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Large Language Models (LLMs) have become instrumental in advancing software engineering (SE) tasks, showcasing their
efficacy in code understanding and beyond. AI code models has demonstrated their value not only in code generating but also
in defect detection, enhancing security measures, and improving overall software quality. They are emerging as crucial tools
for both software development and maintaining software quality. Like traditional SE tools, open-source collaboration is key in
realising the excellent products. However, with AI models, the essential need is in data. The collaboration of these AI-based SE
models hinges on maximising the sources of high-quality data. However, data especially of high quality, often holds commercial
or sensitive value, making it less accessible for open-source AI-based SE projects.This reality presents a significant barrier to the
development and enhancement of AI-based SE tools within the software engineering community. Therefore, researchers need
to find solutions for enabling open-source AI-based SE models to tap into resources by different organizations. Addressing this
challenge, our position paper investigates one solution to facilitate access to diverse organizational resources for open-source
AI models, ensuring privacy and commercial sensitivities are respected. We introduce a governance framework centered
on federated learning (FL), designed to foster the joint development and maintenance of open-source AI code models while
safeguarding data privacy and security. Additionally, we present guidelines for developers on AI-based SE tool collaboration,
covering data requirements, model architecture, updating strategies, and version control. Given the significant influence of
data characteristics on federated learning, our research examines the effect of code data heterogeneity on federated learning
performance. We consider 6 different scenarios of data distributions and include 4 code models. We also include 4 most
common federated learning algorithms. Our experimental findings highlight the potential for employing federated learning
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in the collaborative development and maintenance of AI-based software engineering models. We also discuss the key issues
to be addressed in the co-construction process and future research directions.

CCS Concepts: • Software and its engineering → Software maintenance tools; Open source model; • Comput-
ing methodologies → Artificial intelligence; • Security and privacy → Domain-specific security and privacy
architectures; Distributed systems security.

Additional Key Words and Phrases: Data Privacy, Software Engineering, Open-source Code Model, Federated Learning

1 Introduction
Large language models (LLMs) are profoundly transforming various areas of software engineering (SE). LLMs
have significantly influenced the methodologies of SE systems [15, 21]. For example, MetaGPT [20] can generate
code based on human language descriptions. It simulates the basic process of software development by mimicking
the collaboration among team members and integrating the programming capabilities of LLMs. Although the
development mode of MetaGPT is relatively simple compared to agile development [3] and lacks measures for
security and quality assurance, it has demonstrated the potential of LLMs in the field of software engineering.
Researchers have proposed many code models, which can be grouped into two categories according to the model
size: pre-trained code models (small) and foundational code models (large). Pre-trained code model series (like
CodeBERT [17], CodeGPT [8], and GraphCodeBERT [19]) and foundational code models (like CodeLlama [50],
StarCoder [32], and CodeT5+ [62]) have attracted much attention. Researchers have trained expert models based
on pre-trained models or foundational code models, which are also emerging, like code repair models [27]. These
code models have gradually become basic tools, called AI-based SE tools, in the field of software engineering [69]
such as the issue-addressed tool SWE-agent [71].

Although these models excel in automating repetitive tasks and accelerating the development process, sig-
nificant challenges remain in ensuring the security, explainability, and trustworthiness of the generated code.
Furthermore, the development and sharing of AI code models often receive insufficient attention. Three major
limitations hinder the development and dissemination of open-source models: limited access to high-quality code
data, insufficient community support, and inadequate training hardware resources. First, it is well known that data
quality is crucial for the performance of AI models [45]. The open-source code model is mainly developed and
published by a single team based on open-source data. Currently, most open-source code models rely on publicly
available code datasets. However, the growth rate of high-quality open-source code data has not kept up with
the pace at which LLMs capabilities are improving. According to the law of scaling [28], the performance of a
model is directly proportional to the amount of high-quality data. Therefore, to develop more powerful code
models, there is an urgent need for more high-quality code data. Second, despite their widespread application in
many areas of software engineering, such as vulnerability detection [35], they still lack the strong open-source
community support typical of traditional software engineering tools. These open-source models also resemble
isolated information islands, where individual entities independently complete the training and release of models
using open-source data. In an era when LLMs are beginning to reshape the field of software engineering, this
pattern needs to be updated. For example, when an individual notices that current vulnerability detection systems
underperform with certain vulnerabilities, they retrain the model using additional data, addressing the issue.
However, this enhanced model is only available in the new location and has not been assessed for its ability
to maintain its original performance levels. Similarly, another individual implemented comparable upgrades
for different flaws in the model. Consequently, users need help finding these updated models and may view
these unverified improvements with skepticism. Third, the current unipartite participation model leads to low
economic efficiency, as different developers or teams conduct redundant training on the same dataset, and the
training process of AI models consumes a significant amount of resources, e.g., electricity [8].
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Despite the daunting challenges faced in intelligent software engineering, we can still explore solutions. For
the first challenge, commercial IT companies or organizations hold high-quality code data and are reluctant to
share it, severely limiting industry innovation and development. Based on our collaborative experience with
enterprises, IT companies have a strong sense of protection for even a single line of code commentary, let alone
the complete code. If a mechanism could be designed to encourage these companies to share their valuable code
assets, the development of intelligent software engineering would be significantly propelled. Furthermore, for the
second and third challenges, establishing a model-building process that involves multiple parties and integrates
different datasets is more efficient and environmentally friendly than training models in isolation.

Therefore, we focus on federated learning [31]—a distributed machine learning framework aimed at enabling
multi-party collaboration under the auspices of data privacy protection. Federated learning safeguards data
privacy and compliance, and significantly enhances AI model performance through collaborative modeling.
There are two related works. FedCSD [4] uses federated learning for detecting code smells while preserving data
privacy. ALMITY [73], designed to address the challenges of applying academic models to real-world industrial
applications. Both do not discuss how code data distribution affects federated learning and do not consider the
potential ability of federated learning to change the community of open-source code models. Our work has
deeply researched the impact of different data distributions on federated learning and outlines how we can use
federated learning to govern open-source code models. We consider the different code data distribution and
include several pre-trained code models and one large foundation model in our experiments. We include 4 most
common federated learning strategies for the model aggregation.

In this work, we outline the co-constructed code-model framework and we explore how data distribution
among different participants affect the code model performance in this cooperative framework. We demonstrate
through experiments that federated learning can achieve performance similar to the centralized training. We also
find that federated learning can achieve better results than individual participants training on their own data
while ensuring data privacy for each participant.

The experimental code is available [46]. In summary, our study makes the following contributions:
(1) In view of the current problems of code data sharing and code model maintenance, we discussed a

framework for collaborative AI-based SE tools building based on federated learning.
(2) We undertake a thorough investigation to assess the influence of data heterogeneity on the outcomes of

federated learning models. This comprehensive study aims to understand how heterogeneity in data can
affect the model performance and generalization.

(3) Our experimental results strongly support the potential use of federated learning in bringing together var-
ious companies to collaborate on the development of intelligent software engineering, thereby promoting
the advancement of this field.

Roadmap. The paper is organized by the following way. Section 2 introduces the background. Section 3
demonstrates our motivation and our solution. Section 4 introduces the data distribution strategies, the dataset,
the models and the federated learning algorithms we used. Section 5 shows our experimental results. Section 6
state the challenges and opportunities. Section 7 concludes our work.

2 Background

2.1 Large Language Models in SE
The pre-trained models have significantly enhanced task performance in natural language processing, attributed
to their excellent generalization capabilities [29, 39, 40]. Researchers have adapted pre-trained transformer models
to code data in the software engineering domain [59]. Based on their pre-training strategies and architectural
designs, these models are categorized into three types: autoencoding, autoregressive, and sequence-to-sequence
(Seq2Seq) models. Autoencoding models leverage the transformer encoder and adopt strategies like masked
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language modelling (MLM) [53], which hide certain parts of the code and use the surrounding context to predict
them. This allows the utilization of future token information for current predictions. For instance, CodeBERT [17]
is trained on the CodeSearchNet [24] dataset and features unique data flow input in addition to regular code
and natural language inputs, as demonstrated by GraphCodeBERT [19]. Conversely, autoregressive models,
exemplified by CodeGPT [8], rely on causal language modelling (CLM) [16] for pre-training, processing data
from left to right while maintaining a transformer decoder structure. Seq2Seq models like CodeT5 [62] and
CommitBART [36] employ encoder and decoder mechanisms, with the latter focusing on GitHub commit messages.
The advent of LLMs such as ChatGPT [1] further stimulated innovation, resulting in specialized coding models
like StarCoder [32], CodeLlama [50], and WizardCoder [38]. These models generally utilize transformer decoders,
while CodeT5+ [62] retains an encoder-decoder setup. These LLMs excel in program repair, code generation, and
summarization tasks. However, while these models have significantly enhanced various software engineering
tasks, their application in the real-world scenario and diverse environments remains challenging [12]. One of the
key obstacles is ensuring that these models scale effectively across multiple domains while safeguarding sensitive
data, which is the most important point for different companies and organizations to join the collaborative
community [51]. Before the emergence of LLMs, software engineering primarily applied deep learning models in
two ways: fine-tuning them [56] in combination with specific tasks or using them as feature extractors without
altering their weights. Post-LLM, the trend shifted toward contextual learning [55], placing these models within
broader workflows and integrating domain knowledge for specific scenario applications. To better enable LLMs to
solve specific tasks in the future, methods based on efficient fine-tuning of additional weights like LoRA [23] have
gained popularity. These methods also include adapter learning [22], prefix, and prompt learning [26]. Recent
empirical studies [39, 40, 68] on LLMs in the software engineering domain demonstrate how LLMs can reshape
methods in the field. Tools like MetaGPT [20] for automated code generation exhibit the potential for automating
software development through sophisticated LLM Agents. Such unit/fuzz testing efforts also employ iterative
prompt engineering to generate test code [70, 76, 78] and ensure software system quality [60].

2.2 Federated Learning
Federated learning, first introduced by Google in 2016 [31], is a distributed learning approach to machine learning.
It enables multiple devices or servers to train data in a distributed fashion without the need to share data
samples. This approach significantly boosts data privacy and security since all data remains on the local devices or
servers at the data source, eliminating the need for data migration. Federated learning is particularly suitable for
processing data that contains sensitive information [10], such as personal health records or personal identification
information, primary concerns for participants in collaborative efforts. It offers a robust solution to this challenge
by enabling organizations to collaboratively train and improve these AI-based SE tools without sharing raw
data. By decentralizing model training, federated learning not only protects data privacy but also improves
the adaptability and performance of LLMs in heterogeneous and distributed environments. This collaborative
approach ensures that LLMs, like CodeLlama and StarCoder, can continuously evolve and meet the demands of
increasingly complex software systems while preserving the effectiveness of previous SE tasks and addressing
privacy concerns.

In contrast to traditional centralized machine learning, which involves uploading all local data to a single
server, or classical distributed learning methods that assume local data follows the same distribution, federated
learning allows multiple parties to collaboratively develop a robust machine learning model without any data
sharing. Federated learning begins with a central server initializing a global model. This model is then distributed
to various clients, who train it locally with their own data. These clients then send their model updates back
to the server, which aggregates these updates to improve the global model. This cycle repeats until the model
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performs satisfactorily across all clients and converges to a stable state. This way, it effectively tackles the critical
challenges of data privacy, data security, data access rights, and handling heterogeneous data.

Federated learning can be divided into three categories based on data application scenarios: horizontal federated
learning [42], vertical federated learning [72], and federated transfer learning [47]. Horizontal federated learning
is applied to data with similar feature spaces but different sample spaces. This means that the datasets include
the same type of features, such as the user attributes, but the samples are different. For example, the banks in
different regions can use horizontal federated learning to share feature information without sharing actual user
information, thereby enhancing model performance; vertical federated learning, on the other hand, applies to
situations where the datasets have the same sample space but different feature spaces. In this case, each entities
involved have data on the same group of users, but they have collected different type of features. For instance,
the department store might have the shopping behavior data on a set of customers, while the bank has the
financial information on the same set of customers; federated transfer learning is applied to data with different
sample spaces and different feature spaces. This approach combines the benefits of federated learning and transfer
learning, allowing a model to benefit from knowledge transfer even when the data domains are distinct.

Federated learning also has produced a new form of learning: a fully decentralized learning framework based
on blockchain [34]. Blockchain-based Federated Learning (BCFL) integrates blockchain technology and federated
learning [64], aiming to solve issues such as privacy, reliability, and scalability that traditional machine learning
frameworks cannot fully accommodate. In BCFL, the central server is replaced by a decentralized blockchain
peer-to-peer system, allowing federated learning to be deployed securely and efficiently. By taking advantage
of the unique properties of the blockchain, such as being tamper-proof, auditable, and decentralized, BCFL can
guarantee the integrity and safety of the federated learning process. To enhance the reliability of the global model,
BCFL has also introduced an incentive mechanism to reward honest participants and punish dishonest nodes. In
the collaborative development environment of open-source AI code models, BCFL is possible to play a significant
role. It is entirely decentralized, replacing the central node with a peer-to-peer network [48], ensuring that no
superuser can influence the decision-making of the open-source community. Moreover, the blockchain-based
federated learning can effectively reward active participants.

3 Proposal

3.1 Motivation
Open-source code and collaboration are key drivers of software engineering development. Without this spirit of
open collaboration, the IT achievements we see today, even tech giants like Google, would not exist. With the
rise and widespread application of artificial intelligence models in software engineering, they have gradually
become the basis for research and development works [5]. However, we note that the management process for
open-source code models is facing multiple challenges as we mentioned in Section 1.

The traditional method of open-source model dissemination depends on centralized platforms, such as Hug-
gingface [2], which allows various teams to share the data and models they have collected and trained as shown in
Figure 1. However, this way has not truly realized the possibility of team collaboration in developing the models.
There may be multiple teams training models on the same dataset, leading to duplicate work. Furthermore, the
acquisition of training data for open-source code models mainly relies on platforms like GitHub. However, in the
era of big data, the data obtained through these methods has limitations in terms of quality and quantity, and
cannot fully capture the complexity of coding practices. Further, specific tasks in software engineering, such as
bug fixing [6] and defect detection [44] of different language programming, require high-quality data and labels.
However, these scarce resources limit our ability to train high-performance AI code models.

After reflecting on the current way of sharing open-source code models, we draw a question:
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Fig. 2. Decentralization Governance of Open Source Model

Can we co-develop and maintain code models like the development and maintenance methods of open-
source software?
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The key to AI code models is high-quality data. Unlike the updates in traditional software code, the release of
AI code models involves the weight and architecture of the model. The biggest challenge is how to motivate
commercial IT organizations to participate in the development of code models and maintain the models while
protecting data privacy, which is a key problem we need to solve. Sharing data across organizations may involve
sensitive or proprietary code that pertains to the company’s core competitiveness.

3.2 Sustainability Concerns in AI Model Development
As AI models grow in complexity, the sustainability of these systems has become an increasingly important
concern [49]. LLMs, for instance, require vast amounts of computational power and electricity during the training
or fine-tuning, leading to substantial energy consumption. For example, training a state-of-the-art LLM in a
specific new domain consume an enormous amount of electricity and requires significant time and GPU resources.
The energy and resource consumption not only raise the environmental concerns but also leads to high operational
costs [54]. As a result, software engineers and organizations should balance the environmental impacts of AI
models with the need for continued innovation as time goes by.

The economic implications of large-scale AI model development present a significant challenge, particularly
for the organizations with limited computational resources. The high cost of training and developing an advanced
model will be burdensome, with the factors such as high electricity consumption and the expensive hardware,
making it difficult to sustain AI systems. These economic factors create an uneven playing field, where smaller
companies struggle to compete with the well-funded companies. Therefore, it is crucial to explore strategies that
reduce unnecessary costs, making AI development more accessible and equitable.

Previously, numerous related works have focused on the concept of Sustainable AI, proposing various methods
to enhance the sustainability of AI systems. For instance, Wu et al. [66] and Van Wynsberghe [58] explored
approaches such as model compression and energy-efficient optimization techniques to reduce the environmental
impact of large-scale AI systems. They also emphasized the importance of lifecycle carbon footprint monitoring
and responsible AI use to assess and mitigate sustainability impacts. Building upon these efforts, and in order to
address the aforementioned issues, we propose several potential solutions:

• Model Compression. In the decentralized model system, contributors can apply compression techniques
locally to reduce the size of updates before transmitting them to the global server. For instance, during
the local training phase, participants can use quantization to lower the precision of model parameters,
reducing both the storage and communication costs. Similarly, pruning techniques can be employed to
eliminate low-impact weights and connections, resulting in a more efficient model without sacrificing
performance. These approaches could be evaluated by analyzing the trade-off between compression ratios
and the resulting model accuracy, as well as by assessing the overall reductions in energy consumption
and communication overhead.

• Selective Model Update. Selective updates can be integrated into the system to reduce redundant com-
putations. Participants only update and upload modified parameters that meet a predefined improvement
threshold, such as a significant increase in local validation accuracy. This method can be assessed by
examining its impact on global model convergence speed, resource utilization, and its ability to maintain
robust performance across varying levels of data heterogeneity.

• Lifecycle Carbon Footprint Monitoring.The system can integrate a lifecycle carbon footprint monitor-
ing module to dynamically assess the energy consumption of participants during local training and model
updates. By tracking these metrics, the governance committee can allocate computational resources more
efficiently, prioritizing updates from participants with lower energy consumption. Evaluations could focus
on the system’s ability to reduce overall energy usage while ensuring that updates from energy-efficient
participants contribute meaningfully to global model improvements.
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3.3 Decentralization Governance of Open Source Model
Our proposed solution is based on the decentralized federated learning method as shown in Figure 2. Various
entities and users collaborate to train a code model using federated learning, and this model has the capability to
evolve over time. Federated learning not only provides privacy protection and promotes collaboration but also
addresses the sustainability concerns mentioned above. Instead of relying on the vast amounts of open data from
the internet, federated learning encourages participants to use their private data to collaboratively maintain an
AI model. By decentralizing training processes, federated learning reduces the amount of training data processed
by each client and minimizing the reliance on massive centralized data centers [41], which consume significant
amounts of energy. This decentralized approach enables organizations to optimize resource consumption, mak-
ing AI model development more sustainable. Moreover, as organizations increasingly prioritize sustainability,
integrating energy-efficient algorithms and ensuring the longevity of AI models becomes essential [9]. Federated
learning supports these goals by allowing models to be updated and refined without the excessive energy costs
associated with retraining large models from scratch.

To achieve the above target, initially, all participants must reach an agreement on the developer guideline.
This guideline covers data protocol, model architecture protocol, model updating strategies, and version control
protocol as explained following:

(1) Data protocol specifies the data formats for training and inference, including quality standards for data
and requirements for test data.

(2) The model architecture requires participants to conduct local training based on a predefined exemplary
model architecture.

(3) Model updating strategies involve utilizing client weights for model updates, with averaging being a
common strategy.

(4) Version control protocol outlines the appropriate checkpoint saving methods, allowing for saves when
model performance reaches a certain threshold on a given dataset. It also defines the rules how to control
the versions of code models.

As AI technologies evolve, decentralized governance will need to support multi-model collaboration.The role of
adaptive systems in facilitating interaction between different models becomes more and more important, allowing
for resource sharing and joint problem-solving. Federated learning frameworks must incorporate multi-model
collaboration protocols, ensuring that models from different sources can interoperate and adapt autonomously. A
Decentralized Autonomous Organization (DAO) could govern this collaboration, allowing participants to vote on
model updates, propose improvements, and make decisions in a decentralized and transparent manner.

We also need one governance committee to review the pull request that is submitted by the new participants.
This committee is responsible to maintain the developer guidelines and manage the community. Besides, a key
challenge in decentralized governance is encouraging participation while ensuring that no single participant gains
excessive influence [65]. A token-based contribution system can be an effective approach to reward participants
for their active involvement in model development and maintenance. It is designed to foster collaboration as
a decentralized mechanism within the federated learning ecosystem. In this system, tokens serve as a unit of
value that reflects contributors’ efforts and their impact on model improvement. Contributors can earn tokens
through measurable contributions, such as submitting effective pull requests or providing high-quality data, and
represent the contributor’s influence in governance decisions. By enabling contributors with tokens to actively
participate in critical decisions, the model ensures that all contributions, regardless of their scale, can directly
shape the system’s direction while maintaining transparency and fairness in decision-making.

As illustrated in Figure 3, each participant earns tokens based on the number of updates or the improvement
in model performance they contribute. These tokens can then be utilized to influence model-related decisions,
such as selecting the aggregation strategies, prioritizing specific model updates, or allocating resources for
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fine-tuning. For example, tokens can be spent to allocate resources such as priority GPU time or enhanced server
capabilities for contributors to accelerate their local training or fine-tuning efforts. This mechanism can not only
encourage active contributors by ensuring that they can play a larger role in the model governance to shape the
direction of the model evolution, but also provide an opportunity to the resource-constrained contributors to
access computational resources by contributing high-quality data for training, enabling broader participation
and fostering a more inclusive and collaborative ecosystem where contributions of all scales can make some
impacts. These tokens would represent individual contributions, which could also be converted into voting
power within the DAO, ensuring a fair and transparent decision-making process. To avoid the potential issue
of highly active individuals accumulating too much influence through a large number of tokens, which could
result in security risks, a “contribution token” creation time could be implemented, similar to the block creation
time in blockchain technologies [25]. For example, contributors could be limited to generating tokens at set
intervals—such as daily—based on the number of updates and the effectiveness they provide to improve the global
model. This approach would govern the distribution of tokens by placing a cap on how frequently they can be
earned, encouraging balanced participation while still promoting collaborative efforts. By implementing such a
system, more companies and organizations would be encouraged to join the open-source AI model collaboration,
reducing duplication of computational resources and energy consumption while increasing overall efficiency.

In this application scenario of our proposed method, we illustrate this with a bug-fixing model as the case study.
Initially, one or several entities establish the data protocol and specify the model’s architecture. Subsequently,
they choose an existing or devise their own federated learning algorithm. A dedicated committee determines the
necessity of launching new iterations when managing versions. They begin by preparing a benchmark dataset.
All models poised for release must meet a specific performance criterion and the additional dataset to test the
improvement. This performance criterion can include different measurements, such as accuracy and robustness.
Every version released must delineate the newly incorporated features. At the outset, collaborative training of
the model is undertaken, subsequently making it publicly accessible. Later, another team, endowed with more
data, discovered this model. Upon evaluation, they acknowledge its efficacy yet note suboptimal performance
for specific code data types. They resolve to refine the model, creating a publicly releasable test dataset in the
process. Following the established data protocol, this team retrains the model, uploads the refined model and
the new test dataset to the repository dedicated to bug-fixing models, and submits a pull request detailing their
actions. The governance committee evaluates this submission and decides on its acceptance. Upon approval, the
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model is updated using the chosen federated learning algorithm, enhancing its bug-fixing capabilities without
compromising existing functionalities.

This approach addresses key challenges: privacy protection, model generalization, collaborative innovation,
and resource optimization. By training models locally without exchanging data, federated learning inherently
protects the privacy of code data. It also facilitates the merging of local datasets from multiple organizations,
ensuring a comprehensive and varied data repository that represents a wide array of programming scenarios.
The decentralization of model development promotes extensive collaboration. The strategy of distributing
model updates rather than data itself efficiently minimizes unnecessary computations, enabling a more strategic
allocation of computational resources.

Therefore, we advocate the advantages of federated learning to build a more inclusive, efficient, and privacy-
protected new ecosystem for the development of code models in the field of software engineering. This is not
only a technological update but also a strategic adjustment towards a more sustainable and collaborative future
direction. We expect the new paradigm to create an environment where competitive advantages come from
collective progress rather than isolated development, and technological innovation flourishes while respecting
data sovereignty. Under the guidance of federated learning, the development of code models can become more
dynamic, responsive, and transparent, adapting better to and reflecting the ever-changing coding practices and
needs. Therefore, we look forward to a new age of software engineering—a data-driven, collaborative-centered,
and privacy-focused intelligent era.

4 Experiment Design
Data is the key driver for the collaborative training and evolution of code models. Model performance is strongly
related to the data distribution in federated learning [80]. Therefore, we designed a series of different data
distribution strategies and conducted experiments on 4 code models and 5 code tasks to investigate whether
federated learning could significantly reduce or improve model performance. We designed 3 research questions
as shown in Section 4.3 to study the efficiency and effectiveness of federated learning for AI-based SE tools. These
experiments aim to verify the feasibility of federated learning in actual software engineering applications and
provide solid empirical support for our framework.

4.1 Data Distribution
In this experiment, we designed 6 different data distribution strategies to evaluate the performance and applica-
bility of federated learning:
Benchmark (Centralization). Serving as the control group, this strategy processes all data centrally, training

in a single location. It does not involve distributed processing or storage, adhering instead to the traditional
centralized machine learning training approach.
Single Client. We randomly select a subset as the training data for a single client to explore the difference

in model performance when trained with data from only a single client versus using federated learning with
multiple clients collaborating. The purpose of this method is to demonstrate that federated learning can enable
each participant to improve model performance while ensuring their own data ownership.
Uniform. Under this strategy, we ensure data is evenly distributed across all participating nodes, with each

client possessing approximately the same number of data points and a relatively balanced distribution of labels.
Label Imbalanced. This strategy allows each client to have a similar number of data points but with an uneven

distribution of labels within each client. This reflects a common scenario in the real world, where the proportion
of data label types varies across different clients, exploring the model’s efficiency in handling label-imbalanced
data.
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Quantity Imbalanced. While maintaining consistent label distribution, there are significant differences in the
number of samples between clients in this strategy. It simulates the situation in real environments where some
clients may have much more data than others, assessing the model’s capability to handle such scale discrepancies.
By Repository. Data is allocated based on its source repository, ensuring that data from the same user or

organization belongs to the same client. This method aims to simulate scenarios of data isolation in reality, such
as data processing within a company or organization, to evaluate model performance under such data distribution
scenarios.

We should notice that Benchmark (Centralization) and Single Client focus on training models in isolation.
Conversely, other strategies are specifically related to the nuances of data distribution within the federated
learning framework.

4.2 Datasets and Baseline Models
We utilize the CodeXGLUE dataset [37]. This dataset is a benchmark collection designed to foster machine
learning research for program understanding and generation. In our experiment, we choose five tasks: clone
detection, defect detection, code search, code-to-text and code completion. Clone detection and defect detection
are crucial for maintaining code quality, while code search and code-to-text involve complex interactions
between natural language and code. Code completion focuses on improving developer productivity. These tasks
provide an overview of how models perform in real-world programming scenarios, highlighting their abilities in
understanding, generating and manipulating code.

For our experiments, we select the following pre-trained models renowned for their effectiveness in code-
related tasks: 1) CodeBERT [17] is designed to understand and generate code by leveraging the power of the
BERT architecture. It excels in tasks such as code search, code-to-text generation, and more; 2) CodeGPT [8] is
fine-tuned specifically for programming languages, making it highly capable of code completion and generation
tasks; 3) CodeT5 [63] is an encoder-decoder model designed to understand and generate programming coded; 4)
CodeLlama-7b [50] stands as a large language model specifically tailored for coding tasks. We use it into our
framework in order to delve deeper into the potential of federated learning for large model fine-tuning in the
code domain.

We adopt 4 different, most common federated learning baseline algorithms, FedAvg, FedTrimmedAvg [75],
FedMedian and FedProx [33]. FedAvg aggregates the updates from all participating clients by calculating their
average. FedTrimmedAvg helps when client data is noisy or has extreme values. It works by ignoring some of the
highest and lowest updates from clients and only using the rest. FedProx modifies the local training on each client
by adding a penalty term that measures the difference between the local model and the global model. It helps
keep each client’s update closer to the overall model, especially when their data is very different. FedMedian uses
the middle value of client updates instead of the average. This is useful when client data is very different, as it
reduces the impact of very high or very low updates.

4.3 ResearchQuestions
We have three research questions as shown in the following:
RQ1. Can participation in federated learning enhance model performance while ensuring data privacy?
We compare model performance between single-client training and multi-client federated learning in code-

related tasks. This question aims to assess the efficacy of federated learning in improving model performance
over single-client training scenarios for code-related tasks, emphasizing the balance between data privacy and
model accuracy.
RQ2. In code-related tasks, can federated learning achieve performance comparable to centralized training without

disclosing data?
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This research question explores the potential of federated learning to approximate the model performance of
centralized training setups, thereby evaluating the feasibility of maintaining high model accuracy in the context
of data privacy.
RQ3. What impact does data heterogeneity have on the performance of federated learning in code-related tasks?
This question delves into the effects of data heterogeneity on federated learning outcomes, examining how

various approaches to data partitioning affect model performance. It aims to explore the challenges and consid-
erations in managing data diversity across clients in federated learning setups. We define 6 data partitioning
strategies as mentioned in Section 4.1 (e.g., uniform distribution, label-imbalanced, quantity-imbalanced) to study
this question.

5 Results
We first demonstrate the model performance under federated learning using different data distributions. In the
end, we answer our research questions (Section 5.6) based on the experiment results.

5.1 Clone Detection
Settings. We use CodeBERT in this task. We split the dataset into 10 subsets using these distribution strategies:

uniform, label-imbalanced, and quantity-imbalanced. The training epochs is 2.
Results. Table 1 displaying the results for the clone detection task reveals insightful patterns regarding the

efficacy of federated learning settings compared to traditional centralized training approaches across various
datasets. Notably, the F1 score under federated learning are closely alignedwith those achieved through centralized
training when we use FedAVG as the aggregation strategy, indicating that federated learning is capable of
matching the effectiveness of centralized models even when data is distributed across multiple nodes. Furthermore,
regardless of the data distribution strategy we use, we find that the models obtained through federated learning
significantly outperform those trained on a single client in terms of F1 scores, demonstrating that participating in
federated learning can greatly enhance the performance of the obtained models while ensuring data privacy.

The results further illustrate that the federated learning model’s performance remains robust even with varia-
tions in data distribution. This suggests that federated learning can help maintain model accuracy across different
data environments, a critical feature for practical, real-world applications where data is often heterogeneous. The
ability to work with imbalanced or distributed data without significant loss of model performance opens new
opportunities for federated learning in fields requiring strict data privacy.

Additionally, we can compare the effects of different types of data heterogeneity on the results in this task.
We find that when the label distribution is uneven, the performance of the models is much lower than that
during uniform distribution, indicating certain limitations of federated learning in dealing with label imbalance.
However, in scenarios with uneven quantities, the results obtained by the models are even better than those
during uniform distribution, suggesting that heterogeneity in the amount of training data does not adversely
affect federated learning and might even enhance the model robustness.

Table 1. The F1 score of Clone Detection

None-FL FedAvg FedTrimmedAvg FedMedian FedProx
Uniform - 0.903 0.865 0.853 0.849

Label Imbalanced - 0.890 0.860 0.717 0.822
Quantity Imbalanced - 0.912 0.857 0.820 0.854

Centralization 0.941 - - - -
Single Client 0.832 - - - -
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5.2 Defect Detection
Settings. We use Devign [79] dataset which is collected from two large C programming language open-source

projects: QEMU and FFmpeg. And we use accuracy as the evaluation metrics. In this task, we use CodeBERT
and CodeT5. We split the dataset into 2 parts in order to simulate the realistic scenarios, each part contains one
project. We set training epochs to 5.

Results. Table 2 presents the outcomes for the defect detection task. It is evident that under federated learning
conditions, both CodeBERT and CodeT5 achieve results that closely rival those of centralized training across this
dataset, surpassing the performance seen with training on a single client. When we use different strategies to
aggregate the parameters, we find that the strategies such as FedTrimmedAvg and FedProx assist in obtaining a
more refined model.

Moreover, the results suggest that federated learning not only preserves the privacy of each participant’s
data but also optimizes the resource utilization across different clients. By distributing the computational load
and enabling collaboration, federated learning provides a scalable solution to large-scale, multi-organizational
software development, where data privacy concerns and hardware limitations are common.These results reinforce
the potential of federated learning in scenarios where centralized data collection is not feasible or desirable.

Table 2. The accuracy of Defect Detection

Aggregation Strategy CodeBERT CodeT5
Centralization - 62.08 62.52
Single Client - 57.54 55.53

FL(By Repository)

FedAvg 61.57 58.67
FedTrimmedAvg 62.04 59.96

FedMedian 61.53 57.65
FedProx 61.31 61.05

5.3 Code Search
Settings. In the code search task, we use two models, CodeBERT and CodeT5. Each of these models underwent

a triad of training methodologies: centralized, which utilized the complete dataset for training; federated learning,
where training was distributed across 10 clients; and single-client training to understand performance under data-
constrained conditions. The dataset was split into 10 subsets, with a special emphasis on keeping all repositories
from one user within the same subset, to closely mirror practical use cases. We set the training epoch to 2.
Results. In our study on code search as shown in Table 3, CodeBERT and CodeT5 are evaluated across

centralized, federated learning, and single-client setups. CodeBERT demonstrates an advantage in federated
learning, surpassing its centralized training performance, highlighting its compatibility with distributed data
scenarios. Conversely, CodeT5 shows that whatever the aggregation strategies it uses, its performance slightly
declined in federated learning compared to centralized training. Both models experienced a drop in effectiveness
when trained on data from a single client, indicating the importance of diverse data sources.

The results emphasize the strength of federated learning in handling distributed data without significantly
sacrificing model performance. CodeBERT’s performance improvements in the federated learning setup sug-
gest that federated learning might even enhance certain aspects of model performance, potentially due to the
diversity of data sources involved. This finding highlights federated learning’s capacity to create more robust and
generalizable models, which are crucial for tasks like code search where data variability is high.
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Table 3. The MRR of Code Search

Aggregation Strategy CodeBERT CodeT5
Centralization - 0.2719 0.1951
Single Client - 0.2520 0.1717

FL(By Repository)

FedAvg 0.2989 0.1797
FedTrimmedAvg 0.268 0.1485

FedMedian 0.3022 0.126
FedProx 0.2695 0.1478

Table 4. The BLEU-4 score of Code-to-Text

Aggregation Strategy ruby javascript go python java php
Centralization - 12.16 14.90 18.07 19.06 17.65 25.16
Single Client - 7.97 9.99 14.94 15.25 13.86 20.63

CodeBERT

FL(By Repository)

FedAvg 8.90 11.54 16.90 17.23 16.28 23.80
FedTrimmedAvg 8.83 11.52 16.92 17.20 16.16 23.76

FedMedian 8.93 11.58 16.92 17.21 16.15 23.84
FedProx 8.75 11.57 16.89 17.19 16.22 23.82

centralized - 10.75 11.92 14.02 14.80 15.41 23.24
Single Client - 9.53 9.73 12.81 11.89 12.44 17.19

CodeT5

FL(By Repository)

FedAvg 9.95 9.99 13.48 12.00 12.85 20.56
FedTrimmedAvg 9.94 9.95 13.47 11.98 12.82 20.57

FedMedian 9.96 9.97 13.48 11.99 12.81 20.52
FedProx 9.99 10.00 13.50 12.03 12.84 20.60

5.4 Code-to-Text
Settings. In our code-to-test experiment, we evaluated the efficacy of CodeBERT and CodeT5 models under 3

distinct training paradigms: centralized training, federated learning segmented by repository, and training on a
dataset from a single client. The federated learning approach aimed to mirror real-world data distribution by
dividing the dataset into ten subsets, based on repository names, ensuring that all repositories from a single user
were grouped together. We match the federated learning rounds to the centralized learning epochs, setting both
to ten.
Results. Table 4 shows that centralized training consistently yields the highest BLEU-4 score for both models

across all languages, underscoring the benefits of extensive data diversity and volume. Federated learning, while
designed to maintain data privacy, sees a moderate decline in BLEU-4 score, highlighting the challenges of
aggregating decentralized learning effectively. Nonetheless, federated learning outperforms the single-client
scenario, indicating that collaborative learning is preferable to isolated data training, reinforcing the notion that
data diversity is crucial for model efficacy. Besides, the impact of different aggregation strategies on the outcomes
is minimal in this task.

This result suggests that federated learning is effective for code-to-text tasks, particularly in preserving data
privacy across distributed sources without significantly compromising the model’s performance. However, a
performance gap still exists between federated learning and centralized approaches. Some factors which could
help reduce the impact of data heterogeneity and improve the performance of federated learning, these strategies
may help narrow the performance gap between federated learning and centralized approaches, particularly in
achieving optimal performance in distributed environments.
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Table 5. The Accuracy of Code-Completion-Token

Aggregation Strategy CodeBERT CodeLlama-7b
Centralization - 76.79 83.84
Single Client - 70.22 81.59

FedAvg 73.45 83.77

FL(By Repository)
FedTrimmedAvg 73.79 -

FedMedian 73.73 -
FedProx 73.63 -

5.5 Code Completion
Settings. In the code completion task, our experimental setup aimed to evaluate the performance of CodeBERT

and the large language model, CodeLlama-7b, under various training paradigms: centralized training, federated
learning with dataset division by repository to ensure data privacy, and single-client training to simulate data-
constrained environments. We use LoRA to finetune the CodeLlama-7b. We set the training epoch to 5.

Results. Table 5 shows that the centralized training, which is an ideal scenario with access of the entire datasets,
yielded the highest accuracy for both models. It is encouraging to notice that the slight decrease in accuracy from
centralized to federated learning for both models underscores the trade-offs involved in preserving data privacy
through distributed training. Moreover, the further decrease in accuracy from federated learning to single client
shows the benefits of collaborative learning in federated learning. Remarkably, CodeLlama-7b outperformed
CodeBERT in all tested scenarios. Notably, in the federated learning setup, CodeLlama-7b’s performance closely
approximated its centralized training accuracy, emphasizing the broad capabilities of federated learning in
effectively fine-tuning LLMs.

Moreover, the results suggest that federated learning not only preserves the privacy of each participant’s
data but also optimizes the resource utilization across different clients. By distributing the computational load
and enabling collaboration, federated learning provides a scalable solution to large-scale, multi-organizational
software development, where data privacy concerns and hardware limitations are common.These results reinforce
the potential of federated learning in scenarios where centralized data collection is not feasible or desirable.

5.6 Answers to RQs

5.6.1 RQ1. Can participation in federated learning enhance model performance while ensuring data privacy?
Table 1 to Table 5 demonstrate that, across various tasks and models, multi-client federated learning consistently
outperforms single-client training in code-related tasks. Take the defect detection task as an illustrative example,
where we divided the dataset into two parts based on project names: one containing defect data from QEMU and
the other from FFmpeg, a large-scale open-source project renowned for its rich and diverse defect information.
Table 2 shows that despite the high quality of data in FFmpeg, federated learning still achieved superior results
compared to single-client training solely on the FFmpeg defect dataset.

This observation underscores the advantages of federated learning in harnessing the collective power of
multiple data sources while ensuring data privacy. This collaborative approach allows companies to leverage their
respective datasets without disclosing sensitive information, thereby fostering a secure and privacy-preserving
environment for the development of intelligent software engineering.

In addition to these performance advantages, federated learning also promotes a more sustainable and scalable
model training ecosystem. By decentralizing the data collection and training processes, federated learning reduces
the need for extensive computational resources typically required in centralized training, where all data must be
aggregated in one place, such as the data center. This reduction in resource demands can be particularly beneficial
in scenarios where training data is distributed across various geographical locations or organizational entities,
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such as multinational corporations or cross-border collaborations. Most importantly, it can obviously enhance
the performance of the AI models in the aforementioned code-related tasks.

Answer for RQ1: Compared to single client training, federated learning can enhance model performance
while ensuring data privacy. The participant can get the benefit from federated learning.

5.6.2 RQ2. In code-related tasks, can federated learning achieve performance comparable to centralized training
without disclosing data? Our experimental results indicate that, while there is indeed a performance gap between
federated learning and centralized training in most tasks, especially evident in the code-to-text task, federated
learning demonstrates considerable promise in specific scenarios. Notably, Table 5 shows that during the fine-
tuning of large models, federated learning achieves result that closely resemble those obtained through centralized
training. This suggests that federated learning has significant potential in this area. Furthermore, we observe
that in specific code-related tasks, such as code search using CodeBERT, federated learning even surpasses the
performance of centralized training. This finding implies that federated learning exhibits enhanced robustness in
tasks like code search.

While federated learning may not always match the performance of centralized training across all code-related
tasks, it offers a viable alternative that balances performance and privacy preservation, particularly in scenarios
involving large model fine-tuning or specific tasks like code search.

Furthermore, the potential of federated learning to closely match centralized training outcomes highlights its
relevance in environments where data privacy regulations, such as GDPR1, limit the feasibility of centralized
data aggregation. As privacy regulations become stricter worldwide, the ability of federated learning to ensure
compliance while maintaining high performance could make it a preferred solution in the future of AI-based
software engineering. Moreover, the reduced risk of data breaches due to the absence of central data storage
further strengthens its appeal, especially in cases that data sensitivity is paramount. With the help of federated
learning, the AI models can more effectively finish the tasks such as detecting code defects by adapting to different
programming language and varying coding practices across teams. This flexibility ensures that the model is
better suited to identify defects, regardless of the specific language or coding style used by different teams or
individuals.

Answer for RQ2: Federated learning has shown its potential to approach the performance of centralized
training in some scenarios, but there still exists a gap.

5.6.3 RQ3. What impact does data heterogeneity have on the performance of federated learning in code-related
tasks? Table 1 presents a detailed overview of the model performance in various data heterogeneity scenarios.
When considering the uniform distribution strategy, we observe a significant drop in F1 score compared to the
benchmark. On the other hand, the label imbalance strategy exhibits the lowest F1 score. This underscores the
negative impact of label imbalance on model performance. Lastly, the quantity imbalance strategy maintains
a slightly improved F1 score compared to uniform distribution in 2/4 aggregate strategies, indicating that the
impact of quantity imbalance heterogeneity on clone detection model performance is relatively minor.

In summary, the result reveals that data heterogeneity can significantly influence the performance of models.
Therefore, it is crucial to explore techniques and methods that can enhance the model’s ability to handle diverse
and imbalanced data distributions, thereby improving the overall accuracy and reliability of model.

Besides, as Table 2 and Table 5 shown, by employing an effective aggregation strategy that mitigates data
heterogeneity, federated learning can attain performance closer to that of centralized training. There is potential
1https://gdpr-info.eu/
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for us to identify aggregation strategies that not only achieve performance close to centralized training but could
possibly even surpass it.

Managing data heterogeneity is one of the most critical challenges in federated learning, as different clients
often hold data with varying distributions, characteristics, and volumes. As the results suggest, label imbalances
have a particularly negative impact on model performance, which implies the need for advanced balancing
techniques or specialized algorithms to solve this problem. Future research could explore adaptive strategies for
dynamically adjusting the importance of data from different clients, ensuring that even in highly imbalanced
environments, federated learning models can maintain high accuracy. Additionally, due to the large size of models,
smaller datasets may have a disinished impact. Therefore, ensuring that clients with smaller datasets are not
overshadowed by those with larger data pools will be essential to promote fairness and consistency in model
training.

Answer for RQ3: Data heterogeneity, particularly imbalances in label distribution, can impact model
performance. Exploring various aggregation strategies could be effective in mitigating this influence.

6 Challenges and Opportunities

6.1 Challenges
The vision of an open-source code model-sharing platform based on a decentralized federated learning system
is to attract more entities to contribute their datasets and collaboratively develop and maintain code models.
However, it still faces a series of challenges that need to be addressed. We list some important challenges and
possible solutions.
Code Privacy Protection. A core advantage of federated learning is its protection of data privacy through

local model training and sharing model weights. Nonetheless, the risk of data leakage still exists, such as threats
from member inference attacks [43]. Unlike some traditional sensitive data, where anonymization can often be
achieved by masking personal information, code data is uniquely sensitive for contributors—even in cases as
minimal as a variable declaration. One current solution is fully homomorphic encryption [77], which allows
model training on fully encrypted data and encrypts input data during the inference stage. Although this method
is secure, it is computationally expensive. Another potential solution involves designing an intermediary medium
to base the training of models and sharing of weights on.

Client variability and Model Stability. One significant challenge of federated learning in dynamic envi-
ronments is managing client variability, such as the joining of new clients [30]. This variability can introduce
risks of forgetting previously learned knowledge or destabilizing the global model. Techniques like incremental
learning [67] and knowledge distillation [18] can mitigate this issue by enabling the global model to adapt to
new clients while retaining important information from previous training. Addressing this challenge is crucial
to ensuring the long-term stability and accuracy of federated models in decentralized systems. For instance,
in the task of defect detection, we can simulate a real-world scenario where each participant possesses a dis-
tinctly different dataset by using heterogeneous datasets from multiple sources. To reflect the dynamic nature
of federated learning in practice, we could introduce new clients with unique datasets into the collaborative
training process. This setup would allow us to evaluate how the inclusion of new, diverse datasets impacts the
overall model performance. To further investigate the impact of dynamic client participation on the stability and
performance of federated models, we focus on the scenario where new clients with unique datasets are gradually
introduced into the training process. These new datasets may represent distributions that are either disjoint or
partially overlapping with the existing client data, simulating realistic scenarios where new participants join a
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federated network over time. Metrics such as changes in overall accuracy, variance in client-specific performance,
and retention of previously learned knowledge will be evaluated to measure the stability and performance of
federated models. Techniques like incremental learning and knowledge distillation will also be applied to ensure
the model adapts effectively to new data while preserving information from earlier training. This experimental
design provides a focused approach to studying dynamic client participation and its challenges in decentralized
federated learning environments. Additionally, we could explore various strategies for updating the central model,
focusing on how to best aggregate the knowledge learned from each client while preserving model stability
and preventing performance degradation. By simulating these real-world conditions, we can better understand
the challenges and opportunities associated with dynamic client participation and model updating in federated
learning environments.

Reward Mechanisms. The development of open-source software often relies on the participation and mainte-
nance of volunteers. However, not all individuals or entities are enthusiastic about participating in open-source
projects. It is crucial to design reasonable incentive mechanisms to attract them more effectively to collaborate
on open-source models. We can leverage the blockchain technique and create a “contribution token” to reward
actively participating individuals and entities. For new users, we can provide initial system participation qualifica-
tions through an airdrop. The number of tokens held becomes a symbol of their contribution to the open-source
community. This symbol may not directly translate into commercial benefits, but it at least ensures that their
contribution is recorded on the blockchain and widely recognized and commemorated. Of course, more complex
methods can be adopted, such as introducing DAO [14] governance and converting contribution tokens into
voting power, making it an influential presence in the governance of the open-source community. Besides, in
order to prevent some participants gaining disproportionate influence by accumulating a large number of tokens,
a mechanism similar to block creation time in blockchain technology could be implemented. This would limit
the rapid accumulation of tokens and ensure a more balanced distribution of influence across the open-source
community, promoting fair and transparent governance.

Collaborative Interaction Protocols. When multiple parties collaborate to build and maintain open-source
AI models, it is necessary to clarify the rules and protocols for collaborative work. These protocols should cover
aspects such as model architecture, data formats, and methods for model updates. New contributors must follow
the established rules. The open-source community needs a set of standards to guide the formulation of these
protocols.

Copyright Issues. When multiple parties participate together, the ownership of the model may need to be
clarified. If there are no clear ownership regulations, this could affect the enthusiasm of participants. To solve
this problem, we believe there are two possible approaches: one is to establish copyright ownership rules while
formulating collaborative interaction protocols; the other is to share copyrights based on contributions, where
the contribution can be measured by the “contribution tokens” mentioned in the reward mechanism.

Security issue. If malicious participants contribute invalid model weights and data, it could seriously damage
the open-source ecosystem and contaminate existing models [74]. The reward mechanism implemented based on
smart contracts could also contain security vulnerabilities, possibly being exploited by hackers to maliciously
acquire a large number of tokens [52]. Moreover, if there are particularly active entities in the open-source
community, their continuous increase in token numbers might eventually lead them to a dominant position. It is
crucial to design corresponding security mechanisms to prevent these security issues.
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Energy Efficiency in Federated Learning. Although our proposed approach allows clients to train on their
own data without needing to train on some public datasets, thus saving significant computational resources
to some extent, federated learning systems still face the challenge of energy consumption, particularly when
training large models across multiple clients. Energy-efficient federated learning designs could enhance the
practicality of open-source AI-based software engineering tools. Techniques such as model compression [7],
selective updates [11], and optimized communication protocols could significantly reduce both training time
and energy consumption, making federated learning more feasible and cost-effective for diverse participants.
Exploring these methods can lead to more sustainable models and lower barriers to participation.

The sustainability of AI-based SE tools. As AI models, particularly LLMs, become more widespread, their
energy consumption and environmental impact cannot be ignored. Developing a governance framework that
incorporates sustainability metrics is crucial. Organizations must measure energy efficiency, track software waste,
and minimize the carbon footprint of their models [57]. Techniques such as model compression, selective updates,
and more efficient data distribution methods can help reduce energy consumption in federated learning systems.
Addressing these sustainability challenges will be essential for the long-term viability of AI-based software
engineering.

6.2 Opportunities
Enhanced Collaboration through federated learning. Federated learning provides a unique opportunity for

independent developers, companies and organizations to collaborate on AI-based software engineering models
without sharing their private, sensitive data. This decentralized approach allows participants to collectively
improve model performance while preserving privacy. By encouraging multi-party to collaboratively maintain
the AI model, federated learning facilitates the integration of diverse, high-quality datasets across industries,
which benefits to develop more robust and adaptable AI models. This form of collaboration is particularly valuable
in areas such as defect detection, code generation and security enhancement, where the inclusion of diverse data
can significantly improve outcomes.

Cost Reduction through Decentralized Collaboration. One of the key advantages of federated learning
is the reduction of costs associated with AI model training. Instead of requiring vast computational resources
to collect and process the huge centralized datasets, federated learning enable multiple participants collect and
process their own data locally and then train the model on their own data. This decentralized approach reduces
the need for redundant training on public datasets, which are usually used by multiple organizations as part of
their AI model training. Instead, each client trains solely on their specific data, leading to more efficient use of
computational resources. As a result, federated learning can lower both energy consumption and GPU costs,
making AI development more sustainable and accessible for organizations with limited computational capacity.

Improved Privacy-Preserving Techniques. Federated learning enhances data privacy by aggregating only the
updated parameters rather than the entire dataset. However, it still faces significant limitations when addressing
malicious attacks or potential data leakage. Future work should prioritize developing more robust privacy-
preserving techniques for both the local training process and the central aggregation process. For instance,
methods like differential privacy [13] can provide stronger safeguards against privacy breaches.

Data handling for heterogeneity. Refining data handling for heterogeneity focuses on addressing the
significant variations in data distribution, quality, and quantity across clients in federated learning systems. One
potential approach is to use adaptive aggregation algorithms that dynamically adjust the weight of each client’s
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update based on factors such as data quality, quantity, or token counts. This ensures that clients contributing more
reliable or diverse data have a greater influence on the global model. Additionally, unified preprocessing techniques,
such as normalization or feature alignment [61], can be applied before training to reduce inconsistencies in client
data. These strategies collectively aim to improve the global model’s ability to generalize across heterogeneous
data while maintaining fairness and scalability in decentralized systems.

7 Conclusion
In this study, we delve into an emerging framework for the collaborative development of open-source code models,
the code model-sharing mechanism based on federated learning. This framework aims to serve as a new paradigm
for managing open-source AI-based SE models and to foster the joint construction and refinement of code models
while ensuring data privacy protection. It addresses critical challenges such as data privacy, model evolution, and
community engagement. Through this paradigm, we have detailed the specific impact of code data heterogeneity
on model performance and identified key issues and challenges. The evaluation across different data distribution
strategies demonstrates the potential of federated learning in improving the collaborative development of code
models. Moreover, we discuss some potential challenges and solutions that might be faced. For example, we
should intensify research on implementing more secure and reliable comprehensive encryption methods tailored
to code characteristics. Regarding the contribution incentive mechanism for open-source models, we propose
using a token-based contribution method to encourage more developers and participants to join this collaborative
effort. At the same time, we also highlight the challenges of managing intellectual property rights for models in
the implementation process. Besides, federated learning offers a promising pathway not only for collaborative AI
model development but also for fostering sustainable software engineering practices. By decentralizing model
training and reducing the energy burden on centralized systems, federated learning contributes to the long-term
sustainability of AI-driven software tools, ensuring that organizations can balance innovation with environmental
responsibility. This paper sets the foundation for future research, especially in handling real-world complexities,
improving energy efficiency, and refining governance mechanisms to ensure fair and balanced participation in
open-source projects. We look forward to further research and discussion in this field.
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