triggering condition check occurs in line 4, where m1
returns a string with the CID and LAC information only if the
getPhoneType() method returns 1, which corresponds to the
phone type of GSM (Global System for Mobile Communications).
If getPhoneType() returns any other value, an empty string
will be returned instead. In m2, the malicious behavior will be
activated only if the string returned by m1 contains the CID and
LAC values.

The challenge in detecting the logic bomb described above
is that traditional methods, such as rules or models, are not
reliable due to the absence of a formal definition of malicious
behavior. As a result, malicious code can easily evade most
dynamic analyses with little effort from malware authors. This
is because testing environments and sandboxes often return
default values for environment variables making it difficult to
detect the logic bomb [11]. For example, testing environments
may always return the same value for getPhoneType(), thus
failing to identify the malicious behavior. Besides the device’s
phone type, different environment values (e.g., sensors, settings,
GPS, remote values, etc.) can be used to trigger malicious code.

DIFUZER++ found a logic bomb that would constitute a
challenge to the existing state of the art. TRIGGERSCOPE [32]
cannot identify this logic bomb, as its heuristics are limited
to time-, location-, and SMS-related triggers (e.g., GSM Cell
values such as the value returned by getCid() or get-
Lac() are missed). Although HSOMINER [31] could detect
this logic bomb if its training set includes similar examples,
its tendency to flag a large number of HSOs („20% of apps)
makes manual checking a cumbersome task. In contrast,
DIFUZER++ offers a reasonable number of warnings to be
checked manually. Moreover, by taking into account the
category of an app, and thus, by flagging ”abnormal” behav-
ior wrt. the context of the app, we expect that DIFUZER++
can further reduce the number of false alarms (i.e., wrongly
detected logic bomb) than our initial tool DIFUZER.

3 APPROACH

Goal: With DIFUZER++, we do not aim at detecting any HSOs,
but only suspicious HSOs (SHSOs) for which the likelihood of
being logic bombs is high.
Intuition: As shown in previous studies [31], the number of
HSOs per app can be large, even in benign apps. This suggests
that although HSOs are ”sensitive” operations, most of them are
legitimate, i.e., they are used to implement common behavior. In
contrast, logic bombs are rare, especially in benign apps. The pri-
mary objective of DIFUZER++ is to identify abnormal instances
of HSOs (i.e., SHSOs), for which the likelihood of being logic
bombs is high. This is achieved through a context-aware anomaly
detection approach, utilizing specifically designed features.
Overview: In Figure 2, we provide an overview of the
DIFUZER++’s approach. The upper part illustrates the
Application Phase of DIFUZER++, which includes all the
steps executed whenever an application is given as input. In
contrast, the lower section of Figure 2 represents the DIFUZER++
Training Phase, which is performed only once to train multiple
context-aware anomaly detector models. The DIFUZER++
approach comprises three key modules.

‚ (1): SHSO entry-point candidates Identification.
‚ (2): Clustering.
‚ (3): Anomaly Detection.

These modules will be explained in detail in the following
subsections.

3.1 SHSO entry-point candidates Identification

Previous works [40], [41], [42], [43], [11] have shown that specific
values, such as system inputs and environments variables, are
often used to trigger HSOs. State-of-the-art approaches have
thus proposed to check whether the conditions of if statements
contain these sensitive data. To that end, they rely on symbolic
execution [32] or backward data-dependency graphs [31] that
could suffer from scalability problems. With DIFUZER++, we
propose to use taint analysis to track sensitive data values and
check if they are involved in conditional expressions.

Taint analysis tools generally track data from sources to sinks.
The implementation of FLOWDROID, a popular taint analysis
framework for tracking sensitive information, considers sources
and sinks at the method level. In our case however, sinks are
fine-grained code locations, which are conditional expressions
of if statements. This requires for DIFUZER++ to instrument apps
in order to insert dummy method calls that will make the apps
ready for analysis by FLOWDROID (cf. Section 3.1.2). Moreover,
sources can be method calls or data field accesses. To build the set
of source and sinks we propose to make a systematic mapping
(cf. Section 3.1.1) that explores internal and external system prop-
erties and their associated APIs as well as environment variables.

3.1.1 Systematic mapping toward defining sources
As already explained, a first step is to track sensitive values.
In this work, these values are derived from particular source
methods. Then, if a sensitive value falls into an if statement,
we consider the condition as a potential SHSO entry-point.
This section will describe how we gathered a comprehensive
list of source methods used for the taint tracking phase. Note
that we did not rely on the reference sources list produced by
SUSI [44] since it has been shown that most of the methods
are inappropriate for tracking sensitive data, and lead to a high
amount of false-positives (e.g.,ą80%) [45], [46], [47].

In general, decisions on whether to trigger SHSOs or not
are taken on system properties [40], [42], [48], [31]. Hence, we
performed a systematic mapping of the Android framework
from SDK version 3 to 30 (versions 1 and 2 were unavailable)
to gather a comprehensive list of source methods. In particular,
since in the case of Android apps, system properties can be
derived from the device’s internal and external properties, we
inspect the successive versions of the framework to identify
various means to access these properties.

TABLE 1
Examples of sensitive sources

Device
Internal External

System Content Build SIM Internet GPS

Examples Sensors, Call Logs, Model, Phone call, Parameters, Latitude,
Camera Contacts Hardware SMS Content Longitude

In Table 1, we enumerate the different property types (with
examples) on which we reasoned to retrieve sensitive sources,
which are classically focused on in the literature [40], [42], [48],
[31]. We follow a systematic process to perform the retrieval of

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Control Flow
Analysis Taint Tracking

Instrumentation

Systematic
Study

Libraries

ICFG

Cluster
Assignment

Prediction of
Outliers

Feature Extraction

Feature
Vectors

Cluster n

Sources

SHSOs
Potential Logic Bombs

Model n

Triggers

Module (2): Clustering

Module (1): SHSO Entry-
Points Detection Candidates Module (3): Anomaly Detection

Application Phase

Model Choice

Feature
Extraction

Clustering Training

Model 1

White list of
methods

Cluster 1

Training
Set

Feature
Vectors

Feature
Extraction Training

Model 2
Cluster 2

Feature
Vectors

Feature
Extraction Training

Model 49
Cluster 49

Feature
Vectors

. . .

Training Phase

Triggers
Extraction

Triggers
Extraction

Triggers
Extraction

.

Triggers

Triggers

Triggers

. . .

The app is assigned
to one of the clusers
previously identified.

The anomaly detection model is
selected from the models we previously
trained based on the assigned cluster.

Fig. 2. Overview of the DIFUZER++ approach on a given APK file.

sources from the given property types: we first extracted patterns
from the different ways to access the aforementioned properties.
Then, we used those patterns to automatically discover the sensi-
tive sources that we make available to the research community in
the DIFUZER++ project’s repository. In the following, we further
detail the internal and external properties that we consider.
Internal: In the case of internal properties, a developer can get
sensitive information of the device from three main channels: 1)
System properties, 2) Content in internal databases, and 3) In-
formation from BUILD class (see Table 1). In the following, we
describe how we obtain a list of sources for those three channels:
❶ System properties: While developing an Android app,
developers have access to several useful APIs. In this case,
the most interesting is android.content.Context.get-
SystemService(java.lang.String) [?] which returns
the system-level handler for a given service. The service is
described by a string given as parameter to getSystem-
Service method. The Context class gives developers
access to pre-defined constants (e.g., SENSOR_SERVICE).

In fact, every constant contains the name of the service
with "_SERVICE" appended to it. The return value type
of the getSystemService method call is derived from
the constant name (e.g., SENSORSERVICE will give a
SensorManager [?]) which in turn can be used to get a object
whose type is also derived from the constant name (e.g., a
SensorManager object can be used to obtain a Sensor object [?]).

We used this pattern to compile our list of sensitive sources for
the System properties. More specifically, we verify if the class
exists in at least one SDK version for each class obtained. If
this is the case, we list the methods of the class and keep only
the ”getter methods”, i.e., those starting by ”get” or ”is” (e.g.,
methods such as getId() or isWifiEnabled()).
❷ Content in internal databases: To access databases
fields, one has to perform a query which returns a
android.database.Cursor [?] object. This object is
then used to iterate over the result of the query. Hence, to get
sensitive source methods related to content in internal databases,
we applied the same process as for system properties (i.e., to
retrieve the ”getter” methods) but on the Cursor class.
❸ Build class: The Build class [?] allows developers to
access information about the current build of the device from
its fields. For instance, one can get the brand associated with the
device by accessing Build.BRAND. Note that our objective is
to retrieve a list of source methods. However, the information a
developer can get from the Build class can only be retrieved
from class fields, not method calls. Consequently, in Section 3.1.2,
we will explain how we instrument the app under analysis to
add method call statements representing Build field accesses.

We gathered a list of 618 unique methods for internal values.
External: In the case of external properties, a developer can
get sensitive information from three channels: 1) SIM card, 2)
Internet Connection, and 3) GPS chip. The process to collect

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

the source methods is similar to the one followed with Cursor
class, except we do not know in advance the name of the classes
to inspect. Therefore we relied on a heuristic to identify such
classes: for each SDK version, we listed all the classes and kept
only those with class names containing the following words:
”Sms, Telephony, Location, Gps, Internet, and Http”. Once the
classes were retrieved, we listed the methods for each class and
kept those starting by ”get” or ”is”. The intuition is the same
as in the case of internal sources.

We gathered a list of 794 unique methods for external values.
Finally, after combining sensitive sources from internal and
external values, our list contains 1285 unique methods (127
duplicates).

3.1.2 Instrumentation

Performing taint tracking, as briefly described in Section 2,
consists of a data-flow algorithm that propagates the taint from
a source method to a sink method.
Sinks related challenge: We remind that one objective
of DIFUZER++ is to identify SHSOs’ trigger entry-points.
Consequently, the taints that DIFUZER++ tracks are supposed
to fall into if statements. However, being not a method call,
an if statement cannot be considered as a sink when using
state-of-the-art static taint analyzers [49], [50], [51]. A concrete
example of what DIFUZER++ tracks is given in Listing 2. On line
7, countryCode variable is tainted from getNetworkCountryIso()
source. This value is then used (line 9) to perform a test and
trigger malicious activity (line 9). As an if statement is not
considered a sink, a flow cannot be found.
1 public void method() {
2 String b = Build.BRAND;
3 + b = BuildClass.getBRAND();

// dummy method call for field accessãÑ

4 String p = Context.TELEPHONY_SERVICE;
5 Object o = this.getSystemService(p);
6 TelephonyManager tm = (TelephonyManager) o;
7 String countryCode = tm.getNetworkCountryIso();
8 + IfClass.ifMethod(countryCode,

"RU"); // dummy method call for if statementãÑ

9 if(countryCode.equals("RU")){
performMaliciousActivity(); }ãÑ

10 }

Listing 2: Example of app instrumentation performed by DI-
FUZER++ (Lines with ”+” represent added lines).

Our approach overcomes this limitation by instrumenting
apps. To accomplish this, the app code is first transformed
into Jimple [52], the internal representation of Soot [53]. Then,
DIFUZER++ iterates over every condition of the app, and
for each condition, DIFUZER++ inserts a dummy method
ifMethod with the variables involved in the condition as
parameters. This ifMethod() is static and declared in
a dummy class IfClass that contains all instrumented
methods related to conditions. See line 8 in Listing 2.

Once the instrumentation is over, we dynamically register
every newly generated method calls as sinks to FLOWDROID.
Sources related challenge: As described in Section 3.1.1, we
consider, in this study, Build class’ fields as sources. Since
field accesses are not method calls, we follow the same process
as for if statements to insert dummy methods. More specifically,
DIFUZER++ generates a static method call on-the-fly represent-
ing a field access from the Build class. Listing 2 depicts an
example of this instrumentation process, where the dummy
method getBRAND() of the dummy class BuildClass is

inserted in line 3. Furthermore, newly generated method calls
are registered as sources for taint tracking.

3.2 Module (2): Clustering
This section introduces DIFUZER++’s second module, namely
the clustering module. As our final objective is to train multiple
context-aware anomaly detection models on sets of similar apps,
we began by forming clusters of apps (see Section 3.2.4), for
each of which an anomaly detection model will be trained (see
Section 3.3.3, enabling the engines to learn legitimate behavior
while considering the app’s context. Once the clusters have been
formed, the trained clustering model is saved for future use
during the application phase. Indeed, when a new application
needs to be analyzed, it will be fed to the saved clustering model
to determine the cluster to which it is most closely related. This
identification will be crucial in the subsequent third module, as
it will enable the selection of the most appropriate model for
the anomaly detection phase.

3.2.1 Why a context-aware analysis?
Providing context can be essential in enhancing the accuracy of
Anomaly Detection models as it better helps distinguish normal
from abnormal behavior. A specific behavior can be considered
normal for one app but very unusual for another. For instance,
a navigation app’s use of the getLastKnownLocation()
method to access position data is normal, whereas the same
behavior would be considered unusual for a calculator app.
Previously, in Section 2, we presented a concrete example of
a logic bomb related to mobile network communication that
we discovered within a simple arcade game. Seeking out such
contextually unusual behavior can enhance anomaly detection
performance, emphasizing the necessity of context-aware
analysis. Moreover, previous research has demonstrated the
benefits of grouping similar apps to detect malicious behavior
[33] and characterize malicious apps using their data flow
signatures [34]. So, we decided to employ the same approach
for DIFUZER++ by clustering apps into groups of similar apps
and training an anomaly detection model for each group.

3.2.2 Categorization Techinques.
The most straightforward method for grouping apps based on
their similarity is to consider their assigned Google Play Category.
However, several research papers have consistently highlighted
the inadequacy of Google Play’s current app categorization
system. [54], [55], [56], [57]. As a result, we have opted to explore
and compare alternative categorization methods instead of solely
relying on the Google Play Category. In our extensive study on
Android app categorization [54], we conducted a comprehensive
evaluation of various categorization methodologies present in
the existing literature. Our analysis underscored the remarkable
superiority of approaches that utilize app descriptions, in
contrast to those exclusively reliant on data extracted from the
APK file, such as code information or XML values.

In addition, our paper [54] introduced a novel description-
based approach called G-CatA, demonstrating its substantial
advantages in improving tools reliant on app categorization.
G-CatA, an abbreviation for GPT-based CATegorization of Android
apps, leverages OpenAI’s powerful GPT-based text embedding
models [58] to effectively process and represent app descriptions,
using the cl100k_base tokenizer i.e., the same tokenizer

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

employed in ChatGPT 3.5 and ChatGPT 4 [59]. As a result, to
implement context-aware anomaly detection in DIFUZER++, we
opted to compare well-established strategies, such as applying
❶ LDA and ❷ K-Means to the app descriptions, along with our
innovative ❸ G-CatA approach and ❹ Google Play Categories.

TABLE 2
Apps filtered for each step of the dataset creation.

#Apps
Filtering from ANDROZOO dataset 905929
Retrieving categories and descriptions 476302
Removing non English descriptions 375135

3.2.3 Dataset Creation
Since anomaly detection models are designed to comprehend
the ”normal” behavior of apps, a set of ”normal” apps is
necessary. To achieve this, we rely on goodware apps, aligned
with the literature [35]. As mentioned earlier, in our approach
to clustering apps, we rely on both their descriptions and
Google Play categories. This implies the necessity of having
apps with available descriptions and categories. To accomplish
this, we collected all the goodware apps, defined as those with
a VirusTotal score of 0, from the ANDROZOO [3] dataset over
the past five years, specifically those from Google Play. (Since
Google Play displays apps’ descriptions and categories). In total,
this resulted in 905930 apps. We used the google-play-
scraper library [60] to obtain the Google Play category and
description of each app. Furthermore, we retained only apps
with English descriptions, using the langdetect library [61]

Table 2 provides a breakdown of the app count at
different stages of our dataset creation process. Our final
dataset comprises 375135 apps spanning across 49 distinct
Google Play categories. A comprehensive list of these 49
categories is available on our repository in a file named
googlePlayCategories.csv.

On average, each category contains approximately 7655
apps, although there is substantial variation, reflected in
a significant standard deviation of 7185. For instance, the
BUSINESS category has the most apps (33330), while the
COMICS category has the fewest (409). This underscores the
importance of not relying solely on the Google Play category
to cluster apps into similar groups, as it can introduce some bias.

3.2.4 Training Phase
After assembling the dataset of goodware apps, our initial step
involved preprocessing their descriptions using standard NLP
techniques, such as removing non-textual items, stop-words
(common words such as ’the,’ ’is,’ ’at,’ etc.), and stemming (a
process of identifying the root of a word, such as ’fishing,’ ’fished,’
and ’fisher,’ to match the common root ’fish’) [33], [62], [63].
Following the preprocessing of app descriptions, we utilized the
LDA and K-means implementations from the scikit-learn
library [64] in addition to the G-CatA approach (which is
described in detail in our paper [54]) with an input of 49 as
the number of clusters. We matched the number of clusters to
the same number of Google Play categories to better compare
the four approaches. However, further investigation into the
optimal number of clusters may be considered for future work.

After categorizing the apps into 49 distinct groups, the
clustering model is saved using the joblib.dump method

from the joblib library[65]. When a new app is analyzed
during the DIFUZER++ Application Phase, it will be possible
to reload the model using the joblib.load method to
determine which of the 49 clusters the analyzed app belongs
to. This will be done after preprocessing its description in the
same way as the apps in the training set.

3.3 Module (3): Anomaly detection
This section presents DIFUZER++’s third module, which
performs anomaly detection. After grouping the applications
into clusters based on their similarities, as detailed in Section
3.2, the next step involves the training of multiple anomaly
detection models, with one dedicated to each cluster. The
trained models are stored for future use in the analysis of new
applications. Specifically, during the application phase, a single
model is selected from the saved models based on the output
of DIFUZER++’s second module, to ensure a context-aware
analysis. After selecting the appropriate model, the features
extracted from the analyzed app will be fed to the model, which
will output a list of potential logic bombs.

3.3.1 Why a One-Class SVM?
A classical classification problem requires samples from positive
and negative classes to build a model, which is then used to
assign labels to test instances [66]. This induces possessing a
reasonable amount of samples from two classes, which is not
the case in our study. Indeed, the SHSO detection problem is
challenging, and to the best of our knowledge, there is no ground
truth made publicly available. Thus, using supervised learning
in our study is not practical and presents limited feasibility.

Therefore, we decided to rely on an unsupervised learning
technique to detect SHSOs, particularly on a One-Class Support
Vector Machine (OC-SVM) machine learning technique. An SVM
algorithm was chosen due to its ability to generalize [67] and its
resistance to over-fitting [68]. The general idea of OC-SVM is to
identify the smallest hyper-sphere to include most of the samples
of the positive samples [69]. A sample considered as an outlier
by the model means the data-point is not in the hyper-sphere.

3.3.2 Features extraction
As already said, the third DIFUZER++ module’s objective is to
detect abnormal triggers with the intuition that these triggers
are HSOs for which the likelihood of being a logic bomb is high,
namely SHSOs. This module implements an OC-SVM algorithm
which takes as input feature vectors computed from the triggers
previously extracted from the entry-points yielded by the first
module of DIFUZER++ (cf. Figure 2).

To engineer anomaly detection features, we reviewed
surveys [24], [70] and related-papers [71], [72], [73], [31]
discussing Android malware and investigated the techniques
used by malware writers to hide malicious code within apps.
Eventually, we identified nine unique trigger/behavior features
that are described in the following.

In the remainder of this section, we consider a trigger
τ“pc,Tc,Φcq and its guarded code Γ“TcYΦc (cf. Section 2).

For a given trigger, DIFUZER++ builds a feature vector
v“ăS,N,D,R,B,P,M1,S1,Jąwhere:
S: Number of sensitive methods used in guarded code.
Intuitively, this feature represents how much a trigger controls
the execution of sensitive methods. Indeed, while HSOs guard

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

the execution of sensitive operations for performing sensitive
activities [7], benign triggers, in the general case, perform benign
activities, i.e., invoke few sensitive methods, or not at all. To
retrieve this value, DIFUZER++ iterates over every statement
of Γ and recursively checks whether a sensitive method is called
or not. For this purpose, we gathered a list of sensitive APIs
constructed in previous work [74].
N: Is native code used in guarded code? Since analyzing
native code is more challenging than Java bytecode [75],
Android malware developers tend to hide malicious code from
automated analyses in native code [71], [72]. Hence, this feature
is a boolean value that, when set to 1, means native code is used
in Γ, 0 otherwise.
D: Is dynamic loading used in guarded code? Dynamic class
loading is not exclusively used in malware. However, as malware
is becoming increasingly sophisticated, they use built-in capabil-
ities like dynamic loading to hide from automated analyses [73].
Consequently, likewise native code, this feature is a boolean
value set to 1 if dynamic loading is used in Γ, 0 otherwise.
R: Is reflection used in guarded code? Android malware
writers tend to use more and more reflection-based code [73]
since most of the state-of-the-art techniques overlook this
property due to the challenging task of resolving it. Therefore,
this feature is set to 1 if reflection is used in Γ, 0 otherwise.
B: Does guarded code trigger background tasks? Android
apps rely on the Service component to run background tasks.
Hence, with this feature, we aim at capturing the fact that the
app under analysis performs stealthy operations without user
knowledge. The intuition here is that SHSOs’ role is to hide code
both from security analysts and end-users (e.g., in the case of
a logic bomb). This feature is set to 1 if background services are
triggered in Γ, 0 otherwise.
P: Are parameters of condition used in guarded code? This
feature captures the dependency of a condition to its guarded
code. The hypothesis is that, in the case of SHSOs, the guarded
code does not use values used in the condition since they
represent different behaviors. To achieve this, DIFUZER++
performs a def-use analysis of the guarded code to verify if any
variable used in the condition is used before being assigned a
new value. If this is the case, the feature is set to 1, 0 otherwise.
M1: Number of app methods called only in guarded code.
With this attribute, we attempt to uncover the number of
methods defined in the app called only in the guarded code of
a trigger. The rationale is that app methods that are only used
under a specific circumstance are likely to be defined only for
this specific circumstance, representing hidden behavior [32].
To retrieve this number, DIFUZER++ queries the call-graph
(built using SPARK [76] algorithm) for each method call in the
guarded code to verify if it has only one incoming edge (i.e., it
is only called within the current method).
S1: Number of sensitive methods called only in guarded code.
In the same way as M1, we aim to capture the number of sensi-
tive methods only used in the guarded code of a given trigger.
J: Behavior difference between branches. Intuitively, two
branches of an SHSO should be noticeably different. Indeed,
of the two branches, one is considered the normal behavior
(no or few sensitive operations) if the condition is not satisfied
and the other as the sensitive behavior (sensitive operations)
if the condition is satisfied [31]. Therefore, to compute this
difference, DIFUZER++ first inter-procedurally retrieves sensitive
method calls in both branches of a given trigger. Let XTc and

XΦc
respectively be the sets of sensitive methods in the true

and the false branch of a trigger. Therefore, to compute this
difference of the two branches, DIFUZER++ relies on the Jaccard
distance: DjpXTc

,XΦc
q “ 1´

|XTcXXΦc |
|XTcYXΦc |

, which characterizes
the behavior difference of the two branches. A value close to
1 means that both branches are dissimilar.

Training Set

49 clusters

Latent Dirichlet Allocation

. . .

49 models
. . .

49 clusters

G-CatA

. . .

49 models
. . .

49 clusters49 clusters

Google Play Category

. . .

49 models
. . .

KMeans

. . .

49 models
. . .

Fig. 3. Building of the anomaly detection models.

3.3.3 Training Phase

As depicted in Figure 3, we trained a total of 196 models, 49 for
each of the four approaches we used for clustering (see Section
3.2.2). The first step consisted of extracting the feature vectors
from all the apps contained in our dataset of goodware apps,
i.e., the one described in Section 3.2.3. Then, for each group of
apps, we randomly selected 10000 feature vectors from the ones
extracted from apps belonging to the same group. These feature
vectors were then fed into a One-Class SVM model to learn what
constitutes normal behavior, using the implementation provided
by the scikit-learn library [64]. To ensure that the selected
training set does not bias the trained model’s performance,
we split it and compute Accuracy in 10-fold cross-validation.
Overall, we achieve a stable Accuracy of 98.56% on average.

4 EVALUATION

We aim to answer the following research questions to assess the
efficiency of DIFUZER++ and demonstrate that context-aware
analysis provides superior precision in detecting logic bombs
compared to our baseline approach DIFUZER.

RQ1: How does DIFUZER, our baseline approach without
context-aware anomaly detection, perform? We address this
question in 4 sub-questions:

‚ RQ1.a: What is the performance for detecting SHSOs in
Android apps?

‚ RQ1.b: Are SHSOs detected by DIFUZER likely logic
bombs?

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

‚ RQ1.c: How does DIFUZER compare against
TRIGGERSCOPE, a state-of-the-art logic bomb detector?

‚ RQ1.d: From a qualitative point of view, does DIFUZER
lead to the detection of non-trivial triggers/logic bombs?

RQ2: How does DIFUZER++, our novel approach with
context-aware anomaly detection, perform? We address this
question in 2 sub-questions:

‚ RQ2.a: What is the performance for detecting SHSOs in
Android apps?

‚ RQ2.b: Can DIFUZER++ find more logic bombs in the wild
when the context is considered?

4.1 RQ1: How does DIFUZER, our baseline approach
without context-aware anomaly detection, perform?

In this section, we evaluate our approach to detect SHSOs
and logic bombs without context-aware analysis. Up until
now, as outlined in Section 3.2.4, DIFUZER has been trained
using a context-aware methodology. Therefore, to evaluate the
effectiveness of DIFUZER without employing a context-aware
approach, it is necessary to train an OC-SVM anomaly detector
on a dataset of unrelated apps. Therefore, we randomly
chose 10000 goodware (i.e., VirusToal [77] score = 0) from
ANDROZOO [3]. Then, for each of these apps, we applied
DIFUZER to extract a feature vector for each app’s condition.
Afterward, we randomly chose 10000 feature vectors2 from
those yielded by DIFUZER, which we labeled as positive (i.e.,
part of the normal behavior). We then trained a One-Class
Classification-based anomaly detector. To ensure that the selected
training set does not bias the trained model’s performance,
we split it and compute Accuracy in 10-fold cross-validation.
Overall, we achieve a stable Accuracy of 99.91% on average.

4.1.1 RQ1.a: Suspicious Hidden Sensitive Operations in the
wild
In this section, we assess the efficiency of DIFUZER to find
SHSOs on a dataset of malicious applications.
Dataset. To the best of our knowledge, there is no SHSO
ground-truth available in the literature. Consequently, in this
study, we considered 10000 malicious Android apps as our
malicious dataset. These apps were released in 2020, collected
from the ANDROZOO [3] repository, and have been flagged as
malware by at least five antivirus scanners in VirusTotal.

We contacted the authors of state of the art approaches (e.g.,
HSOMINER [31], and TRIGGERSCOPE [32]) to get their artifacts
(datasets and tools) for comparative assessment. Unfortunately,
no artifact was made available to us.
Libraries. It has been shown in the literature [78], [79] that
library code can affect analyses performed over Android apps
since it often accounts for a larger part than the app’s core code.
Consequently, in this study, we considered two cases: (1) with-lib
analysis (i.e., we consider the entire app code including library
code); (2) without-lib analysis (i.e., we consider only developer
code). To rule out libraries, we rely on the state-of-the-art list
available in [78].
Post-Filter. As a precaution, before analyzing the results without
libs, we listed the classes in which DIFUZER found potential

2. The number of extracted vectors is orders of magnitude higher.
However, for efficiency, we validated that a random set of 10000 vectors
yields an acceptable performance.

0 10 20 30 40 50 60

With
libraries

Without
libraries

Fig. 4. Distribution of the number of SHSO(s) per app in analyses with and
without libraries (only apps with at least one SHSO are considered).

sensitive triggers to search for redundant classes that could
indicate libraries. We were able to filter out 19 additional libraries
that were not listed in the list we used and provided by [78].

In the following, when referring to the analysis without
libraries, we consider the 19 libraries previously presented as
well as the libraries of the list in [78] as filtered. It accounts for
a total of 5982 library classes and packages filtered.
Efficiency of Detecting SHSOs. We recall that DIFUZER is
targeted at detecting SHSOs. While in RQ1.b we investigate the
likelihood for these SHSOs to be logic bombs, we first investigate
the efficiency (with RQ1.a) of DIFUZER in the detection of
SHSOs. We further perform an ablation study to highlight the
performance of the anomaly detection module.

In Table 3, we report the results of applying DIFUZER (with
the anomaly detection step activated) on our 10000 malware
dataset. When analyzing the entire apps, DIFUZER detects at
least one SHSO in 339 apps (3.39%). Overall, DIFUZER detects
5575 SHSOs in these 339 apps leading to an average number
of 16.4 SHSOs per app. In comparison, when only the app
developers’ code is considered, DIFUZER detects at least one
SHSO in 259 apps (2.59%), with a total number of 2435 SHSOs
detected and an average number of 8.2 SHSOs per app. We
note that the 3437 (5575-2435) SHSOs that are not in the app
developer code, are actually detected in 68 libraries suggesting
that only a few libraries contain SHSOs . Figure 4 further details
the distribution of detected SHSOs per apps.

These first results show that SHSOs indeed exist in malicious apps,
but in relatively low number (in around 3% of the apps). However,
when SHSOs are present in an app, they are not rare (on average,
about 8 SHSOs per app in the developer code). Finally, SHSOs are
more prevalent in library code than in app developer code, but only
a few libraries contain SHSOs.

Table 3 also reports the average numbers of triggers before
and after applying the anomaly detection step (i.e., the second
module of DIFUZER). Interestingly, we can see that this anomaly
detection drastically reduces the number of triggers that are
considered as SHSOs. Indeed, when considering the 10000 apps,
there are on average 174336{10000« 17.43 and 146018{10000«
14.60 triggers per apps (with or without libraries respectively)
generated by the first module of DIFUZER, i.e., by the taint
analysis step. After the anomaly detection step, these numbers
drop to 5575{10000« 0.56 and 2435{10000« 0.24 respectively,
corresponding to a decrease of 96% and 98% respectively.

These results show that the anomaly detection step has a significant
impact on the number of detected SHSOs by significantly reducing
the search space of triggers by up to 98%. This search space reduction
is key when the ultimate goal is to detect malicious code and to support
security analysts manual inspection (cf. Section 4.1.2).

We further inspect the SHSOs detected by DIFUZER by
focusing on the app developer code only (we do not consider
library code). Table 4 lists the top 10 types of trigger that DIFUZER
was able to discover. The second column gives some examples
of methods considered sources for the taint tracking to uncover
SHSO entry-points. We note the diversity of types of triggers that

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 3
Results of the experiments executed on 10000 malware with and without

taking into account libraries.

Analysis with libs Analysis without libs
Number of apps with SHSO(s) 339 259
Number of SHSOs 5575 2435
Number of SHSOs/app 16.4 8.2
Average # triggers (i.e., before Anomaly detection) 17.43 14.60
Average # SHSOs (i.e., after Anomaly detection) 0.56 0.24
Mean analysis time 35.63 s 33.54 s

developers use. For instance, a developer can decide to trigger (or
not) the sensitive code if: (Database trigger type) specific values
are present in databases (e.g., contacts, messages); (Internet trig-
ger type) external orders say so; (Build, Telephony, and Camera
trigger types) the device is not an emulator; (Connectivity, and
Wi-Fi trigger types) the device has Internet access; (Location
rigger type) the user is in a pre-defined location; Note that the
methods in Row 3 have been dynamically generated by DIFUZER
during instrumentation to track the Build class’s field values.

TABLE 4
Top ten trigger types discovered by DIFUZER in the developer code. (T. =

Triggers)

Trigger Type Examples of methods # T. Trigger Type Examples of methods # T.
Database getString, getInt, getCount 785 Location getLastKnownLocation, getLongitude 84
Internet getResponseCode, getResponseMessage 715 Wi-Fi isWifiEnabled, getConnectionInfo 76
Build getMODEL, getMANUFACTURER 374 Power isScreenOn, isInteractive 47
Telephony getDeviceId, getNetworkOperatorName 97 Audio getStreamVolume, isMusicActive 37
Connectivity getActiveNetworkInfo, getNetworkInfo 88 Camera getCameraIdList 28

Regarding the component types in which DIFUZER found
SHSOs, 90% of SHSOs are in methods of ”normal” classes, i.e.,
not Android components. SHSOs are found in Activities
in 9% of the cases. However, they are rarely found in Services
and Broadcast Receivers (less than 1%).
Manual Analyses. Since static analysis approaches often suffer
from false alarm issues, i.e., they report a large proportion of false-
positive results, we decided to verify the detection capabilities
of DIFUZER manually. To that end, the authors of this paper
randomly selected a statistically significant sample of 102 apps
out of the 259 apps in which SHSOs exist in developer code, with
a confidence level of 99% and a confidence interval of ˘ 10%.
Only one sample was found to be a false-positive result. Indeed
this app verifies if it is running in an emulator by comparing
Build.PRODUCT, Build.MODEL, Build.MANUFACTURER,
and Build.HARDWARE against well-known strings such
as ”generic”, ”Emulator”, ”google sdk”, etc. This test seems
sensitive, but the guarded code displays the following message
to the user: ”Scooper Warning: App is running on emulator.”.
Therefore, DIFUZER achieves a precision of 99.02 % to find
Suspicious Hidden Sensitive Operations on this dataset. We release
the annotated list of 102 apps that were manually checked for
transparency in the project’s repository.
Analysis Time. The last row in Table 3 reports DIFUZER
analysis time. DIFUZER outperforms state-of-the-art trigger
detectors with an average of 33.54 s per app (35.63 s for the
analysis with libraries, with an average DEX size of 7.03 MB
per app), making DIFUZER suitable for large-scale analyses. In
comparison, state-of-the-art tools such as TRIGGERSCOPE [7]
and HSOMINER [31]) require 219.21 s and 765.3 s per app
respectively. Note that 85.42% (i.e., 28.65 seconds on average) of
this time is reserved for the taint analysis. Also, 24 apps (0.24%)
reached the timeout (i.e., 1 hour) before the end of the analysis.

RQ1.a answer: DIFUZER, without a context-aware anomaly
detector, detects SHSOs in Android malware with high preci-
sion, i.e., 99.02 % in less than 35 seconds on average. Among

the average 14.6 HSOs identified in an app based on triggers
spotted by static taint analysis, only 2% are suspicious
according to anomaly detection, which shows that DIFUZER
is effective in reducing the search space for manual analysis.

4.1.2 RQ1.b: Are SHSOs detected likely to be logic bombs?
x

Until now, we have shown that DIFUZER is effective in
detecting SHSOs. From a security perspective, however, we
must further show that these SHSOs are actually malicious.
In other words, are these SHSOs likely to be logic bombs.
Unfortunately, such assessment is challenged by the lack of
ground truth in the literature. We therefore require extra manual
analysis effort of reported results.

Initial Manual Analysis: In previous Section 4.1.1, we
present our manual analysis of SHSOs detected in 102 apps.
During this analysis, we further checked if the detected SHSOs
contain malicious code. In particular, for each app under
analysis, we gathered information about the reason it was
flagged by antiviruses (e.g., on VirusTotal). Then, in the guarded
code of the potential SHSO found by DIFUZER, we looked
for malicious behavior matching our information previously
gathered. For instance, if: (1) an app is labeled as being a trojan
stealing the device’s information; (2) the potential SHSO is
performing emulator detection (e.g., calling System.exit()
method if the device is running in an emulator); and (3) the
behavior exhibited in the code guarded by the condition
detected by DIFUZER is gathering the device’s information (e.g.,
unique identifier, current location, etc.) and sending it outside
the device, the SHSO is considered a logic bomb.

Eventually, 30 apps (i.e., 29.7%) were manually confirmed to
be logic bombs, i.e., the SHSOs were triggering malicious code.

Semi-Automated further Analysis: Manual investigation
is time-consuming. This is the reason why we inspected 102
apps and not all 259 apps reported to having at least one SHSOs
within the developer code parts. To quickly enlarge the set
of identified logic bombs, we decided to follow a simple but
efficient process. It is known that malicious developers often
reuse the same piece of code in different apps [70]. Therefore,
for each already identified logic bomb, we search for similarities
(i.e., SHSOs found in the same class name, same method name,
and the same type of trigger used) in SHSOs contained in
the 157 (259´ 102) remaining apps. Our analysis yielded 16
additional apps containing logic bombs that were manually
verified and confirmed. Eventually, our logic bomb dataset,
called DATABOMB, contains 46 Android apps, each with an
identified logic bomb. We believe this dataset to be useful to the
community to further improve logic bomb detection in Android
apps. We made it publicly available in the project’s repository.

Discussion about HSO, SHSO and Logic Bomb: In the
literature [31], [32], HSO is consistently defined as a sensitive
operation that is hidden by specific triggering conditions.
Nevertheless, the notion of “sensitive operation” is not clearly
delineated, which challenges comparison across approaches.
In our work, we postulate that while detecting HSOs is an
important first step, it is not enough to help security analysts.
Indeed, as shown by our manual analysis, a large proportion
of HSOs are indeed sensitive but not necessarily suspicious. As
a result, most of the detected HSOs are legitimate and do not
require any inspection effort from security analysts.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

In this context, if the goal is to detect real security issues
and reduce the burden of security analysts, a tool such as
HSOMINER [31] which detects HSOs in 18.7% of apps within a
set of over 300000 apps (including malicious and benign apps)
appears to be unpractical. In contrast, DIFUZER detects suspicious
HSOs in 3.39% of the analyzed apps (when libraries are consid-
ered), and our manual analyses confirm that in about 30% of the
apps, these SHSOs are logic bombs, making the work of security
analysts easier. Though both HSOMINER dataset and our dataset
are different (we were not able to get the HSOMINER’s authors
dataset), if we compare the 18.7% of apps with HSOs reported
by HSOMINER, with the 3.39% reported by DIFUZER, we can say
that DIFUZER reduces the search space by up to 81.9% (p18.7´
3.39qˆ 100

18.7“81.9) to accelerate the identification of logic bombs.

RQ1.b answer: By triaging HSOs to focus on suspicious
ones based on anomaly detection, DIFUZER was able to re-
veal 30 logic bomb instances in a sampled subset of malware
apps having SHSOs. Besides, we release the 46 apps in which
we found logic bombs in an annotated dataset of Android
apps confirmed to be using logic bombs, called DATABOMB.

4.1.3 RQ1.c: How does DIFUZER compare against
TRIGGERSCOPE, a state of the art logic bomb detector?

x
In the absence of a public ground-truth for Android logic

bomb instances, we perform experimental comparisons against
the TRIGGERSCOPE state-of-the-art detector in the literature
that relies on static analysis. Although TRIGGERSCOPE is not
publicly available, we are able to build on a replication based
on technical details provided in TRIGGERSCOPE paper [32].
As TRIGGERSCOPE does not consider the context of analyzed
apps, we have chosen to compare it solely against our baseline
approach DIFUZER, rather than DIFUZER++, which also takes
into account contextual information.

Overall, our approach differs from TRIGGERSCOPE’s by three
major differences: ❶ Technique: TRIGGERSCOPE uses symbolic
execution to tag variables with a limited number of values,
we use static data flow analysis; ❷ Target: TRIGGERSCOPE
detects hidden sensitive operations (i.e., whether at least one
sensitive method is called within the guarded code of a trigger),
whereas DIFUZER ’s goal is to detect suspicious hidden sensitive
operations (i.e., the guarded code is sensitive and implements
an abnormal behavior); and ❸ Approach: TRIGGERSCOPE main-
tains a list of sensitive methods and uses the occurrence of any
of them as the sole criterion, DIFUZER implements an anomaly
detection scheme where the presence of sensitive methods is
one feature among many others. While TRIGGERSCOPE and
DIFUZER both rely on list of sources to find triggers of interest,
TRIGGERSCOPE handpicks a limited set of methods, whereas
DIFUZER ’s list is based on a systematic mapping (cf. Section 3.1.1
- we leverage patterns to systematically search for sources).
Does TRIGGERSCOPE identify as logic bombs the SHSOs
flagged by DIFUZER?

We applied TRIGGERSCOPE on the subset of 102 apps where
DIFUZER identified a SHSO (cf. Section 4.1.2). The objective is
to check whether TRIGGERSCOPE is more or less accurate than
DIFUZER. Typically, among the 30 logic bombs that have been
manually verified as true positives, how many are detected by
TRIGGERSCOPE. Similarly, does TRIGGERSCOPE detect logic

bombs (manually verified as true positives) that DIFUZER could
not. Figure 5 illustrates the differences in logic bomb detection
(left figure). Overall:
‚ TRIGGERSCOPE did not flag any logic bomb that DIFUZER

did not.
‚ TRIGGERSCOPE could only detect 2 logic bombs among the

30 logic bombs that DIFUZER correctly identified.
‚ As reported in the literature [80], TRIGGERSCOPE exhibits a

very high false positive rate at 94.6%: 35 among its 37 detec-
tions are false positives (the rate for DIFUZER is 70.6%, 72/102).

Does DIFUZER fail to flag as SHSOs the logic bombs detected
by TRIGGERSCOPE?

We recall that, contrary to DIFUZER, which builds on
anomaly detection, TRIGGERSCOPE is restricted to detect
only logic bombs where the trigger involves location-, time-,
and SMS-related properties. Aligning with the assessment
of DIFUZER, we applied TRIGGERSCOPE on our set of 10000
malware. TRIGGERSCOPE reported 591 logic bombs in 149
apps („4/app): 98.6% of the reported cases are time-related.
In the absence of ground truth, we again propose to manually
verify a random sample set of reported logic bombs. To
facilitate comparison with DIFUZER, we sample 102 apps (we
simply considered the same number of apps as in the previous
question), and manually confirmed that for 97 (95.1%) apps, the
reported logic bombs are false positives. In 5 (4.9%) apps, we
found at least one reported logic bomb to be a true positive.

We further check whether on these 102 apps where
TRIGGERSCOPE reported a logic bomb, DIFUZER also flags any
case of SHSO: DIFUZER flagged 68 apps as containing SHSOs,
among which 7 are manually confirmed to be logic bombs.
The details of the comparison between TRIGGERSCOPE and
DIFUZER are presented in the Venn Diagram in Figure 5 (right
figure). We note that:
‚ 2 logic bombs are detected by both DIFUZER and

TRIGGERSCOPE.
‚ 5 SHSOs detected by DIFUZER are actual logic bombs, but

not detected by TRIGGERSCOPE. Indeed, TRIGGERSCOPE is
limited by its focus on time, location and SMS-related triggers.

‚ 3 logic bombs are detected by TRIGGERSCOPE, but not
detected by DIFUZER. Our prototype implementation
considers a limited list of sources, which do not cover those
3 logic bomb cases.

Although we do not have a complete ground truth (with
information about all cases of logic bombs), confirming and
comparing detection reports by DIFUZER and TRIGGERSCOPE
offers an alternative to assess to what extent each may be
missing some logic bombs. The results described above suggest
that DIFUZER suffers significantly less from false-negative
results than TRIGGERSCOPE.

 0 28

 0 37
 35

 0

 0

 0

 0

 0
 0

 0

 0
 0

 2

FP Difuzer
(72)

FP TriggerScope
(35)

TP Difuzer
(30)

TP
TriggerScope

(2)

 5

 3 0
 61

 0

 0

 0

 0

 0
 0

 0

 0
 0

 2
FP Difuzer

(61)

FP TriggerScope
(97)

 36

TP Difuzer
(7)

TP
TriggerScope

(5)

Fig. 5. Venn Diagram representing results of TRIGGERSCOPE and DIFUZER
on 102 apps originally detected by DIFUZER on the left, and TRIGGERSCOPE
on the right. (FP = False Positive, TP = True Positive)

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

RQ1.c answer: Overall, DIFUZER outperforms
TRIGGERSCOPE by detecting more logic bombs more
accurately (wrt. false positives), and by missing less logic
bombs (wrt. false negatives).

4.1.4 RQ1.d: From a qualitative point of view, does DIFUZER
lead to the detection of non-trivial triggers/logic bombs?
x In this section, we discuss two real-world apps in which
DIFUZER revealed logic bombs that cannot be detected by
TRIGGERSCOPE.
Advertisement Triggering. DIFUZER revealed an interesting
logic bomb in ”com.walkthrough.knife.assassin.hunter.baoer”
app which is an adware app of the HiddenAd family. The
app uses the android.app.job.JobService class of the
Android framework to schedule the execution of jobs (the
developer can handle the code of the job in onStartJob
method). In the onStartJob method, the app takes
advantage of the PowerManager of the Android framework
to check if the device is in an interactive state (i.e., the user is
probably using the device) with method isScreenOn(). If
this is the case, the app displays advertisements to the user and
schedules the same class’s execution after a certain time.
Data Stealer. Logic bombs can also be used to trigger data theft
under the condition that the data is available. For instance, in
app ”com.magic.clmanager”, which is a Trojan (hidden behind
a cleaning app) capable of stealing data on the device, DIFUZER
found a logic bomb related to the device unique identifier. In-
deed, in method d(Context c) of the class c.gdf, a check
is performed against the value returned by method getDevi-
ceId() to verify if the value matches specific values (emulator
detection) in a given file named ”invalid-imei.idx”. In the case
the app considers that the device is not an emulator, it triggers the
stealing of sensitive information about the device such as the cur-
rent location, phone number, information on the camera, infor-
mation about the Bluetooth, disk space left, whether the device is
rooted or not, the current country, the brand, the model, informa-
tion about the Wi-Fi, etc. Afterward, this information is written
in a file and sent to a native method for further processing.

4.2 RQ2: How does DIFUZER++, our novel approach with
context-aware anomaly detection, perform?

In this section, we evaluate our approach to detect SHSOs and
logic bombs with context-aware analysis. However, we cannot
reuse the initial dataset used in RQ1, as the 10000malicious apps
sourced from the ANDROZOO repository do not contain the nec-
essary metadata for context-aware anomaly detection. For this
reason, in the first sub-question RQ2.a we compare DIFUZER++
against DIFUZER on DATABOMB, i.e., the 46 Android apps con-
taining logic bombs that have been manually verified as true posi-
tives. However, we acknowledge that DATABOMB is biased if our
goal is to compare DIFUZER vs. DIFUZER++ as it only includes
logic bombs that were previously identified by DIFUZER. To
address this limitation, in RQ.2b, we evaluate the performance of
DIFUZER++, and compare it against DIFUZER, on a new dataset
of 3743 malicious apps that were never analyzed by DIFUZER.

4.2.1 RQ2.a: Incorporate context into DIFUZER++
With this Research Question, we aim to evaluate the performance
of DIFUZER++ when incorporating context through the use of

anomaly detection models trained on groups of similar apps.
More specifically, we compare the results of the four clustering
variant approaches (i.e., clustering with either the Google Play
Categories, LDA, K-Means, and G-CatA) against our baseline
DIFUZER approach.
Dataset. As stated before, we performed our evaluation over
the 46 Android apps containing logic bombs from DATABOMB.
We attempted to gather the category and description of all the
apps manually but could not obtain this information for one of
them (after searching extensively for different versions of the
app, it seems that it has been removed from all Android app
stores publicly available, including unofficial ones), resulting
in a reduced dataset of 45 apps.

baseline category LDA K-means G-CatA
Approach

0

50

100

150

200

250

300

45
31 28 36 36

288

75
44

94
65

Logic Bombs Found
SHSOs

Fig. 6. The number of Logic Bombs found (blue) compared to the number
of SHSOs (red) among all the different approaches.

TABLE 5
Evaluation of contextualization approaches.

Approach #SHSOs #Logic Bombs found Precision Recall F1 Score
Baseline 288 45 15.63% 100.0% 27.02%
Category 75 31 41.33% 68.89% 51.56%
LDA 44 28 63.63% 62.22% 62.92%
K-Means 94 36 38.29% 80.00% 51.79%
G-CatA 65 36 55.38% 80.00% 65.45%

Evaluation. In Figure 6, we present the results of using
DIFUZER++ on our dataset of 45 apps that were confirmed to
have a logic bomb. We find that when contextual information is
included, DIFUZER++ fails to detect some logic bombs. However,
using context-aware analysis highly reduces the number of
SHSOs produced by DIFUZER++. Across all four approaches,
the average reduction in the number of SHSOs is 75%.

Table 5 presents the Precision for each approach, defined as
the ratio of the number of logic bombs to the total number of
SHSOs, while the Recall indicates how many logic bombs were
found. Then the F1 Score is presented and computed as

F1“
2¨Precision¨Recall

Precision`Recall
(1)

The Precision increased in all scenarios, reaching 63.63% (4
times compared to our baseline approach without the context
information) when using LDA to cluster the apps. These results
show that, by being more precise, DIFUZER++ can speed up
the identification of logic bombs. The results also show that,
while being more precise, DIFUZER++ still keeps a respectable
level of recall (i.e., only a limited number of logic bombs are
missed). Finally, based on the F1 score, the G-CatA approach
has demonstrated its effectiveness as the best method for
incorporating context into DIFUZER++.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Considerations about missed logic bombs. While DIFUZER++
offers enhanced precision, it does come with a trade-off: it
detected, on average, 27% fewer logic bombs than DIFUZER
across all four approaches. However, it is crucial to consider two
significant factors. First, due to the absence of ground-truth data,
the evaluation was based on a biased dataset consisting only of
apps that DIFUZER had previously correctly identified, inher-
ently favoring DIFUZER in any comparison against alternative
approaches. Secondly, a potential explanation for this variance
in performance between DIFUZER and DIFUZER++ could be
attributed to the context-aware analysis. Indeed, some categories
may be too ”heterogeneous” to improve the performance of our
baseline approach, while others, characterized by more consis-
tent app behavior, may be better suited for anomaly detection.
For instance, as reported in Table 6, DIFUZER++ failed to detect
logic bombs in all apps from the COMMUNICATION category,
while successfully identifying all logic bombs in the apps be-
longing to the ENTERTAINMENT category. Similarly, the same
reasoning can be applied to the LDA, K-Means, and G-CatA ap-
proaches. To address potential biases arising from the limited cat-
egories (11) in our ground truth dataset, it is essential to evaluate
DIFUZER++ with a broader range of real-world apps in RQ2.b.

TABLE 6
Logic Bombs found by Difuzer++ across Google Play Categories.

Category ID # Logic Bombs # Logic Bombs Found
COMMUNICATION 3 0
EDUCATION 1 0
ENTERTAINMENT 9 9
GAME ACTION 1 0
GAME ARCADE 1 1
GAME CASUAL 3 2
GAME SIMULATION 1 0
GAME SPORTS 1 0
GAME STRATEGY 1 1
MUSIC AND AUDIO 3 0
TOOLS 21 18
TOTAL 45 31

RQ2.a answer: Although DIFUZER++ fails to detect some
of the logic bombs identified by DIFUZER, the incorporation
of context improved the Precision by up to 48%. This
improvement can speed up logic bomb identification.

4.2.2 RQ2.b: Logic Bombs detection incorporating context

In RQ2.a, we assessed the performance of DIFUZER++ when
incorporating context information. However, our evaluation
was restricted to a small dataset of 45 apps with confirmed logic
bombs, which may have resulted in biased results due to the
limited categories present. To overcome these limitations, we
conducted a comprehensive manual inspection to compare the
performance of our contextual approaches DIFUZER++ against
our baseline approach DIFUZER on a larger, more diverse set
of applications.
Dataset. As previously stated, we cannot rely anymore on the
initial dataset used in RQ1, as the 10000 malicious apps lack
of metadata. Hence, we collected all malicious apps that were
available on the Google Play over the past two years using the
same techniques described in Section 3.2.3 to retrieve the Google
Play Category and app description. This resulted in a final
dataset of 3743 apps, categorized into 49 different categories.
Detecting SHSOs. We ran DIFUZER++ on our new dataset
of 3743 malicious apps to obtain all potential SHSOs. Figure

7 illustrates the number of apps with at least one SHSO that
DIFUZER++ detected, along with the percentage of these apps rel-
ative to the total number of apps in the dataset. The results show
that using the Google Play category, K-means or G-CatA leads to
an increase in the number of apps flagged, while LDA is the only
approach that results in a decrease in the number of flagged apps.

Although considering context may not seem effective in
reducing the search space for manual analysis, we still need to
assess the potential of these apps to contain logic bombs. To that
end, in the next paragraph, we perform a manual analysis to
check whether the flagged apps contain actual logic bombs.

baseline category LDA K-means G-CatA
Approach

0

50

100

150

200

250

300

350

400

450

#A
pp

s w
ith

 S
HS

Os

3.53%

10.23%

1.20%

6.84%

5.05%

Fig. 7. The number of apps with at least one SHSO.

Manual Analysis. As previously discussed, we aimed to assess
the potential of the SHSOs found by DIFUZER++ to be logic
bombs through manual analysis. DIFUZER++ identified a total
of 1005 apps with at least one SHSO across all five approaches
(including the baseline). While some overlap between the ap-
proaches might exist, manually analyzing so many apps would
be overly time-consuming. To address this, we randomly selected
a statistically significant sample for each approach with a con-
fidence level of 90% and a confidence interval of ±10%, reducing
the number of apps to be analyzed from 1005 to 237. Table 7 pro-
vides the detailed number of apps inspected for each approach.

Evaluation. The main outcome of our manual analysis is
displayed in Figure 8. For each approach, we present the Logic
Bomb Detection Rate, which represents the ratio of the number
of apps that were manually verified to have a logic bomb to the
total number of apps we manually inspected. Table 7 provides
the detailed number of apps manually verified to have a logic
bomb. Our findings indicate that apps identified by DIFUZER++
as potentially containing a logic bomb are more likely to indeed
have one when utilizing a contextual approach. This is especially
apparent when using LDA and G-CatA, where over half of
the examined apps were found to contain a logic bomb. These
results validate our previous intuition that while our baseline
approach DIFUZER may identify fewer apps and thus reduce
the scope of the search, these apps are less likely to have a logic
bomb. Conversely, utilizing the Google Play Category, K-means,
or G-CatA methods may require the analysis of more apps,
but these have a higher probability of containing a logic bomb.
Finally, using LDA has a dual impact: it not only narrows down
the search space when compared to the baseline method but
also increases the probability of detecting logic bombs, almost
reaching the top score of 58.82% achieved by G-CatA.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 7
Number of apps flagged by DIFUZER++ and manually inspected.

Approach
Apps with

at least
one SHSO

Apps
Inspected

Apps Inspected
with confirmed

logic bombs

Logic Bomb
Detection Rate

Baseline 132 46 6 13.04%
Category 383 58 20 34.48%
LDA 45 28 15 53.57%
K-Means 256 54 13 24.53%
G-CatA 189 51 30 58.82%
Total (with duplicates) 1005 237 83
Total (without duplicates) 794 204 51

baseline category LDA K-means G-CatA
Approach

0.0

0.2

0.4

0.6

0.8

1.0

Lo
gi

c
Bo

m
b

De
te

ct
io

n
Ra

te

13.04%

34.48%

53.57%

24.53%

58.82%

Fig. 8. The percentage of apps with confirmed Logic Bombs over the number
of apps inspected for each approach.

DATABOMB++. Considering all the methods we employed in
testing DIFUZER++, we have successfully identified a total of 83
apps that were manually confirmed to contain a logic bomb. We
eliminated the logic bombs that were identified by more than
one approach, resulting in 51 remaining applications that were
then used to construct a new dataset of apps infected with logic
bombs. We named this dataset DATABOMB++ and have made
it publicly available in the project’s repository as a valuable
resource for the research community.

Considerations Regarding Logic Bombs Found. In Section 2,
we presented an example of a logic bomb that determined a
device’s location using methods associated with the context of
mobile network communication. At the time of writing, the
simple arcade game app containing the logic bomb, namely
”com.xxooapp.bubbleshot,” is no longer available on Google Play,
along with 11 other apps that we manually confirmed to contain
logic bombs. Since we did not report these apps to Google Play,
we cannot definitively confirm that their removal was a direct
result of the logic bombs we discovered. However, there is a high
probability that these apps were removed for security reasons.

RQ2.b answer: Through our empirical study and our
manual analysis, we showed that the apps detected by
DIFUZER++ have a higher probability of actually containing
a logic bomb when the context is taken into account.
However, this can result in a wider search area when
compared to the baseline. The G-CatA approach achieves
the highest Logic Bomb Detection Rate of 58.82%, which
means that out of 10 apps flagged by DIFUZER++, almost
6 are likely to contain a logic bomb. Furthermore, we release
DATABOMB++, a dataset consisting of 51 apps that were
identified by DIFUZER++ and verified to contain a logic
bomb through manual analysis.

5 LIMITATIONS AND THREATS TO VALIDITY

An essential step in our approach is the identification of SHSOs
entry-points. To do so, DIFUZER++ relies on state-of-the-art tool
FLOWDROID [50]. Therefore, it carries the analysis limitations
of FLOWDROID, i.e., unsoundness regarding reflective calls [81],
dynamic loading [82], multi-threading [83] and native calls [84].

Although our approach proved to be efficient in detecting
SHSOs and logic bombs, feature selection can impact the
performance. Indeed, feature engineering is a challenging task
and can be prone to unsatisfactory selection since it does not
capture everything.

Besides, our approach is based on SHSO entry-points detec-
tion using taint analysis, which relies on sources and sinks meth-
ods. Sinks are not an issue in our approach since they always rep-
resent if conditions. However, sources selection is at risk since they
have been selected systematically, using heuristics and human
intuitions. Therefore, our list of sources might not be complete.

Moreover, as we conducted a systematic mapping of
the Android framework across SDK versions 3 to 30, we
acknowledge that certain APIs may be deprecated (e.g.,
getDeviceId was deprecated in API level 26) or do not exist
in the recent versions of Android (versions 31 to 34). However,
the initial module of Difuzer++ will simply not consider them
when analyzing the ICFG. It will still consider all possibly
identified APIs within those specific apps as sources. Therefore,
even though deprecated APIs are considered as sources, they
do not impact the performance of DIFUZER++.

Although, we have implemented TRIGGERSCOPE by
strictly following the description in the original paper, our
implementation might not be exempt from errors.

In the absence of a-priori ground truth, some of our
assessment activities rely on manual analysis based on our
own expertise. While we follow a consistent process (e.g., we
carefully verify the hidden behaviour implementation against
the antivirus report), our conclusions remain affected by human
subjectivity. Nevertheless, we mitigate the threat to validity by
sharing all our artefacts to the research community for further
exploitation and verification.

For context-aware anomaly detection, we exclusively used
apps from the Google Play for model training and testing due
to its convenient access to categories and descriptions. However,
it is important to acknowledge that Google Play, while the
official Android app store, is not the sole available market.
Other third-party app markets may offer different selections,
potentially biasing our models and limiting their representation
of the full range of Android apps available.

During the Training Phase of DIFUZER++, when performing
app clustering, we employed four different techniques. As
previously explained in Section 3.2.4, we opted to match the
number of clusters to the number of Google Play categories,
which is 49. We acknowledge that 49 may not be the optimal
number of clusters for the LDA, K-Means, and G-CatA
approaches. However, we made this choice to ensure a fair
comparison of DIFUZER++’s outcomes when using Google Play
Categories, without introducing any bias related to the number
of clusters as no ground-truth data is available for this problem.

6 RELATED WORK

Logic bombs in general. Hidden code triggered under specific
conditions is a concern in many programming environments.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

The literature includes studies of the logic bomb phenomenon
in programming prior to the Android era [85], [16] and targeting
the Windows platform for example. Since then, various
approaches have been proposed to tackle the challenging task
of trigger-based behavior detection [86], [87], [88], [89], [90].
State-of-the-art techniques for the detection of trigger-based
behaviour are varied and leverage fully-static analyses [8],
[32], [9], dynamic analyses [13], hybrid analyses [16], [91], and
machine-learning-based analyses [31].
Trigger-based behavior detection for Android DIFUZER++
combines static taint analysis and unsupervised machine
learning techniques. Our closest related work is thus
HSOMINER [31], which relies on static analysis and automatic
classification to detect HSOs. Contrary to our work, however,
HSOMINER is not targeting suspicious HSOs and therefore does
not focus on logic bombs.

Fratantonio et al. [32] proposed TRIGGERSCOPE, an auto-
mated static-analysis tool that can detect logic bombs in Android
apps. TRIGGERSCOPE leverages a symbolic execution engine to
model specific values (i.e., SMS-, time-, location-related variables).
TRIGGERSCOPE models conditions using predicate recovery. It
combines symbolic execution results and path predicate recovery
results to infer suspicious triggers. Finally, potential suspicious
triggers undergo a control dependency step to verify if it guards
sensitive operations. Nevertheless, the whole approach relies on
static analysis to check defined properties of suspiciousness. In
contrast, DIFUZER++ takes advantage of unsupervised learning
to discover abnormal (hence suspicious) trigger-based behavior.
Anomaly detection for security. We note that the idea of using
anomaly detection to detect malware has been presented in the
Avdiienko et al.’s paper [92]. Indeed, they present MUDFLOW
that relies on anomaly detection to spot malware for which
sensitive data flows deviate from benign data flows. It proved
to be efficient by detecting more than 86% malware. While our
approach is also based on anomaly detection to triage abnormal
triggers (i.e., suspicious sensitive behavior) that deviate from
normality (i.e., normal triggers/conditions), the end goal of both
approaches is different. Indeed, MUDFLOW addresses a binary
classification problem to discriminate malware from goodware.
In contrast, DIFUZER++ addresses the problem of detecting and
locating Suspicious Hidden Sensitive Operations that are likely to
be logic bombs in Android apps.
Malicious behavior detection in Android apps. Malware
detection does not only focus on trigger-based malicious
behavior. Indeed, the Android security research community
worked on tackling general security aspects [24], [93], [94],
[95], [96]. In the literature, numerous approaches have been
proposed to detect Android hostile activities. Among which,
machine-learning techniques [97], deep-learning techniques [98],
static analyses through semantic-based detection [99], privacy
leaks detection [100], [50], [101], as well as dynamic analyses[12],
[11], [102]. Each of these approaches tackles a particular aspect
of Android security. Therefore, analysts could combine our
approach with the aforementioned techniques to detect a wide
variety of Android malicious behavior more efficiently.
Context-aware analysis Clustering similar mobile apps together
and considering the context of each app can actively improve
the accuracy of anomaly detection in mobile apps. For instance,
CHABADA by Gorla et al. [33] uses anomaly detection to
identify malicious apps by comparing their behavior with their
descriptions. This work has been extended by Ma et al. [62],

who used an active semi-supervised approach, and Zhang et
al. [63], who detect apps that use suspicious third-party libraries
or exhibit behavior inconsistent with their descriptions. Another
approach proposed by Yang et al. [34] involves characterizing
malicious Android apps based on their data flow signatures,
analyzing the topics of their data flows, and identifying patterns
indicative of malicious behavior. Previous research has explored
the benefits of context-aware analysis in detecting malicious
behavior, but these studies have generally focused on identifying
threats in a broad sense. In contrast, DIFUZER++ focuses on
detecting logic bombs, combining static inter-procedural taint
tracking with context-aware anomaly detection and leveraging
features that are specifically designed for this task.

7 CONCLUSION

We proposed DIFUZER++, a novel approach for detecting
Suspicious Hidden Sensitive Operations in Android apps.
DIFUZER++ combines bytecode instrumentation, static inter-
procedural taint tracking, and context-aware anomaly detection
for addressing the challenge of accurately spotting relevant
SHSOs, which are likely logic bombs. Our empirical evaluation
of DIFUZER++ shows that it can detect SHSOs with high
precision in less than 48 seconds per app. DIFUZER++ can
detect up to 58.82% of logic bombs among SHSOs, which is a
significant improvement over our baseline approach, DIFUZER,
which only detects 29.7% of logic bombs among SHSOs and
does not rely on context-aware anomaly detection. We, therefore,
improve over the performance of the current state of the art,
notably TRIGGERSCOPE, which yields significantly more false
positives while detecting fewer logic bombs.

8 DATA AVAILABILITY

For the sake of Open Science, we provide to the community all
the artifacts used in our study. In particular, we make available
the datasets used during our experimentations, the source code
of our prototype, the executable used for our experiments, the an-
notated list of our manual analyses, and a dataset of logic bombs.

The project’s repository, including all artifacts (tool, datasets,
etc.), is available at:

github.com/Trustworthy-Software/DifuzerPlusPlus

9 ACKNOWLEDGEMENT

This research was funded in part by the Luxembourg
National Research Fund (FNR), grant reference
NCER22/IS/16570468/NCER-FT and REPROCESS grant
reference C21/IS/16344458.

REFERENCES

[1] IDC. Smartphone market share, https://www.idc.com/promo/
smartphone-market-share/os. Accessed January 2021.

[2] C. Cimpanu. Play store identified as main distribution vector for
most android malware. Accessed February 2021. [Online]. Available:
https://www.zdnet.com

[3] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,”
in Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016, pp. 468–
471. [Online]. Available: http://doi.acm.org/10.1145/2901739.2903508

[4] V. Total. (2020) Virus total free online virus, malware and url scanner.
[Online]. Available: https://www.virustotal.com/en

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/Trustworthy-Software/DifuzerPlusPlus
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.zdnet.com
http://doi.acm.org/10.1145/2901739.2903508
https://www. virustotal.com/en

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

[5] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, “Anastasia: Android
malware detection using static analysis of applications,” in 2016 8th
IFIP International Conference on New Technologies, Mobility and Security
(NTMS), 2016, pp. 1–5.

[6] H. Kang, J. wook Jang, A. Mohaisen, and H. K. Kim, “Detecting
and classifying android malware using static analysis along with
creator information,” International Journal of Distributed Sensor
Networks, vol. 11, no. 6, p. 479174, 2015. [Online]. Available:
https://doi.org/10.1155/2015/479174

[7] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in 2016 IEEE Symposium on Security and Privacy (SP),
2016, pp. 377–396.

[8] D. Papp, L. Buttyán, and Z. Ma, “Towards semi-automated detection
of trigger-based behavior for software security assurance,” in
Proceedings of the 12th International Conference on Availability, Reliability
and Security, 2017, pp. 1–6.

[9] Q. Zhao, C. Zuo, B. Dolan-Gavitt, G. Pellegrino, and Z. Lin,
“Automatic uncovering of hidden behaviors from input validation
in mobile apps,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 1106–1120.

[10] J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix, T. F.
Bissyandé, and J. Klein, “Jucify: A step towards android code unifica-
tion for enhanced static analysis,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE). Los Alamitos, CA, USA:
IEEE Computer Society, May 2022, pp. 1232–1244. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1145/3510003.3512766

[11] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis, “Rage against the virtual machine: Hindering dynamic
analysis of android malware,” in Proceedings of the Seventh European
Workshop on System Security, ser. EuroSec ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2592791.2592796

[12] V. Van Der Veen, H. Bos, and C. Rossow, “Dynamic analysis of android
malware,” Internet & Web Technology Master thesis, VU University
Amsterdam, 2013.

[13] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications,” in Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices, 2012.

[14] L. Xu, D. Zhang, N. Jayasena, and J. Cavazos, “Hadm: Hybrid analysis
for detection of malware,” in Proceedings of SAI Intelligent Systems
Conference (IntelliSys) 2016, Y. Bi, S. Kapoor, and R. Bhatia, Eds. Cham:
Springer International Publishing, 2018, pp. 702–724.

[15] M. Choudhary and B. Kishore, “Haamd: Hybrid analysis for android
malware detection,” in 2018 International Conference on Computer
Communication and Informatics (ICCCI), 2018, pp. 1–4.

[16] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
“Automatically identifying trigger-based behavior in malware,” in
Botnet Detection. Springer, 2008, pp. 65–88.

[17] J. Sahs and L. Khan, “A machine learning approach to android
malware detection,” in 2012 European Intelligence and Security
Informatics Conference, 2012, pp. 141–147.

[18] N. Peiravian and X. Zhu, “Machine learning for android malware de-
tection using permission and api calls,” in 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence, 2013, pp. 300–305.

[19] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen, X. Wang,
and K. Zhang, “Understanding android obfuscation techniques:
A large-scale investigation in the wild,” in Security and Privacy in
Communication Networks, R. Beyah, B. Chang, Y. Li, and S. Zhu, Eds.
Cham: Springer International Publishing, 2018, pp. 172–192.

[20] E. Erturk, “A case study in open source software security and
privacy: Android adware,” in World Congress on Internet Security
(WorldCIS-2012). IEEE, 2012, pp. 189–191.

[21] H. Pieterse and M. S. Olivier, “Android botnets on the rise: Trends
and characteristics,” in 2012 information security for South Africa. IEEE,
2012, pp. 1–5.

[22] T. Yang, Y. Yang, K. Qian, D. C.-T. Lo, Y. Qian, and L. Tao, “Automated
detection and analysis for android ransomware,” in 2015 IEEE
17th International Conference on High Performance Computing and
Communications, 2015 IEEE 7th International Symposium on Cyberspace
Safety and Security, and 2015 IEEE 12th International Conference on
Embedded Software and Systems. IEEE, 2015, pp. 1338–1343.

[23] M. H. Saad, A. Serageldin, and G. I. Salama, “Android spyware
disease and medication,” in 2015 second international conference on
information security and cyber forensics (InfoSec). IEEE, 2015.

[24] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in 2012 IEEE symposium on security and privacy. IEEE,
2012, pp. 95–109.

[25] W. Zhou, X. Zhang, and X. Jiang, “Appink: Watermarking android
apps for repackaging deterrence,” in Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 1–12. [Online]. Available:
https://doi.org/10.1145/2484313.2484315

[26] L. Li, T. F. Bissyande, and J. Klein, “Rebooting research on detecting
repackaged android apps: Literature review and benchmark,” IEEE
Transactions on Software Engineering, pp. 1–1, 2019.

[27] L. Li, T. F. Bissyandé, and J. Klein, “Simidroid: Identifying
and explaining similarities in android apps,” in 2017 IEEE
Trustcom/BigDataSE/ICESS, 2017, pp. 136–143.

[28] O. Gadyatskaya, A.-L. Lezza, and Y. Zhauniarovich, “Evaluation
of resource-based app repackaging detection in android,” in Secure
IT Systems, B. B. Brumley and J. Röning, Eds. Cham: Springer
International Publishing, 2016, pp. 135–151.

[29] H. G. Rice, “Classes of recursively enumerable sets and their
decision problems,” Transactions of the American Mathematical
Society, vol. 74, no. 2, pp. 358–366, 1953. [Online]. Available:
http://www.jstor.org/stable/1990888

[30] H. Agrawal, J. Alberi, L. Bahler, J. Micallef, A. Virodov,
M. Magenheimer, S. Snyder, V. Debroy, and E. Wong, “Detecting
hidden logic bombs in critical infrastructure software,” in International
Conference on Information Warfare and Security. Academic Conferences
International Limited, vol. 1, 2012.

[31] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin, “Dark hazard:
Learning-based, large-scale discovery of hidden sensitive operations
in android apps.” in NDSS, 2017.

[32] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, and
G. Vigna, “Triggerscope: Towards detecting logic bombs in android
applications,” in 2016 IEEE symposium on security and privacy (SP).
IEEE, 2016, pp. 377–396.

[33] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New York, NY,
USA: Association for Computing Machinery, 2014, p. 1025–1035.
[Online]. Available: https://doi.org/10.1145/2568225.2568276

[34] X. Yang, D. Lo, L. Li, X. Xia, T. F. Bissyandé, and
J. Klein, “Characterizing malicious android apps by mining
topic-specific data flow signatures,” Information and Software
Technology, vol. 90, pp. 27–39, 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S095058491730366X

[35] J. Samhi, L. Li, T. F. Bissyande, and J. Klein, “Difuzer:
Uncovering suspicious hidden sensitive operations in android
apps,” in 2022 IEEE/ACM 44th International Conference on
Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, May 2022, pp. 723–735. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1145/3510003.3510135

[36] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, Jul. 2009. [Online].
Available: https://doi.org/10.1145/1541880.1541882

[37] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional
distribution,” Neural Computation, vol. 13, no. 7, pp. 1443–1471, 2001.
[Online]. Available: https://doi.org/10.1162/089976601750264965

[38] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=944937

[39] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. of the fifth Berkeley Symposium on
Mathematical Statistics and Probability, L. M. L. Cam and J. Neyman,
Eds., vol. 1. University of California Press, 1967, pp. 281–297.

[40] O. Topgul. Android malware evasion techniques -
emulator detection. Accessed December 2020. [Online].
Available: https://www.oguzhantopgul.com/2014/12/
android-malware-evasion-techniques.html

[41] S. Alexander-Bown. Android security: Adding tampering
detection to your app. Accessed February 2021.
[Online]. Available: https://www.airpair.com/android/posts/
adding-tampering-detection-to-your-android-app#4-1-emulator

[42] H. Dharmdasani. Android.hehe: Malware now disconnects
phone calls. Accessed December 2020. [Online]. Available:
https://www.fireeye.com/blog/threat-research/2014/01/
android-hehe-malware-now-disconnects-phone-calls.html

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1155/2015/479174
https://doi.ieeecomputersociety.org/10.1145/3510003.3512766
https://doi.org/10.1145/2592791.2592796
https://doi.org/10.1145/2484313.2484315
http://www.jstor.org/stable/1990888
https://doi.org/10.1145/2568225.2568276
https://www.sciencedirect.com/science/article/pii/S095058491730366X
https://www.sciencedirect.com/science/article/pii/S095058491730366X
https://doi.ieeecomputersociety.org/10.1145/3510003.3510135
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1162/089976601750264965
http://portal.acm.org/citation.cfm?id=944937
https://www.oguzhantopgul.com/2014/12/android-malware-evasion-techniques.html
https://www.oguzhantopgul.com/2014/12/android-malware-evasion-techniques.html
https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app#4-1-emulator
https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app#4-1-emulator
https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-malware-now-disconnects-phone-calls.html
https://www.fireeye.com/blog/threat-research/2014/01/android-hehe-malware-now-disconnects-phone-calls.html

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

[43] T. Micro. Hacking team spying tool listens to calls. Accessed February
2021. [Online]. Available: https://www.trendmicro.com

[44] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for the fully
automated classification and categorization of android sources and
sinks,” University of Darmstadt, Tech. Rep. TUDCS-2013-0114, 2013.

[45] L. Luo, E. Bodden, and J. Späth, “A qualitative analysis of android
taint-analysis results,” in 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2019, pp. 102–114.

[46] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang, “Finding
clues for your secrets: Semantics-driven, learning-based privacy
discovery in mobile apps.” in NDSS, 2018.

[47] M. Junaid, D. Liu, and D. Kung, “Dexteroid: Detecting malicious
behaviors in android apps using reverse-engineered life cycle models,”
computers & security, vol. 59, pp. 92–117, 2016.

[48] M. Stone. The path to the payload: Android edition,
2019. Accessed December 2020. [Online]. Available:
https://cfp.recon.cx/reconmtl2019/talk/TMHQGV/

[49] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: Au-
tomatically detecting potential privacy leaks in android applications
on a large scale,” in Trust and Trustworthy Computing, S. Katzenbeisser,
E. Weippl, L. J. Camp, M. Volkamer, M. Reiter, and X. Zhang, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 291–307.

[50] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps,”
SIGPLAN Not., vol. 49, no. 6, p. 259–269, Jun. 2014. [Online]. Available:
https://doi.org/10.1145/2666356.2594299

[51] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting
of android apps,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 1329–1341.
[Online]. Available: https://doi.org/10.1145/2660267.2660357

[52] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode
for analyses and transformations,” 1998.

[53] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot: A java bytecode optimization framework,”
in CASCON First Decade High Impact Papers, ser. CASCON
’10. USA: IBM Corp., 2010, p. 214–224. [Online]. Available:
https://doi.org/10.1145/1925805.1925818

[54] M. Alecci, J. Samhi, T. F. Bissyandé, and J. Klein, “Revisiting android
app categorization,” 2023.

[55] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of
app store analysis for software engineering,” IEEE Transactions on
Software Engineering, vol. 43, no. 9, pp. 817–847, 2017.

[56] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in ICSE ’14: Proceedings of the 2014
International Conference on Software Engineering. ACM Press, Jun. 2014,
pp. 292–302.

[57] D. Surian, S. Seneviratne, A. Seneviratne, and S. Chawla, “App miscat-
egorization detection: A case study on google play,” IEEE Transactions
on Knowledge and Data Engineering, vol. 29, no. 8, pp. 1591–1604, 2017.

[58] OpenAI, “https://openai.com/blog/
introducing-text-and-code-embeddings,” 2022.

[59] ——, “https://github.com/openai/openai-cookbook/blob/main/
examples/How to count tokens with tiktoken.ipynb,” 2023.

[60] “Google play scraper library,” 2019. [Online]. Available:
https://pypi.org/project/google-play-scraper/

[61] “Langdetect library,” 2015. [Online]. Available:
https://pypi.org/project/langdetect/

[62] S. Ma, S. Wang, D. Lo, R. H. Deng, and C. Sun, “Active semi-supervised
approach for checking app behavior against its description,” in 2015
IEEE 39th Annual Computer Software and Applications Conference, vol. 2,
2015, pp. 179–184.

[63] C. Zhang, H. Wang, R. Wang, Y. Guo, and G. Xu, “Re-checking app
behavior against app description in the context of third-party libraries,”
in International Conference on Software Engineering and Knowledge
Engineering, 07 2018, pp. 665–710.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[65] J. D. Team, “Joblib: running python functions as pipeline jobs,” 2020.
[Online]. Available: https://joblib.readthedocs.io/

[66] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine
learning: A review of classification techniques,” Emerging artificial intel-
ligence applications in computer engineering, vol. 160, no. 1, pp. 3–24, 2007.

[67] V. N. Vapnik, “An overview of statistical learning theory,” IEEE
Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.

[68] H. Xu, C. Caramanis, and S. Mannor, “Robustness and regularization
of support vector machines.” Journal of machine learning research, vol. 10,
no. 7, 2009.

[69] Yunqiang Chen, Xiang Sean Zhou, and T. S. Huang, “One-class svm for
learning in image retrieval,” in Proceedings 2001 International Conference
on Image Processing (Cat. No.01CH37205), vol. 1, 2001, pp. 34–37 vol.1.

[70] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro,
“Understanding android app piggybacking: A systematic study of
malicious code grafting,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 6, pp. 1269–1284, 2017.

[71] S. Alam, Z. Qu, R. Riley, Y. Chen, and V. Rastogi,
“Droidnative: Automating and optimizing detection of
android native code malware variants,” Computers & Security,
vol. 65, pp. 230 – 246, 2017. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S016740481630164X

[72] S. Rasthofer, I. Asrar, S. Huber, and E. Bodden, “How current android
malware seeks to evade automated code analysis,” in Information
Security Theory and Practice, R. N. Akram and S. Jajodia, Eds. Cham:
Springer International Publishing, 2015, pp. 187–202.

[73] M. Zheng, M. Sun, and J. C. S. Lui, “Droidtrace: A ptrace based
android dynamic analysis system with forward execution capability,”
in 2014 International Wireless Communications and Mobile Computing
Conference (IWCMC), 2014, pp. 128–133.

[74] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout:
Analyzing the android permission specification,” in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12. New York, NY, USA: Association for
Computing Machinery, 2012, p. 217–228. [Online]. Available:
https://doi.org/10.1145/2382196.2382222

[75] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel,
D. Octeau, J. Klein, and L. Traon, “Static analysis of android
apps: A systematic literature review,” Information and Software
Technology, vol. 88, pp. 67 – 95, 2017. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0950584917302987

[76] O. Lhoták and L. Hendren, “Scaling java points-to analysis using
spark,” in Compiler Construction, G. Hedin, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 153–169.

[77] V. Total. (2020) Virus total free online virus, malware and url scanner.
[Online]. Available: https://www.virustotal.com/en

[78] L. Li, T. F. Bissyandé, J. Klein, and Y. L. Traon, “An investigation
into the use of common libraries in android apps,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, 2016, pp. 403–414.

[79] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, and W. Zou, “Following devil’s footprints: Cross-platform
analysis of potentially harmful libraries on android and ios,” in 2016
IEEE Symposium on Security and Privacy (SP), 2016, pp. 357–376.

[80] J. Samhi and A. Bartel, “On the (in)effectiveness of static logic bomb
detector for android apps,” 2021.

[81] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Droidra: Taming
reflection to support whole-program analysis of android apps,” in
Proceedings of the 25th International Symposium on Software Testing and
Analysis, 2016, pp. 318–329.

[82] Y. Xue, G. Meng, Y. Liu, T. H. Tan, H. Chen, J. Sun, and J. Zhang,
“Auditing anti-malware tools by evolving android malware and
dynamic loading technique,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 7, pp. 1529–1544, 2017.

[83] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for android
applications,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 316–325, 2014.

[84] C.-M. Lin, J.-H. Lin, C.-R. Dow, and C.-M. Wen, “Benchmark dalvik
and native code for android system,” in 2011 Second International
Conference on Innovations in Bio-inspired Computing and Applications.
IEEE, 2011, pp. 320–323.

[85] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, “Towards
an understanding of anti-virtualization and anti-debugging behavior
in modern malware,” in 2008 IEEE international conference on dependable
systems and networks with FTCS and DCC (DSN). IEEE, 2008, pp.
177–186.

[86] D. Shi, X. Tang, and Z. Ye, “Detecting environment-sensitive malware
based on taint analysis,” in 2017 8th IEEE International Conference on
Software Engineering and Service Science (ICSESS). IEEE, 2017.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.trendmicro.com
https://cfp.recon.cx/reconmtl2019/talk/TMHQGV/
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2660267.2660357
https://doi.org/10.1145/1925805.1925818
https://openai.com/blog/introducing-text-and-code-embeddings
https://openai.com/blog/introducing-text-and-code-embeddings
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
https://pypi.org/project/google-play-scraper/
https://pypi.org/project/langdetect/
https://joblib.readthedocs.io/
http://www.sciencedirect.com/science/article/pii/S016740481630164X
http://www.sciencedirect.com/science/article/pii/S016740481630164X
https://doi.org/10.1145/2382196.2382222
http://www.sciencedirect.com/science/article/pii/S0950584917302987
http://www.sciencedirect.com/science/article/pii/S0950584917302987
https://www. virustotal.com/en

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[87] X. Jia, G. Zhou, Q. Huang, W. Zhang, and D. Tian, “Findevasion: an
effective environment-sensitive malware detection system for the
cloud,” in International Conference on Digital Forensics and Cyber Crime.
Springer, 2017, pp. 3–17.

[88] M. Lindorfer, C. Kolbitsch, and P. M. Comparetti, “Detecting
environment-sensitive malware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2011, pp. 338–357.

[89] D. Kirat, G. Vigna, and C. Kruegel, “Barecloud: bare-metal analysis-
based evasive malware detection,” in 23rd tUSENIXu Security
Symposium (tUSENIXu Security 14), 2014, pp. 287–301.

[90] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and
G. Vigna, “Efficient detection of split personalities in malware.” in
NDSS. Citeseer, 2010.

[91] L. Bello and M. Pistoia, “Ares: triggering payload of evasive android
malware,” in 2018 IEEE/ACM 5th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). IEEE, 2018, pp. 2–12.

[92] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1, 2015, pp. 426–436.

[93] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, 2011, pp. 15–26.

[94] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. Van Der Veen, and C. Platzer, “Andrubis–1,000,000 apps later: A
view on current android malware behaviors,” in 2014 third international
workshop on building analysis datasets and gathering experience returns
for security (BADGERS). IEEE, 2014, pp. 3–17.

[95] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid: Auto-
matic reconstruction of android malware behaviors.” in Ndss, 2015.

[96] A. Mahindru and P. Singh, “Dynamic permissions based android mal-
ware detection using machine learning techniques,” in Proceedings of
the 10th innovations in software engineering conference, 2017, pp. 202–210.

[97] J. Sahs and L. Khan, “A machine learning approach to android
malware detection,” in 2012 European Intelligence and Security
Informatics Conference. IEEE, 2012, pp. 141–147.

[98] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,
S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé et al., “Deep android
malware detection,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, 2017, pp. 301–308.

[99] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 576–587.

[100] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detecting
inter-component privacy leaks in android apps,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol. 1. IEEE,
2015, pp. 280–291.

[101] J. Samhi, A. Bartel, T. F. Bissyande, and J. Klein, “Raicc:
Revealing atypical inter-component communication in android
apps,” in 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE
Computer Society, may 2021, pp. 1398–1409. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00126

[102] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow track-
ing system for realtime privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32, no. 2, pp. 1–29, 2014.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3358979

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.ieeecomputersociety.org/10.1109/ICSE43902.2021.00126

	Introduction
	Background and Definitions
	Approach
	SHSO entry-point candidates Identification
	Systematic mapping toward defining sources
	Instrumentation

	Module (2): Clustering
	Why a context-aware analysis?
	Categorization Techinques.
	Dataset Creation
	Training Phase

	Module (3): Anomaly detection
	Why a One-Class SVM?
	Features extraction
	Training Phase

	Evaluation
	RQ1: How does Difuzer, our baseline approach without context-aware anomaly detection, perform?
	RQ1.a: Suspicious Hidden Sensitive Operations in the wild
	RQ1.b: Are SHSOs detected likely to be logic bombs?
	RQ1.c: How does Difuzer compare against TriggerScope, a state of the art logic bomb detector?
	RQ1.d: From a qualitative point of view, does Difuzer lead to the detection of non-trivial triggers/logic bombs?

	RQ2: How does Difuzer++, our novel approach with context-aware anomaly detection, perform?
	RQ2.a: Incorporate context into Difuzer++
	RQ2.b: Logic Bombs detection incorporating context

	Limitations and Threats to Validity
	Related work
	Conclusion
	Data Availability
	Acknowledgement
	References

