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Three-dimensional (3D) point cloud applications have become increasingly prevalent in diverse domains, showcasing their
eicacy in various software systems. However, testing such applications presents unique challenges due to the high-dimensional
nature of 3D point cloud data and the vast number of possible test cases. Test input prioritization has emerged as a promising
approach to enhance testing eiciency by prioritizing potentially misclassiied test cases during the early stages of the testing
process. Consequently, this enables the early labeling of critical inputs, leading to a reduction in the overall labeling cost.
However, applying existing prioritization methods to 3D point cloud data is constrained by several factors: 1) Inadequate
consideration of crucial spatial information, and 2) susceptibility to noises inherent in 3D point cloud data. In this paper, we
propose PCPrior, the irst test prioritization approach speciically designed for 3D point cloud test cases. The fundamental
concept behind PCPrior is that test inputs closer to the decision boundary of the model are more likely to be predicted
incorrectly. To capture the spatial relationship between a point cloud test and the decision boundary, we propose transforming
each test (a point cloud) into a low-dimensional feature vector, towards indirectly revealing the underlying proximity between
a test and the decision boundary. To achieve this, we carefully design a group of feature generation strategies, and for each
test input, we generate four distinct types of features, namely, spatial features, mutation features, prediction features, and
uncertainty features. Through a concatenation of the four feature types, PCPrior assembles a inal feature vector for each test.
Subsequently, a ranking model is employed to estimate the probability of misclassiication for each test based on its feature
vector. Finally, PCPrior ranks all tests based on their misclassiication probabilities. We conducted an extensive study based on
165 subjects to evaluate the performance of PCPrior, encompassing both natural and noisy datasets. The results demonstrate
that PCPrior outperforms all the compared test prioritization approaches, with an average improvement of 10.99%~66.94% on
natural datasets and 16.62%~53% on noisy datasets.

CCS Concepts: · Software and its engineering → Software testing and debugging; · Computer systems organization

→ Neural networks.

Additional Key Words and Phrases: Test Input Prioritization, Deep Neural Network, Learning to Rank, Labeling

1 INTRODUCTION

The advent of point cloud data has revolutionized various ields, such as computer vision [15, 84], autonomous
driving [36, 96], augmented reality [8, 59, 60] and smart cities [63, 63], by enabling highly accurate and detailed
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representation of real-world environments. A Point cloud [92] refers to a collection of three-dimensional data
points in space, typically representing the surface geometry or shape of real-world objects or environments. Each
data point in a point cloud is deined by its spatial coordinates (x, y, z) and, in some cases, additional attributes
such as color or intensity values. Figure 1 illustrates an example of a point cloud representing the shape of a car,
composed of thousands of individual points. To showcase the inherent three-dimensional attributes of the point
cloud, we present multiple perspectives of the object from diferent viewing angles. From speciic angles, the
car is easily identiiable and recognizable. However, from some angles, it becomes challenging to identify the
object as a car. Point clouds are commonly generated using various sensing technologies, including LiDAR (Light
Detection and Ranging) [24], depth cameras [18], or structured light scanners [77], which capture the physical
measurements of points in the environment.
Compared to two-dimensional data like images, 3D point clouds have inherent diferences and signiicant

advantages. First, 3D point clouds ofer a three-dimensional depiction of objects, resulting in higher accuracy and
reliability when identifying complex 3D shapes and volumes. Moreover, point cloud data can directly capture
surface details and morphology of objects, making them diicult to be replaced by images in many practical
applications. Consequently, the integration of point cloud processing in safety-critical applications, such as
autonomous driving [19, 96], medical imaging [87], and industrial automation [86], has become increasingly
prevalent. For instance, 3D point clouds can be utilized for autonomous driving in the context of obstacle detection
and perception [80]. More speciically, 3D point cloud data obtained from LiDAR (Light Detection and Ranging)
sensors [24] can provide a rich and detailed representation of the surrounding environment in three-dimensional
space. By leveraging this data, it becomes feasible to identify and localize various objects on the road, such as
automobiles, pedestrians, cyclists, and obstacles. Leveraging these 3D data, autonomous driving systems can
employ 3D classiication models to detect and categorize objects, thereby guiding the avoidance of obstacles.
Hence, the accuracy of these 3D classiication models plays a pivotal role in ensuring the safety of autonomous
driving.

In recent years, Deep Neural Networks (DNNs) have emerged as a powerful tool for various computer vision
tasks [38, 43], and their application to 3D point cloud data has garnered signiicant attention. Ensuring the
reliability of DNNs operating on point cloud data is crucial for safe and eicient functioning. DNN testing [39, 90]
has become a widely adopted approach to assess and ensure the quality of such networks. Nevertheless, prior
investigations [14, 28, 89] have highlighted a central challenge pertaining to DNN testing: the signiicant cost
incurred in labeling test inputs to verify the accuracy of DNN predictions. First, the scale of the test set is typically
extensive. Second, manual labelling is mainstream, typically necessitating the involvement of multiple annotators
to ensure the accuracy and consistency of the labeling process for each test input.

The challenges are further compounded in the case of 3D point cloud data. In addition to the aforementioned
obstacles, labeling point cloud data presents additional distinctive challenges compared to traditional image/text
data.

• Data representation Image data is represented as two-dimensional matrices, with each pixel having a distinct
position and value. In contrast, point cloud data comprises an unordered set of points, each possessing three-
dimensional coordinates and additional attributes such as color and normals. This distinctive data representation
signiicantly increases the complexity of labeling, necessitating additional processing and interpretation steps.

• Sparsity of point clouds Point cloud data is generally characterized by sparsity compared to image data.
There can be missing points or noise in the point cloud, and the distribution of points is non-uniform. This
inherent sparsity poses challenges for accurate labeling.

• Expert knowledge for 3D point clouds Labeling 3D point cloud data necessitates domain-speciic exper-
tise due to its unique characteristics. With a large number of three-dimensional points, each with its own
coordinates and potential attributes, accurately labeling 3D point cloud data requires expert knowledge. This
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Fig. 1. Example of Point cloud test cases

expertise is crucial for understanding and interpreting the geometric attributes, shapes, and potentially semantic
information conveyed by the points.

To address the issue of labeling cost in the context of DNNs, previous research eforts [28] have primarily focused
on test prioritization, which aims to prioritize test inputs that are more likely to be misclassiied by the model. By
allocating resources to label these challenging inputs irst, developers can ensure priority for critical test cases,
ultimately resulting in reduced overall labeling costs. Existing test prioritization approaches [28, 89, 90] can be
broadly categorized into two main groups: coverage-based and conidence-based. Coverage-based techniques
prioritize test inputs based on the coverage of neurons [53, 94]. In contrast, conidence-based approaches operate
under the assumption that test inputs for which the model exhibits lower conidence are more likely to be
misclassiied. Notably, conidence-based approaches have been demonstrated to be more efective than coverage-
based approaches in the existing studies [28]. Weiss et al. [90] conducted a comprehensive exploration of diverse
test input prioritization techniques, encompassing several conidence-based metrics that can be adapted to 3D
point cloud data, such as DeepGini, Vanilla Softmax, Prediction-Conidence Score (PCS), and Entropy.

Although the conidence-based test prioritization approaches have demonstrated eicacy in speciic contexts
such as image and text data, they encounter several limitations when applied to 3D point cloud data.

• Noises in 3D point cloud data 3D point cloud data can exhibit inherent noise, which arises from various
sources such as sensor noise and non-uniform sampling density. These noise factors can afect the efectiveness
of conidence-based approaches. Speciically, in the presence of noise, the model can erroneously assign a high
probability to an incorrect category for a given test sample. Consequently, conidence-based approaches incor-
rectly assume that the model is highly conident of this particular test, considering it will not be misclassiied.
However, the model’s prediction on this test sample is indeed incorrect (i.e., this test is misclassiied by the
model).

• Missing crucial spatial features Conidence-based methods typically rely on the model’s prediction coni-
dence on test samples. However, in the case of 3D point cloud data, the point cloud exhibits complex spatial
characteristics, and relying solely on the conidence feature of the model’s prediction for test prioritization is
limited. In other words, conidence-based methods fail to fully leverage the informative features inherent in
point cloud data for test prioritization.

In addition to coverage-based and conidence-based techniques, Wang et al. [89] proposed PRIMA, which
leverages mutation analysis and learning-to-rank methodologies for test input prioritization in DNNs. However,
although demonstrating efectiveness in the domain of DNN test prioritization, PRIMA faces challenges when
applied to 3D point cloud data. The reason is that: 1) the mutation operators utilized in PRIMA are primarily
designed for two-dimensional images, text, and predeined features. These operators are not directly applicable
to 3D point cloud data. In contrast to conventional image or text data, 3D point clouds exhibit a distinctive
three-dimensional representation characterized by a substantial quantity of points; 2) even when considering
the possibility of utilizing dimensionality reduction techniques to transform 3D data into two-dimensional
images and integrating them into PRIMA, practical issues emerge. The execution low of PRIMA necessitates
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the mutated two-dimensional images to be fed into the evaluated model for comparing the prediction results
between mutants and original inputs. However, the model employed for 3D point clouds is inherently tailored
to process three-dimensional data and lacks the capability to classify the mutated two-dimensional images. As
a result, even in scenarios where dimensionality reduction tools are accessible, PRIMA remains unsuitable for
accommodating 3D point cloud data.
In this paper, we propose PCPrior (3D Point Cloud Test Prioritization), a novel test prioritization approach

speciically designed for 3D point cloud test cases. PCPrior leverages the unique characteristics of 3D point clouds
to prioritize tests. It is crucial to emphasize that our approach focuses on datasets where each 3D point cloud
corresponds to an individual test case. Therefore, each test case is constituted by a collection of points. The core
idea behind the PCPrior framework is that: test inputs situated closer to the decision boundary of the model
are more likely to be predicted incorrectly, which has been proven in the prior research [57]. PCPrior aims to
prioritize such possibly-misclassiied tests higher.
To relect the distance between a test (a point cloud) and the decision boundary, we adopt a vectorization

approach to map each test to a low-dimensional space, indirectly revealing the proximity between the point
cloud data and the decision boundary. Based on this vectorization strategy, we design a diverse set of features
to characterize a point cloud test, including Spatial Features (SF), Mutation Features (MF), Prediction Features
(PF), and Uncertainty Features (UF). Notably, SF and MF are speciically designed based on the characteristics of
point clouds. Speciically, these features play a pivotal role in capturing essential aspects, including the spatial
properties of the point cloud, mutation information present in the input, predictions generated by the DNN
model, and the corresponding conidence levels. PCPrior constructs a comprehensive feature vector through
the concatenation of these four feature types and leverages a ranking model to learn from it for efective test
prioritization.

Compared to existing test prioritization approaches, PCPrior has the following advantages:

• Tailored for 3D Point Cloud Data PCPrior is speciically designed to address the challenges of test prioritiza-
tion for 3D point cloud data. Unlike existing approaches that focus on 2D images or text data, PCPrior leverages
the distinctive characteristics of 3D point clouds and provides a more targeted approach for prioritizing tests.

• Efective Utilization of Spatial Features PCPrior leverages the spatial features of 3D point clouds, which are
essential for understanding the geometric attributes and shapes of objects in the data. Unlike conidence-based
approaches that solely rely on prediction conidence, PCPrior incorporates spatial features into the prioritization
process. By considering the spatial properties of the point cloud data, PCPrior can efectively capture the
informative features necessary for accurate test prioritization.

• Comprehensive Feature Generation Mechanism In addition to incorporating spatial characteristics,
PCPrior integrates conidence-based features while also taking into account mutation and prediction features.
By combining these features into a comprehensive feature vector, PCPrior captures a rich set of information
that enhances the efectiveness of test prioritization.

PCPrior exhibits broad applicability across diverse domains. As a case in point, in the ield of autonomous
driving, when testing a 3D shape classiication model, the utilization of sensors facilitates the collection of
unlabeled test sets comprising surrounding 3D point clouds. PCPrior can be utilized to identify and prioritize test
instances that are more likely to be misclassiied by the model. By focusing on labeling these possibly-misclassiied
test inputs, it results in a reduction of both labeling time and the manual eforts involved in the labeling process.

To evaluate the efectiveness of PCPrior, we conduct an extensive experimental evaluation on a diverse set of 165
subjects, encompassing both natural datasets and noisy datasets. We compare PCPrior with several existing test
prioritization approaches that have demonstrated efectiveness in prior studies [28, 90]. The evaluation metrics
include the Average Percentage of Fault-Detection (APFD) [94] and Percentage of Fault Detected (PFD) [28],
which are standard and widely-adopted metrics for test prioritization. The experimental results demonstrate the
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superiority of PCPrior over existing test prioritization techniques. Speciically, when applied to natural datasets,
PCPrior consistently outperforms all the comparative test prioritization approaches, yielding an improvement
ranging from 10.99% to 66.94% in terms of APFD. Moreover, on noisy datasets, the improvement ranges from
16.62% to 53%. We publish our dataset, results, and tools to the community on Github1.

Our work has the following major contributions:

• ApproachWe propose PCPrior, the irst test prioritization approach speciically for 3D point cloud data. To
this end, we design four types of features that can comprehensively extract information from a 3D point cloud
test. We employ efective ranking models to learn from the generated features for test prioritization.

• StudyWe conduct an extensive study based on 165 3D point cloud subjects involving natural and noisy datasets.
We compare PCPrior with multiple test prioritization approaches. Our experimental results demonstrate the
efectiveness of PCPrior.

• Performance AnalysisWe compare the contributions of diferent types of features to the efectiveness of
PCPrior. We also investigate the impact of main parameters in PCPrior.

2 BACKGROUND

2.1 Deep Learning for 3D Point Clouds

The rapid advancements in sensor technologies, such as LiDAR (Light Detection and Ranging) [24] and RGB-D
(Red-Green-Blue Depth) cameras [49], have led to the proliferation of three-dimensional (3D) point cloud data.
These representations ind signiicant utility in various ields, including medical treatment [97], autonomous
driving [16, 19], and robotics [70, 98]. Typically, a point cloud represents a collection of data points in 3D space,
each point typically denoted by its spatial coordinates (x, y, z) and, in some cases, additional attributes like color
or intensity values [1]. Figure 1 illustrates one concrete example of a point cloud, showcasing the shape of a car.
Each point cloud comprises numerous individual points.

The emergence of Deep Learning [6, 50], particularly Convolutional Neural Networks (CNNs) and PointNet [72],
has revolutionized the analysis and understanding of 3D point cloud data. Moreover, the availability of numerous
publicly accessible datasets, such as ModelNet [93], ShapeNet [10], and S3DIS [4], has played a pivotal role in
stimulating research endeavors focused on deep learning techniques applied to 3D point clouds. This surge in
research has led to the development of numerous methods addressing various problems in point cloud processing.
One extensively studied problem in this domain is three-dimension (3D) shape classiication, which focuses
on utilizing DNNs to classify three-dimensional shapes. For example, in the ield of autonomous driving, 3D
shape classiication can be utilized to categorize various objects on the road, such as vehicles, pedestrians, traic
signs, etc. By accurately classifying these objects, the autonomous driving system can better understand the
surrounding environment, enabling more precise decision-making.
3D shape classiication typically involves three main steps: 1) Learning individual point embeddings

Initially, each point in the point cloud undergoes processing to acquire its embedding representation. 2) Obtaining
global shape embedding Subsequently, these individual point embeddings are aggregated to generate the
global shape embedding for the entire point cloud. This step aims to capture the overall structure and shape
characteristics of the entire point cloud. 3) Classiication Processing Finally, the global shape embedding
is input into several fully connected layers for classiication. These layers are responsible for determining the
category of the 3D shape represented by the point cloud based on the extracted global features.
In the literature [72, 73, 88, 92], several approaches have been proposed to tackle the challenge of 3D shape

classiication, such as PointConv [92], Dynamic Graph Convolutional Neural Network (DGCNN) [88], and
PointNet [72]. PointConv is a specialized convolutional neural network designed for processing 3D point clouds.
Training multi-layer perceptrons on local point coordinates enables the construction of deep networks directly

1https://github.com/yinghuali/PCPrior
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on 3D point clouds for eicient analysis. DGCNN, tailored for 3D point cloud data, leverages intrinsic spatial
relationships by modeling them as graphs. Through graph convolutions and dynamic adaptation of the graph
structure based on input data, DGCNN efectively learns and processes point cloud representations. PointNet, a
widely adopted architecture for 3D point cloud data, incorporates a shared multi-layer perceptron (MLP) with
max-pooling for local feature extraction and a symmetric function for aggregating global features. T-Net layers
enable PointNet to learn transformation matrices, enhancing its robustness to input variations. PointNet has
demonstrated impressive capabilities in 3D shape classiication.

2.2 Mutation Testing

Mutation testing in traditional software engineering In the ield of software testing [64, 65, 95], mutation
testing [39, 67] presents a robust methodology for evaluating the efectiveness of a test suite in identifying code
defects. The primary objective of mutation testing revolves around assessing the test suite’s capacity to detect
and localize faults within the code. The fundamental premise is that: if a test case can successfully uncover a
mutation, thereby revealing a discrepancy in program behavior compared to the original code, it signiies the test
case’s potential to identify bugs in real-world scenarios. These mutations are intentionally introduced into the
original program through simple syntactic modiications, resulting in the creation of a set of defective programs
known as mutants, each possessing a distinct syntactic alteration. To assess the eicacy of a given test suite,
these mutants are executed using the input test set, allowing an examination of whether the injected faults can
be detected.
The process of mutation testing, as delineated in prior research [40], entails generating a set of mutated

programs, denoted as �′, by applying predeined mutation rules to an original program � . These mutations
introduce minor modiications to � , thereby creating a collection of mutants for evaluation. The determination
of whether a mutant �′ is classiied as "killed" or "survived" is contingent upon the disparity observed in the
test result between �′ and the original program. More speciically, a mutant is categorized as "killed" if the test
case yields a diferent behavior compared to that of the original test. The killing of a mutant indicates that the
corresponding test case has successfully identiied and lagged a potential defect in the code under examination.
This discrepancy in behavior suggests that the test case has efectively detected and indicated the presence
of a possible defect within the code. Conversely, a mutant is regarded as "survived" if the test result remains
unchanged in comparison to the original program, suggesting that the test case fails to uncover the introduced
fault. When a test suite is able to "kill" many mutants, it indicates that the suite has a higher capability to detect
and localize faults within the code.
Mutation testing for DNNs Researchers have introduced various approaches and tools aimed at adapting
mutation testing for deep learning systems [34, 57, 78]. Notable contributions include DeepMutation [57],
DeepMutation++ [34], MuNN [78], and DeepCrime [37]. DeepMutation [57] is designed to evaluate the quality
of test data for deep learning (DL) systems using mutation testing. This innovative approach encompasses
the creation of mutation operators at both the source and model levels, strategically introducing faults into
various components such as training data, programs, and DL models. The evaluation of test data efectiveness is
subsequently conducted by analyzing the detection of these introduced faults. Building upon this foundation,
DeepMutation++[34] represents an advanced iteration, introducing innovative mutation operators tailored for
feed-forward neural networks (FNNs) and Recurrent Neural Networks (RNNs). Notably, it possesses the capability
to dynamically mutate the run-time states of an RNN. Shen et al. proposed MuNN [78], an intricate mutation
analysis method designed explicitly for neural networks. The method establishes ive mutation operators, each
rooted in the distinctive characteristics of neural networks. In a remarkable stride towards practical application,
Humbatova et al. introduced DeepCrime [37], a mutation testing tool that implements DL mutation operators
based on real-world DL faults. Furthermore, Jahangirova et al. [39] conducted a comprehensive empirical study
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of DL mutation operators found in the existing literature. Their study, which includes 20 DL mutation operators
such as activation function removal and layer addition, suggests that while most operators are useful, their
coniguration needs careful consideration to avoid rendering them inefective.

2.3 Test Input Prioritization for DNNs

Test prioritization [83] is a critical process in software testing that seeks to establish an optimal sequence for
unlabelled tests. Its core objective is to identify and prioritize potentially misclassiied tests, enabling their early
labelling and consequently leading to a reduction in the overall labelling cost. The majority of approaches for
prioritizing tests in Deep Neural Networks (DNNs) [21, 28, 89] can be categorized into two main groups: coverage-
based and conidence-based [89]. Coverage-based approaches, exempliied by CTM [94], involve the direct
extension of conventional software system testing methods to the domain of DNN testing. In contrast, conidence-
based approaches prioritize test inputs based on the model’s level of conidence. Speciically, these methods aim
to identify inputs that are likely to be misclassiied by the DNN model, as indicated by the model assigning similar
probabilities to each class. DeepGini [28] stands as a classic conidence-based test prioritization method that has
been empirically shown to outperform existing coverage-based techniques in terms of both efectiveness and
eiciency. Other conidence-based test prioritization methods, such as Vanilla Softmax, Prediction-Conidence
Score (PCS), and Entropy, have also been evaluated in recent research [90]. These metrics have demonstrated
eicacy in identifying potentially misclassiied test inputs and can assist in guiding test prioritization eforts.

While conidence-based methods can be applied to 3D point cloud data, they have certain limitations. 3D point
cloud data is typically characterized by its large-scale and highly detailed nature, typically consisting of millions
or even billions of points. However, conidence-based methods, when prioritizing tests, primarily focus on the
uncertainty associated with the model’s classiication of the test inputs, neglecting the intrinsic raw feature
information contained within the point cloud data. Furthermore, point cloud data is prone to noise, which can
adversely impact the reliability of conidence scores assigned by these approaches. In the presence of noise,
conidence-based methods can exhibit high conidence in incorrect labels. Consequently, in such cases, tests that
will be misclassiied by the model are mistakenly assigned inappropriate conidence scores, resulting in them not
being prioritized higher. These factors collectively contribute to the diminished performance of conidence-based
methods in the context of point cloud data.
In addition to the aforementioned test prioritization methods, PRIMA [89], proposed by Wang et al., em-

ploys mutation analysis to prioritize test inputs that can uncover faults. However, point cloud data represents
unstructured sets of points in three-dimensional space, which makes the mutation rules of PRIMA not adapted.

3 APPROACH

3.1 Overview

In this paper, we introduce PCPrior, a novel approach tailored for test prioritization in the domain of 3D point
cloud data. The overview of PCPrior is depicted in Figure 2, which provides a visual representation of its key
components. Speciically, when given a test set � targeted at a DNN model � , we outline the fundamental
worklow of PCPrior as follows. A more comprehensive exposition of this worklow is presented in subsequent
sections.

• Feature Generation: In the initial stage, PCPrior generates four distinct types of features for each test � ∈ � ,
which are purposefully designed to capture the characteristics of 3D point cloud data. These four types of
features encompass Spatial Features, Mutation Features, Prediction Features, and Uncertainty Features. In
Figure 2, the matrices represent features generated from the test inputs. Here, � denotes the number of test
inputs in the test set � . Since there are � tests in � , each matrix has � rows. Each row in the matrix represents
a feature vector generated for a speciic test. From top to bottom, the irst matrix illustrates the input mutation
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Fig. 2. Overview of PCPrior

features for all tests in the test set, with dimensions � × � , where � denotes the number of mutation features for
each test. The second matrix represents spatial features for all tests in the test set, having dimensions � × � ,
where � signiies the number of spatial features for each test. The third matrix showcases prediction features,
having dimensions � × � , where � represents the number of prediction features for each test. The fourth matrix
displays uncertainty features, with dimensions � ×� , where� denotes the number of uncertainty features
for each test. For example, in the matrix of spatial features, {s21, s22, . . . , s2� } represent all spatial features
generated for the second test input in� . In Sections 3.2 to 3.5, we provide a detailed explanation of the meaning,
generation methods, and motivations behind each feature type.

• Feature Concatenation: For each test � ∈ � , PCPrior has generated four types of features in the previous
step. In this step, PCPrior concatenates these four types of features, resulting in the generation of the inal
feature vector speciically associated with the test � . In particular, the process is depicted in Figure 2 where
four matrices are concatenated, forming a large matrix with dimensions of � × ( � + � + � +�).

• Learning to Rank: PCPrior takes the inal feature vector of each test � ∈ � and inputs it into a pre-trained
ranking model, speciically LightGBM [41]. The ranking model automatically learns the probability of mis-
classiication for each test based on its feature vector. PCPrior leverages these probabilities to sort the tests,
placing those with a higher probability of being misclassiied by the model at the forefront.

3.2 Spatial Feature Generation

Based on the test set � , we generated six types of spatial features from each point cloud test input, including
variance [48], mean [5], median [5], scale [74], skewness [47], and kurtosis [47]. We provide detailed explanations
of each feature below. PCPrior leverages the spatial features of tests to identify their spatial proximity. As
illustrated in Figure 2, prior to the generation of spatial features, a data processing step is executed. This step
encompasses the reading and transformation of the point cloud dataset. Upon accessing the point cloud data, the
coordinates of each point within the point cloud (commonly represented as x, y, z coordinates), along with any
supplementary attributes (such as color and intensity), are transformed into a numpy array format.
The rationale behind generating these features stems from the observation made by Ma et al. [57] that

misclassiied inputs typically locate near the decision boundary of a DNN model. In light of this observation, our
approach entails the generation of a diverse set of spatial features from each test input, efectively capturing
its unique characteristics. As a result, each test instance is transformed into a spatial feature vector, indirectly
relecting the test’s proximity to the decision boundary. Tests that exhibit closer proximity to the decision
boundary are considered more susceptible to being predicted incorrectly. Motivated by this insight, PCPrior
utilizes the spatial features of test inputs to assess their probability of being misclassiied. For a given point cloud
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� , Formula 1 illustrates the process of generating its spatial features (SF).

��� = ������ (�2 (�), � (�), ������(�), ����� (�), �������� (�), �������� (�)) (1)

In Formula 1, all feature computations rely on the coordinates of points in the point cloud � along the three
coordinate axes (� ,�, �).�������� represents the resulting spatial feature vector for the point cloud � . Below, we use
variance features as a speciic example to clarify the calculation process for each type of spatial feature. Assuming
� consists of ive points with coordinates along the �,�, and � axes denoted as [�1, �2, �3, �4, �5], [�1, �2, �3, �4, �5],
and [�1, �2, �3, �4, �5] respectively, the variance for the �-axis is calculated as var( [�1, �2, �3, �4, �5]) = 0.5, for the
�-axis as var( [�1, �2, �3, �4, �5]) = 0.3, and for the �-axis as var( [�1, �2, �3, �4, �5]) = 0.8. Consequently, the inal
variance feature vector of � is [0.5, 0.3, 0.8]. Similar computations are performed for other types of spatial features.
Speciically, in Formula 1, �2 (�) represents the variance features of all points in the point cloud � along each
coordinate axis. � (�) represents the mean features, Median(�) denotes the median features, Scale(�) represents
scale features, Skewness(�) indicates the skewness features, and Kurtosis(�) corresponds to the kurtosis features.

• Variance Features [48] Variance features serve as statistical indicators for measuring the variability or
dispersion of points within a dataset. They quantify the variances of point cloud data along each coordinate
axis, thereby providing crucial information about the spatial distribution of points. Given a point cloud �
consisting of � points, where the � , �, � coordinates of each point are respectively � = [�1, �2, . . . , ��], � =
[�1, �2, . . . , ��], and � = [�1, �2, . . . , ��], Formula 2 illustrates the computation process for the variance feature
vector of the point cloud � .

�2 (�) = [��� (� ), ��� (� ), ��� (� )] (2)

where ��� (� ) represents the variance of the X-coordinates of all points in the point cloud � . Namely, it is the
variance of � = [�1, �2, . . . , ��]. ��� (� ) represents the variance of � = [�1, �2, . . . , ��], and ��� (� ) represents
the variance of � = [�1, �2, . . . , ��]. Formula 3 precisely illustrates the computation process for the variance of
� -coordinates. The procedures for computing the variance of � and � coordinates follow a similar approach.

��� (� ) =
1

�

�︁

�=1

(�� − �)
2 (3)

where ��� (� ) represents the variance of the X-coordinates of all points in � . Speciically, it is the variance of
� = [�1, �2, . . . , ��]. � represents the mean of the X-coordinates of all points in � . � denotes the total number
of points in � . �� represents the X-coordinates of the �-th point in � .
Speciically, the utilization of variance features in point cloud analysis ofers notable beneits: 1) Quantifying
dispersion Variance features enable a quantitative assessment of the dispersion of point cloud data along
diferent coordinate axes. Larger variance values indicate a more scattered distribution of points along the
corresponding axis, while smaller variance values suggest a more concentrated distribution. These insights are
essential for comprehending the spatial characteristics and shape of the point cloud. 2) Extracting shape

information Variance features facilitate the extraction of rough shape information from the point cloud. By
comparing the variances along diferent coordinate axes, conclusions can be drawn regarding the extension
or distribution of the point cloud in various directions. For instance, if the variance along a particular axis
signiicantly surpasses that of the other axes, it implies a greater extension of the point cloud’s shape in that
speciic direction.

• Mean Features [5] In the context of 3D point cloud data, mean features refer to the feature values obtained by
averaging the attributes (such as coordinates, normals, etc.) of each point in the point cloud. They represent the
average attributes of the entire point cloud and provide information about the overall shape or other properties.
Given a point cloud � consisting of � points, with the � , �, and � coordinates of each point represented
as � = [�1, �2, . . . , ��], � = [�1, �2, . . . , ��], and � = [�1, �2, . . . , ��], Formula 4 demonstrates the calculation
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process for the mean feature vector of the point cloud � .

� (�) = [����(� ),����(� ),����(� )] (4)

where����(� ) denotes the mean of � = [�1, �2, . . . , ��],����(� ) represents the mean of � = [�1, �2, . . . , ��],
and����(� ) signiies the mean of � = [�1, �2, . . . , ��]. Formula 5 details the computation process for the mean
of � -coordinates. The procedures for calculating the mean of � and � coordinates follow a similar approach.

����(� ) =
1

�

�︁

�=1

�� (5)

where ����(� ) represents the mean of the X-coordinates of all points in � . Speciically, it is the mean of
� = [�1, �2, . . . , ��]. � denotes the total number of points in � . �� represents the X-coordinates of the �-th point
in � .
We utilize mean features in test prioritization for the following reasons: 1) Comprehensive nature Mean
features consolidate the information of the entire point cloud into a single feature vector, ofering comprehensive
insights about the overall characteristics. Such comprehensive features facilitate a rapid understanding of the
global properties of the point cloud. 2) Dimensionality reduction Point cloud data typically comprise a large
number of points, each potentially possessing multiple attributes. By employing mean features, the point cloud
data can be reduced from a high-dimensional space to a lower-dimensional feature vector, thereby reducing
computational complexity and memory consumption.

• Median Features [5] In the context of 3D point cloud data, median features pertain to the feature values
obtained by calculating the median of the coordinate attributes (X, Y, Z) within the point cloud. They serve as
indicators of the central tendency of attribute values within the point cloud.
Given a point cloud � comprising � points, where the � , �, and � coordinates of each point are denoted as
� = [�1, �2, . . . , ��], � = [�1, �2, . . . , ��], and � = [�1, �2, . . . , ��], Formula 6 elucidates the computation process
for the median feature vector of the point cloud � .

������(�) = [������(� ),������(� ),������(� )] (6)

where ������(� ) refers to the median of the X-coordinates of all points in the point cloud � (i.e., � =

[�1, �2, . . . , ��]),������(� ) represents the median of � = [�1, �2, . . . , ��], and������(� ) signiies the median
of � = [�1, �2, . . . , ��]. Formula 7 precisely outlines the computation process for the median of � -coordinates.
The procedures for calculating the median of � and � coordinates follow a similar approach.

������(� ) =

{

�
(

�+1
2

)

if � is odd
� ( �

2 )+� (
�

2 +1)
2 if � is even

(7)

where median(� ) represents the median of the X-coordinates of all points in � . Speciically, it is the median of
� = [�1, �2, . . . , ��]. � denotes the total number of points in � . �

(

�+1
2

)

denotes the value in � located at the

middle position. �
(

�
2

)

and �
(

�
2 + 1

)

represent the two values in � located at the middle positions when � is
even.
The utilization of median features is motivated by the following factors: 1) Median features exhibit reduced
sensitivity to outliers compared to mean features, rendering them more reliable and capable of providing more
accurate representations in the presence of extreme values. 2) Median features demonstrate heightened stability
by being less inluenced by variations in attribute value distributions, thereby facilitating a more consistent
representation of the point cloud data.

• Scale Features [74] In the context of 3D point cloud data, scale features refer to the diferences between the
minimum and maximum values of each point in the three dimensions (X, Y, and Z) of the point cloud. Range
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features can provide information about the scale of the point cloud data, speciically the spatial extent of the
point cloud in each dimension.
Given a point cloud � consisting of � points, where the � , �, and � coordinates of each point are represented as
� = [�1, �2, . . . , ��], � = [�1, �2, . . . , ��], and � = [�1, �2, . . . , ��], Formula 8 illustrates the computation process
for the scale feature vector of the point cloud � .

����� (�) = [����� (� ), ����� (� ), ����� (� )] (8)

where ����� (� ) denotes the scale of the X-coordinates of all points in the point cloud � (i.e.,� = [�1, �2, . . . , ��]),
����� (� ) represents the scale of the Y-coordinates (i.e., � = [�1, �2, . . . , ��]), and ����� (� ) signiies the scale
of the Z-coordinates (i.e., � = [�1, �2, . . . , ��]). Formula 9 precisely delineates the computation process for
the scale of � -coordinates. The procedures for calculating the scale of � and � coordinates follow a similar
approach.

����� (� ) =��� (� ) −���(� ) (9)

where ����� (� ) represents the scale of the X-coordinates of all points in � .��� (� ) represents the maximum
value in � = [�1, �2, . . . , ��].���(� ) represents the minimum value in it.
The utilization of scale features lies in that they serve as descriptive features of the point cloud data, providing
an overall characterization of the spatial attributes of the point cloud.

• Skewness Features [47] Within the context of 3D point cloud data, the skewness feature is a statistical
measure employed to quantify the degree of skewness in the distribution of data. It assesses the extent to which
the point cloud data distribution deviates from symmetry. In a point cloud � consisting of � points, with the � ,
�, and � coordinates of each point denoted as � = [�1, �2, . . . , ��], � = [�1, �2, . . . , ��], and � = [�1, �2, . . . , ��],
Formula 10 illustrates the computation process for the skewness feature vector of the point cloud � .

�������� (�) = [�������� (� ), �������� (� ), �������� (� )] (10)

where �������� (� ) denotes the skewness of � = [�1, �2, . . . , ��], �������� (� ) represents the skewness of
� = [�1, �2, . . . , ��], and �������� (� ) signiies the skewness of � = [�1, �2, . . . , ��]. Formula 11 outlines the
computation process for the skewness of the � -coordinates. The procedures for calculating the skewness of
the � and � coordinates follow a similar approach.

�������� (� ) =
1

�

�︁

�=1

(�� − �

�

)3
(11)

where � represents the mean of � = [�1, �2, . . . , ��], and � denotes the standard deviation of � . � denotes the
total number of points in � , and �� represents the X-coordinates of the �-th point in � .
The utilization of the skewness feature is motivated by its ability to provide crucial insights into the distribution
characteristics of point cloud data. Analyzing the skewness feature facilitates understanding the skewness
patterns exhibited by the point cloud data along diferent dimensions, i.e., whether the data values are skewed
towards the left or right. This enables the identiication of inherent asymmetry or skewness phenomena present
within the data.

• Kurtosis Features [47] In the domain of 3D point cloud data analysis, the kurtosis feature serves as a statistical
measure for describing the peakedness and shape of the data distribution. It quantiies the sharpness and
peakedness of the point cloud data distribution. Given a point cloud � consisting of � points, where the � , �,
and � coordinates of each point are denoted as � = [�1, �2, . . . , ��], � = [�1, �2, . . . , ��], and � = [�1, �2, . . . , ��],
Formula 12 illustrates the computation process for the kurtosis feature vector of the point cloud � .

�������� (�) = [�������� (� ), �������� (� ), �������� (� )] (12)
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where �������� (� ) represents the kurtosis of � = [�1, �2, . . . , ��], �������� (� ) denotes the kurtosis of � =

[�1, �2, . . . , ��], and �������� (� ) signiies the kurtosis of � = [�1, �2, . . . , ��]. Formula 13 outlines the computa-
tion process for the kurtosis of the � -coordinates. The procedures for calculating the kurtosis of the � and �
coordinates follow a similar approach.

�������� (� ) =
1

�

�︁

�=1

(�� − �

�

)4
− 3 (13)

where � represents the mean of � = [�1, �2, . . . , ��], and � denotes the standard deviation of � . � denotes the
total number of points in � , and �� represents the X-coordinates of the �-th point in � .
The utilization of the kurtosis feature stems from its ability to provide crucial insights into the distribution
characteristics of point cloud data. By analyzing the kurtosis feature, it becomes possible to ascertain the
peakedness of data values across diferent dimensions, thereby discerning the steepness of their distribution.

3.3 Mutation Feature Generation

Given a point cloud test set denoted as � and a DNN model denoted as� , we employ the following approach to
mutate � and generate mutation features. It is important to note that each test sample is a point cloud composed
of thousands of points. Figure 1 visually presents one example of point cloud.

• Mutation generation Initially, for each test sample (a point cloud) in the test set � , a group of points are
randomly selected, and their coordinates are randomly perturbed to generate a mutated point cloud (also called
a mutant). This process is repeated � times, each execution being independent and random, resulting in �
mutants generated for each test � ∈ � .

• Mutation feature generation For � ∈ � , the previous step yields a set of mutants for it, denoted as
{� ′1, �

′
2, . . . , �

′
� }. PCPrior compares the predictions made by model � for the test � and each of its mutants

� ′� , thereby constructing a mutation feature vector speciic to test � . Speciically, if model � produces diferent
predictions for test � and the mutant � ′� , PCPrior sets the ��ℎ element of � ’s mutation feature vector to 1; otherwise,
it is set to 0. PCPrior constructs a mutation feature vector for each � ∈ � . Given a test input � (a point cloud),
Formula 14 describes the above mutation feature (MF) generation process in PCPrior.

��� [�] =

{

1 if� (�� ) ≠ � (�)

0 if� (�� ) = � (�)
(14)

where��� represents the mutation feature vector generated for the test input � .��� [�] denotes the �-th value
of this feature vector.� (�� ) represents the prediction of the 3D shape classiication model� for mutant �� ,
and� (�) represents the prediction for the original test input � .

The principle behind leveraging the mutation features of test inputs for test prioritization is that: A test input �

is considered more likely to be misclassiied if the evaluated model’s predictions for many mutants of � difer from

the prediction for � . This principle draws inspiration from mutation testing techniques employed in traditional
software engineering [54, 79]. Besides, our mutation feature generation approach ofers several advantages:

❶ Capturing Model Sensitivity. The mutation feature generation approach allows to capture the sensitivity of
model� to perturbations in the test input. By comparing the predictions of model� for the original test � and
its corresponding mutants � ′� , we can identify test instances where even small changes in the input result in
diferent model predictions. Such instances are considered more likely to be misclassiied by the DNN model.

❷ Fine-Grained Analysis. By constructing a mutation feature vector speciic to each test � ∈ � , we obtain a
ine-grained analysis of the model’s behavior for individual test cases. The mutation feature vector captures
the diferences between the original test and each of its mutants.
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❸ Interpretability. The mutation feature vectors provide an interpretable representation of the model’s behavior.
Each element of the vector indicates whether the evaluated model’s result for a speciic mutant difers from its
result for the original test.

3.4 Prediction Feature Generation

The Prediction Feature (PF) captures the probability information of a given test sample belonging to each class.
To obtain the Prediction Feature (PF) for a test � ∈ � , initially, we input this test into the target prediction model
� . This model is the 3D shape classiication model that we evaluated. The model outputs a vector for the test � ,
denoted as {�1, �2, . . . , ��}, where this vector represents the probabilities of test � belonging to each category.
Here, �� denotes the model’s prediction probability for test � belonging to category � . For instance, a feature vector
[0.1, 0.1, 0.8] signiies that, according to the predictions made by model� , the test input � has a 10% probability of
belonging to the irst class, a 10% probability of belonging to the second class, and an 80% probability of belonging
to the third class. The utilization of Prediction Features has been observed in several prior studies focusing on
DNN test optimization, such as Li et al.[51] and Feng et al.[28].
Given 3D shape classiication model� and a test input � , the prediction feature vector of � is obtained based

on Formula 15.

��� (�) = � (�) =
〈

��,1, ��,2, · · · , ��,�
〉

(15)

where � (�) denotes the prediction probability vector of model � for the test � . ��,� represents the probability
predicted by model� that the test input � belongs to the �-th category. � signiies the total number of predicted
categories by the model� .

3.5 Uncertainty Feature Generation

The Uncertainty Features (UF) capture the model’s conidence associated with its classiication results for each test
input � ∈ � . To obtain the UF, we employ six widely used conidence-based metrics [28, 85, 90], namely DeepGini,
Vanilla SM, PCS, Entropy, Margin, and Least Conidence. These metrics are selected due to their extensive
adoption in quantifying uncertainty in DNN classiication tasks and their demonstrated efectiveness [33, 90].
The process of constructing the uncertainty feature vector for each test input � ∈ � is as follows:

• Conidence score calculationWe calculate the conidence scores for each test input � using the aforemen-
tioned six conidence-based metrics.

• Feature generation The uncertainty feature vector is generated by concatenating the obtained conidence
scores from the six metrics. Consequently, for each test � ∈ � , a feature vector [�1, �2, �3, �4, �5, �6] is built,
where each element �� represents the conidence score calculated by the ��ℎ conidence-based metric for the
test input � .

For a given test input � , Formula 16 outlines the process of generating its uncertainty features (UF). In Formula 16,
DeepGini(�) denotes the uncertainty score calculated by DeepGini [28] speciically for the test � , whereas the
remaining terms represent uncertainty scores computed by other metrics for measuring uncertainty.

��� (�) = ������ (�������� (�), ������(�), ������� (�), �� (�),�������(�), ��� (�)) (16)

3.6 Feature Concatenation

For each test input � ∈ � , we integrate four distinct types of features, namely Spatial Features (SF), Mutation
Features (MF), Prediction Features (PF), and Uncertainty Features (UF), to construct a inal representative feature
vector. This feature vector encompasses the relevant information extracted from all feature types associated
with the given test input. Subsequently, the constructed feature vector is fed into the ranking models, which are
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designed to evaluate the likelihood of misclassiication for the test input based on its inal feature vector. In the
subsequent section, we provide a detailed exposition of the methodology employed in the ranking model.

3.7 Learning-to-rank

In this step, we employ the LightGBM ranking model [41] to leverage the feature vector of a given test instance
� ∈ � in order to predict its misclassiication score. LightGBM is a well-regarded machine learning algorithm
based on the Gradient Boosting Decision Tree (GBDT) methodology, renowned for its efectiveness and accuracy.
However, due to the binary nature of LightGBM’s output, which is not aligned with our objective of estimating
the probability of misclassiication for a test input, we introduce certain modiications to the original LightGBM
algorithm. More speciically, rather than obtaining a binary classiication output from the ranking models, which
indicates whether the test will be predicted incorrectly, we extract the intermediary output. This intermediate
result conveys valuable information regarding the probability of misclassiication for each test input.

Upon completion of the training phase (described in Section 3.8) of LightGBM, when a feature vector of a test
instance is provided as input to the ranking model, we extract an intermediate value predicted by LightGBM.
In the following, we provide a detailed explanation of how the intermediate value is obtained from LightGBM.
Initially, the original LightGBM was a binary classiication model. For a given test, it can categorize the test into
two classes based on its inal feature vector (obtained from the above steps), where an output of 0 indicates that
the test will be correctly predicted by the model, and an output of 1 indicates that the test will be incorrectly
predicted. Its internal logic operates as follows: For a test �� , LightGBM irst generates an intermediate value,
which signiies the probability of the test being incorrectly predicted by the model. If this intermediate value
exceeds 0.5, LightGBM will classify it as 1, indicating that the test is likely to be misclassiied by the model.
Conversely, if the value is below 0.5, it will be classiied as 0, suggesting that the test is likely to be correctly
predicted. In PCPrior, rather than letting LightGBM carry out classiication, we directly extract this intermediate
value for the purpose of test prioritization. Tests with higher intermediate values are considered more likely to
be incorrectly predicted and are, therefore, assigned a higher priority.

Speciically, when PCPrior is used for test prioritization, the detailed process of learning-to-rank is as follows:
For each test �� ∈ � , based on its inal feature vector, the LightGBM model generates an intermediate value for it,
which we denote as �� , representing the probability of test �� being predicted incorrectly by the model� . It ranges
from 0 to 1. If �� for a test is closer to 1, it indicates that the test is more likely to be predicted incorrectly by the
model. PCPrior ranks all the tests in the test set based on their �� value. Tests with higher �� will be prioritized
higher.

In the following, we explain the reasons for choosing the LightGBM model as the default model for PCPrior:

• Improved efectiveness. In RQ2 (cf. Section 5.2), we evaluated the efectiveness of diferent ranking models
on test prioritization. We found that LightGBM and XGBoost performed best across all subjects. However, in
most cases of our experiments, LightGBM outperformed XGBoost.

• Faster training speed. Moreover, prior work [41] has indicated that LightGBM trains faster than XGBoost.
Therefore, compared to XGBoost, LightGBM is more eicient.

3.8 Usage of PCPrior

Through the utilization of ranking models, the PCPrior framework is able to predict a misclassiication score for
each test input within a given test set. These predicted scores are then employed for test prioritization, prioritizing
test inputs with higher scores. Speciically, the ranking models undergo pre-training prior to the execution of
PCPrior. The training process is presented as follows:

❶ Training Set Construction: Given a DNN model� with a point cloud dataset � , the dataset � is initially
split into two partitions: the training set � and the test set � , following a 7:3 ratio [62]. The test set remains

ACM Trans. Softw. Eng. Methodol.



Test Input Prioritization for 3D Point Clouds • 15

untouched to evaluate the performance of PCPrior. Based on the training set �, our objective is to build a
training set �′ for training the ranking models. Firstly, we generate four types of features for each training
input �� ∈ �, using the procedures described in Sections 3.2 to 3.5. Then, we obtain the inal feature vector
�� for each training input �� , following the guidelines in Section 3.6. This inal feature vector is utilized to
construct the training set �′, which serves as the training data for the ranking models. Secondly, we input each
training input �� ∈ � into the original model and obtain its classiication results, denoted as �� . By comparing
�� with the ground truth of �� , we determine whether �� is misclassiied by the model� . If �� is misclassiied, it
is labeled as 1; otherwise, it is labeled as 0. This process enables the label construction of the ranking model
training set �′.

❷ RankingModel Training: Using the training set �′, we proceed to train the ranking models. Upon completion
of the training process, the ranking model is capable of producing a misclassiication score for a given input,
based on the feature vector generated by PCPrior.

4 STUDY DESIGN

In this section, we provide a comprehensive exposition of the details pertaining to our study design. Speciically,
Section 4.1 elucidates the research questions that served as the guiding framework for our investigation. Within
Sections 4.2 and 4.3, we meticulously present the point cloud subjects and measurement metrics that were
employed to assess the efectiveness of PCPrior. Furthermore, Section 4.4 showcases the iveDNN test prioritization
methods that were employed as comparative approaches against PCPrior. In Section 4.5, we elucidate the design
and characteristics of PCPrior variants. Additionally, Section 4.6 exhibits the implementation and coniguration
setup that were utilized in our study.

4.1 Research uestions

Our experimental evaluation answers the research questions below.

• RQ1: How does PCPrior perform in prioritizing test inputs for 3D point clouds?

In contrast to existing test prioritization methodologies, our proposed approach, PCPrior, leverages the unique
characteristics of point clouds for test prioritization. In this research question, we evaluate the efectiveness of
PCPrior by comparing it with existing test prioritization approaches that have been demonstrated efective in
prior studies [28, 90] and random selection (baseline).

• RQ2: How do diferent ranking models afect the efectiveness of PCPrior?

In the original implementation of PCPrior, the LightGBM ranking algorithm [41] was employed to leverage the
generated features of test inputs for test prioritization. In this research question, we explore the utilization of
alternative ranking algorithms, namely Logistic Regression [81], XGBoost [17], and Random Forest [9], with
the objective of examining the inluence of ranking models on the efectiveness of PCPrior. To this end, we
design a set of variants for PCPrior, each incorporating one of the aforementioned ranking models, while
maintaining consistency with the remaining worklow.

• RQ3: How does the selection of main parameters of PCPrior afect its efectiveness?

We conducted an in-depth investigation of the main parameters in PCPrior, with the aim of evaluating whether
PCPrior can consistently outperform the compared test prioritization approaches when these parameters
undergo modiications.

• RQ4: How does PCPrior and its variants perform on noisy 3D point clouds?

In addition to assessing PCPrior and its variants on natural datasets, we undertake an evaluation that encom-
passes noisy 3D point clouds, thereby facilitating an in-depth examination of their efectiveness.

• RQ5: To what extent does each type of features contribute to the efectiveness of PCPrior?
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In PCPrior, we generate four diferent types of features from each test input for test prioritization, namely
Spatial Features, Mutation Features, Prediction Features and Uncertainty Features, as elaborated in Section 3.
In this research question, we compare the contributions of diferent types of features on the efectiveness of
PCPrior.

• RQ6: Can PCPrior and uncertainty-based methods be employed to guide the retraining process for

enhancing a 3D shape classiication model?

Faced with a substantial volume of unlabeled inputs and a constrained time budget, manually labeling all
inputs for retraining a 3D shape classiication model becomes impractical. Active learning is acknowledged as
a practical solution for reducing data labeling costs [71]. This approach focuses on selecting an informative
subset of samples to retrain the model, aiming to improve model performance with minimal labeling costs. In
this research question, we investigate the efectiveness of PCPrior and uncertainty-based metrics in selecting
informative retraining inputs to improve the performance of 3D shape classiication models.

4.2 Models and Datasets

The efectiveness of PCPrior and the compared test prioritization approaches [28, 90] was evaluated using a set
of 165 subjects. Essential details regarding these subjects are presented in Table 1, which highlights the matching
relationship between the point cloud dataset and the DNN models. In particular, the "#Size" column indicates the
size of the dataset, while the "Type" column denotes the type of the dataset, with "Original" representing natural
data and "Noisy" indicating noisy data.

Among the 165 subjects, 15 subjects (3 point cloud datasets × 5 models) were generated using natural datasets,
while the remaining 150 subjects were generated using noisy datasets. To generate a noisy dataset from the
original test set � , each test instance � ∈ � undergoes a modiication. Speciically, within each test instance � (a
point cloud), approximately 30% of the points undergo a random ofset, while the remaining 70% of the points
remain unchanged. The 30% ratio is derived from the reasonable range of noise injection proportions provided
in the existing work [2]. The 150 subjects derived from noisy data were obtained as follows: For each original
dataset, we generated 10 noisy datasets, resulting in a total of 30 noisy datasets. Each noisy dataset was paired
with ive diferent models, resulting in a total of 150 subjects (30 datasets × 5 models).

In the following part, we present the description of the 3D point cloud datasets and DNN models utilized in
our study.

4.2.1 Datasets.

In our research, we employed three prominent point cloud datasets, namely ModelNet40 [93], ShapeNet [10],
and S3DIS [4]. These datasets are widely adopted within the academic community and have consistently served
as benchmarks for several state-of-the-art point cloud studies [30, 35, 52].

• ModelNet40 [93]: ModelNet40 consists of 12,311 point clouds in 40 categories (e.g., airplane, car, plant, lamp).
It encompasses synthetic object point clouds and stands as a paramount benchmark for point cloud analysis.
Renowned for its diverse range of categories, meticulous geometric shapes, and methodical dataset construction,
ModelNet40 has garnered signiicant popularity in the research community [30].

• ShapeNet [10]: ShapeNet dataset is a widely recognized and extensively used benchmark in the ield of 3D
shape classiication. The ShapeNet dataset utilized in our study consists of 50 categories and a total of 53,107
samples. These categories include chairs, tables, cars, airplanes, animals, etc.

• Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) [4]: The S3DIS dataset is widely recognized for
its comprehensive representation of diverse indoor environments, encompassing various real-world scenes
encountered in indoor settings. The S3DIS dataset utilized in our study consists of 9,813 samples, classiied into
13 categories (e.g., oice, meeting room, and open space).
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Table 1. 3D Point cloud datasets and models

ID Dataset # Size Model Type

1 ModelNet 12311 DGCNN Original, Noisy
2 ModelNet 12311 PointConv Original, Noisy
3 ModelNet 12311 MSG Original, Noisy
4 ModelNet 12311 SSG Original, Noisy
5 ModelNet 12311 PointNet Original, Noisy
6 S3DIS 9813 DGCNN Original, Noisy
7 S3DIS 9813 PointConv Original, Noisy
8 S3DIS 9813 MSG Original, Noisy
9 S3DIS 9813 SSG Original, Noisy
10 S3DIS 9813 PointNet Original, Noisy
11 ShapeNet 53107 DGCNN Original, Noisy
12 ShapeNet 53107 PointConv Original, Noisy
13 ShapeNet 53107 MSG Original, Noisy
14 ShapeNet 53107 SSG Original, Noisy
15 ShapeNet 53107 PointNet Original, Noisy

4.2.2 Models.

• PointConv [92]: PointConv is a convolutional neural network operator speciically designed for processing
3D point clouds characterized by non-uniform sampling. By training multi-layer perceptrons using local point
coordinates, PointConv approximates continuous weight and density functions within convolutional ilters. In
this way, deep convolutional networks can be directly constructed on 3D point clouds, enabling eicient and
efective analysis and processing.

• Dynamic Graph Convolutional Neural Network (DGCNN) [88]: DGCNN is a deep learning architecture
speciically designed for processing and analyzing 3D point cloud data. The key idea behind DGCNN is to
exploit the intrinsic spatial relationships present in point clouds by modeling them as graphs. By leveraging
graph convolutions and dynamically adapting the graph structure based on the input data, DGCNN can
efectively learn and process point cloud representations, making it suitable for point cloud classiication tasks.

• PointNet [72]: PointNet is a widely-adopted deep learning architecture speciically tailored for 3D point
cloud data. The architecture includes a shared multi-layer perceptron (MLP) with max-pooling to extract local
features from individual points and a symmetric function to aggregate the global features across all points. By
employing T-Net layers, PointNet is able to learn transformation matrices that aid in aligning and transforming
input point clouds, enhancing the model’s robustness to input variations. PointNet has demonstrated impressive
capabilities in 3D shape classiication tasks, establishing it as an efective approach for point cloud analysis.

• MSG [73]: MSG refers to multi-scale grouping. The MSG approach involves sampling representative points and
grouping nearby points within a speciied radius. This allows for the extraction of local features at multiple
scales, enabling hierarchical feature learning from point sets.

• SSG [73]: SSG, an acronym for Single-Scale Grouping, denotes a simpliied variant of the multi-scale grouping
architecture. The essence of SSG lies in the partitioning of a point cloud into local regions of ixed size
while disregarding the consideration of multiple scales. Within each region, a representative subset of points
is judiciously sampled, and proximate points falling within a predeined radius are grouped together. This
approach facilitates local feature extraction while avoiding the intricate intricacies associated with handling
diverse scales.
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4.3 Measurements

The goal of PCPrior is to prioritize the possibly-misclassiied test inputs in the context of 3D point cloud data.
Thus following the existing work [28], we adopted Average Percentage of Fault-Detection (APFD) and Percentage
of Fault Detected (PFD) to measure the efectiveness of PCPrior, the compared approaches, and the variants of
PCPrior.

• Average Percentage of Fault-Detection (APFD) APFD [94] is a widely recognized metric for assessing
the efectiveness of prioritization techniques. A higher APFD value indicates a quicker rate of detecting
misclassiications. The calculation of APFD values is based on Formula 17.

���� = 1 −

∑�
�=1 ��

��
+

1

2�
(17)

where � denotes the total number of test inputs, and the variable � represents the number of test inputs in �
that will be incorrectly predicted by the model. The index �� pertains to the position of the ��ℎ misclassiied
test within the prioritized test set. Speciically, �� represents an integer value indicating the position of the ��ℎ
misclassiied test within the prioritized test set.
Based on the existing study [28], we normalize the APFD values to [0,1]. A prioritization approach is considered
better when the APFD value is closer to 1. This is because: a larger APFD value corresponds to a smaller

value of
∑�

�=1 �� . Here,
∑�

�=1 �� represents the total index sum of misclassiied tests within the prioritized list. A

smaller
∑�

�=1 �� implies that the evaluated test prioritization method assigns higher priority to misclassiied tests,
positioning them at the front of the ranked test set. This efective detection of misclassiied tests demonstrates
the eicacy of the test prioritization approach. Therefore, a larger APFD value serves as an indicator of better
efectiveness for test prioritization strategies.

• Percentage of Fault Detected (PFD) PFD refers to the proportion of detected misclassiied test inputs among
all misclassiied tests. Higher PFD values indicate better test prioritization efectiveness. PFD is calculated
based on Formula 18.

��� =
#��

#�
(18)

where #�� is the number of misclassiied test inputs that have been detected. #� denotes the total number
of misclassiied tests. In our study, we evaluated the PFD of PCPior and the compared test prioritization
approaches against diferent ratios of prioritized tests. We utilize PFD-n to denote the irst n% prioritized test
inputs.

4.4 Compared Approaches

This study employed ive comparative approaches, which included a baseline approach (random selection) and
four DNN test prioritization techniques. The selection of these methods was driven by multiple factors: 1) These
approaches can be adapted for test prioritization in the context of 3D point cloud data; 2) These approaches were
proposed within the DL testing community and have been previously demonstrated as efective for DNNs; 3)
These approaches provide open-source implementations.

• Random selection [26] Random selection is the baseline in our study. Random selection involves the ran-
domized determination of the execution order for test inputs. This means that the sequencing of test inputs is
established in a completely arbitrary manner, devoid of any predetermined patterns or logical arrangements.

• DeepGini [28] DeepGini utilizes the Gini coeicient, which is a statistical metric used to assess the probability
of misclassiication, in order to facilitate the ranking of test inputs. The Gini score is calculated according to
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Formula 19, which is presented below:

� (�) = 1 −
�︁

�=1

(�� (�))
2 (19)

where � (�) represents the probability of the test input � being misclassiied. �� (�) denotes the probability that
the test input � is predicted to belong to label � . � represents the total amount of categories that the input can
be assigned to.

• Prediction-Conidence Score (PCS) PCS [90] assigns rankings to test inputs based on the diference between
the predicted class and the second most conident class in the softmax likelihood. A smaller diference indicates
that the model is less certain about the prediction for a particular test input. These uncertain tests are given
higher priority and are placed at the front of the test set. The calculation of this diference is deined by
Formula 20 as follows:

� (�) = �� (�) − � � (�) (20)

where �� (�) refers to the most conident prediction probability. � � (�) refers to the second most conident
prediction probability.

• Vanilla Softmax [90] Vanilla Softmax measures the diference between the maximum activation probability
in the output softmax layer and the ideal value of 1 for each test input. This disparity relects the degree of
uncertainty associated with the model’s predictions. Test inputs with larger disparities are considered more
likely to be misclassiied by the model. The speciic computation of this disparity is illustrated by Formula 21,
which provides a clear and concise representation of the underlying mathematical calculations.

V(�) = 1 −
�

max
�=1

�� (�) (21)

where �� (�) belongs to a valid softmax array in which all values are between 0 and 1, and their sum is 1.
• Entropy [90] Entropy serves as a criterion for ranking test inputs based on the entropy of their softmax
likelihood. Higher entropy values indicate greater uncertainty in the model’s predictions for those inputs.
Consequently, test inputs with higher entropy are considered more likely to be misclassiied by the model. As
a result, they are given higher priority and placed at the beginning of the test set.

4.5 Variants of PCPrior

We conducted an investigation into the inluence of diferent ranking models on the efectiveness of PCPrior. To
this end, we proposed ive variants of PCPrior, namely PCPrior� , PCPrior� , PCPrior� , PCPrior� , and PCPrior� ,
which utilize Logistic Regression [81], XGBoost [17], Random Forest [9], DNNs [82], and TabNet [3] as the
ranking model, respectively. It is essential to emphasize that apart from the variation in ranking models, the
execution worklow of these derived variants remains identical to that of the original PCPrior approach.

Furthermore, we extended the modiications applied to the LightGBM ranking model of PCPrior to the ranking
models employed by the variants of PCPrior. Speciically, instead of making the ranking models provide a binary
classiication output (i.e., indicating whether the test will be predicted incorrectly by the model), we extract the
intermediate output, which can indicate the probability of misclassiication for each test input. Consequently, we
obtain a misclassiication score for each test input, which can be efectively utilized for test prioritization. In
the following sections, we provide a comprehensive explanation of the speciic ranking models utilized in each
variant of PCPrior.

• PCPrior�: In the context of PCPrior� , we employ the Logistic Regression algorithm [61] as the ranking
model. Logistic Regression is a statistical modeling technique that employs a logistic function to establish the
relationship between a categorical dependent variable and one or more independent variables.
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• PCPrior� : In the context of PCPrior� , we utilize the XGBoost ranking algorithm [17] to estimate the misclassi-
ication score of a test input based on its corresponding feature vector. XGBoost is a powerful gradient-boosting
technique that integrates decision trees to enhance prediction accuracy. By leveraging its ensemble learning
capabilities, XGBoost efectively captures complex relationships within the data, enabling accurate estimation
of the likelihood of misclassiication for each test input.

• PCPrior� : In the context of PCPrior� , we employ the Random Forest algorithm [9] as the ranking model.
Random Forest is an ensemble learning algorithm that constructs multiple decision trees. The predictions
from individual trees are combined using averaging or voting mechanisms to produce the inal prediction.
Random Forest is known for its ability to handle high-dimensional data and capture intricate interactions
among features. By leveraging these strengths, PCPrior� accurately estimates the misclassiication score for
each test input, aiding in efective test prioritization.

• PCPrior� : In the context of PCPrior� , we utilize a DNN model as the ranking model, derived from a prior
investigation [82]. This DNN model is capable of producing a misclassiication score for a given test input,
relying on its feature vector generated by PCPrior.

• PCPrior� : In the context of PCPrior� , we utilize TabNet [3] as the ranking model. TabNet is a DNN architecture
speciically designed for tabular data. It has been demonstrated to bemore efective than XGBoost and LightGBM
in a previous study [3].

4.6 Implementation and Configuration

We implemented PCPrior in Python, utilizing the PyTorch 2.0.0 framework [68]. To enable comparison with other
approaches, we integrated existing implementations of the compared methods [28, 90] into our experimental
pipeline, speciically tailored for test prioritization of 3D point cloud data. To generate mutation features, we
created 30 mutants for each test sample. Regarding the coniguration of the ranking models employed in PCPrior,
we utilized XGBoost 1.7.4, LightGBM 3.3.5, and scikit-learn 1.0.2 frameworks. Furthermore, we made speciic
parameter selections: for LightGBM, the learning rate was set to 0.1; for Logistic Regression, the parameter
���_���� was set to 100; for XGBoost, the learning rate was set to 0.3; and for the random forest algorithm, the
number of estimators was set to 100. Our experimental setup involved conducting experiments on NVIDIA Tesla
V100 32GB GPUs. For the data analysis, we utilized a MacBook Pro laptop running Mac OS Big Sur 11.6, equipped
with an Intel Core i9 CPU and 64 GB of RAM. In total, we conducted experiments on 165 subjects, consisting of
15 subjects based on natural inputs and 150 subjects based on noisy inputs.

5 RESULTS AND ANALYSIS

5.1 RQ1: Performance of PCPrior

Objectives:We investigate the efectiveness and eiciency of PCPrior, comparing it with several existing test
prioritization approaches.
Experimental design:We conducted experiments to evaluate the performance of PCPrior from the following
three aspects.

• Efectiveness evaluation on natural datasets. We employed a set of 15 subjects constructed from 3D
point cloud datasets to evaluate the efectiveness of PCPrior. Table 1 presents the basic information of these
subjects. In order to assess the performance of PCPrior, we carefully selected four test prioritization approaches,
namely DeepGini, Vanilla SM, PCS, and entropy, alongside a baseline method (i.e., random selection), for
comparative analysis. Moreover, we utilized two measurement metrics, speciically the Average Percentage of
Fault-Detection (APFD) and the Percentage of Fault Detected (PFD), to evaluate the efectiveness of PCPrior
and the compared approaches. A detailed explanation of the calculations for these metrics can be found in
Section 4.3.

ACM Trans. Softw. Eng. Methodol.



Test Input Prioritization for 3D Point Clouds • 21

Table 2. Efectiveness comparison among PCPrior, DeepGini, VanillaSM, PCS, Entropy and random selection in terms of
the APFD values on natural datasets

ModelNet S3DIS ShapeNet
Approach

DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet

Random 0.503 0.503 0.489 0.482 0.509 0.514 0.493 0.505 0.509 0.504 0.502 0.495 0.496 0.501 0.511
DeepGini 0.763 0.719 0.757 0.748 0.734 0.715 0.700 0.699 0.703 0.653 0.846 0.740 0.824 0.837 0.793
VanillaSM 0.768 0.725 0.763 0.754 0.737 0.718 0.702 0.702 0.705 0.657 0.850 0.745 0.827 0.839 0.797
PCS 0.770 0.729 0.767 0.756 0.737 0.717 0.699 0.700 0.702 0.657 0.853 0.746 0.830 0.841 0.800
Entropy 0.751 0.707 0.743 0.735 0.724 0.703 0.692 0.690 0.696 0.644 0.831 0.728 0.813 0.829 0.780
PCPrior 0.807 0.781 0.809 0.796 0.793 0.833 0.827 0.815 0.820 0.817 0.905 0.852 0.897 0.904 0.891

• Statistical analysis. Due to the inherent randomness in the model training process, we performed statistical
analysis by conducting the experiments ten times. Speciically, for each subject, which refers to a point cloud
dataset paired with a DNN model, we generated ten distinct models through separate training processes. The
average results are reported in our experimental indings. Moreover, for each subject, we calculated the variance
of ten repeated experimental results for each test prioritization method to demonstrate the stability of PCPrior
better.
To further validate the stability and reliability of the experimental indings, we calculated p-values associated
with the results. Speciically, we employed the paired two-sample t-test [46] to calculate the p-value, a
commonly used statistical method for evaluating diferences between two related data sets. The essential steps
involved are: 1) selecting two related sets of data, 2) computing the diference for each corresponding pair of
data points, and 3) analyzing these diferences to ascertain if there is a statistically signiicant disparity between
the two data sets. In the paired two-sample t-test approach, the signiicance of the results is determined by
the p-value. Generally, if the p-value is less than 10−05, it is considered that the diference between the two
sets of data is statistically signiicant [58]. Additionally, we quantify the magnitude of the diference between
the two sets of results through the Efect Size. Speciically, we use Cohen’s � for measuring the efect size [42].
Wherein, |� | < 0.2 ś łnegligible,ž |� | < 0.5 ś łsmall,ž |� | < 0.8 ś łmedium,ž otherwise ś łlargež. To ensure that
the diference between the results of PCPrior and the compared approach is "non-negligible", we require that
the value of � is greater than or equal to 0.2.

• Eiciency evaluation. In addition to evaluating the efectiveness of PCPrior, we conducted an assessment of
its eiciency and compared it with the selected test prioritization methods. Speciically, we quantiied the time
required for each step of PCPrior to measure its eiciency. By analyzing the execution time of PCPrior, we
aim to gain insights into its computational eiciency and its potential for practical application in real-world
scenarios.

Results: The experimental indings pertaining to Research Question 1 (RQ1) are presented in Table 2, Table 3,
Table 4, Table 5, Table 6, Table 7 and Figure 3. Table 2 and Table 3 ofer a comparative analysis, employing
the APFD metric, between PCPrior and the comparative methods. Conversely, Table 6 and Figure 3 provide an
assessment of efectiveness using the PFD metric. It is important to note that we highlight the approach with the
highest efectiveness for each case in grey. Additionally, Table 7 ofers a comparison of the eiciency between
PCPrior and the evaluated test prioritization approaches.

Notably, Table 2 reveals that across all 15 subjects, PCPrior consistently outperforms all comparative methods
in terms of its APFD. Speciically, the range of APFD values for PCPrior spans from 0.781 to 0.905, while the
range for the comparative methods lies between 0.495 and 0.853. Moreover, Table 3 further highlights the average
APFD value for PCPrior and its relative improvement compared to the comparative methods. We see that PCPrior
achieves an average APFD of 0.836, whereas the average APFD of the comparative methods falls within the range
of 0.501 to 0.754. The improvement observed in PCPrior, relative to the comparative methods, ranges from 10.99%
to 66.94%. These indings demonstrate that PCPrior performs better than all the comparative test prioritization
methods in terms of the APFD metric.
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Table 3. Efectiveness improvement of PCPrior over the compared approaches in terms of the APFD values on natural
datasets

Approach # Best cases Average APFD Improvement(%)

Random 0 0.501 66.94
DeepGini 0 0.749 11.72
VanillaSM 0 0.753 11.14
PCS 0 0.754 10.99
Entropy 0 0.738 13.38
PCPrior 15 0.836 -

Table 4. Statistical analysis on natural test inputs (in terms of p-value and efect size)

Random DeepGini VanillaSM PCS Entropy

PCPrior (p-value) 3.444 × 10−14 2.039 × 10−07 4.403 × 10−07 8.663 × 10−07 3.071 × 10−08

PCPrior (efect size) 7.854 2.423 2.273 2.148 2.822

Table 5. Variance in experimental results (×10−3) for PCPrior and the compared approaches across ten repetitions
ModelNet S3DIS ShapeNet

Approach
DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet

Random 0.044 0.012 0.056 0.026 0.054 0.079 0.036 0.102 0.089 0.035 0.037 0.008 0.018 0.047 0.021
DeepGini 0.026 0.200 0.050 0.021 0.031 0.071 0.405 0.026 0.045 0.038 0.027 0.064 0.015 0.009 0.035
VanillaSM 0.022 0.196 0.042 0.022 0.025 0.071 0.396 0.027 0.052 0.029 0.025 0.065 0.015 0.010 0.036
PCS 0.013 0.209 0.031 0.024 0.022 0.068 0.430 0.030 0.051 0.024 0.022 0.070 0.015 0.012 0.033
Entropy 0.030 0.199 0.061 0.021 0.039 0.075 0.404 0.019 0.036 0.053 0.035 0.054 0.020 0.008 0.033
PCPrior 0.005 0.112 0.022 0.011 0.042 0.030 0.375 0.014 0.017 0.030 0.008 0.073 0.003 0.001 0.002

Table 6. Average comparison results among PCPrior and the compared approaches on natural data in terms of PFD

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

Random 0.100 0.206 0.300 0.398 0.498 0.602 0.699
DeepGini 0.263 0.467 0.641 0.774 0.874 0.935 0.973
VanillaSM 0.269 0.483 0.658 0.785 0.875 0.936 0.973
PCS 0.261 0.488 0.664 0.794 0.881 0.938 0.974
Entropy 0.253 0.452 0.612 0.746 0.851 0.923 0.968

ModelNet

PCPrior 0.305 0.567 0.760 0.882 0.950 0.983 0.994

Random 0.101 0.202 0.297 0.400 0.499 0.602 0.705
DeepGini 0.222 0.402 0.554 0.684 0.789 0.873 0.929
VanillaSM 0.228 0.409 0.563 0.688 0.790 0.874 0.929
PCS 0.222 0.410 0.556 0.690 0.789 0.875 0.928
Entropy 0.212 0.391 0.535 0.663 0.775 0.867 0.926

S3DIS

PCPrior 0.341 0.629 0.829 0.931 0.972 0.989 0.995

Random 0.099 0.200 0.297 0.395 0.495 0.597 0.694
DeepGini 0.386 0.632 0.789 0.878 0.928 0.959 0.979
VanillaSM 0.399 0.647 0.793 0.879 0.928 0.959 0.979
PCS 0.403 0.656 0.801 0.884 0.932 0.960 0.979
Entropy 0.368 0.597 0.758 0.860 0.919 0.955 0.977

ShapeNet

PCPrior 0.555 0.865 0.961 0.984 0.992 0.996 0.998

The comparative analysis presented in Table 6 employs the PFD metric to exhibit the comparison between
PCPrior and various DNN test prioritization methods. Notably, from prioritizing 10% to 70% of the dataset, PCPrior
consistently outperforms all comparative methods in terms of PFD. To facilitate a more intuitive comparison,
Figure 3 showcases two line graphs with PFD as the y-axis, illustrating the cases of ModelNet dataset with DGCNN
model and ShapeNet dataset with PointNet model, respectively. All the results can be found on our Github2.

2https://github.com/yinghuali/PCPrior/tree/main/result
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(b) ShapeNet, PointNet

Fig. 3. Test prioritization efectiveness among PCPrior and the compared approaches for ModelNet with DGCNN and
ShapeNet with PointNet. X-Axis: the percentage of prioritized tests; Y-Axis: the percentage of detected miscalssified tests.

Table 7. Time cost of PCPrior and the compared test prioritization approaches

Time cost
Approach

PCPrior Random DeepGini VanillaSM PCS Entropy

Feature generation 6 min - - - - -
Ranking model training 32 s - - - - -

Prediction <1 s <1 s <1 s <1 s <1 s <1 s

In the igures, PCPrior is depicted by the red lines, while the baseline is represented by the pink lines. Visual
analysis reveals that PCPrior consistently achieves a higher PFD value when contrasted with DeepGini, entropy,
Vanilla SM, PCS, and random methods. These experimental results demonstrate that PCPrior outperforms all
comparative test prioritization methods in terms of the PFD metric.

As stated in the experimental design, a statistical analysis was conducted to ensure the stability of our indings.
To this end, all experiments were repeated ten times for each subject. The statistical analysis reveals a p-value
lower than 10−05, providing strong evidence that PCPrior consistently outperforms the compared approaches
in the context of test prioritization. Table 4 presents detailed results from the statistical analysis. The analysis
employs two primary metrics: p-value and efect size. As outlined in the experimental design, a p-value less than
10−05 indicates that the diference between two data sets is statistically signiicant [58]. Furthermore, an efect size
≥ 0.2 suggests that the diference is "non-negligible." In Table 4, we observed that all the p-values between PCPrior
and the compared approaches consistently fall below 10−05, indicating that PCPrior statistically outperforms all
the compared test prioritization methods. For example, the p-value for the diference in experimental results
between PCPrior and DeepGini is 2.039 × 10−07. The p-value between PCPrior and VanillaSM is 4.403 × 10−07.
Additionally, the experimental results for both PCPrior and the compared approaches show efect sizes exceeding
0.2, conirming a non-negligible diference. Moreover, we found that all the efect sizes are even greater than 0.8.
For example, the efect size of PCPrior and VanillaSM is 2.273. According to Cohen’s � [42], this means that the
diference in experimental results between PCPrior and the compared methods is not only statistically signiicant
but also relatively "large" in scale.

Moreover, for each case, we calculated the variance of ten repeated experimental results with respect to each
test prioritization method, as presented in Table 5. It is important to note that the unit for the table is 10−3. For
instance, in the second row, the irst number, 0.026, represents that for the ModelNet dataset, under the DGCNN
model, the variance of ten repeated experimental results for the DeepGini method is 0.026 × 10−3. The cases
highlighted in grey represent the test prioritization method with the minimum variance for each subject. We see
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that for 66.7% (10 out of 15) of subjects, PCPrior has the smallest variance. Furthermore, the variance range for
PCPrior is 0.001 × 10−3 to 0.375 × 10−3. In contrast, the variance range for comparative methods is 0.008 × 10−3

to 0.430 × 10−3. The above experimental results indicate that the variance of PCPrior’s results is generally lower
compared to the comparative test prioritization methods, suggesting that PCPrior is relatively more stable.

Table 7 provides a comprehensive comparison of the eiciency between PCPrior and the compared test priori-
tization approaches. A noteworthy distinction between our proposed method and the comparative approaches
pertains to the requirement of training a ranking model and generating features. As can be observed from Table 7,
the overall time taken by PCPrior is approximately 6 minutes and 32 seconds. Speciically, the average training
time for the PCPrior ranking model amounts to 32 seconds, while the average time for feature generation is
6 minutes. The inal prediction time of the compared approaches is less than 1s. Although PCPrior is not as
eicient as conidence-based test prioritization approaches, the efectiveness improvement of PCPrior relative
to conidence-based methods is 10.99%~13.38%. Considering the trade-of between efectiveness and eiciency,
PCPrior remains a practical option.

Answer to RQ1: PCPrior consistently demonstrates better performance compared to all the evaluated test

prioritization approaches (i.e., DeepGini, Vanilla SM, PCS, Entropy, and Random) in the ield of test prioritization

for 3D point cloud data, as assessed by both the APFD and PFD metrics. Speciically, the average improvement

achieved in terms of APFD ranges from 10.99% to 66.94%. While PCPrior is not as eicient as conidence-based

methods, considering the trade-of between efectiveness and eiciency, it remains a practical option.

5.2 RQ2: Influence of ranking models

Objectives: We investigate the impact of various ranking models on the efectiveness of PCPrior.
Experimental design: We proposed ive variants of PCPrior that incorporate diferent ranking models. In
addition to the ranking models, the other procedures of these methods remain identical to PCPrior. The ive
variants are PCPrior� , PCPrior� , PCPrior� , PCPrior� , and PCPrior� , which utilize Logistic Regression [81],
XGBoost [17], Random Forest [9], DNNs [82], and TabNet [3] as the ranking model, respectively. We evaluated
the impact of these ranking models on the efectiveness of PCPrior by assessing the performance of these variants
on natural datasets utilizing both the APFD and PFD metrics.
Results: The experimental results for Research Question 2 (RQ2) are presented in Table 8 and Table 9. Table 8
showcases the comparison between PCPrior and its variants in terms of the APFD metric, while Table 9 presents
their comparison based on the PFD metric.
In Table 8, we see that PCPrior, which employs LightGBM as the ranking model, performs the best in 66.67%

(10 out of 15) of the cases. PCPrior� , which utilizes XGBoost as the ranking model, performs the best in the
remaining 33.3% (5 out of 15) cases. Furthermore, Table 9 presents a comparison of the efectiveness of PCPrior
and its variants from the perspective of the PFD metric. We see that PCPrior performs the best in 61.9% (13 out of
21) cases, while PCPrior� performs the best in 38.1% (8 out of 21) of the cases. The aforementioned experimental
results illustrate that the ranking models employed by PCPrior and PCPrior� , speciically LightGBM and XGBoost,
can better utilize the generated test input features for test prioritization.

Surprisingly, despite existing studies [3] mentioning that TabNet is more efective than XGBoost and LightGBM
in their evaluated datasets when applied to PCPrior for the purpose of test prioritization, the efectiveness of
PCPrior (which utilizes the LightGBM model) is higher than that of PCPrior� (which utilize the TabNet model).
We can see that, in Table 8, PCPrior’s APFD ranges from 0.781 to 0.905, while PCPrior� ’s APFD ranges from
0.701 to 0.894. This suggests that, compared to TabNet, LightGBM performs better in leveraging the features
(generated by PCPrior) for test prioritization. Some potential reasons include: 1) Diferent datasets and their
distributions can impact the training of classiication models, thereby afecting their performance; 2) The size of
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Table 8. Efectiveness comparison among PCPrior and PCPrior Variants in terms of the APFD values on natural datasets
ModelNet S3DIS ShapeNet

Approach
DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet

PCPrior� 0.792 0.766 0.781 0.766 0.756 0.732 0.709 0.710 0.707 0.666 0.855 0.789 0.841 0.849 0.804
PCPrior� 0.802 0.778 0.804 0.791 0.792 0.832 0.821 0.818 0.817 0.815 0.910 0.856 0.896 0.907 0.892
PCPrior� 0.790 0.765 0.794 0.773 0.769 0.781 0.791 0.758 0.773 0.775 0.883 0.817 0.868 0.878 0.865
PCPrior� 0.793 0.769 0.791 0.779 0.767 0.748 0.744 0.740 0.741 0.723 0.871 0.831 0.871 0.877 0.858
PCPrior� 0.779 0.758 0.765 0.778 0.766 0.739 0.728 0.724 0.724 0.701 0.899 0.850 0.890 0.894 0.885
PCPrior 0.807 0.781 0.809 0.796 0.793 0.833 0.827 0.815 0.820 0.817 0.905 0.852 0.897 0.904 0.891

the dataset can also inluence the model’s performance. The experimental results demonstrate that LightGBM is
more suitable and compatible with the feature dataset constructed by PCPrior.

Table 9. Average comparison results among PCPrior and PCPrior Variants in terms of the PFD values on natural datasets

Data Approach PFD-10 PFD-20 PFD-30 PFD-40 PFD-50 PFD-60 PFD-70

PCPrior� 0.283 0.515 0.707 0.832 0.913 0.964 0.985
PCPrior� 0.304 0.554 0.744 0.876 0.949 0.981 0.992
PCPrior� 0.289 0.530 0.716 0.842 0.920 0.968 0.990
PCPrior� 0.295 0.541 0.719 0.847 0.927 0.967 0.985
PCPrior� 0.283 0.524 0.706 0.831 0.903 0.950 0.981

ModelNet

PCPrior 0.305 0.567 0.760 0.882 0.950 0.983 0.994

PCPrior� 0.226 0.424 0.578 0.712 0.811 0.885 0.932
PCPrior� 0.335 0.619 0.831 0.934 0.975 0.988 0.996
PCPrior� 0.285 0.524 0.709 0.841 0.922 0.969 0.990
PCPrior� 0.262 0.467 0.634 0.770 0.857 0.916 0.959
PCPrior� 0.243 0.440 0.612 0.743 0.835 0.903 0.952

S3DIS

PCPrior 0.341 0.629 0.829 0.931 0.972 0.989 0.995

PCPrior� 0.427 0.690 0.832 0.907 0.944 0.967 0.980
PCPrior� 0.561 0.871 0.964 0.987 0.993 0.995 0.997
PCPrior� 0.485 0.767 0.899 0.955 0.981 0.991 0.995
PCPrior� 0.476 0.776 0.905 0.954 0.975 0.983 0.990
PCPrior� 0.543 0.843 0.948 0.976 0.986 0.992 0.995

ShapeNet

PCPrior 0.555 0.865 0.961 0.984 0.992 0.996 0.998

Answer toRQ2: PCPrior and PCPrior� exhibits better efectiveness in test prioritization compared to other PCPrior

variants, thereby suggesting that the ranking model employed by PCPrior and PCPrior� , namely LightGBM, and

XGBoost, can better utilize the generated features of test inputs for test prioritization.

5.3 RQ3: Impact of Main Parameters in PCPrior

Objectives: We investigate the impact of main parameters on the efectiveness of PCPrior for test prioritization.
Experimental design: Building upon the parameter selection and consideration of parameter values in previous
research [89], we conducted a systematic investigation to analyze the impact of key parameters in PCPrior. Specif-
ically, we focused on three parameters:���_����ℎ (representing the maximum tree depth for each LightGBM
model), ���������_������ (indicating the sampling ratio of feature columns when constructing each tree), and
��������_���� (referring to the boosting learning rate) in the LightGBM ranking algorithm. For our investigation,
we performed experiments on all subjects within the natural dataset. By observing the performance variations
of PCPrior as these parameters changed, we aimed to gain insights into the inluence of parameters on the
efectiveness of PCPrior.
Results: The experimental results of RQ3 are presented in Figure 4, showcasing the efectiveness of PCPrior
under diverse parameter settings based on average APFD values across the 15 subjects. The solid red line
represents PCPrior, while the dashed lines depict the comparative methods. The indings demonstrate that
PCPrior consistently outperforms all the test prioritization methods across various parameter conigurations, as
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Fig. 4. Impact of main parameters in PCPrior

evident from the visual analysis of Figure 4. Furthermore, it can be observed that the parameter ���������_������ ,
which determines the sampling ratio of feature columns during the construction of each tree, has a relatively
modest impact on the efectiveness of PCPrior. PCPrior exhibits relative stability when this parameter is adjusted.
Conversely, the parameters���_����ℎ (representing the maximum tree depth for each LightGBM model) and
��������_���� (referring to the boosting learning rate) have a relatively larger inluence on the efectiveness of
PCPrior. Remarkably, regardless of the extent to which the parameters inluence PCPrior’s efectiveness, we see
that PCPrior can consistently outperform all the compared methods across diferent parameter settings.

Answer to RQ3: PCPrior consistently outperforms other test prioritization methods across various parameter

settings. The parameter ���������_������ has a minor impact on PCPrior’s efectiveness, while the parameters

���_����ℎ and ��������_���� have a relatively larger impact. However, despite these luctuations, PCPrior

consistently remains more efective than the comparative methods.

5.4 RQ4: Efectiveness on Noisy Test Inputs

Objectives: We further investigate the efectiveness of PCPrior and its variants on noisy data.
Experimental design: In the initial phase, we introduce noise to the original 3D point cloud datasets, namely
ModelNet40, ShapeNet, and S3DIS, to create noisy data. To generate a noisy dataset from an initial test set denoted
as � , each test instance � ∈ � undergoes a speciic modiication. Speciically, within each test instance � (a point
cloud), approximately 30% of the points are subjected to a random ofset in the x, y, and z coordinates, while
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Table 10. Efectiveness comparison among PCPrior and the compared approaches in terms of the average APFD values on
noisy datasets

ModelNet S3DIS ShapeNet
Approach

DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet DGCNN PointConv MSG SSG PointNet

Random 0.501 0.501 0.501 0.499 0.502 0.501 0.503 0.500 0.501 0.499 0.499 0.499 0.499 0.499 0.499
DeepGini 0.743 0.695 0.700 0.679 0.708 0.587 0.542 0.555 0.533 0.592 0.752 0.641 0.677 0.718 0.642
VanillaSM 0.750 0.698 0.705 0.686 0.712 0.588 0.542 0.555 0.533 0.594 0.758 0.644 0.685 0.723 0.647
PCS 0.754 0.698 0.707 0.688 0.714 0.585 0.541 0.551 0.531 0.594 0.762 0.643 0.693 0.728 0.650
Entropy 0.728 0.685 0.688 0.666 0.697 0.582 0.540 0.553 0.532 0.587 0.735 0.633 0.661 0.704 0.633

PCPrior� 0.782 0.745 0.732 0.717 0.728 0.610 0.568 0.597 0.617 0.636 0.785 0.737 0.794 0.824 0.670
PCPrior� 0.793 0.761 0.767 0.754 0.765 0.726 0.667 0.687 0.663 0.751 0.864 0.774 0.838 0.856 0.787
PCPrior� 0.779 0.742 0.741 0.725 0.739 0.693 0.655 0.676 0.654 0.725 0.825 0.750 0.822 0.838 0.764
PCPrior� 0.782 0.748 0.747 0.727 0.741 0.647 0.633 0.651 0.639 0.672 0.838 0.765 0.821 0.839 0.773
PCPrior� 0.766 0.739 0.746 0.730 0.743 0.654 0.637 0.659 0.641 0.694 0.856 0.772 0.830 0.848 0.785
PCPrior 0.794 0.762 0.770 0.755 0.766 0.728 0.668 0.690 0.665 0.753 0.862 0.776 0.837 0.855 0.788

the remaining 70% of the points remain unaltered. The decision to select 30% of the points in a point cloud for
displacement is because: if a large number of the points were to be shifted, it would lead to a signiicant number
of tests being misclassiied by the original model. In such a scenario, all test prioritization methods could identify
a large number of misclassiied tests. This, in turn, could afect the evaluation of PCPrior. Therefore, we opted to
carefully select the modiication ratio that is not excessively high for the evaluation of PCPrior. As a result, we
generate ten noisy datasets for each original dataset, resulting in a total of 30 (3 × 10) noisy datasets. Each of
these noisy datasets is paired with ive diferent models, resulting in a total of 150 (30 × 5) subjects. Finally, we
compared the efectiveness of PCPrior, its variants, and all the comparative test prioritization approaches on
the generated 150 noisy subjects. On the generated noise subjects, we assessed the efectiveness of PCPrior, the
conidence-based test prioritization methods, along with PCPrior variants that employed Logistic Regression [81],
XGBoost [17], Random Forest [9], DNNs [82], and TabNet [3] as ranking models, respectively. We also included
random selection as a baseline for comparison.
Statistical analysis Similar to RQ1, due to the inherent randomness in the model training process, we performed
the experiments ten times and conducted a statistical analysis. Like in RQ1, the statistical analysis method we
used is the paired two-sample t-test [46]. We calculated the p-value and efect size for the experimental results.
We consider that if the p-value is less than 10−05, the diference between the two sets of data is statistically
signiicant [58]. Moreover, to ensure that the diference between the results of PCPrior and the compared approach
is non-negligible, the efect size should be greater than or equal to 0.2.
Results: The experimental results for RQ4 are presented in Table 10, Table 11, Table 12, Table 13, Table 14,
and Figure 5. Speciically, Table 10 and Table 11 provide a comparative analysis of the efectiveness of PCPrior
(including its variants) and various test prioritization methods in the context of noisy data, using the APFD
metric. On the other hand, Table 13 and Table 14 present the comparative evaluation based on the PFD metric.

Table 11. Performance improvement of PCPrior over the compared approaches in terms of APFD on 150 noisy subjects

Approach # Best cases Average APFD Improvement(%)

Random 0 0.500 53.00
DeepGini 0 0.651 17.51
VanillaSM 0 0.655 16.79
PCS 0 0.656 16.62
Entropy 0 0.642 19.16

PCPrior� 0 0.703 -
PCPrior� 35 0.763 -
PCPrior� 0 0.742 -
PCPrior� 0 0.735 -
PCPrior� 0 0.740 -
PCPrior 115 0.765 -
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Table 12. Statistical analysis on noisy test inputs (in terms of p-value and efect size)

Random DeepGini VanillaSM PCS Entropy

PCPrior (p-value) 1.156 × 10−10 1.688 × 10−08 3.521 × 10−08 5.049 × 10−08 3.385 × 10−09

PCPrior (efect size) 4.329 2.958 2.792 2.713 3.352
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Fig. 5. Test prioritization efectiveness among PCPrior and the compared approaches for ModelNet(Noisy) with PointNet
and ShapeNet(Noisy) with DGCNN on noisy datasets. X-Axis: the percentage of prioritized tests; Y-Axis: the percentage of
detected misclassified tests.

Table 10 shows the comparison results of PCPrior, its variants, and comparative methods on noisy test inputs
in terms of APFD. We found that the efectiveness of PCPrior and its variants surpasses that of all compared
test prioritization methods in each case. Speciically, the APFD values for PCPrior range from 0.665 to 0.862. For
PCPrior’s variants, the APFD values range from 0.568 to 0.864. For the compared test prioritization methods, the
APFD values range from 0.499 to 0.762. Furthermore, Table 11 provides a more detailed analysis by presenting
the number of cases in which each test prioritization method performs the best, the average APFD value, and the
improvement of PCPrior relative to each comparative method. We see that, on noisy test inputs, PCPrior’s average
APFD is 0.765, while the range for its variants is 0.703 to 0.763. The average APFD range for the benchmark
methods is 0.500 to 0.656. Notably, PCPrior performs the best in 76.7% (115 out of 150) of the cases, while PCPrior�

performs the best in 23.3% (35 out of 150) of the cases. PCPrior continues to outperform the variants of PCPrior
that utilize DNN ranking models (PCPrior� and PCPrior� ) in all cases. Moreover, PCPrior shows an improvement
ranging from 16.62% to 53.00% over all the comparative methods. The above experimental results demonstrate that,
under the APFD measurement, the average efectiveness of PCPrior surpasses all its variants and comparative
methods on noisy datasets.

The results from the statistical analysis on noisy test inputs are presented in Table 12. We see that the p-values
for the experimental results of PCPrior and each of the compared methods are all less than 10−05, indicating
that PCPrior statistically outperforms all the test prioritization methods on noisy datasets. For instance, the
p-value between PCPrior and DeepGini is 1.688 × 10−08. The p-value between PCPrior and PCS is 5.049 × 10−08.
Furthermore, all the efect sizes of PCPrior and the compared approaches exceed 0.2, demonstrating a non-
negligible diference. Notably, all the efect sizes are greater than 0.8. For example, the efect size between PCPrior
and VanillaSM is 2.792, and the efect size between PCPrior and Entropy is 3.352. According to Cohen’s � [42],
this implies that the diference in experimental results between PCPrior and the compared methods is not only
statistically signiicant but also relatively "large" in scale.
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Table 13. Efectiveness comparison of PCPrior and the compared approaches in terms of the PFD values on noisy datasets

#Best cases in PFD Average PFD
Data Approach

PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40

Random 0 0 0 0 0.099 0.201 0.300 0.402
DeepGini 0 0 0 0 0.219 0.404 0.564 0.701
VanillaSM 0 0 0 0 0.225 0.417 0.577 0.712
PCS 0 0 0 0 0.220 0.416 0.583 0.719
Entropy 0 0 0 0 0.210 0.387 0.542 0.677
PCPrior� 1 0 0 0 0.246 0.459 0.635 0.772
PCPrior� 19 17 20 13 0.264 0.494 0.687 0.830
PCPrior� 1 1 0 0 0.252 0.465 0.641 0.777
PCPrior� 0 0 0 0 0.250 0.468 0.647 0.787
PCPrior� 0 0 0 0 0.252 0.470 0.651 0.790

ModelNet

PCPrior 29 32 30 37 0.265 0.497 0.689 0.833

Random 0 0 0 0 0.099 0.201 0.302 0.402
DeepGini 0 0 0 0 0.133 0.258 0.375 0.486
VanillaSM 0 0 0 0 0.135 0.260 0.377 0.489
PCS 0 0 0 0 0.130 0.255 0.373 0.485
Entropy 0 0 0 0 0.131 0.254 0.370 0.480
PCPrior� 0 0 0 0 0.151 0.291 0.419 0.541
PCPrior� 8 8 6 7 0.188 0.369 0.536 0.689
PCPrior� 0 0 0 0 0.182 0.350 0.509 0.654
PCPrior� 0 0 0 0 0.173 0.331 0.476 0.608
PCPrior� 0 0 0 0 0.176 0.339 0.488 0.623

S3DIS

PCPrior 42 42 44 43 0.189 0.370 0.539 0.692

Random 0 0 0 0 0.099 0.199 0.298 0.399
DeepGini 0 0 0 0 0.212 0.390 0.544 0.675
VanillaSM 0 0 0 0 0.221 0.403 0.557 0.685
PCS 0 0 0 0 0.221 0.411 0.568 0.694
Entropy 0 0 0 0 0.201 0.372 0.519 0.649
PCPrior� 0 0 0 0 0.277 0.519 0.703 0.822
PCPrior� 17 24 39 30 0.317 0.616 0.841 0.951
PCPrior� 0 0 0 0 0.303 0.567 0.769 0.894
PCPrior� 0 0 0 0 0.308 0.585 0.792 0.912
PCPrior� 0 0 0 0 0.314 0.606 0.826 0.939

ShapeNet

PCPrior 33 26 11 20 0.318 0.614 0.838 0.949

Table 14. Average efectiveness comparison of PCPrior and the compared approaches in terms of the PFD values on noisy
datasets

#Best cases in PFD Average PFD
Approach

PFD-10 PFD-20 PFD-30 PFD-40 PFD-10 PFD-20 PFD-30 PFD-40

Random 0 0 0 0 0.099 0.201 0.300 0.401
DeepGini 0 0 0 0 0.188 0.351 0.494 0.621
VanillaSM 0 0 0 0 0.194 0.36 0.504 0.629
PCS 0 0 0 0 0.190 0.361 0.508 0.633
Entropy 0 0 0 0 0.181 0.337 0.477 0.602
PCPrior� 1 0 0 0 0.225 0.423 0.585 0.712
PCPrior� 44 49 65 50 0.256 0.493 0.688 0.823
PCPrior� 1 1 0 0 0.246 0.461 0.639 0.775
PCPrior� 0 0 0 0 0.244 0.461 0.639 0.769
PCPrior� 0 0 0 0 0.248 0.472 0.655 0.784
PCPrior 104 100 85 100 0.257 0.494 0.689 0.825
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Table 13 and Table 14 present a comparative analysis regarding the PFD metric. It is observed that in Table 13,
the best performance is consistently achieved by PCPrior or its variants across all cases. Table 14 provides a deeper
analysis of this inding. When considering diferent percentages of test data prioritization, PCPrior consistently
outperforms other approaches in terms of efectiveness, as evidenced by the highest number of best-performing
cases and the highest average PFD values. Figure 5 visually demonstrates the performance comparison of PCPrior,
its variants, and the comparative methods on noisy data. The solid lines depict PCPrior and its variant methods,
while the dashed lines represent the comparative methods. We see that across the noisy dataset, PCPrior and all its
variants exhibit higher efectiveness compared to all comparative methods. Furthermore, PCPrior demonstrates
superior performance when compared to its variants.

Answer to RQ4: PCPrior consistently exhibits superior performance in comparison to all the test prioritization

approaches considered in the context of noisy data, as evaluated by APFD and PFD. Notably, the average improve-

ment achieved in terms of APFD ranges from 16.62% to 53.00%, highlighting the signiicant efectiveness of PCPrior

over the compared methods. Furthermore, PCPrior consistently outperforms its variants in a majority of cases.

5.5 RQ5: Feature contribution analysis

Objectives: We investigate the contributions of each type of features on the efectiveness of PCPrior for test
prioritization. Our investigation revolves around two primary sub-questions, as outlined below:

• RQ-5.1 Based on the ablation study, to what extent does each type of features contribute to the efectiveness
of PCPrior?

• RQ-5.2What is the distribution of feature types among the top-N most contributing features towards PCPrior?

Experimental design: We conduct two experiments below to answer the above two sub-questions.
[Experiment ❶] In the original PCPrior framework, a comprehensive set of four feature types is generated,
namely mutation features (MF), spatial features (SF), uncertainty features (UF), and prediction features (PF). To
compare the contributions of each feature type on PCPrior’s efectiveness, we conducted a carefully designed
ablation study following the prior work [25]. More speciically, we individually removed one type of features and
evaluated PCPrior’s efectiveness under these modiied conditions. For instance, to assess the contribution of
SF features, PCPrior is executed with SF features excluded while retaining the other three feature types. The
resulting performance of PCPrior is then evaluated under these adjusted circumstances. Similarly, to gauge the
contribution of MF features, PCPrior is executed without generating MF features while keeping generating the
other three feature types. The performance of PCPrior is subsequently assessed in this context. By conducting the
aforementioned ablation study, we can determine the contribution of each feature type to the overall efectiveness
of PCPrior.
[Experiment ❷] The method we employed to evaluate the contributions of features is the cover metric within
the XGBoost algorithm [17]. Initially, we utilized the cover metric to compute the importance scores of each
feature used by PCPrior for test prioritization. Subsequently, we selected the top-N most important features based
on these scores. By analyzing the categorization of these features, we investigated the contributions of diferent
feature types to the efectiveness of PCPrior. Below, we provide an overview of how XGBoost quantiies feature
importance.

The cover metric employed in XGBoost serves as a means to quantify the importance of features by assessing
the average coverage of individual instances across the leaf nodes within a decision tree. This metric operates by
evaluating the frequency with which a speciic feature is utilized for partitioning the data across the entirety of the
ensemble’s trees. The coverage values associated with each feature across all trees are subsequently aggregated,
resulting in a cumulative coverage value. To obtain the average coverage of each instance by the leaf nodes,
the cumulative coverage value is normalized in relation to the total number of instances. Consequently, the
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Table 15. Ablation study on diferent features of PCPrior: Mutation Features(MF), Spatial Features(SF), Uncertainty
Features(UF), Prediction Features(PF). ‘w/o’ means ‘without’

Dataset
Approach

ModelNet S3DIS ShapeNet
Average

PCPrior w/o MF 0.788 0.811 0.875 0.825
PCPrior w/o SF 0.769 0.699 0.841 0.769
PCPrior w/o UF 0.785 0.816 0.871 0.824
PCPrior w/o PF 0.782 0.778 0.874 0.811
PCPrior 0.797 0.822 0.890 0.836

derived coverage value of a given feature plays a crucial role in determining its signiicance, with features that
demonstrate higher coverage values being considered more important.
Results: The experimental results of RQ5.1 are presented in Table 15. In this table, ‘w/o’ stands for ‘without.’ For
example, ‘PCPrior w/o SF’ refers to executing PCPrior without generating the spatial features. From Table 15, we
see that the original PCPrior achieves the highest average efectiveness. Removing any type of feature results
in a decrease in the efectiveness of PCPrior, demonstrating that each type of features contributes to PCPrior’s
efectiveness. For instance, on the Modelnet dataset, the average APFD value of the original PCPrior is 0.797.
Removing spatial features results in a decline of PCPrior’s average APFD to 0.769, while the removal of mutation
features causes a decrease to 0.788, uncertainty features to 0.785, and prediction features to 0.782.

Furthermore, among all four types of features, spatial features demonstrate the highest average contributions.
This inference is drawn from the following indings: When removing spatial features, PCPrior’s efectiveness
shows the largest average decrease. Speciically, when removing spatial features (SF features), the average APFD
decreases by 0.067. In comparison, the removal of mutation features (MF) leads to an average APFD decrease of
0.011, uncertainty features (UF) result in an average APFD decrease of 0.012, and prediction features (PF) show
an average APFD decrease of 0.025. Moreover, across all datasets, removing spatial features results in the highest
average decrease in PCPrior’s efectiveness.

Answer to RQ5.1:The ablation study demonstrates that each type of features contributes to the efectiveness of

PCPrior. Moreover, spatial features show the highest average contributions.

The indings of RQ5.2 are presented in Table 16, where the scores represent the importance levels of each
feature. For each combination of model and dataset, we present the top-N features that contribute the most. It
is worth noting that abbreviations SF, MF, PF, and UF are used to represent spatial features, mutation features,
prediction features, and uncertainty features, respectively. Moreover, the numbers after the feature abbreviations
indicate the indices of the corresponding features. For instance, SF-23 represents the spatial feature with index
23. From Table 16, it can be observed that all four types of features consistently appear among the top-N most
contributing features across various subjects. As an example, in the case of the PointConv subject with the S3DIS
dataset, SF features account for 50%, UF features account for 30%, MF features account for 10%, and PF features
account for 10%. Remarkably, among the 15 subjects investigated, in 93.3% (14 out of 15) of the cases, the top 10
contributing features include three or more distinct feature types. These experimental indings provide robust
evidence that all three feature categories play pivotal roles in the efectiveness of PCPrior.

Answer to RQ5.2: All four types of features, namely spatial features, mutation features, uncertainty features,

and prediction features, exhibit consistent presence among the top-N most inluential features across diverse

subjects.
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Table 16. Top-10 most contributing features on the efectiveness of PCPrior

Data Rank
DGCNN PointConv MSG SSG PointNet

Feature Value Feature Value Feature Value Feature Value Feature Value

ModelNet

1 SF-23 348 MF-132 272 SF-f23 271 SF-46 261 MF-120 309
2 MF-141 203 MF-126 261 PF-112 260 MF-147 238 PF-112 276
3 MF-143 197 SF-52 243 MF-120 210 MF-114 225 MF-144 265
4 PF-112 195 PF-112 221 MF-143 173 PF-112 224 SF-52 256
5 MF-137 187 MF-125 219 MF-127 167 MF-131 199 SF-28 210
6 MF-145 178 MF-139 214 SF-52 163 MF-127 196 PF-90 174
7 SF-22 171 MF-129 213 SF-28 160 MF-122 155 SF-69 167
8 MF-123 169 MF-135 207 MF-135 141 SF-42 142 SF-1 166
9 MF-131 167 UF-118 206 SF-f22 138 SF-29 131 MF-139 165
10 MF-136 155 MF-124 201 PF-88 134 SF-25 128 SF-25 164

S3DIS

1 UF-85 166 SF-18 168 UF-85 175 UF-87 190 UF-87 156
2 PF-75 112 UF-85 140 UF-87 151 SF-55 161 UF-85 119
3 SF-61 111 SF-61 127 UF-86 115 UF-86 148 SF-65 115
4 SF-60 106 UF-87 123 SF-28 114 SF-19 128 SF-68 106
5 SF-62 105 MF-106 100 MF-91 111 SF-20 110 PF-74 105
6 SF-2 94 PF-80 99 PF-73 110 UF-90 107 PF-82 94
7 UF-86 93 SF-60 99 SF-62 107 PF-84 102 SF-17 87
8 PF-74 86 SF-62 93 SF-16 102 SF-65 101 UF-90 86
9 SF-35 83 SF-4 92 MF-95 98 MF-99 99 PF-79 86
10 SF-16 82 UF-86 90 PF-74 96 PF-78 98 PF-80 85

ShapeNet

1 PF-122 908 MF-135 1223 UF-122 952 UF-122 984 UF-122 1021
2 MF-151 554 MF-141 1059 UF-124 518 MF-156 536 PF-101 502
3 MF-148 542 UF-130 934 MF-155 505 UF-124 527 PF-100 435
4 MF-140 539 MF-153 850 MF-145 503 SF-70 496 PF-110 523
5 MF-145 498 MF-143 801 MF-136 475 PF-107 477 PF-94 415
6 SF-42 486 PF-122 798 PF-121 467 SF-42 476 SF-71 398
7 PF-107 486 MF-154 776 MF-153 460 MF-149 435 UF-124 391
8 PF-116 424 MF-150 749 UF-126 446 MF-155 408 SF-42 389
9 PF-109 423 MF-148 725 SF-42 446 PF-104 405 PF-87 383
10 PF-110 376 PF-121 701 SF-71 429 MF-131 404 PF-90 371

5.6 RQ6: Retraining 3D shape classification models with PCPrior and uncertainty-based methods

Objectives:We investigate whether PCPrior and uncertainty-based test prioritization approaches are efective in
selecting informative retraining inputs to enhance the performance of a 3D shape classiication model.
Experimental design: Building on the previous research [58], we structured our retraining experiments in
the following manner. First, we randomly divided the point cloud dataset into three parts: the training set, the
candidate set, and the test set, in a 4:4:2 ratio. The candidate set was used for retraining, while the test set was
reserved for evaluation purposes and remained untouched. In the irst phase, we trained a 3D shape classiication
model using only the initial training set. In the second round, we integrate an extra 10% of new inputs from
the candidate set into the current training set without replacement. The chosen inputs for inclusion are those
prioritized in the top 10% by PCPrior and the compared test prioritization approaches. The prioritization range
we selected for retraining is from 10% to 70%. We chose this range because, according to the experimental results
(cf. Section 5.1), when prioritizing up to 70%, PCPrior can identify the majority of misclassiied inputs in the
dataset (99.6%), as indicated in Table 6. For example, in the ShapeNet dataset, within the 70% prioritized test set,
PCPrior has identiied 99.8% of misclassiied inputs. Given that the primary objective of this research question
is to validate PCPrior’s efectiveness in retraining, we chose a retraining range of up to 70%. Following prior
work [58], we retrained the model using the expanded training set, ensuring equal treatment of both old and new
training data. This retraining was repeated in ive rounds. The reason for opting to conduct retraining ive times
is that the training process of DNN models involves various random factors, and conducting multiple rounds of
retraining can contribute to ensuring the stability and reproducibility of the results. On the other hand, excessive
retraining can lead the model to over-optimize for a speciic dataset, resulting in overitting. Therefore, based on
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Table 17. The average accuracy value ater retraining with 10%~70% prioritized tests

Accuracy of percentage of datasets
Approach

10% 20% 30% 40% 50% 60% 70%
Average

Random 0.847 0.855 0.865 0.872 0.879 0.886 0.887 0.870
DeepGini 0.846 0.866 0.872 0.880 0.889 0.896 0.898 0.878
VanillaSM 0.850 0.867 0.870 0.881 0.890 0.891 0.898 0.878
PCS 0.846 0.861 0.868 0.884 0.888 0.893 0.898 0.877
Entropy 0.846 0.861 0.869 0.881 0.886 0.895 0.896 0.876
PCPrior 0.851 0.868 0.873 0.883 0.888 0.898 0.901 0.880

the experimental experience of existing studies [32], we choose to conduct ive rounds of retraining. To account
for the inherent randomness in model training, we repeated all experiments three times and reported the average
results across these repetitions.
Results: The experimental results for RQ6 are presented in Table 17, which illustrates the average accuracy of
3D shape classiication models after retraining. In each case, we have highlighted the approach with the highest
efectiveness in grey for a quick and straightforward interpretation of the indings. As shown in Table 17, PCPrior
and all uncertainty-based approaches demonstrate better average efectiveness compared to random selection.
However, the improvements they achieved are relatively small. For instance, when selecting 10% of tests for
retraining the original model, PCPrior’s selected samples result in a post-retrain model accuracy of 0.851, while
uncertainty-based methods range from 0.846 to 0.850. In contrast, the random selection yields an accuracy of
0.847. Similarly, when choosing 70% of tests for retraining the original model, PCPrior’s selected samples result in
a post-retrain model accuracy of 0.901, while uncertainty-based methods range from 0.896 to 0.898. In comparison,
the random selection yields an accuracy of 0.887.

The reasons for the aforementioned indings, where PCPrior and uncertainty-based methods show only small
improvements over random selection in enhancing model accuracy, include:

• Lack of Diversity: PCPrior and uncertainty-based methods focus on identifying corner cases, which are
tests that the model inds more challenging. Consequently, the tests identiied can lack diversity. In contrast,
random selection provides a broader and more diverse set of samples, contributing to the model learning more
comprehensive data features and thereby improving its generalization capability.

• Overitting Risk: Concentrating on samples the model is most likely to predict incorrectly can lead to
overitting. These samples can exhibit certain extreme or uncommon features, causing the model to overly
adapt to these speciic cases after retraining and ignoring more widespread patterns.

Moreover, another observation from the results in Table 17 is that PCPrior performs better than uncertainty-
basedmethods on average. Speciically, PCPrior performs the best in 75% (6 out of 8) cases, while uncertainty-based
methods perform the best in only 25% (2 out of 8) cases. Moreover, after retraining the original model with tests
selected by PCPrior, the average accuracy of the resulting model is 0.880. In contrast, for uncertainty-based
methods, the range is from 0.876 to 0.878.

Answer to RQ6: PCPrior and uncertainty-based methods perform better than the random selection approach.

However, the improvement achieved is relatively modest, suggesting that these prioritization approaches, aimed at

identifying potentially misclassiied tests, can guide the retraining of 3D shape classiication models but with

limited efectiveness. Additionally, PCPrior demonstrates better efectiveness compared to uncertainty-based test

prioritization methods.
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6 DISCUSSION

6.1 Limitations of PCPrior

PCPrior sufers from a notable limitation regarding its ability to ensure the diversity of the selected data, which
has also been recognized in previous investigations on uncertainty-based test prioritization techniques [28]. This
concern arises from the fact that neither PCPrior nor these earlier approaches account for diversity during the
process of prioritizing test inputs. However, despite this shared limitation, PCPrior has demonstrated considerable
efectiveness in identifying a substantial majority of misclassiied test inputs by leveraging a small proportion of
prioritized test cases. The experimental results illustrate that PCPrior can detect over 95% of misclassiied tests on
natural datasets by prioritizing a mere 50% of the test inputs. This noteworthy performance highlights PCPrior’s
ability to eiciently identify a signiicant proportion of misclassiied tests using a reduced set of prioritized
tests, even without explicitly ensuring the diversity. While prioritizing diverse misclassiied tests undoubtedly
enhances overall testing quality, in practical scenarios with limited time and resource constraints, prioritizing
a signiicant majority of misclassiied tests can still be a viable strategy. Therefore, the capacity of PCPrior to
identify a signiicant proportion of misclassiied tests while operating within the constraints of a reduced number
of prioritized tests becomes particularly advantageous in situations where time and resources are scarce.
Another limitation is that PCPrior is speciically designed for classiication models and cannot be adapted

for regression models. This is primarily due to two reasons: 1) PCPrior requires generating mutation features
from tests for test prioritization. However, for a given test, generating mutation features involves comparing
whether the model’s predictions for this test and its variants are the same. This approach is not applicable to
regression models because the predictions of regression models are continuous numerical values. 2) PCPrior
requires generating prediction features and uncertainty features for test prioritization. For a given test, the
generation of these two types of features requires the model to predict the probabilities of this test belonging to
each category. Therefore, PCPrior cannot be applied to regression models.

6.2 Generality of PCPrior

Our experimental indings have validated the efectiveness of PCPrior based on a large number of subjects,
encompassing both natural and noisy scenarios. Although our study initially focused on three datasets, PCPrior
can be generalized to a broader range of 3D shape classiication domains. The adaptability of PCPrior stems from
its core process, which is the generation of four types of features: spatial features, mutation features, prediction
features, and uncertainty features. PCPrior can perform test prioritization through an automated pipeline when
the evaluated model and dataset meet the criteria for generating these four types of features. Below, we provide a
detailed explanation of the speciic conditions that the evaluated model and dataset require to meet in order to
utilize PCPrior:

• Requirement 1: Point Cloud Dataset. The generation of spatial features and mutation features requires
the dataset to be a point cloud dataset. This is because these two features are speciically tailored for point
cloud data. For a given point cloud dataset, PCPrior can automatically generate its spatial feature and mutation
features.

• Requirement 2: Classiication Tasks. The generation of the prediction features and uncertainty features
necessitates that both the model and the dataset be oriented toward classiication tasks. This is because these
two types of features are generated from the model’s predictions for each test within the test set. Speciically,
for a given test, the generation of these two types of features requires the model to predict the probabilities of
this test belonging to each category.

Models and datasets that meet the above conditions can use PCPrior for test prioritization, making PCPrior
widely applicable in a diverse range of 3D shape classiication tasks.
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6.3 Threats to Validity

6.3.1 Internal Threats to Validity.

Internal threats to validity primarily arise from the implementation of our proposed PCPrior methodology
and the compared approaches. To address these threats, we implemented PCPrior using the widely adopted
PyTorch library. Additionally, we utilized the original implementations of the compared approaches as provided
by their respective authors, minimizing potential implementation biases. Another internal threat emerges from
the inherent randomness associated with model training. To mitigate this threat and ensure the stability of our
experimental results, we conducted a statistical analysis. Speciically, we performed ten repetitions of the training
process and calculated the statistical signiicance of the experimental results, thereby reducing the inluence of
randomness.

6.3.2 External Threats to Validity.

External threats to validity primarily reside in the 3D point cloud dataset and DNN models employed in
our study. To mitigate these threats, we adopted a large number of subjects, encompassing both natural and
noisy data, thus ensuring a comprehensive exploration of various scenarios. By including diverse data types, we
aimed to enhance the robustness and generalizability of our indings. As a future direction, we aim to extend the
application of PCPrior to 3D point cloud datasets characterized by diverse properties, thereby broadening the
scope and applicability of our proposed methodology.

7 RELATED WORK

7.1 Test Prioritization Techniques

Test prioritization aims to determine the optimal order for executing test cases, thereby enabling the early
detection of system bugs. The idea was irst mentioned by Wong et al. [91]. In ield of conventional software
engineering [11ś13, 22, 31], several corresponding studies have been conducted. Di Nardo et al. [22] conducted a
study evaluating the efectiveness of coverage-based prioritization strategies using real-world regression faults.
Their research shed light on the eiciency of diferent techniques in detecting bugs. Henard et al. [31] conducted a
comprehensive investigation to compare existing test prioritization approaches, speciically focusing on white-box
and black-box strategies. Their indings revealed minimal distinctions between these two categories of strategies.
Chen et al. [13] proposed the LET (Learning-based and Execution Time-aware Test prioritization) technique for
prioritizing test programs in compiler testing, demonstrating its efectiveness. LET employs a learning process to
identify program features and predict the bug-revealing probability of new test programs, along with a scheduling
process that prioritizes test programs based on their bug-revealing probabilities.

Furthermore, several studies have focused on addressing the test prioritization problem using mutation testing
techniques [20, 39, 54, 66, 79]. Shin et al.[79] proposed a diversity-aware mutation adequacy criterion to guide
test case prioritization and empirically evaluated mutation-based prioritization techniques using large-scale
developer-written test cases. Papadakis et al.[66] introduced the concept of mutating Combinatorial Interaction
Testing models and prioritizing tests based on their ability to detect mutants. They demonstrated a strong
correlation between the number of model-based mutants killed and code-level faults detected by the test cases.
Regarding test prioritization for DNNs, Feng et al.[28] proposed DeepGini, which identiies possibly misclas-

siied tests based on model uncertainty. DeepGini assumes that a test is more likely to be mispredicted if the
DNN outputs similar probabilities for each class. Weiss et al.[90] conducted a comprehensive investigation of
various DNN test input prioritization techniques, including several uncertainty-based metrics such as Vanilla
Softmax, Prediction-Conidence Score (PCS), and Entropy. Moreover, Wang et al. [89] developed PRIMA, an
intelligent mutation analysis-based approach, speciically tailored for prioritizing test inputs in DNNs. However,
the mutation rules of PRIMA are not adapted to handle 3D point data, which constitutes unstructured sets of
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points in three-dimensional space. To address this limitation, we propose PCPrior, a novel test prioritization
technique that is speciically designed for 3D point cloud data. PCPrior efectively generates a set of features to
facilitate test prioritization.

7.2 Mutation Testing for DNNs

In the ield of mutation testing for DNNs, various studies [34, 37, 39, 57, 78] have been conducted, focusing on
the development of diferent mutation operators and frameworks. Shen et al. introduced MuNN [78], a mutation
analysis method speciically designed for neural networks. MuNN deined ive mutation operators based on the
characteristics of neural networks. The research indings highlighted that mutation analysis exhibited strong
domain-speciic characteristics, indicating the necessity of domain-speciic mutation operators to enhance the
analysis process. Ma et al. [57] proposed DeepMutation, a methodology for assessing the quality of test data in DL
systems using mutation testing. They devised a collection of source-level and model-level mutation operators to
introduce faults into the training data, training programs, and DL models. Subsequently, Hu et al. [34] extended
DeepMutation to DeepMutation++ by introducing a new set of mutation operators for feed-forward neural
networks (FNNs) and Recurrent Neural Networks (RNNs) and enabled dynamic mutation of run-time states in
RNNs. Jahangirova et al. [39] conducted a comprehensive empirical study on the DL mutation operators in the
existing literature. Their investigation shed light on the necessity for a stochastic deinition of mutation killing.
Furthermore, they successfully identiied a subset of mutation operators that exhibit high efectiveness, along
with the associated conigurations that yield the highest eicacy. Humbatova et al. presented DeepCrime [37],
the irst mutation testing tool that implemented a set of DL mutation operators based on real DL faults. This tool
provided a comprehensive framework for evaluating the robustness and fault tolerance of DNNs.

7.3 Deep Neural Network Testing

In addition to test input prioritization, test selection [58] is another approach for improving the eiciency of DNN
testing. The goal of test selection is to estimate the accuracy of the entire set by only labeling a selected subset
of test inputs, thereby reducing the labeling cost associated with DNN testing. Several efective test selection
methods have been proposed in the literature [14, 29, 44, 51, 58]. Li et al.[51] introduced Cross Entropy-based
Sampling (CES), a method for selecting a representative subset of test inputs to estimate the accuracy of the
entire testing set. CES minimizes the cross-entropy between the selected set and the original test set to ensure
that the distribution of the selected test set is similar to that of the original set. Chen et al.[14] proposed Practical
Accuracy Estimation (PACE) for test selection. The basic principle of PACE involves clustering all the tests in the
test set and using the MMD-critic algorithm [44] to perform prototype selection. For the remaining test inputs
that do not belong to any group, adaptive random testing is employed for test selection.

In addition to focusing on improving the eiciency of DNN testing, many studies in the ield of DNN testing [34,
45, 55ś57, 69] concentrate on measuring the adequacy of DNNs. Pei et al.[69] proposed neuron coverage, a metric
for evaluating how well a test set covers the logic of a DNN model. Ma et al.[56] introduced DeepGauge, a
set of coverage criteria to measure the test adequacy of DNNs. DeepGauge considers neuron coverage as an
important indicator of the efectiveness of a test input. Moreover, they proposed new metrics with diferent
granularities based on neuron coverage to diferentiate adversarial attacks from legitimate test data. Kim et al. [45]
proposed surprise adequacy as a measure of identifying the efectiveness of a test input within a test set. Surprise
adequacy focuses on measuring the surprise of a test input with respect to the training set, where surprise is
deined as the diference in the activation value of neurons when faced with this new test input. Dola et al. [23]
proposed the Input Distribution Coverage (IDC) framework to evaluate the black-box test adequacy of DNNs. The
framework utilizes a Variational Autoencoder (VAE) to transform test inputs into feature vectors, establishing a
coverage domain. Within this domain, Combinatorial Interaction Testing (CIT) metrics are applied to measure
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test coverage. Riccio et al. [75] introduced the notion of "mutation adequacy" to assess the efectiveness of test
sets in identifying artiicially injected faults (mutations) in deep learning systems. Moreover, they proposed
DEEPMETIS as a solution to enhance the mutation adequacy of the test set (i.e., improving the test set’s ability to
detect mutations).
Furthermore, several studies focused on utilizing the decision boundary to enhance the quality assurance of

DL-based software. Riccio et al. [76] proposed the notion of the "frontier of behaviors" referring to the inputs at
which a DL system begins to exhibit misbehavior. This concept serves as a metric for evaluating the quality of DL
systems. The assessment involves determining whether the frontier of misbehaviors extends beyond the system’s
validity domain, in which case the quality check is deemed successful. Conversely, if the frontier intersects with
the validity domain, it indicates quality deiciencies in the system. Biagiola et al. [7] introduced an innovative
approach to assessing the adaptability of reinforcement learning (RL) systems, focusing on their capacity to
adjust to dynamic environments. Their method involves computing the adaptation boundary within a changing
environment and presenting them through two-dimensional or multi-dimensional adaptability/anti-regression
heatmaps. These visualizations serve to quantify the system’s adaptability and anti-regression capabilities. Fahmy
et al. [27] introduced Simulator-based Explanations for DNN Failures (SEDE) as a technique aimed at bolstering
the quality assurance of DNNs within safety-critical systems. SEDE proiciently identiies and simulates events
that trigger hazards, leading to DNN failures. This is achieved by generating images with features akin to those
causing failures, which are then used for retraining, ultimately improving DNN accuracy.

8 CONCLUSION

To address the issue of high labeling costs for 3D point cloud data, we propose a novel approach called PCPrior,
which aims to prioritize test inputs that are likely to be misclassiied. By focusing on these challenging inputs,
developers can allocate their limited labeling budgets more eiciently, ensuring that the most critical test cases
are labeled irst, which can lead to cost savings and a more cost-efective testing process. The core idea behind
PCPrior is that test inputs closer to the decision boundary of the model are more likely to be predicted incorrectly.
In order to capture the spatial relationship between a point cloud test and the decision boundary, we adopt a
vectorization approach that transforms the point cloud data into a low-dimensional space, towards revealing
the underlying proximity between the point cloud data and the decision boundary indirectly. To implement the
vectorization strategy, we generate four distinct types of features for each point cloud (test): Spatial Features,
Mutation Features, Prediction Features, and Uncertainty Features. For each test input, the four generated features
are concatenated into a inal feature vector. Subsequently, PCPrior employs a ranking model to automatically
learn the probability of a test input being mispredicted by the model based on its inal feature vector. Finally,
PCPrior utilized the obtained probability values to rank all the test inputs. In order to assess the performance
of PCPrior, we conducted a comprehensive evaluation involving a diverse set of 165 subjects. These subjects
encompass both natural datasets and noise datasets. We compared the efectiveness of PCPrior with several
established test prioritization approaches that have exhibited efectiveness in prior studies. The empirical results
demonstrate the remarkable efectiveness of PCPrior. Speciically, on natural datasets, PCPrior consistently
performs better than all the comparative test prioritization approaches, yielding an improvement ranging from
10.99% to 66.94% in terms of APFD. Moreover, on noisy datasets, the improvement ranges from 16.62% to 53%.

Availability. All artifacts are available in the following public repository:

https://github.com/yinghuali/PCPrior
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