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Classifiers
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Abstract—Machine learning has achieved remarkable success across diverse domains. Nevertheless, concerns about interpretability
in black-box models, especially within Deep Neural Networks (DNNs), have become pronounced in safety-critical fields like healthcare
and finance. Classical machine learning (ML) classifiers, known for their higher interpretability, are preferred in these domains. Similar
to DNNs, classical ML classifiers can exhibit bugs that could lead to severe consequences in practice. Test input prioritization has
emerged as a promising approach to ensure the quality of an ML system, which prioritizes potentially misclassified tests so that such
tests can be identified earlier with limited manual labeling costs. However, when applying to classical ML classifiers, existing DNN test
prioritization methods are constrained from three perspectives: 1) Coverage-based methods are inefficient and time-consuming; 2)
Mutation-based methods cannot be adapted to classical ML models due to mismatched model mutation rules; 3) Confidence-based
methods are restricted to a single dimension when applying to binary ML classifiers, solely depending on the model’s prediction
probability for one class. To overcome the challenges, we propose MLPrior, a test prioritization approach specifically tailored for
classical ML models. MLPrior leverages the characteristics of classical ML classifiers (i.e., interpretable models and carefully
engineered attribute features) to prioritize test inputs. The foundational principles are: 1) tests more sensitive to mutations are more
likely to be misclassified, and 2) tests closer to the model’s decision boundary are more likely to be misclassified. Building on the first
concept, we design mutation rules to generate two types of mutation features (i.e., model mutation features and input mutation
features) for each test. Drawing from the second notion, MLPrior generates attribute features of each test based on its attribute
values, which can indirectly reveal the proximity between the test and the decision boundary. For each test, MLPrior combines all three
types of features of it into a final vector. Subsequently, MLPrior employs a pre-trained ranking model to predict the misclassification
probability of each test based on its final vector and ranks tests accordingly. We conducted an extensive study to evaluate MLPrior
based on 185 subjects, encompassing natural datasets, mixed noisy datasets, and fairness datasets. The results demonstrate that
MLPrior outperforms all the compared test prioritization approaches, with an average improvement of 14.74%∼66.93% on natural
datasets, 18.55%∼67.73% on mixed noisy datasets, and 15.34%∼62.72% on fairness datasets.

Index Terms—Test Input Prioritization, Machine Learning, Mutation analysis, Learning to Rank, Labelling
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1 INTRODUCTION

MACHINE learning classifiers have seen remarkable
success in various domains [1], including image

recognition [2], natural language processing [3], [4], and
recommendation systems [5], [6]. However, the prevalence
of black-box models, especially in deep learning, has raised
concerns about their lack of interpretability, which refers
to the extent to which a model’s internal mechanism and
decision-making processes can be comprehended and ex-
plained transparently to humans. Interpretability becomes
particularly vital in safety-critical domains like healthcare
and finance [7], where model decisions can profoundly
impact individuals’ lives and societal well-being.

Compared to black-box models, classical machine learn-
ing (ML) algorithms (e.g., XGBoost [8], decision tree [9] and
logistic regression [10]) offer more interpretable solutions,
making them an appealing choice for domains that priori-
tize transparency and comprehensibility.
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with University of Luxembourg.
E-mail: xueqi.dang@uni.lu, yinghua.li@uni.lu, michail.papadakis@uni.lu,
jacques.klein@uni.lu, tegawende.bissyande@uni.lu, yves.letraon@uni.lu

• Xueqi Dang and Yinghua Li are co-first authors. Yinghua Li is the
corresponding author.

While classical ML classifiers are inherently inter-
pretable, ensuring their accuracy and reliability remains a
challenge. Testing is a fundamental practice for ensuring the
quality of ML systems. However, a significant challenge in
ML testing is the labeling cost issue [11] (i.e., labeling test
inputs to verify the correctness of predictions can be costly).
This challenge arises due to several factors: 1) manual an-
notation is still the mainstream for labeling; 2) test sets can
be large-scale, which increases labeling efforts; 3) domain-
specific knowledge can be required in certain domains for
labeling tabular data, such as the medical domain [12], [13],
[14]. For instance, when applying XGBoost for chronic kid-
ney disease (CKD) detection [12], labelling the CKD dataset
for model training/testing requires specialized medical ex-
pertise to determine whether a patient has CKD.

To deal with the labelling cost problem, one intuitive
solution is to prioritize tests that can cause the ML model
to behave incorrectly (i.e., inputs that are more likely to
be misclassified by the model). Early identification and
labelling of such tests can save the manual labelling effort
and enhance the overall efficiency of the testing process.
In the literature, various test prioritization approaches [15],
[16] have been proposed in the field of DNN testing. These
techniques can be broadly classified into three categories:
coverage-based [17], [18], [19], confidence-based [16], [20]
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and mutation-based [15] approaches.
Coverage-based approaches prioritize test inputs based

on the neuron coverage of DNNs. Confidence-based meth-
ods identify possibly-misclassified test inputs by quanti-
fying the classifier’s output confidence for each test. One
notable confidence-based approach is DeepGini [16], which
leverages the Gini score as a metric to quantify confidence
levels for effective test prioritization. Recently, Weiss et
al. [20] conducted a comprehensive study to assess exist-
ing test prioritization methods, containing the evaluation
of a series of confidence-based metrics, including Vanilla
Softmax, Prediction-Confidence Score (PCS), and Entropy.
Mutation-based techniques propose a set of mutation oper-
ations and utilize the mutated results for test prioritization.
While these approaches have made considerable progress
in prioritizing potentially-misclassified test inputs, they still
face certain challenges and limitations.

First, prior studies [16] have demonstrated that
coverage-based methods are ineffective and time-costly
compared to confidence-based approaches. Second, the
mutation-based test prioritization approach, PRIMA [15], is
not applicable to classical ML models due to the lack of
adapted model mutation operators. Third, while confidence-
based test prioritization approaches can be adapted for
classical ML models, there are several limitations associated
with their application in this context. We outline the main
limitations as follows. Specific details can be found in the
background section (cf. Section 2).

• Single dimension on binary classification models Bi-
nary classification models categorize test inputs into two
classes, and in confidence-based approaches, the likeli-
hood of a test being misclassified primarily relies on
the model’s prediction probability p. Tests with p values
closer to 0.5 will be consistently prioritized regardless
of the specific method used, as demonstrated through
experimental results.

• Lack of model-specific insights Confidence-based ap-
proaches, viewing the model as a black box and relying
solely on its prediction probabilities, do not take into
account the transparency and interpretability provided by
classical ML models, leading to suboptimal prioritization.

• Ignoring attribute features Confidence-based methods
neglect the attribute features of classical ML test datasets,
which can directly map tests into space and indirectly
reflect the distance between samples and the model’s de-
cision boundary. However, confidence-based approaches
ignore this crucial feature information in the process of
test prioritization.

In this paper, we propose MLPrior (Classical ML-
oriented Test Prioritization), a test prioritization approach
specifically tailored for classical machine learning (ML)
models. MLPrior addresses the aforementioned limitations,
leveraging the characteristics of classical ML classifiers (i.e.,
interpretable models and carefully engineered attribute fea-
tures) to prioritize test inputs. The core ideas behind ML-
Prior are twofold: 1) tests more sensitive to the injected
mutations are more likely to reveal bugs, and 2) test inputs
closer to the decision boundary of the model are more
likely to be predicted incorrectly. Both premises have been
validated by existing studies [21], [22], [23], [24], with a

detailed explanation provided in the Background section.
Building upon the aforementioned premise, MLPrior uti-
lizes the characteristics of classical ML classifiers to prior-
itize test inputs, addressing the limitations of confidence-
based methods in the following way.

• Premise 1 - tests more sensitive to the injected mutations
are more likely to reveal bugs Based on this premise, we
design mutation rules specifically based on the character-
istics of classical ML models and their datasets.
1) Model mutations. Leveraging the white-box nature
of most classical ML models, we design mutation rules
specifically tailored for classical ML models. These rules
involve modifying the model’s architecture parameters or
weight parameters to perform model mutations.
2) Input mutations. Considering the tabular format of
classical ML datasets, which is different from the complex
data structures of DNN datasets (r.g., text and images),
we design input mutation rules specifically tailored for
classical ML datasets.

• Premise 2 - test inputs closer to the decision boundary of
the model are more likely to be predicted incorrectly. To
effectively capture the spatial relationship between a test
input and the decision boundary, we aim to transform the
attribute features of each test into a vector to indirectly
reveal the underlying proximity between the input and
the decision boundary. Recognizing the carefully-selected
features of the classical ML test set, we design transfor-
mation rules to convert the original attributes of each test
into a feature vector for test prioritization.

Using model mutation rules and input mutation rules,
we create a feature vector for each test. More specifically,
we generate mutants based on the mutation rules. These
mutants are then executed to generate mutation features
for the purpose of assessing the sensitivity to the injected
mutations. As a result, we obtain three types of features for
each test: model mutation features (MMF), input mutation
features (IMF), and original attribute features (OAF).

• Model mutation features (MMF) MMF can capture the
impact of model mutations on a test input. Here, if an
input can kill many mutated models (i.e., the predictions
for this input via the mutated models and the original
model are different), indicating that this input is sensitive
to model mutations, MLPrior considers this input more
likely to be misclassified.

• Input mutation features (IMF) IMF can capture the im-
pact of mutations on test inputs. If the prediction result
for a given test input is different from that of many of
its mutated inputs, indicating that the predictions for the
input are sensitive to the mutations, MLPrior considers
this input more likely to be misclassified.

• Original attribute features (OAF) OAF can capture the
spatial relationship between a test input and the decision
boundary. It directly reflects the original attribute infor-
mation of each test.

MLPrior combines three types of features for each test input
in the target test set to generate a final feature vector.
This vector is then used by a pre-trained ranking model
to effectively predict the probability of misclassification for
that input. MLPrior offers several advantages:
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• Generality: MLPrior can be adapted to a wide range of
classical ML models by making simple adjustments to
the model mutation rules (i.e., enabling them to target
the architecture parameters or weight parameters of the
evaluated model).

• Efficient: The total duration for test prioritization using
MLPrior is around 20 seconds, involving model/input
mutation, feature generation, ranking model training, and
test prioritization. One crucial factor is that MLPrior does
not require any retraining operations in the model muta-
tion process. Mutations are generated by directly modify-
ing the architecture parameters or weight parameters of
the evaluated models.

• Model-specific insights Compared to confidence-based
test prioritization approaches, MLPrior leverages the
interpretability characteristic of classical ML models
and introduces mutations through modification of the
model’s architecture parameters or weight parameters,
thus achieving effective test prioritization.

• Attribute feature inclusion In contrast to DNN test data,
classical ML datasets typically possess lower-dimensional
features, rendering them more cost-effective and time-
efficient for test prioritization. Moreover, these features
are typically carefully selected by domain experts, pro-
viding a direct reflection of attribute information for each
test input. Our proposed approach MLPrior is designed
to leverage the attribute features of ML test sets for test
prioritization.

MLPrior demonstrates broad applicability across various
contexts. One specific application pertains to banking loan
operations, where classical ML models are employed to
determine whether a loan can be granted to a user. In
this particular scenario, classical ML models utilize a set of
user attributes (e.g., gender, age, and transaction history) to
predict the viability of granting a loan to a user. Incorrect
predictions can lead to significant losses for the bank. For
instance, if the bank mistakenly grants a loan to a user
without the ability to repay, these users can fail to meet
their repayment obligations, increasing the risk of default
and causing damage to the bank’s assets. In this context,
MLPrior can identify and prioritize users who are more
likely to be misclassified by the model. Consequently, two
main advantages arise: Firstly, these potentially misclassi-
fied users can be prioritized for manual inspection, resulting
in a decrease in losses caused by inaccurate predictions
generated by the model. Secondly, developers can manually
inspect the attributes of misclassified users and analyze
which attributes led to prediction errors, using this infor-
mation to optimize the model.

We conducted an extensive study to evaluate MLPrior’s
performance utilizing 185 subjects (i.e., paired datasets and
ML models). The evaluation encompassed different types
of test inputs, including natural data, mixed noisy data,
and fairness data. Ensuring fairness in machine learning is
essential to prevent bias and discrimination against specific
groups during predictions. Fairness has become a critical
ethical consideration in diverse machine learning domains,
including recruitment, loan approvals, and medical diagno-
sis [25]. In these domains, the absence of fairness can lead to
unjust treatment of particular groups, affecting individuals’

lives and rights. Therefore, the evaluation of MLPrior’s ef-
fectiveness on fairness datasets assumes crucial importance.
To generate the fairness datasets, we followed the approach
of prior research [26]. Specifically, we selected a group of test
inputs and modified their gender and age attribute values
while retaining their original labels. Moreover, we carefully
selected a group of test prioritization approaches that can
be adapted to prioritize test inputs in the context of clas-
sical ML models as the comparative methods, which have
been demonstrated effective in existing studies [20], [16].
Additionally, we utilize random selection as the baseline
approach.

The experimental results demonstrate the superior
performance of MLPrior compared to existing methods,
with an average improvement of 14.74%∼66.93% on nat-
ural datasets, 18.55%∼67.73% on mixed noisy datasets,
and 15.34%∼62.72% on fairness datasets. We publish our
dataset, results, and tools to the community on Zenodo 1.

To sum up, our work has the following major contribu-
tions:
• Approach. We propose MLPrior, a novel test prioritization

approach specifically designed for classical ML models.
• Study. We conduct an extensive study based on 185

subjects involving natural, mixed noisy, and fairness test
inputs. We compare MLPrior with existing DNN test pri-
oritization approaches. Our experimental results demon-
strate the effectiveness of MLPrior.

• Performance Analysis. We assess the influence of various
ranking models on MLPrior’s effectiveness. Furthermore,
we evaluate the contributions of different types of features
to MLPrior’s effectiveness. Additionally, we explore the
impact of parameter settings on MLPrior’s effectiveness.

2 BACKGROUND

2.1 Machine Learning and ML testing

Machine Learning (ML) has gained widespread adop-
tion in various domains, demonstrating significant utility in
safety-critical sectors like autonomous vehicle systems [27]
and medical intervention protocols [28]. Existing litera-
ture [11] pointed out that ML can be broadly classified into
two primary branches: classical Machine Learning [29], [8]
and Deep Learning [30], [31]. Classical Machine Learning
encompasses a range of approaches, including decision
trees [9] and logistic regression [10]. These classical algo-
rithms remain widely employed in various industrial ap-
plications [32], [33]. DNNs consist of interconnected nodes
(neurons) organized in layers, with each layer responsible
for learning and abstracting different levels of features from
input data. In contrast to DNNs, classical ML models are
generally more interpretable [34]. Interpretability in ma-
chine learning refers to the degree to which a model’s
internal mechanisms and decision-making processes can be
understood and transparently explained to humans. Inter-
pretability is crucial in domains where transparency and
interpretability are essential, such as healthcare [35] and
finance [36]. Therefore, classical machine learning models
retain distinct advantages in certain application domains.

1. https://zenodo.org/records/10150392
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In order to emphasize the importance of interpretability
in safety-critical domains, we present several typical harms
caused by black-box ML systems in the financial and health-
care industries:
1) Risk Management Challenges in Finance Weber et
al. [37] highlighted that, in the financial field, a high degree
of transparency and interpretability is required for effective
risk management. The lack of interpretability in black-box
models can make it challenging for financial institutions to
understand how decisions are made, thereby increasing the
difficulty of risk management.
2) Legal and Ethical Issues in Finance Chen et al. [38]
pointed out that, according to legal and ethical principles,
financial companies are required to provide clear expla-
nations for the reasons behind specific loan application
rejections. However, with black-box models, loan applicants
are unaware of how their scores are calculated. Even if
model explanations are provided, there can be a disconnect
between the explanations for loan rejection and the actual
model calculations, as the explanations could be created
after the fact.
3) Trust Issues in Healthcare Adadi et al. [39] discussed
the constrained acceptance of black-box models in clinical
settings due to trust and transparency issues. Moreover,
Verdicchio et al. [40] raised a vital question: ”If doctors
cannot understand why a black-box model diagnoses, why
should patients trust the treatment recommendations?”.
This implies that black-box models lack interpretability,
making it difficult to explain the fundamental reasons be-
hind their diagnostic or treatment recommendations. There-
fore, patients and doctors can be skeptical of the system’s
suggestions and even refuse to follow its recommendations
because they cannot be certain if these recommendations are
based on sound medical reasoning. This lack of trust and
understanding can significantly affect patients’ confidence
in the proposed treatments, potentially hindering their will-
ingness to undergo specific medical procedures.
4) Responsibility Issues in Healthcare Smith et al. [41]
pointed out that if patients are harmed due to recom-
mendations from an opaque AI system (AIS) adopted by
clinicians, questions arise about how responsibility will be
assigned. Specifically, in the healthcare field, doctors are
expected to take responsibility for their decisions. If a black-
box system provides incorrect recommendations, doctors
will find it challenging to explain why they followed the
system’s advice, potentially raising legal and ethical liability
concerns.

Based on the existing studies [42], [43], [44], in the
following, we provide the quantification of the loss resulting
from the lack of interpretability in black-box models. Specif-
ically, we employ descriptive terms to quantify the degree
of loss in two specific scenarios: medical and financial.
• Medical Scenario Amann et al. [42] pointed out that, in

the medical domain, the lack of interpretability in black-
box models can lead to serious legal and ethical uncer-
tainty. Without adequate consideration of interpretability,
these technologies can neglect regulatory issues and result
in significant harm. Moreover, Grote et al. [43] pointed out
that in the face of a black-box model lacking interpretabil-
ity, its clinical decision support can constrain the capa-
bilities of physicians. Specifically, physicians can rigidly

adhere to the output of the black-box model to avoid
being held accountable. This situation poses a serious
threat to the autonomy of physicians.

• Financial Scenario Yan et al. [44] pointed out that, in the fi-
nancial domain, the lack of interpretability in the decision
mechanisms of black-box models poses a challenge for
financial practitioners and regulatory authorities in un-
derstanding the factors influencing the model’s decisions.
This can significantly impact the fairness of loan decisions,
potentially resulting in substantial financial losses.

Although interpretability is a valuable trait, it is not
the sole factor taken into account when deploying models,
especially in the healthcare industry [45], [46]. Deep learning
has also demonstrated remarkable success in healthcare
applications [47]. However, there are compelling reasons
that test prioritization for classical models remains highly
necessary.
• Applicability to Structured Medical Data: Deep learning

finds extensive use in the field of medical imaging [46],
aiding in the automatic detection of diseases and tumors.
However, a substantial portion of data in the healthcare
sector exists in structured tabular formats. Classical ma-
chine learning models have demonstrated superior per-
formance when dealing with structured medical data, out-
performing deep learning methods [48], [49]. For instance,
Shwartz et al. [48] pointed out that when handling tabular
datasets, the classical ML technique XGBoost outperforms
the evaluated DL models.

• Need for Interpretability: In healthcare [40], when clin-
icians need to justify their decisions to patients, having
an understanding of the reasoning behind model predic-
tions is essential. Classical machine learning models can
provide this crucial information [50].

• Regulatory Approvals: Regulatory bodies can require
models to elucidate the decision-making processes of a
model to facilitate comprehensive treatment risk assess-
ment [7]. The interpretability that classical ML models can
provide is crucial for obtaining regulatory approvals.

Machine learning testing involves systematically eval-
uating and validating machine learning models to ensure
their accuracy, reliability, and effectiveness in prediction or
decision-making [51], [52], [7], [53]. The primary goal is to
reveal disparities between intended and actual behaviors
exhibited by ML systems [11]. Compared to traditional
software systems, machine learning testing presents distinct
challenges. One pivotal challenge is the Oracle Problem [54],
which pertains to the difficulty in acquiring accurate labels
or ground truth for training and testing data. In the context
of testing ML-based systems, automated testing oracles are
typically unavailable. Therefore, manual labeling remains
the mainstream method, which can lead to substantial la-
beling costs. In the literature, numerous fields are dedicated
to addressing labeling cost concerns, such as test selec-
tion [55], [56] and test prioritization [16], [15]. In our study,
we concentrate on test prioritization, which will be further
elaborated in the subsequent section.

2.2 Test Case Prioritization
In the field of traditional software testing, test case

prioritization aims to determine the sequence in which test
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cases are executed to uncover defects more effectively. In the
literature, numerous techniques for test prioritization have
been proposed. The majority of these approaches are rooted
in code coverage analysis. Notably, two primary coverage-
based techniques are: Coverage-Total Method (CTM) and
Coverage-Additional Method (CAM) [57]. CTM operates by
sequentially selecting tests with the highest coverage rates,
followed by those with progressively lower rates. In cases
where tests share the same coverage rate, the method intro-
duces randomness to determine the prioritization. In con-
trast, CAM distinguishes itself from CTM by its approach.
It strategically utilizes feedback from previous selections,
iteratively opting for tests that target previously uncovered
code structures, thereby incrementally expanding the cover-
age.

Test input prioritization in the field of Deep Neural
Networks (DNNs) [15], [20], [16], [58] aims to enhance the
efficiency of testing by focusing on test inputs that are more
likely to expose model misclassifications, thereby revealing
potential bugs earlier. This approach ensures that crucial
test inputs are identified and labeled promptly within the
constraints of limited time. Previous research [16] has in-
dicated that confidence-based approaches outperform the
aforementioned coverage-based methods. These confidence-
based approaches prioritize tests based on the model’s
confidence. One notable approach is DeepGini [16], which
surpasses all existing coverage-based prioritization meth-
ods in terms of both effectiveness and efficiency. A re-
cent comprehensive investigation conducted by Weiss et
al. delved into the capabilities of various confidence-based
DNN test input prioritization techniques, such as Vanilla
Softmax, Prediction-Confidence Score (PCS), and Entropy.
They demonstrated the effectiveness of these approaches in
identifying potentially misclassified test inputs.

However, while confidence-based test prioritization
methods have been proven effective [16] and can be adapted
for classical ML models, their application in the context of
test prioritization for classical ML models is hindered by
several limitations. We discuss these limitations as follows.
• Single dimension on binary classification models Bi-

nary classification models [59], [60] categorize test inputs
into two distinct classes, which limits the application of
confidence-based test prioritization approaches to a single
dimension. Specifically, when applying confidence-based
approaches to these models, the first step is calculating the
probabilities for each classification, denoted as (p, 1 − p).
If the model’s prediction probability for a test is (0.5, 0.5),
it means the model is most uncertain about this test [16],
indicating this test is more likely to be misclassified. The
closer a test’s p value is to 0.5, the more uncertain the
model is about that particular test. Consequently, uncer-
tainty is solely determined by p.
Regardless of the specific confidence-based test prioritiza-
tion method employed, tests with p values closer to 0.5
will be prioritized over others. To illustrate this point,
consider a hypothetical test set with three tests, and the
model’s probability vectors for these tests are as follows:
t1 (0.9, 0.1), t2 (0.7, 0.3), t3 (0.8, 0.2). Irrespective of the
chosen confidence-based test prioritization method, the
resulting ranking will be t2 → t3 → t1 because t2 has
the p value (0.7) closest to 0.5, followed by t3 (p = 0.8),

while t1 has the farthest p value from 0.5 (p = 0.9).
The above conclusions have been confirmed through our
experimental results. For each subject, all confidence-
based methods yield identical effectiveness, indicating
they produce the same ranking for a given test set.

• Lack of model-specific insights Confidence-based ap-
proaches for test prioritization consider the model a black
box and rely solely on its prediction probability vectors.
This neglects the transparency and interpretability of clas-
sical ML models, which are mostly white-box and have
an understandable decision-making process. As a result,
confidence-based approaches fail to incorporate crucial
model-specific insights from classical ML models, leading
to suboptimal test prioritization.

• Ignoring attribute features Furthermore, confidence-
based approaches ignore a crucial aspect of the test
datasets for classical ML models, namely, the attribute
features. These features are carefully engineered by do-
main experts to effectively capture and represent crucial
aspects of the underlying data. They can directly reflect
the attribute information of each test input. However,
confidence-based approaches ignore this crucial feature
information in the process of test prioritization.

To overcome the aforementioned limitations, we propose
MLPrior, a test prioritization approach specifically tailored
for classical ML models. MLPrior leverages the character-
istics of classical ML classifiers (i.e., interpretable models
and carefully engineered attribute features) to prioritize test
inputs. The core premises behind MLPrior are twofold: 1)
tests more sensitive to the injected mutations are more likely
to reveal bugs, and 2) test inputs closer to the decision
boundary of the model are more likely to be predicted
incorrectly.

The first premise is grounded in the well-established
practice of traditional mutation testing [21], [22], [23], [61],
[62], which considers that test cases sensitive to mutations
(able to capture mutants) have a higher capability to detect
bugs in software. The second premise has been identified
and demonstrated in prior work [24].

2.3 Mutation Testing

Mutation testing [63], [64] is a systematic software test-
ing technique that has gained significant attention in both
academic and industrial research communities [65], [66].
The fundamental principle is to introduce small and inten-
tional modifications, called mutants, into the source code of
a software system [67]. These mutations simulate potential
faults that may occur during the execution of the program.
A well-designed test suite should be able to detect the
presence of these mutants, indicating its capability to detect
real faults in the code [68]. In the context of mutation testing,
the term ”kill” refers to the ability of a test case to detect
a specific mutant [69]. When a test case ”kills” a mutant,
it means that the test case is able to reveal a difference in
behavior between the original program and the mutated
version of the program. A test suite with a high ”mutation
kill” rate is considered more effective and reliable, as it
demonstrates a greater ability to detect potential faults or
deviations from the expected behavior.
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2.4 Automated Labeling Approaches for Machine
Learning

Data labeling is a labor-intensive task that is indispens-
able in the development of supervised machine learning
systems [70]. Conventional data labeling methods typically
rely on manual effort, which is a time-consuming and
costly process. Moreover, in specialized fields like medicine
and finance, manual labeling necessitates domain-specific
expertise, further increasing its cost. In recent years, various
automated or semi-automated data labeling methods [71],
[72] have emerged, aimed at reducing the burden of manual
labeling and improving the overall labeling efficiency.

Desmond et al. [72] introduced a semi-automated data
labeling system that views the labeling task as a collabo-
rative effort between human annotators and machine an-
notators, which are implemented as predictive models. The
core of this approach involves a human-machine coactive
process facilitated by a semi-supervised predictive model
and an active learning selector. In each iteration, the active
learning selector prioritizes the most uncertain examples
for annotation by human annotators based on the model’s
predictions. The consistency between human decisions and
machine predictions is continuously monitored and pre-
sented at various checkpoints, allowing annotators to assess
the machine’s performance in the labeling task. Once an-
notators are satisfied with the machine’s performance, they
can delegate the remaining labeling tasks to the machine
(automatic labeling).

Wu et al. [73] proposed a semi-automated labeling
method based on active learning and label informativeness.
Specifically, the SLMAL algorithm selects the most informa-
tive example-label pairs for annotation by combining the
uncertainty of examples and the informativeness of labels.
During this process, the algorithm initially identifies and
prioritizes the example-label pairs in need of labeling the
most and subsequently employs the nearest neighbors of
these highly uncertain pairs to predict their partial labels.

However, semi-automatic labeling comes with several
limitations:
• Human Involvement: In the semi-automatic labeling pro-

cess, human intervention is still required, especially in
complex decision-making processes. This can result in an
increase in overall labeling time and costs, particularly in
situations requiring domain expertise.

• Scalability: Semi-automatic labeling methods can face
challenges when dealing with large-scale datasets, pri-
marily regarding processing speed and resource utiliza-
tion.

• Sensitivity to Labeling Quality: The performance of the
model is largely dependent on the quality of the initial
labeled data used for training. Low-quality or biased la-
beling data may lead to a decrease in model performance.

However, despite the presence of semi-supervised learn-
ing, in order to labeling tests more accurate and of higher
quality, manual labeling is still the mainstream in the indus-
try [71].

Automated labeling methods offer a potential solution
to the aforementioned limitations. Nevertheless, due to the
constraints outlined below, fewer automated labeling meth-
ods are specifically designed for classical machine learning.

To our best knowledge, the known method applicable to
labeling for classical machine learning models is Program-
matic Labeling [74]. Programmatic labeling automates the
labeling process through scripts and programming algo-
rithms, significantly improving the efficiency of data prepa-
ration. However, Programmatic Labeling typically requires
specialized programming skills to create labeling rules,
which may pose a barrier for researchers without a technical
background.

In the following, we outline the challenges that make it
difficult to develop automated labeling methods specifically
designed for classical machine learning, resulting in the
current scarcity of such methods.
• Diversity of Domain Knowledge Automated labeling

methods face challenges in accommodating diverse types
of datasets, each requiring expertise from different do-
mains. For example, a social network dataset can involve
knowledge from linguistics, psychology, and sociology,
while a medical dataset, such as cancer data, requires
expertise in medicine and biology. The intricate and exten-
sive nature of knowledge across different fields presents
a challenge in developing a universally applicable auto-
mated labeling technique.

• Domain Adaptation Challenges Even within the same
domain, different tasks may necessitate varying areas of
expertise. For instance, in cancer research, labeling data
for different types of cancers (such as lung cancer, breast
cancer, etc.) can require specialized medical knowledge
and skills.

• Difficulty in Quantifying Domain Knowledge Encoding
domain expertise into an automated labeling system can
be a complex task.

3 APPROACH

3.1 Overview

In this paper, we propose MLPrior, a test prioritization
approach specifically designed for classical ML models.
Figure 1 illustrates the workflow of MLPrior. Given a test set
T and an ML model M , MLPrior produces a sorted test set
T ′, where test cases that are more likely to be mispredicted
by the model are placed at the front. We outline the steps of
MLPrior as follows.

❶ Attribute feature generation: In the initial stage, MLPrior
converts the attribute values of each test t ∈ T into a
feature vector, denoted as V D

t . This involves transforming
non-numeric attributes into a numeric format. To accom-
plish this, we create a mapping dictionary that includes
all non-numeric attributes paired with their correspond-
ing numeric values. For instance, in the context of the
attribute ”gender,” the values ”male” and ”female” are
mapped to 0 and 1, respectively.

❷ Mutation feature generation (model): Based on the
model mutation rules described in Section 3.2, MLPrior
generates a set of mutated models for the original ML
model M . For each test t ∈ T , MLPrior identifies whether
t ”kills” each of the mutated models (i.e., whether the
predictions made by the mutated model and the original
ML model for t are different). This process allows MLPrior
to construct a model mutation feature vector, denoted
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Fig. 1: Overview of MLPrior

as V M
t . Each element of V M

t corresponds to a specific
mutated model. More specifically, MLPrior sets the ith
element of t’s model mutation vector to 1 if t kills the
ith mutated model. Otherwise, the element is set to 0.

❸ Mutation feature geneation (inputs): Based on the input
mutation rules outlined in Section 3.2, MLPrior generates
mutated inputs for each test instance t ∈ T . By comparing
the predictions of model M on the ith mutated input
with its predictions on the original test input t, MLPrior
constructs an input mutation vector denoted as V I

t . If
the prediction of model M for the ith mutated input is
different from that of the original test input t, the ith
element of V I

t is set to 1. Otherwise, it is set to 0.
❹ Feature Concatenation: For each test t ∈ T , MLPrior

concatenates the three types of feature vectors constructed
in the previous steps (i.e., V D

t , V M
t and V I

t ) and obtain a
final feature vector, denoted as Vt.

❺ Learning-to-Rank: For each test instance t ∈ T , MLPrior
feeds its final feature vector (Vt) into the pre-trained
XGBoost ranking model [8], which will produce the prob-
ability of this input being misclassified. Finally, MLPrior
ranks all the tests in T based on their probability scores
in descending order, thereby prioritizing the possibly-
misclassified tests.

In MLPrior, the concept of feature is crucial. To demon-
strate the processes of feature extraction, combination, and
concatenation more intuitively, we provide a typical exam-
ple. In this example, we delve into the specifics of how
MLPrior generates features for a given test t, illustrating
each step of the process in detail. Furthermore, we visually
illustrated this example in Figure 2 to enhance the presenta-
tion of MLPrior’s feature generation process.

• Feeding Attributes of t to MLPrior Given a classical ML
model M and its corresponding test set T , let t be a test
instance from the test set T . Given that the dataset for
the classical ML model is in a tabular format, we assume
the attribute features of t as t = (s1, s2, . . . , sn). Here, sn
includes both numeric and non-numeric formats (such as
strings). In this step, we input the attributes of the test t
into MLPrior.

• Generation of Original Attribute Features We input the
attribute vector of test t, which is (s1, s2, . . . , sn), into ML-
Prior. MLPrior then converts all non-numeric attributes
into numeric format to construct the original attribute

vector of t, represented as (i1, i2, . . . , in).
• Generation of Input Mutation Features Subsequently,

MLPrior generates N mutanted inputs of the test t, de-
noted as (t1, t2, . . . , tN ). MLPrior then feeds these mu-
tated inputs into the original ML model to make predic-
tions. If the model output for ti differs from the result
of the original sample t, the ith element of the input
mutation feature vector will be set to 1; otherwise, it
will be set to 0. In this manner, we obtain the input
mutation feature vector for t, represented as (0, 1, . . . , 0).
This vector indicates that for the first mutant of t, denoted
as t1, the model’s prediction is the same as for t. For the
second mutant of t, denoted as t2, the model’s prediction
differs from that for t.

• Generation of Model Mutation Features For the original
model M , MLPrior generates K mutated models, denoted
as (m1,m2, . . . ,mK), and inputs the original sample t
into these mutated models for prediction. If the prediction
of the ith mutated model for t differs from the prediction
of the original model M for t, then the ith element of
the model mutation feature vector is set to 1; otherwise,
it is set to 0. Through this method, we obtain the model
mutation feature vector for t, represented as (1, 0, . . . , 1).
This vector indicates that the first mutated model of M ,
denoted as m1, predicts differently for the test t compared
to the original model M . Conversely, the second mutated
model of M , denoted as m2, predicts the same for the test
t as the original model M .

• Feature Combination: MLPrior concatenates the three
types of features obtained from the previous steps (i.e.,
Original Attribute Features, Input Mutation Features, and
Model Mutation Features) to form the final feature vector
for t. This final feature vector is represented as (Original
Attribute Features, Input Mutation Features, Model Mu-
tation Features) = (i1, i2, . . . , in, 0, 1, . . . , 0, 1, 0, . . . , 1).

The primary purpose of this step is to encapsulate the
attribute information of each test instance t ∈ T into a
feature vector, which will then be utilized as input to the
ranking models for test prioritization. Since the ranking
models require numeric inputs, MLPrior converts all the
non-numeric attribute values of t into a numeric format.
To this end, we construct a mapping dictionary that speci-
fies the numeric value corresponding to each non-numeric
attribute value. For instance, for the attribute ”gender,” the
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Fig. 2: Concrete example of feature generation in MLPrior

attribute value ”male” is transformed into 1, while ”female”
is transformed into 0. The motivation behind extracting
these original features is explained as follows.

Prior research [24] pointed out that test inputs situated
closer to the decision boundary of a model are more likely to
be misclassified. In order to effectively capture the spatial
relationship between a test input and the decision boundary
and to preserve the carefully-selected and low-dimensional
features of the classical ML test set, we directly generate
feature vectors of each input from its original attribute
values.

3.2 Mutation Rule Specification
In this stage, we propose two types of mutation rules

designed specifically for classical ML models and their
corresponding datasets. The principle underlying our uti-
lization of mutation testing in test prioritization is: If a test
input exhibits high sensitivity to the injected mutations, this
input is more likely to detect faults in the system. This principle
is derived from previous research in traditional mutation
testing [23], [61], [62]. We extend this principle to encompass
ML systems, correspondingly designing model mutation
rules and input mutation rules. The key insights of MLPrior
are that: 1) if an input can kill many mutated models (i.e., the
predictions for the input made by the mutated models and
the original model are different), indicating that this input is
sensitive to model mutations, MLPrior considers this input
more likely to be misclassified. 2) If the prediction result
for a given test input is different from that of many of its
mutated inputs, indicating that the predictions for the input
are sensitive to the mutations, MLPrior considers this input
more likely to be misclassified. In the following sections, we
provide a detailed explanation of our mutation approaches.

3.2.1 Model mutation rules

The model mutation rules are designed to make slight
changes to the architecture parameters or weight parameters
of the pre-trained ML models to generate mutated models.
We ensure that the new parameter values are close to their
original values in order to achieve slight mutations. It is
important to note that this process does not involve any
retraining operations. Therefore, the total execution time
of generating model mutants is short, with an average
duration of 3 seconds, as shown in Table 4.

In our study, we evaluated the effectiveness of ML-
Prior using five classical ML models, namely Decision

Tree [9], K-Nearest Neighbors (KNN) [75], Logistic Regres-
sion (LR) [10], XGBoost [8], and Gaussian Naive Bayes
(GaussianNB) [8]. The rationale behind selecting these mod-
els is twofold: 1) They have gained widespread adoption in
various industries due to their interpretability and proven
performance [32], [76]; 2) These models have been exten-
sively utilized in recent ML testing studies [26]. It is im-
portant to note that MLPrior’s applicability extends beyond
the evaluated models. By making simple adjustments to
the model mutation rules (i.e., enabling them to target
the architecture parameters or weight parameters of the
evaluated model), it can be adapted to a diverse range
of interpretable ML models. We elaborate on the specific
details of conducting model mutation as follows.

❶ Decision Tree [9] Decision tree is a machine learning
method that predicts data step-by-step based on features.
During prediction, attribute values are utilized to make
decisions at internal nodes of the tree, determining which
branch node to enter based on the decision outcome until
a leaf node is reached to obtain the classification result.
Input to Decision Tree: The input to a Decision Tree
consists of a dataset containing instances with associated
features. The Decision Tree algorithm utilizes these input
features to create a hierarchical structure that facilitates
effective classification.
Process of Classification: Decision tree operates by se-
quentially making decisions at each split node of the tree.
For a given input, it begins at the root node and evaluates
the features of the input to determine the appropriate
branch to follow at each split node. This process iterates
until a leaf node is reached, signifying a classification
outcome.
Mutating Decision Tree: To induce mutation in the Deci-
sion Tree model, we randomly select a set of split nodes
and introduce random deviations to their threshold val-
ues, thereby influencing the predictive outcomes of the
Decision Tree model. We explain below why changing the
thresholds can alter the predictive results of a decision
tree: Consider a situation where a given test sample
t passes through nodes in the original tree. Based on
decisions made at split nodes, it arrives at leaf node A,
and thus will be classified as A category. After making
slight adjustments to the thresholds of a group of decision
nodes, when sample t traverses the mutated tree, the
modified decision thresholds at split nodes can lead it to
reach leaf node B.

❷ K-Nearest Neighbors (KNN) [75] KNN (K-Nearest
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Neighbors) is a widely adopted classical machine learning
model. It classifies an input into a class based on the
majority class of its K nearest neighbors in the feature
space.
The parameter K: The parameter K represents the number
of neighbors considered. For example, when the value of
K is 8, it means that when predicting the label or value of
a new data point, the algorithm will find the eight closest
samples from the training data and then determine the
classification of the sample based on the classification of
these neighboring samples. The choice of the value of K
affects the complexity and performance of the model.
Mutating KNN: To induce mutations in the KNN model,
we introduce a random slight alteration to the value of K ,
thereby influencing the prediction outcomes. For instance,
consider an initial K value of 8 for a KNN algorithm.
Given a sample t, the KNN model’s prediction for t
is determined based on the categories of its nearest 8
neighbors. Assuming among these 8 neighbors, 5 belong
to category A and 3 belong to category B, the final
classification for t would be A. If K is slightly perturbed,
changing it to 12, and the newly added neighbors all
belong to category B, then in this scenario, among the 12
nearest neighbors, 7 belong to category B and 5 belong
to category A, resulting in the final classification for t
being B. Thus, variations in the value of K can introduce
disturbances in model prediction results.

❸ Logistic Regression (LR) [10] Logistic regression estab-
lishes a linear functional relationship to construct a con-
nection between input features and probability outputs. It
employs a Sigmoid function (as displayed in Formula 1)
to map the results onto the [0, 1] interval, representing
the probability of belonging to class 1. This enables the
classification of input samples.
Weight Coefficient: In the Sigmoid function of logistic
regression, weight coefficients determine the impact of
different features on predicting the output. Each feature is
assigned a corresponding weight coefficient. For example,
in Formula 1, the weight coefficient for the feature x0 is
w0.
Mutating Logistic Regression: To introduce mutation to
the Logistic Regression, we randomly select a feature
from the Sigmoid function and modify its weight coeffi-
cient, thus affecting the model’s predictions. For example,
consider Formula 1, which represents a trained Logistic
Regression model taking four input features: x0, x1, x2,
and x3. In this formula, w0, w1, w2, and w3 denote the
weight coefficients for each feature, and f(x) represents
the prediction score. We mutate the model by randomly
selecting one of the four weight coefficients and making a
slight adjustment to its weight coefficient. This mutation
process directly influences the output value of f(x), con-
sequently impacting the classification results of the model.

f(x) =
1

1 + e−(w0x0+w1x1+w2x2+w3x3+b)
(1)

❹ XGBoost [8] XGBoost is a widely used gradient boosting
algorithm designed for enhanced predictive modeling.
XGBoost is a variant of the boosting algorithm [77], which
aims to integrate multiple weak classifiers into a robust
classifier. As a boosting tree model, XGBoost aggregates

multiple tree models to form a powerful classifier. In
binary classification tasks, XGBoost defaults to output 0 or
1, representing two different classes. Internally, XGBoost
calculates an initial probability value p, subsequently
comparing it to a threshold (with a default value of
0.5) prior to determining the final class output: values
exceeding 0.5 yields an output of 1, whereas values below
0.5 yield an output of 0.
Mutating XGBoost: To mutate XGBoost, we apply a ran-
dom slight offset to the internal threshold of the XGBoost
model, thereby generating model mutants. For instance,
consider the original XGBoost threshold of 0.5; upon
introducing a minor offset, the threshold becomes 0.4 for
the mutated XGBoost model. Under this mutation, the
following scenarios arise: 1) Given a test input t1 with
a predicted p value of 0.45, the original XGBoost predicts
an outcome of 0 (p <0.5), whereas the mutated XGBoost
predicts an outcome of 1 (p >0.4); 2) Given another test
input t2 with a p value of 0.3, both the original XGBoost
and the mutated XGBoost models predict an outcome of
1 (p >0.4; p >0.5).
It can be observed that t1 is more sensitive to the injected
mutation than t2, and we consider that t1 is more likely to
be misclassified by the model. This mutation rule can be
reasonably interpreted from an uncertainty perspective:
when a slight adjustment in the model’s classification
threshold can alter the test’s classification result, it indi-
cates that the model’s prediction probability for that test
is close to 0.5. According to prior work [16], the closer
a prediction probability is to 0.5, the greater the model’s
uncertainty regarding that test, making it more prone to
misclassification.

❺ Gaussian Naive Bayes (GaussianNB) [8] Gaussian Naive
Bayes (GNB) is a probabilistic machine learning classifica-
tion technique based on Gaussian distribution. It assumes
that each parameter (a feature) possesses independent
predictive power for the output variable. The combination
of predictions from all parameters yields the final predic-
tion.
Mutating GaussianNB: To induce mutations in Gaus-
sianNB, we introduce a random slight adjustment to the
internal threshold of the GaussianNB model, resulting in
the generation of model mutants.

3.2.2 Input mutation rules

The prior work [24] introduced a mutation operator, noise
perturbation, for mutating inputs in image format, which
adds noise to data for mutation. A common type of image
noise is occlusion noise [78], achieved by overlaying a black
block on the part of the image. This black block typically
consists of a matrix filled with 0. The method involves
replacing the matrix of pixel values at the original location in
the image with this zero-filled matrix (black block). Inspired
by this technique, MLPrior’s input mutation rule involves
randomly selecting a specific feature from the feature vector
of t and changing its value to 0. Before this, MLPrior initially
converts all attributes of t into a corresponding numerical
feature vector. The objective is to alter the attribute value
of this particular feature, thus affecting the model’s predic-
tions. To gain a deeper insight into the impact of input mu-
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tation rules on model predictions, we provide explanations
using the five classical ML models evaluated in our study
as examples. It is important to note that our input mutation
rules are applicable to a wide range of datasets for classical
ML models.

❶ Decision Tree Given a test input, if a specific feature value
of this input is changed to 0, it could lead to a change in
the decision path that the input takes down the tree. This
mutation can cause the input to be categorized differently
than it would have been without the mutation.

❷ K-Nearest Neighbors (KNN) For KNN, changing the
value of a feature to 0 can alter the distance calculation
between this input and other instances. This shift in
distances can lead to a different set of k nearest neigh-
bors being considered, thereby potentially affecting the
classification result of the input.

❸ Logistic Regression In logistic regression, modifying a
feature’s value to 0 will impact the coefficients associated
with that feature. This can lead to a different logistic
function, causing the instance’s predicted probability to
shift, ultimately affecting the classification outcome.

❹ XGBoost For a given sample, setting a feature of it to 0 can
influence the way that features contribute to the ensemble
of decision trees. This can lead to different tree structures
being emphasized during prediction, thereby affecting the
final prediction of the sample.

❺ Gaussian Naive Bayes (GaussianNB) For a given sample,
setting a feature’s value to 0 can impact the calculation of
probabilities for the various classes based on the Gaus-
sian distribution assumption. This can influence the final
classification result.

3.3 Mutation Feature generation

For each test t ∈ T , based on the aforementioned mu-
tation rules, we generate mutants and subsequently build
mutation feature vectors. The detailed procedures are elab-
orated below.

• Input Mutation Features (IMF) Based on the input mu-
tation rules presented in Section 3.2.2, MLPrior generates
a set of input mutants for each test t ∈ T . Subsequently,
MLPrior proceeds to compare the predictions of model M
for each input mutant with that of the original input t to
construct the input mutation vector. During this process, if
the prediction for the i-th mutated input differs from that
of the original test input t, the corresponding i-th element
of the feature vector is assigned a value of 1; otherwise,
it is assigned a value of 0. An example of the resulting
feature vector is (0, 1, ..., 0).

• Model Mutation Features (MMF) Based on the model
mutation rules described in Section 3.2, MLPrior generates
a set of mutated models for the original ML model M .
For each test t ∈ T , MLPrior identifies whether t ”kills”
each of the mutated models (i.e., whether the predictions
made by the mutated model and the original ML model
for t are different) to construct the model mutation vector.
More specifically, if t kills the i-th mutated model, the i-
th element of t’s model mutation vector will be set to 1.
Otherwise, the i-th element will be set to 0. An example
of the resulting feature vector is (1, 0, ..., 0).

3.4 Feature Concatenation

Based on the aforementioned steps, for each test sample
t ∈ T , MLPrior generates three types of feature vectors: the
attribute feature vector, the input mutation vector, and the
model mutation vector. Subsequently, for t ∈ T , MLPrior
concatenates these three types of features to obtain the final
feature vector, which is then used as input to the ranking
model.

3.5 Learning-to-rank

Once obtaining the feature vector for each t ∈ T , ML-
Prior aims to train a ranking model to automatically learn
the probability of a test input t being misclassified by the
ML model M based on its feature vector. In the following
section, we describe the process of constructing the ranking
model and explain how to utilize the ranking model for test
prioritization.
Ranking model building MLPrior leverages the XGBoost
ranking algorithm [8], an optimized distributed gradient
boosting learning algorithm, to construct the ranking model.
Given the classical ML model M with dataset D, we first
split the dataset D into two partitions: the training set R
and the test set T , in a 7:3 ratio [79]. The test set remains
untouched for the purpose of evaluating MLPrior. Based on
the training set R, our objective is to construct a training
set R′ for training the ranking models. To achieve this, we
generate the final feature vector for each r ∈ R, following
the steps described in Section ?? to Section 3.4. These fea-
tures are used as the training features for the dataset R′.
Next, we utilize the original ML model M to classify each
instance r ∈ R and then compare the model’s predictions
with the corresponding ground truth of r. By doing so, we
can identify whether r is misclassified by the model M . If r
is misclassified, we label it as 1; otherwise, we label it as 0.
As a result, we obtain the labels for the training set R′. Based
on the constructed training set and corresponding training
labels obtained above, we can proceed to train the ranking
model of MLPrior.
Test prioritization via ranking model It is essential to
emphasize that the XGBoost ranking algorithm, upon com-
pletion of its training process, is a binary classification
algorithm. It classifies a test into two categories instead
of providing an estimation of misclassification probability.
Therefore, we made specific adjustments to the original
XGBoost algorithm. Specifically, we extract the intermediate
value from the model’s output, which was originally used to
determine whether a test instance would be predicted incor-
rectly or not. Typically, if the intermediate value surpasses
the threshold, the input is classified as ”misclassified”;
otherwise, it is classified as ”not misclassified”. Instead of
proceeding with the final classification, we directly employ
this intermediate value as the misclassification probability
score. A high value denotes that a test instance has a high
probability of being misclassified. Finally, we sort all the
tests in the test set T in descending order based on their
misclassification probability scores, resulting in the priori-
tized test set T ′.
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3.6 Variants of MLPrior

In order to explore the influence of different ranking
models on the effectiveness of MLPrior, we propose four
variants, denoted as MLPriorT , MLPriorK , MLPriorL, and
MLPriorN . These variants utilize different ranking models
for test prioritization, namely, decision tree [80], K-nearest
neighbors (KNN)[29], logistic regression[10], and Gaussian
Naive Bayes (GaussianNB) [81], respectively. They solely
differ in the selection of the ranking models, while the
remaining workflow is kept identical.

• MLPriorT This variant incorporates the decision tree
ranking model. The principle of the Decision Tree al-
gorithm is to partition the dataset into subsets at split
nodes, iteratively branching until reaching leaf nodes that
provide the final classification.

• MLPriorK integrates the KNN algorithm. KNN is a well-
established machine learning technique. It operates on the
fundamental principle of proximity, where the classifica-
tion of a sample is determined by considering the majority
labels of its K nearest neighbors in the feature space.

• MLPriorL integrates the Logistic Regression algo-
rithm [10]. Logistic Regression employs the logistic func-
tion to transform the linear combination of the indepen-
dent variables into a range between 0 and 1. Consequently,
this probability value is employed to perform classifica-
tion.

• MLPriorN integrates the Gaussian naive Bayes (Gaus-
sianNB) ranking model. GaussianNB is a probabilistic ma-
chine learning classification technique based on the Gaus-
sian distribution. It assumes that each feature possesses
independent predictive power for the output variable. The
final prediction is obtained by combining the predictions
derived from all features.

4 STUDY DESIGN

4.1 Research Questions

Our experimental evaluation answers the research ques-
tions below.

• RQ1: How does MLPrior perform in terms of effective-
ness and efficiency?
To solve the labelling cost problem, we propose MLPrior,
a test input prioritization approach specifically designed
for classical ML models. In this research question, we
evaluate the effectiveness and efficiency of MLPrior by
comparing it with several existing test prioritization ap-
proaches [16], [20].

• RQ2: How does MLPrior perform on different types of
test inputs?
In order to evaluate the effectiveness of MLPrior in
various scenarios, we constructed mixed noisy datasets
and fairness datasets. We compare the effectiveness of
MLPrior against various test prioritization approaches on
the generated datasets.

• RQ3: How do different ranking algorithms impact the
effectiveness of MLPrior?
In MLPrior, we employ XGBoost [8] as the ranking
model for test prioritization. In this research question,
we investigate the impact of different ranking models

on the effectiveness of MLPrior. To this end, we con-
struct four variants employing different ranking mod-
els: decision tree [80], K-nearest neighbors (KNN)[29],
logistic regression[10], and Gaussian Naive Bayes (Gaus-
sianNB) [81]. By evaluating the effectiveness of these
variants, we explore the influence of ranking models.

• RQ4: To what extent does each type of features con-
tribute to the effectiveness of MLPrior?
To construct the feature vector for a given test input, ML-
Prior generates three types of features: model mutation
features, dataset mutation features, and attribute features.
In this research question, our objective is to investigate
the extent to which each type of features contributes to
the effectiveness of MLPrior.

• RQ5: How does the selection of main parameters of
MLPrior impact its effectiveness?
We investigate the influence of the main parameters in
MLPrior. Our objective is to evaluate whether MLPrior
can consistently outperform the compared test prioritiza-
tion approaches when these main parameters fluctuate.

4.2 Subjects
In our research, we utilized 305 subjects to assess the

effectiveness of MLPrior. A subject in this context refers to
a combination of a classical ML model and a dataset. The
description of these subjects can be found in Table 1. Out
of the 305 subjects, 25 subjects (5 datasets × 5 ML models)
were generated using natural datasets, while 250 subjects
were generated using mixed noisy datasets. Additionally, 30
subjects were generated using fairness datasets. Below, we
explain the construction method for mixed noisy datasets
and fairness datasets.
• Mixed noisy datasets blend natural data with noisy

data, with the natural data accounting fo r 70% and
the noisy data accounting for 30%. The reason we chose
30% is that: A high noise ratio, such as 90%, would
lead to a substantial proportion of noisy test inputs. In
this scenario, a significant number of misclassified tests
would be chosen by any prioritization method, making
it difficult to demonstrate the effectiveness of MLPrior.
Therefore, to ensure an effective evaluation of MLPrior
and the compared approaches, we choose a reasonable
noise generation ratio (i.e., 30%). For each of the five
natural datasets, we generated 10 mixed noisy datasets,
resulting in a total of 50 (5 × 10) mixed datasets. Each
mixed dataset was paired with five classical ML models,
leading to 250 subjects (50 datasets × 5 models).

• Fairness datasets refer to datasets carefully constructed
with a specific focus on avoiding the introduction of biases
related to individual attributes, such as gender, age, etc. In
our study, we generated a fairness dataset from a natural
dataset following the approach utilized in prior work [26]:
we randomly selected a subset of instances and modified
their gender and age attribute values while keeping their
original labels untouched. Employing this approach, we
generated 6 fairness datasets. We pair each dataset with
five classical ML models, leading to 30 subjects (6 datasets
× 5 models).

4.2.1 Datasets
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TABLE 1: Classical ML models and datasets
ID Datasets # Size Models Type

1 Adult 48,842 Tree Original, Noisy, Fairness
2 Adult 48,842 KNN Original, Noisy, Fairness
3 Adult 48,842 LR Original, Noisy, Fairness
4 Adult 48,842 NB Original, Noisy, Fairness
5 Adult 48,842 XGB Original, Noisy, Fairness
6 Bank 49,732 Tree Original, Noisy, Fairness
7 Bank 49,732 KNN Original, Noisy, Fairness
8 Bank 49,732 LR Original, Noisy, Fairness
9 Bank 49,732 NB Original, Noisy, Fairness
10 Bank 49,732 XGB Original, Noisy, Fairness
11 Stroke 40,907 Tree Original, Noisy, Fairness
12 Stroke 40,907 KNN Original, Noisy, Fairness
13 Stroke 40,907 LR Original, Noisy, Fairness
14 Stroke 40,907 NB Original, Noisy, Fairness
15 Stroke 40,907 XGB Original, Noisy, Fairness
16 Diabetes 253,680 Tree Original, Noisy, Fairness
17 Diabetes 253,680 KNN Original, Noisy, Fairness
18 Diabetes 253,680 LR Original, Noisy, Fairness
19 Diabetes 253,680 NB Original, Noisy, Fairness
20 Diabetes 253,680 XGB Original, Noisy, Fairness
21 Heartbeat 30,000 Tree Original, Noisy, Fairness
22 Heartbeat 30,000 KNN Original, Noisy, Fairness
23 Heartbeat 30,000 LR Original, Noisy, Fairness
24 Heartbeat 30,000 NB Original, Noisy, Fairness
25 Heartbeat 30,000 XGB Original, Noisy, Fairness

In our study, we evaluate MLPrior using five datasets:
Adult [82], Bank [83], Stroke [84], Diabetes [85] and Heart-
beat [86]. The reason for selecting these five datasets lies in
their widespread utilization in the field of machine learning.
Moreover, these datasets have been extensively employed
in multiple recent research on classical machine learning
testing, including 2022 FSE [26] and 2022 ICSE [87], [88],
[89].

• Adult [82], [90], [91]: The adult dataset is designed to pre-
dict whether an individual’s annual income exceeds 50K
based on various demographic and financial attributes.
It consists of 48,842 instances, with each instance repre-
senting a single individual. All the instances are divided
into two classes: >50K and <=50K. Each individual is de-
scribed by 14 different attributes, such as age, occupation,
education level, workclass, etc.

• Bank [83], [90]: The bank dataset is utilized to forecast
whether a client will subscribe to a term deposit, utilizing
their demographic, financial, and social information. It
consists of 49,732 instances, classified into two classes:
subscribing to the term deposit or not subscribing. Each
instance encompasses 16 attributes, such as age, educa-
tion, loan, and balance.

• Stroke [84]: The stroke dataset is employed for predicting
the occurrence of a stroke in patients. It comprises 40,907
instances, classified into two classes: having a stroke or
not having a stroke. Each instance is described using 10
attributes, such as age, heart disease, hypertension, work
type, residence type, and smoking status.

• Diabetes [85]: The diabetes dataset is utilized for predict-
ing diabetes occurrence in patients. It comprises 253,680
survey responses related to diabetes. This dataset is cat-
egorized into three classes: 0 for no diabetes or diabetes
only during pregnancy, 1 for prediabetes, and 2 for dia-
betes.

• Heartbeat [86]: The Heartbeat dataset is used for classify-
ing heartbeat signals. In our experiments, we used 30,000
heartbeat signal sequence data. Each sample in the dataset
has a consistent sampling frequency and equal length in
its signal sequence. The Heartbeat dataset is divided into
4 classes, which are categorized as heartbeat signal types
(0, 1, 2, 3).

4.2.2 Classical ML models

We evaluate the effectiveness of MLPrior using five
well-established classical ML models: Decision Tree [9],
K-Nearest Neighbors (KNN) [75], Logistic Regression
(LR) [10], XGBoost [8], and Gaussian Naive Bayes (Gaus-
sianNB) [8]. These models were chosen based on two pri-
mary reasons: First, their widespread adoption in various
industries owing to their interpretability and demonstrated
performance [12], [32], [76], [92].

In the industry, the five classical ML models we evalu-
ated are broadly implemented, and their accuracy is crucial,
as their prediction errors could have serious consequences.
Therefore, thorough testing and test prioritization of these
classical ML models are essential.
• Hospitality industry [76] The logistic regression model

can utilize financial data to predict whether a hotel busi-
ness is at risk of bankruptcy. Investors in the hotel indus-
try will rely on these models to make crucial financial and
operational decisions. If the predictions are inaccurate,
Investors can make erroneous investment decisions, such
as investing in businesses that are at risk of bankruptcy.

• Service industry [32] The decision tree model can be
employed to analyze the impact of information and com-
munication technology (ICT) on service industry perfor-
mance using global service industry data from the World
Bank. Service industry companies will depend on such
analyses to formulate strategies, such as investing in ICTs.
Incorrect predictions could result in misallocation of re-
sources, affecting the company’s long-term performance
and competitiveness.

• Financial industry [93], [94] The XGBoost algorithm can
be utilized for personal credit risk assessment. Rao et
al. [93] employed XGBoost to predict an individual’s credit
risk for determining loan approval decisions. Moreover,
KNN can be used for credit scoring(i.e., assessing the
credit risk of loan applications) [94].

• Healthcare industry [95] The Gaussian Naive Bayes
model can be leveraged for diagnosing cancer based on
the patient’s medical information [95].

To better illustrate the utility of MLPrior, we provided a
specific example. For instance, in the above scenario where
XGBoost is used for personal credit risk assessment, ML-
Prior can be utilized to identify misjudged loan approvals
(where the XGBoost model incorrectly classifies some ap-
plicants who should not receive loans as qualified borrow-
ers, thus approving their loan applications). This enables
financial institutions to detect and focus on potential high-
risk cases earlier, thereby not only reducing losses but also
enhancing their overall efficiency in risk management.

Second, their extensive use in recent ML testing stud-
ies [26], [96], [97], [98], [99]. Importantly, it should be noted
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that MLPrior’s applicability is not limited to the evaluated
models. With minor adjustments to the model mutation
rules (i.e., making them target the architecture parameters
or weight parameters of the assessed ML model), MLPrior
can be adapted to various interpretable ML models.
• XGBoost [8] XGBoost, an ensemble method that belongs

to the family of boosting algorithms, functions by inte-
grating the forecasts of multiple Classification and Regres-
sion Trees (CART) [100] to create a robust classification
mechanism. This algorithm amalgamates weak learners
to engineer a powerful model with superior predictive
capacity.

• Gaussian Naive Bayes (GaussianNB) [95] Gaussian
Naive Bayes, a probabilistic classifier based on Bayes’
theorem with an assumption of independence among pre-
dictors, is known for its efficacy in multiclass classification
problems and its robustness against irrelevant features.

• Logistic Regression (LR) [10] Logistic Regression is a
widely-adopted statistical model employed in scenarios
of binary classification tasks. This model is founded on
the principles of probability and logistic function, offering
an interpretable mathematical framework.

• Decision Tree [9] Decision tree constructs a tree-like struc-
ture, where internal nodes represent decision points based
on feature values, and leaves represent the predicted
outcomes.

• K-nearest neighbors (KNN) [75] KNN is a widely-
adopted classification algorithm that assigns labels to
instances based on the majority vote of their K neigh-
boring data points. The KNN algorithm is known for its
simplicity and flexibility in handling classification tasks.

4.3 Compared Approaches
To demonstrate the effectiveness of MLPrior, we com-

pared it with multiple test prioritization approaches. The
considered methods include DeepGini (ISSTA 2020) [16],
VanillaSM (ISSTA 2022) [20], Prediction-Confidence Score
(ISSTA 2022) [20], and Entropy (ISSTA 2022) [20]. We select
these comparative methods because 1) they can be adapted
to classical ML models for test prioritization; 2) their effec-
tiveness on DNNs has been demonstrated [20], [16].
• DeepGini [16] DeepGini operates by assessing the

model’s uncertainty in its predictions for tests. The fun-
damental premise of DeepGini is that tests for which the
model exhibits greater uncertainty in its predictions are
deemed to have a higher likelihood of being incorrectly
predicted. Consequently, these tests will be prioritized
higher. The mechanism for calculating this uncertainty in
DeepGini is encapsulated in a specific formula, referred
to as Formula 2. In this formula, the symbol ξ(t) denotes
the model’s uncertainty regarding its prediction for a
particular test t. The higher the value of ξ(t), the greater
the uncertainty associated with the model’s prediction for
the test t, and t will be prioritized higher. By prioritizing
tests with higher values of ξ(t), DeepGini can identify and
prioritize test inputs that are potentially misclassified.

ξ(t) = 1− ΣN
i=1p

2
t,i (2)

where N is the number of classes, and pt,i denotes the
probability of the model predicting t belonging to class i.

• VanillaSM [20] The VanillaSM algorithm ranks all the
tests by computing the difference between the highest
activation probability within the output softmax layer for
each test and 1. The calculation is defined by Formula 3.
A lower value of V (t) indicates that the test is more likely
to be misclassified by the model.

V (t) = 1− N
max
i=1

li(t) (3)

where N is the number of classes. maxNi=1 li(t) represents
the model’s prediction probability for the most confident
classification of test t among all N classes.

• Prediction-Confidence Score (PCS) PCS [20] prioritizes
test inputs by calculating the difference between the
probabilities of the model’s most confident class and the
second most confident class for each test. The formula is
given as Formula 4. A smaller PCS(t) indicates that a test
is more likely to be mispredicted by the model.

PCS(t) = p1(t)− p2(t) (4)

where p1(t) is the predicted probability of the model for
the most confident class of test t, and p2(t) is the predicted
probability of the model for the second most confident
class of test t.

• Entropy Entropy [20] ranks all tests by calculating the
entropy value of the model’s predicted probability vector
for each test. A higher entropy value for a test indicates
that it is more likely to be mispredicted by the model.

• Random selection [101] In random selection, the order of
test input execution is determined randomly.

4.4 Measurements

Following the existing work [16], we employed two
metrics to evaluate the effectiveness of MLPrior, the com-
pared approaches, and the variants of MLPrior: Average
Percentage of Fault Detection (APFD) [57] and Percentage
of Faults Detected (PFD) [16].
• Average Percentage of Fault-Detection (APFD) APFD

is a well-established metric utilized for evaluating the
effectiveness of test prioritization. A higher APFD value
indicates greater effectiveness. The APFD values are com-
puted using Formula 5.

APFD = 1−
∑k

i=1 oi
kn

+
1

2n
(5)

where n denotes the number of test inputs in the test set,
and k represents the number of misclassified inputs. oi is
the index of the ith misclassified test within the prioritized
test set. Below, we explain from a formula perspective
why larger APFD values indicate high test prioritization
effectiveness.
Firstly, in the formula, since n is a constant, a larger
APFD value means that the value of

∑k
i=1 oi (i.e., the

total index sum of misclassified tests within the priori-
tized list) is smaller. A smaller

∑k
i=1 oi implies that the

misclassified tests are relatively positioned toward the
front of the prioritized test set. This indicates that the
misclassified tests are indeed prioritized at the beginning
of the test set through the test prioritization approach,
thus demonstrating that its effectiveness is high. Follow-
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ing prior work [16], we normalize the APFD values to
[0,1]. A prioritization approach is considered better when
the APFD value is closer to 1.

• Percentage of Fault Detected (PFD) PFD quantifies the
ratio of detected misclassified test inputs to the total num-
ber of misclassified tests. A higher PFD value suggests
that a test prioritization approach is more effective. The
calculation of PFD follows Formula 6.

PFD =
#F d

#F
(6)

where #F d is the number of detected misclassified test
inputs. #F is the total number of misclassified test inputs.
In our study, we measured the PFD values of MLPrior and
compared test prioritization approaches using varying
ratios of prioritized tests.

4.5 Implementation and Configuration
In terms of the compared approaches, we employed

the available implementations provided by their respec-
tive authors [20], [16]. Concerning the XGBoost ranking
model, we utilized XGBoost version 1.4.2 [8]. For the rank-
ing models Decision Tree, KNN, Logistic Regression, and
GaussianNB, we utilized the package provided by scikit-
learn 0.24.2 [102]. Regarding the parameters of the ranking
models, we set the n estimators parameter of XGBoost to
100. We set the max iter parameter of Logistic Regression
to 100. For the Decision Tree ranking algorithm, we set
the min samples split parameter to 2. The var smoothing
parameter of GaussianNB was set to 1e-9. Additionally, we
set the n neighbors parameter of KNN to 5.

Furthermore, concerning model mutation, we generated
100 mutant models for each original classical ML model.
For dataset mutation, we generated 20 mutant datasets for
each natural dataset. In other words, MLPrior generates 20
mutated inputs for each test. Moreover, we conducted a
statistical analysis to mitigate the impact of randomness. For
each subject (i.e., a dataset with a model), we repeated the
experiments 5 times and reported the average results. We
conducted the experiments on a high-performance cluster,
and each cluster node runs a 2.6 GHz Intel Xeon Gold
6132 CPU with an NVIDIA Tesla V100 16G SXM2 GPU.
In terms of data processing, we conducted corresponding
experiments on a MacBook Pro laptop with Mac OS Big Sur
11.6, Intel Core i9 CPU, and 64 GB RAM.

5 STUDY RESULTS

5.1 RQ1: Effectiveness and Efficiency of MLPrior
Objectives: We evaluate the effectiveness and efficiency of
MLPrior in prioritizing test inputs for classical ML models.
Experimental design: We conducted experiments to evalu-
ate the performance of MLPrior from three perspectives:
• Effectiveness To assess the effectiveness of MLPrior, we

carefully designed 15 subjects consisting of three preva-
lent datasets, each paired with five classical ML models.
Detailed information regarding the subjects can be found
in Table 1. Moreover, we compared MLPrior against a
range of DNN prioritization approaches, namely Deep-
Gini [16], Vanilla Softmax [20], Prediction-Confidence

Score (PCS) [20], Entropy [20], and Random Selection. To
measure the effectiveness, we used the APFD metric [57]
and the PFD metric [16], which are widely-adopted mea-
sures for evaluating test prioritization techniques.

• Efficiency We evaluate the efficiency of MLPrior by quan-
tifying the time required for each step of MLPrior, as well
as the time cost of each compared approach.

• Statistical analysis Considering the randomness associ-
ated with the training process of the ML models and
the MLPrior approach, we conduct a statistical analysis
to ensure the stability of our research. More specifically,
we replicated all the experiments a total of five times, cal-
culating average results to report in this section. Further-
more, we calculated the p-values to evaluate the statistical
significance of our findings.
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Fig. 3: Test prioritization effectiveness among MLPrior and
the compared approaches (dataset Bank with model Gaus-
sianNB). X-Axis: the percentage of prioritized tests; Y-Axis:
the percentage of detected miscalssified tests

Results: The experimental results pertaining to RQ1 are
presented in Table 2, Table 3, Figure 3, Table 4 and Table 5.
We highlight the approach with the highest effectiveness in
grey to facilitate quick and easy interpretation of the results.

When applied to natural inputs, MLPrior outperforms
all the compared methods in terms of APFD across all
subjects, with an average improvement of 14.74%∼66.93%
over the compared approaches. Table 2 exhibits the effec-
tiveness of MLPrior in comparison to the compared test
prioritization approaches across different subjects. From the
table, we see that MLPrior outperforms all the compared
methods across all subjects. Specifically, the APFD values of
MLPrior range from 0.787 to 0.990, while that of the com-
pared approaches span from 0.494 to 0.837. Table 3 demon-
strates the effectiveness of MLPrior and the comparative test
prioritization methods on multiclass classification datasets.
We see that in all cases, the effectiveness of MLPrior is
higher than all the comparative methods. Specifically, the
APFD range of MLPrior is from 0.639 to 0.915, while the
APFD range for the comparative methods is from 0.475 to
0.852. The experimental results demonstrate that MLPrior’s
effectiveness surpasses all comparative methods on multi-
class datasets.

Table 5 shows the comparison of effectiveness between
MLPrior and other test prioritization methods on all subjects
in both binary and multi-class datasets. The evaluation

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3350019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



15

TABLE 2: Effectiveness comparison among MLPrior and DNN test prioritization approaches in terms of APFD on natural
datasets (Binary Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.508 0.506 0.493 0.505 0.500 0.502 0.494 0.504 0.490 0.494 0.519 0.505 0.502 0.497 0.499
DeepGini 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
Entropy 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
PCS 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
VanillaSM 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
MLPrior 0.810 0.811 0.829 0.830 0.813 0.863 0.872 0.878 0.877 0.868 0.990 0.787 0.845 0.839 0.900

TABLE 3: Effectiveness comparison among MLPrior and DNN test prioritization approaches in terms of APFD on natural
datasets (Multiclass classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.499 0.501 0.498 0.501 0.501 0.497 0.509 0.505 0.501 0.475
DeepGini 0.701 0.678 0.760 0.685 0.760 0.781 0.851 0.772 0.486 0.839
Entropy 0.697 0.677 0.759 0.685 0.760 0.780 0.851 0.761 0.530 0.837
PCS 0.702 0.679 0.760 0.686 0.760 0.779 0.851 0.779 0.485 0.839
VanillaSM 0.702 0.679 0.760 0.685 0.761 0.781 0.852 0.776 0.486 0.840
MLPrior 0.769 0.772 0.767 0.802 0.765 0.897 0.883 0.915 0.639 0.914

TABLE 4: Time cost of MLPrior and the compared test prioritization approaches

Time cost Approach

MLPrior Random DeepGini VanillaSM PCS Entropy

Feature generation 3 s - - - - -
Ranking model training 15 s - - - - -

Prediction 55.133 ms 12.566 ms 1.323 ms 1.020 ms 1.355 ms 114.483 ms

TABLE 5: Effectiveness improvement of MLPrior over the
compared approaches in terms APFD on natural datasets

Data Type Approach # Best cases Average APFD Improvement(%)

Binary
Classification

Random 0 0.501 70.46
DeepGini 0 0.719 18.78
Entropy 0 0.719 18.78
PCS 0 0.719 18.78
VanillaSM 0 0.719 18.78
MLPrior 15 0.854 -

Multiclass
Classification

Random 0 0.498 63.05
DeepGini 0 0.731 11.08
Entropy 0 0.734 10.63
PCS 0 0.732 10.93
VanillaSM 0 0.732 10.93
MLPrior 10 0.812 -

ALL

Random 0 0.499 66.93
DeepGini 0 0.725 14.89
Entropy 0 0.726 14.74
PCS 0 0.725 14.89
VanillaSM 0 0.725 14.89
MLPrior 25 0.833 -

metrics include the number of cases where each method
performs the best (denoted as #Best cases), the average
APFD value of each test prioritization approach (denoted as
Average APFD), and the improvement of MLPrior relative
to each comparison method (denoted as Improvement(%)).
From Table 5, we can see that MLPrior performs the best
across all cases, whether in binary or multi-class datasets.
In binary datasets, the average APFD of MLPrior is 0.854.
In multi-class datasets, it is 0.812, and across all subjects
(including both binary and multi-class), it is 0.833. The
average APFD of comparison methods across all subjects

ranges from 0.499 to 0.726.
Moreover, under all subjects, the average improvement

of MLPrior relative to all the compared test prioritization
methods ranges from 14.74% to 66.93%. More specifically, in
binary datasets, the improvement range of MLPrior relative
to all comparison methods is from 18.78% to 70.46%. In
multi-class datasets, the improvement range is from 10.93%
to 63.05%. These experimental results demonstrate that ML-
Prior’s effectiveness surpasses all other test prioritization
methods on natural test inputs.

Figure 3 provides a visual comparison between MLPrior
and other test prioritization approaches in terms of PFD
on the Bank dataset with the GaussianNB model. In this
figure, the effectiveness of MLPrior is represented by the red
curve, while the blue curve represents the effectiveness of
confidence-based test prioritization methods. Additionally,
the black curve depicts the baseline effectiveness. It is note-
worthy to mention that all confidence-based approaches
are consolidated into a single line due to their identical
effectiveness across all cases, as evidenced in Table 2.

The reason why all confidence-based methods yield
the same experimental results on binary classification ML
models is as follows: Given a binary classification model,
suppose the probability of a test t belonging to category 1 is
p, then the probability of it belonging to the other category is
1−p. Regardless of the confidence-based method used, tests
with p values close to 0.5 are deemed more uncertain [16]
and thus are prioritized to the front. Therefore, the experi-
mental results of all test prioritization methods are the same.
We explain this in detail below.
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Feng et al. [16] demonstrated that in a binary classifica-
tion model, if the model’s prediction probability for a test is
(0.5, 0.5), it means the model is most uncertain about this
test, indicating this test is more likely to be misclassified.
The closer a test’s p value is to 0.5, the more uncertain
the model is about that particular test. Consequently, uncer-
tainty is solely determined by p. Regardless of the specific
confidence-based test prioritization method employed, tests
with p values closer to 0.5 will be prioritized over others.

To illustrate this point, consider a test set with three tests,
and the model’s probability vectors for these tests are as
follows: t1 (0.9, 0.1), t2 (0.7, 0.3), t3 (0.8, 0.2). Irrespective
of the chosen confidence-based test prioritization method,
the resulting ranking will be t2 → t3 → t1 because t2 has
the p value (0.7) closest to 0.5, followed by t3 (p = 0.8), while
t1 has the farthest p value from 0.5 (p = 0.9).

From Figure 3, we see that MLPrior consistently out-
performs all the compared methods across different priori-
tization ratios. These experimental results strongly suggest
that MLPrior exhibits higher effectiveness than other test
prioritization approaches in classical ML test prioritization.
As stated in the experimental design, due to the inherent
randomness associated with the training process, we con-
ducted a statistical analysis. This analysis involved repeat-
ing all experiments a total of five times. The p-value of the
experimental results was found to be significantly less than
10−06, which suggests that MLPrior can stably outperform
the compared test prioritization approaches.

MLPrior showcases acceptable efficiency, with an aver-
age execution time of less than 20 seconds. In addition to
evaluating its effectiveness, we also compared the efficiency
of MLPrior with other test prioritization approaches, and
the experimental results are presented in Table 4. The find-
ings indicate that the average total running time of MLPrior
on each subject is under 20 seconds, which can be broken
down into three main components: feature generation (3 sec-
onds), ranking model training (15 seconds), and prediction
(55.133 ms). Here, ’ms’ refers to milliseconds. The prediction
times for the confidence-based test prioritization methods
are as follows: DeepGini: 1.323 ms; VanillasM: 1.020 ms;
PCS: 1.355 ms; Entropy: 114.483 ms. While confidence-based
test prioritization techniques exhibit higher efficiency with
a running time of less than 1 second, the computational
cost of MLPrior remains reasonable in practical scenarios,
especially considering the laborious and costly nature of
manual labeling. Despite being slightly less efficient than
confidence-based methods, the considerable improvement
in effectiveness demonstrated by MLPrior, ranging from
18.78% to 70.46% compared to those techniques, under-
scores its overall performance.

Answer to RQ1: When applied to natural inputs, MLPrior
outperforms all the compared methods in terms of APFD across
all subjects, with an average improvement of 14.74%∼66.93%
over the compared approaches. Moreover, MLPrior showcases
acceptable efficiency, with an average execution time of less
than 20 seconds.

5.2 RQ2: Effectiveness of MLPrior on different types of
test inputs

Objectives: In addition to assessing MLPrior’s performance
on natural test sets, we also evaluate its effectiveness on
different types of test inputs, encompassing mixed noisy
data and fairness data. Mixed noisy datasets are composed
of 70% natural data and 30% of noisy data. Fairness datasets
are constructed with the aim of avoiding biases associated
with individual attributes, such as gender and age. Ensuring
fairness in machine learning is crucial to prevent bias and
discrimination against specific groups during predictions.
Fairness has emerged as a critical ethical consideration
across diverse machine learning domains, such as recruit-
ment, loan approvals, and medical diagnosis [25]. In these
domains, the absence of fairness can result in unjust treat-
ment of certain groups, significantly impacting individuals’
lives and rights.

Our investigation revolves around two primary sub-
questions:

• RQ-2.1 How does MLPrior perform on mixed noisy data?
• RQ-2.2 How does MLPrior perform on fairness data?

Experimental design: We conduct the following experi-
ments to answer the aforementioned sub-questions.
[Experiment ❶] In the first step, we generate noisy data
from the three natural datasets used in RQ1 (i.e., Adult,
Bank, and Stroke). To this end, we mix 30% noisy data with
70% natural data to create mixed noisy data. The reason
we chose a noise generation ratio of 30% is as follows: A
high noise ratio, such as 90%, would result in a significant
proportion of noisy test inputs, and a substantial number
of misclassified tests would be selected by any prioritiza-
tion method, thereby complicating the demonstration of
MLPrior’s effectiveness. Therefore, in order to ensure an
efficacious evaluation of both MLPrior and the comparative
approaches, we opted for a reasonable noise generation
ratio (i.e., 30%). For each of the three natural datasets, we
generate ten mixed noisy datasets, resulting in 30 (3 ×
10) mixed datasets. Each mixed dataset is paired with five
classical ML models, leading to a total of 150 subjects (30
datasets × 5 models). Based on these generated subjects,
we compare the effectiveness of MLPrior with other test
prioritization methods.
[Experiment ❷] To generate fairness data for evaluation,
we adopt the approach used in previous research [26].
Specifically, for each natural dataset utilized in RQ1 (i.e.,
Adult, Bank, and Stroke), we randomly selected a subset
of instances from the original test set and modified their
gender and age attribute values while keeping the original
labels untouched. The reason for ensuring the labels un-
touched is as follows: In the context of ensuring fairness,
the model should maintain consistent classification results
when the protected attributes (such as genders and ages)
are changed, while all other attributes remain unaltered.

Concretely, for the attribute ”gender”, we changed half
of the ”male” to ”females” and half of the ”females” to
”males”. Regarding the attribute ”age”, following the prior
work [87], we modified the ”middle age” (30∼59) instances
in the test set to ”young age” (18∼29) while converting
the ”young age” test instances to ”middle age.” Using the
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TABLE 6: Effectiveness comparison among MLPrior and DNN test prioritizatiion approaches in terms of APFD on mixed
noisy datasets (Binary Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.499 0.499 0.500 0.500 0.501 0.498 0.502 0.497 0.502 0.500 0.509 0.500 0.499 0.501 0.501
DeepGini 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
Entropy 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
PCS 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
VanillaSM 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
MLPrior 0.830 0.810 0.825 0.827 0.829 0.867 0.872 0.875 0.875 0.868 0.982 0.825 0.845 0.838 0.898

TABLE 7: Effectiveness comparison among MLPrior and DNN test prioritizatiion approaches in terms of APFD on mixed
noisy datasets (Multiclass classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.501 0.499 0.501 0.501 0.501 0.502 0.500 0.499 0.500 0.493
DeepGini 0.670 0.658 0.751 0.707 0.725 0.773 0.851 0.772 0.486 0.839
Entropy 0.671 0.658 0.749 0.705 0.725 0.771 0.851 0.761 0.530 0.837
PCS 0.671 0.661 0.751 0.710 0.726 0.771 0.851 0.779 0.485 0.839
VanillaSM 0.670 0.659 0.751 0.707 0.725 0.772 0.851 0.776 0.486 0.841
MLPrior 0.789 0.776 0.772 0.801 0.773 0.901 0.878 0.916 0.639 0.908

TABLE 8: Effectiveness improvement of MLPrior over the
compared approaches in terms of APFD on mixed noisy
datasets

Data Type Approach # Best cases Average APFD Improvement(%)

Binary
Classification

Random 0 0.499 63.32
DeepGini 0 0.685 25.26
Entropy 0 0.685 25.26
PCS 0 0.685 25.26
VanillaSM 0 0.685 25.26
MLPrior 150 0.858 -

Multiclass
Classification

Random 0 0.499 63.32
DeepGini 0 0.723 12.72
Entropy 0 0.726 12.25
PCS 0 0.724 12.57
VanillaSM 0 0.723 12.72
MLPrior 100 0.815 -

ALL

Random 0 0.499 67.73
DeepGini 0 0.704 18.89
Entropy 0 0.706 18.55
PCS 0 0.705 18.72
VanillaSM 0 0.704 18.89
MLPrior 250 0.837 -

generated fairness test sets, we compare the effectiveness of
MLPrior with other test prioritization methods.
Results: The experimental findings pertaining to RQ2.1 are
presented in Table 6, Table 7, Table 8. Table 6 showcases the
effectiveness difference between MLPrior and the compared
test prioritization methods when applied to mixed noisy
inputs. The evaluation metric employed is the Average
Percentage of Faults Detected (APFD). We highlight the
approach with the highest effectiveness in grey to facilitate
easy interpretation of the results.

On mixed noisy inputs, MLPrior consistently performs
better than all the compared approaches, with an average
improvement of 18.55%∼67.73%. From Table 6, we see
that MLPrior consistently outperforms all the compared
methods across each case. Remarkably, the APFD values
achieved by MLPrior range from 0.810 to 0.982, while that
of the compared methods range from 0.497 to 0.766. Table 7
presents the effectiveness of MLPrior compared to other

test prioritization methods on noisy datasets for multiclas-
sification. We see that MLPrior outperforms all other test
prioritization methods across all multiclassification subjects.
The range of APFD values for MLPrior is from 0.639 to
0.916, whereas the range for the compared test prioritization
methods is from 0.485 to 0.851. We conclude that on noisy
datasets for multiclassification, the effectiveness of MLPrior
surpasses that of the compared test prioritization methods.

Table 8 provides an overall comparison of the effec-
tiveness of MLPrior and other test prioritization methods
on binary classification datasets, multiclass classification
datasets, and all subjects (both binary and multiclass). The
evaluation metrics include the number of cases where each
method performs the best (denoted as #Best cases), the
average APFD value of each test prioritization approach
(denoted as Average APFD), and the improvement of
MLPrior relative to each comparison method (denoted as
Improvement(%)).

In Table 8, we observe that MLPrior performs the best
across all subjects, regardless of whether they are binary or
multiclass. The average APFD of MLPrior on all subjects (in-
cluding both binary and multiclass) is 0.837. Specifically, the
average APFD of MLPrior in binary classification is 0.858,
while in multiclass classification, it is 0.815. In contrast, the
range of the average APFD for the comparison methods
across all subjects is from 0.499 to 0.706. Moreover, across
all subjects, the average improvement of MLPrior relative
to the comparison test prioritization methods ranges from
18.55% to 67.73%.

Answer to RQ2.1: On mixed noisy inputs, MLPrior consis-
tently performs better than all the compared approaches, with
an average improvement of 18.55%∼67.73%.

The experimental results of RQ2.2 are presented in Ta-
ble 9, Table 10, Table 11. Table 9 displays the effectiveness
differences between MLPrior and all the comparative meth-
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TABLE 9: Effectiveness comparison among MLPrior and DNN test prioritization approaches in terms of APFD on fairness
datasets (Binary Classification)

Age Change Gender Change
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.504 0.493 0.500 0.499 0.503 0.484 0.499 0.496 0.503 0.499
DeepGini 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
Entropy 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
PCS 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
VanillaSM 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
MLPrior 0.847 0.843 0.852 0.852 0.842 0.897 0.813 0.834 0.834 0.856

TABLE 10: Effectiveness comparison among MLPrior and DNN test prioritization approaches in terms of APFD on fairness
datasets (Multiclass classification)

Age Change Gender Change
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.496 0.499 0.495 0.496 0.498 0.502 0.498 0.503 0.501 0.497
DeepGini 0.652 0.660 0.730 0.691 0.717 0.697 0.669 0.757 0.684 0.759
Entropy 0.649 0.660 0.729 0.690 0.717 0.694 0.669 0.757 0.683 0.759
PCS 0.653 0.662 0.730 0.692 0.717 0.697 0.671 0.758 0.684 0.759
VanillaSM 0.652 0.661 0.730 0.691 0.717 0.698 0.670 0.758 0.683 0.759
MLPrior 0.776 0.771 0.767 0.798 0.765 0.773 0.773 0.767 0.801 0.765

TABLE 11: Effectiveness improvement of MLPrior over the
compared approaches in terms of APFD on fairness datasets

Data Type Approach # Best cases Average APFD Improvement(%)

Binary
Classification

Random 0 0.498 70.08
DeepGini 0 0.705 20.14
Entropy 0 0.705 20.14
PCS 0 0.705 20.14
VanillaSM 0 0.705 20.14
MLPrior 20 0.847 -

Multiclass
Classification

Random 0 0.499 61.69
DeepGini 0 0.702 10.54
Entropy 0 0.701 10.70
PCS 0 0.702 10.54
VanillaSM 0 0.702 10.54
MLPrior 10 0.776 -

ALL

Random 0 0.499 62.72
DeepGini 0 0.704 15.34
Entropy 0 0.703 15.50
PCS 0 0.704 15.34
VanillaSM 0 0.704 15.34
MLPrior 30 0.812 -

ods on the fairness dataset in terms of APFD. The gray
shading indicates the best-performing method for each case.

On fairness data, MLPrior consistently performs bet-
ter than all the compared approaches, with an average
improvement of 15.34%∼62.72%. We see that MLPrior
achieves the highest effectiveness across all cases, with an
APFD range of 0.813 to 0.897. In contrast, the comparative
methods have an APFD range of 0.484 to 0.788.

Table 10 showcases the effectiveness of MLPrior com-
pared to other test prioritization methods on fairness
datasets for multiclassification. We can see that MLPrior
exceeds the performance of all other test prioritization meth-
ods in all multiclassification subjects. The APFD values for
MLPrior range from 0.765 to 0.801, while the compared test
prioritization methods range between 0.495 and 0.759. The
experimental results demonstrate that, in the context of fair-
ness datasets for multiclassification, MLPrior’s effectiveness
is superior to that of the other compared test prioritization
methods.

Table 11 presents a comparative analysis of the effective-
ness between MLPrior and other test prioritization methods
across all fairness subjects within binary and multi-class
datasets. The evaluation metrics encompass the number of
instances where each method is most effective (denoted as
#Best cases), the average APFD value for each test pri-
oritization approach (denoted as Average APFD), and the
relative improvement of MLPrior compared to each method
(denoted as Improvement(%)). According to Table 11, ML-
Prior consistently outperforms other methods in all scenar-
ios, whether in binary or multi-class datasets. Specifically, in
binary datasets, MLPrior’s average APFD is 0.847. In multi-
class datasets, it is 0.776, and the overall average across all
subjects (encompassing both binary and multi-class) stands
at 0.812. The average APFD for the comparison methods
across all subjects varies from 0.499 to 0.704.

Furthermore, across all fairness subjects, the average
improvement of MLPrior compared to all other test pri-
oritization methods ranges from 15.34% to 62.72%. More
specifically, within binary datasets, MLPrior’s improvement
over the comparison methods varies from 20.14% to 70.08%.
In multi-class datasets, this improvement range is between
10.54% and 61.69%. These experimental results indicate that
MLPrior’s effectiveness is superior to all other test prioriti-
zation methods when dealing with fairness test inputs.

Answer to RQ2.2: On fairness data, MLPrior consistently
performs better than all the compared approaches, with an
average improvement of 15.34%∼62.72%

5.3 RQ3: Impact of ranking models on the effective-
ness of MLPrior
Objectives: We investigate the impact of different ranking
models on the effectiveness of MLPrior.
Experimental design: In order to investigate the impact
of different ranking models, we propose four variants
of MLPrior denoted as MLPriorT , MLPriorK , MLPriorL,
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and MLPriorN . These variants employ the ranking mod-
els decision tree [80], K-nearest neighbors (KNN)[29], lo-
gistic regression[10], and Gaussian Naive Bayes (Gaus-
sianNB) [81], respectively. The only difference between them
and the original MLPrior lies in the selection of the ranking
models, while the rest of the workflow remains unchanged.
We utilize the APFD metric to evaluate the effectiveness
differences of MLPrior, these variants, and the comparative
test prioritization methods on natural and mixed noisy
datasets.
Results: The experimental results for RQ3 are presented
in Table 12, Table 13, Table 14, Table 15, Table 16 and
Table 17. Tables 12 and Table 13 display the effectiveness of
MLPrior, its variants, and the compared test prioritization
methods on natural datasets. Tables 14 and Table 15 show
their effectiveness on noisy datasets. Table 16 presents their
effectiveness on fairness datasets. Table 17 illustrates their
average performance across all datasets (including natural,
noisy, and fairness datasets), as well as the improvements
of MLPrior relative to its variants and the compared test
prioritization methods.

MLPrior outperforms all its variants in test prioriti-
zation, indicating that among all ranking models, the
XGBoost model (utilized by the original MLPrior) can
better utilize the generated features of test inputs for test
prioritization. Table 12 and Table 13 demonstrate the effec-
tiveness of MLPrior on natural datasets, including binary
classification datasets (Table 12) and multiclass classification
datasets (Table 13). We see that, whether on binary or
multiclass datasets, the effectiveness of MLPrior (measured
by APFD) consistently surpasses all its variants. On binary
natural datasets (Table 12), the APFD range for MLPrior is
from 0.8110 to 0.990, while the range for its variants is from
0.589 to 0.898. On multiclass natural datasets (Table 13), the
APFD range for MLPrior is from 0.639 to 0.915, while the
range for its variants is from 0.580 to 0.890. We conclude that
on natural datasets, the effectiveness of MLPrior exceeds
all its variants. Moreover, on noisy datasets, encompassing
both binary classification datasets (Table 14) and multiclass
classification datasets (Table 15), MLPrior also consistently
outperforms all its variants across all cases.

Table 16 demonstrates the effectiveness of MLPrior, its
variants, and the compared test prioritization methods on
fairness datasets. We see that, whether on fairness datasets
constructed based on age or those constructed based on
gender, the effectiveness of MLPrior outperforms both its
variants and all test prioritization methods. Specifically, the
APFD range for MLPrior is from 0.765 to 0.897, while the
range for its variants is from 0.648 to 0.821. We conclude
that, on fairness datasets, the effectiveness of MLPrior ex-
ceeds all its variants.

Table 17 displays the effectiveness of MLPrior, its vari-
ants, and the compared test prioritization methods across
all datasets (i.e., natural, noisy, and fairness datasets). We
see that MLPrior performs the best across all 305 cases.
Specifically, these 305 cases represent 25 natural subjects +
250 noisy data subjects + 30 fairness data subjects, totaling
305 cases. The detailed origins of these numbers can be
referred to in Section 4.2. Additionally, across all subjects,
the average effectiveness of MLPrior is 0.827, while the
average effectiveness of its variants ranges from 0.683 to

0.770. Furthermore, the improvement of MLPrior over its
variants in terms of APFD lies between 7.40% and 21.08%.

The experimental results above demonstrate that ML-
Prior performs better than its variants, indicating that,
among all the ranking models evaluated, the XGBoost
model used in the original MLPrior demonstrates a better
capability in utilizing the generated features of test inputs
for test prioritization.

Answer to RQ3: MLPrior outperforms all its variants in
test prioritization, indicating that among all ranking models,
the XGBoost model (utilized by the original MLPrior) can
better utilize the generated features of test inputs for test
prioritization.

5.4 RQ4: Feature contribution Analysis

Objectives: We investigate the contributions of three types
of features (i.e., model mutation features, input mutation
features, and original attribute features) on the effectiveness
of MLPrior.
Experimental design: To assess the impact of different
feature types on the effectiveness of MLPrior, we adopt
the cover metric from the XGBoost algorithm [8] as the
measurement tool. Firstly, within the context of each subject,
we compute the importance scores for each generated fea-
ture. Subsequently, we identify the top N most contributing
features. Based on it, we investigate the extent to which each
type of feature contributes to the effectiveness of MLPrior.
Below, we explain the working principle of the XGBoost
cover metric.

The Working Principle of XGBoost Cover Metric: The
cover metric in XGBoost quantifies feature importance by
evaluating the average coverage of each instance across
the leaf nodes in a decision tree. Specifically, the cover
metric calculates the frequency at which a specific feature
is utilized to partition the data in all trees of the ensemble.
The coverage values associated with each feature across all
trees are then summed. Subsequently, the resulting cover-
age value is normalized by the total number of instances,
providing the average coverage of each instance by the leaf
nodes. The significance of a particular feature is determined
based on its derived coverage value, with features exhibiting
higher coverage values being assigned greater importance.
Results: Table 18 presents the contributions of different
feature types to the effectiveness of MLPrior. In this table,
we utilize the abbreviations MMF, IMF, and OAF to rep-
resent model mutation features, input mutation features,
and original attribute features, respectively. The numbers
after the feature abbreviations denote the indices of the
corresponding features. For instance, IMF-123 denotes the
input mutation feature with index 123. We conducted the
feature contribution analysis on both binary classification
datasets (Adult, Bank, and Stroke) and multiclass classifica-
tion datasets (Diabetes and Heartbeat).

All three types of features (i.e., model mutation fea-
tures, input mutation features, and original attribute fea-
tures) visibly contribute to the effectiveness of MLPrior.
In Table 18, we find that in binary classification datasets, for
the majority of cases (14 out of 15), all three types of features
are present among the top-N most contributing features.
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TABLE 12: Effectiveness comparison among MLPrior, MLPrior Variants and DNN test prioritization approaches in terms
of APFD on natural datasets (Binary Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.508 0.506 0.493 0.505 0.500 0.502 0.494 0.504 0.490 0.494 0.519 0.505 0.502 0.497 0.499
DeepGini 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
Entropy 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
PCS 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758
VanillaSM 0.739 0.738 0.688 0.710 0.793 0.770 0.704 0.769 0.694 0.837 0.768 0.604 0.593 0.615 0.758

MLPriorT 0.706 0.715 0.786 0.787 0.742 0.747 0.790 0.801 0.817 0.779 0.839 0.753 0.837 0.832 0.889
MLPriorK 0.796 0.784 0.746 0.749 0.738 0.833 0.786 0.795 0.796 0.803 0.774 0.635 0.604 0.617 0.679
MLPriorL 0.740 0.743 0.722 0.672 0.688 0.786 0.769 0.757 0.771 0.751 0.898 0.621 0.608 0.608 0.703
MLPriorN 0.787 0.775 0.737 0.739 0.729 0.823 0.775 0.784 0.782 0.792 0.765 0.626 0.589 0.604 0.669
MLPrior 0.810 0.811 0.829 0.830 0.813 0.863 0.872 0.878 0.877 0.868 0.990 0.787 0.845 0.839 0.900

TABLE 13: Effectiveness comparison among MLPrior, MLPrior Variants and DNN test prioritization approaches in terms
of APFD on natural datasets (Multiclass classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.499 0.501 0.498 0.501 0.501 0.497 0.509 0.505 0.501 0.475
DeepGini 0.701 0.678 0.760 0.685 0.760 0.781 0.851 0.772 0.486 0.839
Entropy 0.697 0.677 0.759 0.685 0.760 0.780 0.851 0.761 0.530 0.837
PCS 0.702 0.679 0.760 0.686 0.760 0.779 0.851 0.779 0.485 0.839
VanillaSM 0.702 0.679 0.760 0.685 0.761 0.781 0.851 0.776 0.486 0.840

MLPriorT 0.667 0.686 0.695 0.765 0.691 0.732 0.699 0.847 0.634 0.737
MLPriorK 0.649 0.654 0.666 0.756 0.654 0.799 0.727 0.890 0.638 0.815
MLPriorL 0.766 0.769 0.762 0.787 0.759 0.792 0.750 0.804 0.625 0.743
MLPriorN 0.752 0.756 0.741 0.774 0.730 0.746 0.689 0.707 0.580 0.673
MLPrior 0.769 0.772 0.767 0.802 0.765 0.897 0.883 0.915 0.639 0.914

TABLE 14: Effectiveness comparison among MLPrior, MLPrior Variants, and DNN test prioritization approaches in terms
of APFD on mixed noisy datasets (Binary Classification)

Approach Adult Bank Stroke

Tree KNN LR NB XGB Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.499 0.499 0.500 0.500 0.501 0.498 0.502 0.497 0.502 0.500 0.509 0.500 0.499 0.501 0.501
DeepGini 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
Entropy 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
PCS 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755
VanillaSM 0.460 0.701 0.682 0.711 0.744 0.740 0.707 0.766 0.676 0.826 0.702 0.602 0.593 0.611 0.755

MLPriorT 0.771 0.740 0.776 0.781 0.773 0.812 0.791 0.801 0.815 0.780 0.848 0.784 0.836 0.831 0.887
MLPriorK 0.751 0.753 0.728 0.736 0.745 0.821 0.793 0.787 0.792 0.795 0.736 0.633 0.602 0.603 0.673
MLPriorL 0.680 0.714 0.678 0.677 0.688 0.813 0.745 0.760 0.766 0.759 0.830 0.626 0.607 0.605 0.690
MLPriorN 0.741 0.746 0.718 0.727 0.736 0.813 0.783 0.778 0.783 0.790 0.727 0.623 0.592 0.593 0.662
MLPrior 0.830 0.810 0.825 0.827 0.829 0.867 0.872 0.875 0.875 0.868 0.982 0.825 0.845 0.838 0.898

TABLE 15: Effectiveness comparison among MLPrior, MLPrior Variants and DNN test prioritization approaches in terms
of APFD on mixed noisy datasets (Multiclass classification)

Diabetes Heartbeat
Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.501 0.499 0.501 0.501 0.501 0.502 0.500 0.499 0.500 0.493
DeepGini 0.670 0.658 0.751 0.707 0.725 0.773 0.851 0.772 0.486 0.839
Entropy 0.671 0.658 0.749 0.705 0.725 0.771 0.851 0.761 0.53 0.837
PCS 0.671 0.661 0.751 0.710 0.726 0.771 0.851 0.779 0.485 0.839
VanillaSM 0.671 0.659 0.751 0.707 0.725 0.772 0.851 0.776 0.486 0.841

MLPriorT 0.730 0.698 0.699 0.761 0.701 0.733 0.681 0.853 0.634 0.744
MLPriorK 0.762 0.751 0.745 0.769 0.735 0.755 0.683 0.709 0.582 0.660
MLPriorL 0.776 0.764 0.76 0.783 0.760 0.794 0.742 0.808 0.625 0.736
MLPriorN 0.762 0.751 0.745 0.769 0.735 0.755 0.683 0.709 0.582 0.660
MLPrior 0.789 0.776 0.772 0.801 0.773 0.901 0.878 0.916 0.639 0.908
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TABLE 16: Effectiveness comparison among MLPrior, MLPrior Variants and DNN test prioritization approaches in terms
of APFD on fairness datasets (Binary Classification & Multiclass classification)

Age Change Gender Change
Data Type Approach Tree KNN LR NB XGB Tree KNN LR NB XGB

Random 0.504 0.493 0.500 0.499 0.503 0.484 0.499 0.496 0.503 0.499
DeepGini 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
Entropy 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
PCS 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774
VanillaSM 0.670 0.704 0.726 0.692 0.788 0.730 0.668 0.636 0.657 0.774

MLPriorT 0.782 0.761 0.790 0.805 0.761 0.766 0.748 0.806 0.809 0.813
MLPriorK 0.722 0.727 0.735 0.737 0.763 0.655 0.655 0.711 0.712 0.705
MLPriorL 0.773 0.737 0.733 0.729 0.718 0.821 0.682 0.659 0.648 0.687
MLPriorN 0.786 0.775 0.752 0.765 0.763 0.782 0.699 0.657 0.670 0.705

Binary Classification

MLPrior 0.847 0.843 0.852 0.852 0.842 0.897 0.813 0.834 0.834 0.856

Random 0.496 0.499 0.495 0.496 0.498 0.502 0.498 0.503 0.501 0.497
DeepGini 0.652 0.660 0.730 0.691 0.717 0.697 0.669 0.757 0.684 0.759
Entropy 0.649 0.660 0.729 0.690 0.717 0.694 0.669 0.757 0.683 0.759
PCS 0.653 0.662 0.730 0.692 0.717 0.697 0.671 0.758 0.684 0.759
VanillaSM 0.652 0.661 0.730 0.691 0.717 0.698 0.670 0.758 0.683 0.759

MLPriorT 0.705 0.687 0.694 0.757 0.689 0.685 0.695 0.690 0.765 0.689
MLPriorK 0.735 0.750 0.735 0.767 0.727 0.754 0.754 0.742 0.776 0.730
MLPriorL 0.765 0.763 0.759 0.783 0.757 0.770 0.769 0.760 0.789 0.758
MLPriorN 0.735 0.750 0.735 0.767 0.727 0.754 0.754 0.742 0.776 0.730

Multiclass
Classification

MLPrior 0.776 0.771 0.767 0.798 0.765 0.773 0.773 0.767 0.801 0.765

TABLE 17: Effectiveness improvement of MLPrior over
MLPrior Variants, and DNN test prioritization approaches

Approach # Best cases Average APFD Improvement(%)

Random 0 0.499 65.73
DeepGini 0 0.711 16.32
Entropy 0 0.712 16.15
PCS 0 0.711 16.32
VanillaSM 0 0.711 16.32

MLPriorT 0 0.770 7.40
MLPriorK 0 0.697 18.65
MLPriorL 0 0.719 15.02
MLPriorN 0 0.683 21.08
MLPrior 305 0.827 -

For instance, in the dataset Adult with the LR model, IMF
features account for 40% of the top 10 critical features, MMF
features account for 50%, and OAF features account for
10%. In the case of dataset Bank with the Tree model, IMF
features contribute to 20% of the top 10 critical features,
MMF features account for 70%, and OAF features account
for 10%. Moreover, regarding the multiclass classification
datasets, we find that in all cases (10 out of 10), all three
types of features are present among the top-N most con-
tributing features. These experimental findings demonstrate
that each type of feature makes a visible contribution to the
effectiveness of MLPrior.

Answer to RQ4: All three types of features (i.e., model mu-
tation features, input mutation features, and original attribute
features) visibly contribute to the effectiveness of MLPrior.

5.5 RQ5: Impact of Main Parameters in MLPrior
Objectives: We delve into the impact of main parameters on
the effectiveness of MLPrior.
Experimental design: Building upon the existing research
by Wang et al. [15], We delve into an exploration of the

impact of three main parameters within the MLPrior’s rank-
ing model. These parameters include max depth, which
denotes the maximum tree depth for each XGBoost model,
colsample bytree, representing the sampling ratio of fea-
ture columns during the tree construction process, and
learning rate, indicating the boosting learning rate utilized
in the XGBoost ranking model. To achieve the research
objectives, we conducted a series of experiments using
natural datasets. We carefully modified the aforementioned
three main parameters and observed the variations in the
effectiveness of MLPrior (measured by APFD).
Results: The experimental results of RQ5 are presented in
Figure 4, illustrating the fluctuations in MLPrior’s effective-
ness when the main parameters’ values are altered. The
X-axis represents the parameter values, while the Y-axis
represents MLPrior’s effectiveness (measured by APFD).
The solid red line corresponds to MLPrior, while the dashed
lines represent the confidence-based test prioritization ap-
proaches. We investigated the influence of the main param-
eter on MLPrior’s effectiveness across both binary classi-
fication datasets (Adult, Bank, and Stroke) and multiclass
classification datasets (Diabetes and Heartbeat).

MLPrior consistently outperforms the confidence-
based test prioritization approaches, even when the values
of the main parameters are altered. Notably, we see that
MLPrior consistently outperforms the confidence-based test
prioritization methods across all subjects, as evidenced by
the red line persistently positioned above the blue dashed
lines. For example, in Figure 4(e), we observe that when
the parameter colsample bytree varies, MLPrior’s APFD
ranges from 0.86 to 0.88, whereas the confidence-based
methods’ APFD effectiveness is approximately 0.75. More-
over, under the multiclass dataset Heartbeat, when the pa-
rameter colsample bytree changes, MLPrior’s APFD ranges
from around 0.84 to 0.85, whereas the APFD effectiveness
of confidence-based methods ranges from around 0.745
to 0.750. Under the multiclass dataset Diabetes, when the
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TABLE 18: Top-10 most contributing features for each subject

Data Rank Tree KNN LR NB XGB
Feature Value Feature Value Feature Value Feature Value Feature Value

Adult

1 IMF-123 1653 IMF-21 1544 IMF-44 2786 IMF-127 3140 IMF-118 2976
2 MMF-29 1605 OAF-10 1358 IMF-45 2658 IMF-129 2550 IMF-120 2674
3 IMF-127 1369 OAF-11 1342 MMF-19 2127 IMF-131 1970 OAF-5 1660
4 OAF-5 1362 OAF-5 1096 MMF-26 1536 OAF-5 1175 IMF-131 1586
5 OAF-10 1339 OAF-2 630 IMF-49 1429 IMF-126 1093 IMF-126 1460
6 MMF-67 1217 OAF-9 585 OAF-5 1252 OAF-10 961 OAF-10 1429
7 MMF-82 1172 IMF-23 576 MMF-31 1124 OAF-11 793 OAF-11 1140
8 OAF-11 1016 MMF-17 544 IMF-53 1122 MMF-114 773 IMF-128 809
9 MMF-43 1005 OAF-13 538 MMF-10 1083 IMF-117 759 OAF-13 778
10 IMF-129 976 MMF-15 498 MMF-16 1061 IMF-115 692 OAF-2 594

Bank

1 IMF-122 2313 IMF-25 1410 IMF-49 1851 IMF-131 1447 IMF-126 1566
2 MMF-31 1499 OAF-4 1053 MMF-17 1427 MMF-117 1417 OAF-8 1061
3 MMF-72 1380 IMF-22 1040 MMF-35 1262 IMF-120 1199 IMF-123 1042
4 MMF-27 1096 OAF-7 710 IMF-46 1096 OAF-4 1148 OAF-4 964
5 IMF-127 1080 OAF-8 696 OAF-8 971 OAF-7 1094 IMF-134 953
6 MMF-58 1001 MMF-18 527 MMF-31 933 IMF-135 794 IMF-129 874
7 MMF-60 989 OAF-13 508 MMF-27 929 IMF-122 730 OAF-7 753
8 OAF-4 798 OAF-11 495 IMF-42 923 OAF-8 721 IMF-128 718
9 MMF-86 785 OAF-5 369 IMF-41 828 OAF-11 584 IMF-122 610
10 MMF-108 784 OAF-6 363 IMF-55 807 OAF-13 556 OAF-6 521

Stroke

1 IMF-110 1526 OAF-4 1006 MMF-28 1534 IMF-124 844 OAF-4 1523
2 MMF-83 736 OAF-5 758 MMF-18 1080 IMF-115 783 MMF-111 1322
3 OAF-2 465 OAF-7 706 IMF-38 985 OAF-7 718 IMF-122 807
4 MMF-35 430 OAF-8 625 MMF-29 952 OAF-4 648 OAF-2 729
5 MMF-55 424 OAF-1 530 OAF-4 827 OAF-8 645 OAF-3 706
6 MMF-28 320 IMF-16 507 IMF-42 801 MMF-113 541 OAF-8 482
7 OAF-5 251 IMF-18 415 OAF-7 728 IMF-127 530 OAF-7 455
8 IMF-112 241 MMF-12 401 IMF-40 696 OAF-5 472 IMF-123 393
9 MMF-45 165 OAF-9 394 OAF-5 589 IMF-122 426 OAF-5 363
10 OAF-8 129 OAF-3 390 OAF-8 579 IMF-114 352 OAF-1 267

Diabetes

1 ORF-2 9302 ORF-2 6300 IMF-51 12816 ORF-2 10771 IMF-124 18667
2 ORF-0 8395 ORF-10 4102 IMF-46 11041 IMF-134 8308 IMF-133 18659
3 MMF-41 7238 ORF-0 3372 MMF-40 7758 IMF-126 6392 IMF-138 17907
4 MMF-106 6264 ORF-13 3211 IMF-47 7049 ORF-10 5044 MMF-120 16122
5 MMF-54 6124 ORF-3 3147 IMF-48 6358 IMF-139 4788 IMF-128 13657
6 ORF-10 5533 ORF-14 2329 MMF-28 6334 IMF-135 3858 IMF-102 11819
7 MMF-71 5349 MMF-21 2257 ORF-0 5680 IMF-132 3677 ORF-2 10277
8 MMF-22 5333 ORF-18 2118 ORF-2 5679 MMF-121 3668 ORF-10 3819
9 MMF-44 5157 ORF-11 2100 IMF-44 5375 IMF-125 3413 IMF-140 3684
10 IMF-125 4837 IMF-28 1991 MMF-27 5206 IMF-140 3309 ORF-0 3600

Heartbeat

1 MMF-211 3488 IMF-210 3627 ORF-155 3345 ORF-121 1127 IMF-310 2589
2 MMF-277 3007 ORF-171 1923 IMF-236 2690 ORF-124 788 IMF-317 1718
3 MMF-266 2084 ORF-77 1689 IMF-232 1888 IMF-315 420 IMF-308 1296
4 IMF-307 1943 MMF-207 1561 IMF-238 1292 ORF-77 377 ORF-53 506
5 MMF-214 1732 IMF-211 1459 MMF-213 1191 IMF-316 376 ORF-72 358
6 MMF-234 1731 IMF-213 1412 ORF-154 831 ORF-126 371 ORF-178 350
7 MMF-254 1405 MMF-208 1402 IMF-243 822 ORF-3 344 ORF-3 348
8 ORF-203 1286 IMF-212 1354 ORF-77 758 ORF-120 307 MMF-209 340
9 MMF-284 1215 ORF-50 987 ORF-166 758 MMF-303 305 IMF-319 325
10 MMF-299 1086 ORF-164 986 ORF-143 640 ORF-127 285 MMF-212 322

parameter learning rate changes, MLPrior’s APFD ranges
from around 0.77 to 0.78, whereas the APFD effectiveness of
confidence-based methods is around 0.71.

The parameter colsample bytree has a relatively
small impact on the effectiveness of MLPrior, while the
parameters max depth and learning rate have rela-
tively high effects. Furthermore, we observe that the pa-
rameter colsample bytree, which determines the sampling
ratio of feature columns during the construction of each tree,
has a relatively modest impact on the effectiveness of ML-
Prior. In other words, the effectiveness of MLPrior remains
relatively stable even when the parameter colsample bytree
is altered. In contrast, the parameters max depth (the max-
imum tree depth) and learning rate (the boosting learning
rate) exert a relatively high impact on the performance of
MLPrior.

Answer to RQ5: MLPrior consistently outperforms the
confidence-based test prioritization approaches, even when the
values of the main parameters are altered. The parameter
colsample bytree has a relatively small impact on the ef-
fectiveness of MLPrior, while the parameters max depth and
learning rate have relatively high effects.

6 DISCUSSION

6.1 Generality of MLPrior

While we employed five ML models in our study,
MLPrior can actually be adapted for a broad range of
classical ML models through simple modifications to the
model mutation rules, specifically by enabling them to tar-
get the architecture parameters or weight parameters of the
evaluated model. We explain below why MLPrior exhibits
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Fig. 4: Impact of main parameters in MLPrior

generality. First, the core element of MLPrior is feature
generation, which involves generating three essential types
of features from the target tests: Model mutation features,
Input mutation features, and Attribute features. Once the
features are generated, MLPrior can utilize the ranking
model to learn from these features for the purpose of test
prioritization. Concerning model mutation features, mak-
ing the aforementioned simple adjustments (i.e., enabling
model mutation rules to target the architecture parameters
or weight parameters of the evaluated model) can allow
for the generation of model mutation features. For input
mutation features and attribute features, MLPrior is capable
of directly generating these features. Consequently, MLPrior
can be applied to a diverse range of classical ML models.

Moreover, to better demonstrate the generality of ML-
Prior, we provide a detailed explanation of how to apply

MLPrior to a new type of ML model.

• Skills needed to apply MLPrior to new ML models
When an ML testing practitioner aims to apply MLPrior to
a new type of ML model, they need to possess the follow-
ing skills: 1) An understanding of the internal parameters
and mechanisms of the new machine learning model,
to effectively carry out model mutation operations in
accordance with MLPrior’s methodology; 2) Basic Python
knowledge to replace the functions for model mutation
of the new type model with those for the original model;
3) Since input mutation and attribute feature generation
are already designed as automatic pipelines, the testing
practitioner can directly execute them without needing
additional skills.

• Characteristics for models to utilize MLPrior When a
model exhibits the following characteristics, it can be
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added to the set of models that can use MLPrior: 1) The
dataset of the model is in the tabular format, as our input
mutation and attribute feature generation operations are
specifically crafted for classical ML models that utilize
tabular datasets; 2) The model is a white-box model,
which allows for modifications to its internal structure or
parameters, facilitating the implementation of MLPrior’s
model mutation operations.

Furthermore, we offer the following protocol to guide an
ML testing practitioner in adapting MLPrior to new model
classes. It details the systematic process for generating the
model mutation features, original attribute features, and
input mutation features.

• Model Mutation Feature (MMF) Generation To generate
the model mutation feature for a test input, the follow-
ing process should be executed: 1) Parameter Selection
Following the methodology of MLPrior’s model muta-
tion rules (i.e., modifying the architectural parameters or
weight parameters of the model), the ML testing practi-
tioner needs to select appropriate model parameters for
the purpose of mutation and replace the previous model
mutation function with the new model mutation function.
2) Automatic Pipeline Once the replacement is complete,
all other parts are automated pipelines, and MLPrior can
automatically generate model mutation features.

• Original Attribute Feature (OAF) Generation The ML
testing practitioner can directly obtain the OAF by im-
plementing MLPrior, as we have designed an automated
pipeline for the original feature transformation. This
pipeline is capable of supporting new datasets in tabular
format.

• Input Mutation Feature (IMF) Generation The ML test-
ing practitioner can directly acquire the IMF by imple-
menting MLPrior. MLPrior can automatically perform
input mutations to obtain mutation features. This pipeline
is capable of supporting new datasets in tabular format.

6.2 Threats to Validity

Threats to Internal Validity. The primary internal threats to
the validity primarily pertain to the implementation of the
compared approaches. To mitigate the threat, we imple-
mented the compared approaches based on the implementa-
tions published by their respective authors. Another internal
threat arises from the inherent randomness inherent in the
training process of the ML models. To mitigate this potential
issue, we conducted a statistical analysis. Specifically, we
repeated all the experiments five times and reported the
average experimental results. Furthermore, we calculated
the p-value of the experimental results to demonstrate the
stability of our findings.
Threats to External Validity. The external threats to validity
arise from the ML models and test datasets employed in
our study. To mitigate these threats, we carefully selected
a variety of ML models and datasets that are utilized by
several top-level conferences [26], [89], [103] in the field of
ML testing. Moreover, our evaluation of MLPrior extended
beyond natural datasets to encompass a spectrum of scenar-
ios, encompassing mixed noisy datasets (comprising both
natural and noisy data) as well as fairness-oriented datasets.

This approach allowed us to substantiate the efficacy of
MLPrior across various contexts.

7 RELATED WORK

7.1 Test Prioritization Techniques

Test prioritization aims to establish an optimized se-
quencing of tests with the objective of early detection of sys-
tem bugs. In the field of traditional software testing, numer-
ous test prioritization approaches have been proposed [104],
[105], [106], [107], [108]. Lou et al. [109] introduced an
innovative approach to prioritize test cases, focusing on the
inherent ability of individual test cases to detect faults. Their
approach consists of two distinct models: a statistics-based
model and a probability-based model, both of which quan-
tify the fault detection capability of each test case. Through
empirical evaluations, they demonstrated that the statistics-
based model outperformed alternative methods, underscor-
ing the significance of incorporating fault detection capa-
bility within the realm of test case prioritization. Henard
et al. [110] conducted a thorough comparative study to
analyze existing test prioritization techniques, finding that
the difference between white-box strategies [111] and black-
box strategies [112] are small. Chen et al. [113], in pursuit
of enhancing the velocity of compiler testing, introduced
the LET (Learning and Scheduling-based Test prioritization)
framework. This pioneering framework is underpinned by
two salient processes: the learning process, designed to
discern program features and prognosticate the potential of
a novel test program in revealing bugs, and the scheduling
process, which strategically prioritizes test programs based
on their propensity to unveil bugs.

In addition to the traditional field of software engi-
neering, multiple test input prioritization strategies have
been proposed in the literature for Deep Neural Networks
(DNNs) [114], [15], [16], [20] to tackle the labeling-cost
issue. Feng et al. [16] introduced DeepGini, which prior-
itizes tests by utilizing the Gini score to measure model
confidence for each test input. Byun et al. [115] assessed
various white-box metrics for ranking bug-revealing inputs,
encompassing widely-used measures like softmax confi-
dence, Bayesian uncertainty, and input surprise. Further-
more, Weiss et al. [20] extensively investigated diverse test
input prioritization techniques for DNNs, particularly fo-
cusing on uncertainty-based metrics such as Vanilla Soft-
max, Prediction-Confidence Score (PCS), and Entropy. These
metrics have demonstrated effectiveness in identifying po-
tentially misclassified test inputs and have played a cru-
cial role in facilitating test prioritization endeavors. Fur-
thermore, Wang et al. [15] proposed a mutation-based test
prioritization approach for DNNs, which will be described
in the subsequent Section 7.4.

7.2 DNN Testing

In addition to test prioritization, the domain of DNN
testing encompasses several other pivotal areas, such as test
selection [55], [56], test input generation [17], [116], and test
adequacy. Test selection aims to select a representative sub-
set from the original test set to estimate the accuracy of the
entire test set. Various test selection approaches have been
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proposed in the literature. Li et al. [56] proposed CES (Cross
Entropy-based Sampling), which performs test selection by
minimizing the cross-entropy between the selected test set
and the entire test set, ensuring that the distribution of
the selected test set closely matches the original set. Chen
et al. [55] proposed PACE, which selected representative
test inputs based on clustering, prototype selection, and
adaptive random testing. First, Pace divides all test inputs
into clusters based on their testing capabilities. Then, PACE
utilizes the MMD-critic algorithm [33] to select prototypes
from each group. For tests not belonging to any groups,
PACE leverages adaptive random testing [117] to select test
inputs by considering diversity.

Within the domain of test input generation, researchers
have proposed a multitude of techniques aimed at gener-
ating diverse and effective inputs for DNN systems. Pei et
al. [17] proposed DeepXplore, a white-box differential tech-
nique that focuses on generating test inputs capable of effec-
tively evaluating the robustness of real-world DL systems.
By leveraging the notion of neuron coverage, DeepXplore
generates inputs that cover distinct regions of the neural
network. Tian et al. [116] presented DeepTest, a method
specifically tailored for generating test inputs to assess
the performance of autonomous driving systems. DeepTest
employs a greedy search strategy in conjunction with nine
realistic image transformations to produce a diverse set
of challenging input data. By systematically exploring the
input space, DeepTest aims to uncover potential failures or
limitations in autonomous driving systems, thereby enhanc-
ing their safety and reliability.

Regarding test adequacy, Ma et al. [18] proposed a set of
multi-granularity testing criteria, including k-multisection
neuron coverage, neuron boundary coverage, and strong
neuron activation coverage. These criteria have been de-
veloped to identify corner behaviors and uncover potential
vulnerabilities in DNN systems by comprehensively exam-
ining the coverage of various aspects of the neural network’s
behavior. Kim et al. [118] introduced surprise adequacy as a
novel test adequacy criterion for testing DL systems. The
surprise adequacy criterion emphasizes the importance of
a test input being both challenging and informative while
still adhering reasonably to the underlying training data
distribution. This criterion emphasizes that a good test
input should be sufficiently challenging and informative
but should not deviate excessively from the training data
distribution.

7.3 Mutation-based Test Prioritization for Traditional
Software

Mutation testing [63] entails generating intentional de-
fects, referred to as mutants, within the software code to
assess the test suite’s quality. In the field of traditional
software testing [109], [119], [23], mutation testing can be
employed to assess the fault-detection capabilities of indi-
vidual test cases, thereby achieving test prioritization. Lou et
al. [109] introduced a novel test-case prioritization approach
that determines the order of test cases by considering their
fault detection ability. This ability is defined based on the
analysis of mutation faults simulated from real software
faults. By strategically ordering the test cases, this approach

aims to maximize the efficiency of the testing process by pri-
oritizing the detection of critical faults. Papadakis et al. [23]
conducted a mutation analysis as an alternative technique
to Combinatorial Interaction Testing (CIT). Their research
suggests that the mutants generated using their approach
demonstrate a stronger correlation with code-level faults
than the input interactions targeted by the CIT approach.
This underscores the potential of mutation analysis to offer
valuable insights into underlying faults within software
systems and guide test case prioritization. Furthermore,
Shin et al. [119] proposed a novel test case prioritization
method that combines mutation-based and diversity-based
approaches. They demonstrate that mutation-based priori-
tization is as effective as, or more effective than, random
prioritization and coverage-based prioritization.

7.4 Mutation Testing and Mutation-based Test prioriti-
sation for Deep Learning

Mutation Testing for DNNs The field of mutation test-
ing for DNNs has seen significant exploration, with nu-
merous studies contributing to the evolution of various
mutation operators and frameworks [24], [120], [114]. A
notable contribution in this domain is from Ma et al. [24],
who introduced DeepMutation. This innovative approach
is designed to assess the quality of test data for DL systems
through comprehensive mutation testing. DeepMutation en-
compasses a diverse array of mutation operators at both the
source and model levels. These operators are meticulously
crafted to inject faults into different components of DL
systems, including training data, programming code, and
the models themselves. Building upon this foundation, Hu
et al. further expanded their work with the development
of DeepMutation++ [120], an advanced mutation testing
tool specifically tailored for DL systems. DeepMutation++
introduced a set of new mutation operators that are par-
ticularly suited for feed-forward neural networks (FNNs)
and Recurrent Neural Networks (RNNs). A key feature of
this tool is its capability to dynamically mutate the runtime
states of RNNs, a critical aspect for evaluating the resilience
of these networks under various operational conditions.
Humbatova et al. [114] made a significant stride in the field
by developing DeepCrime, the first mutation testing tool
that implements DL mutation operators grounded in actual
DL faults. DeepCrime is characterized by its comprehensive
set of 24 newly defined mutation operators. These operators
are not just theoretical constructs but are based on real-
world faults observed in DL systems, making DeepCrime a
highly practical tool for testing and improving the reliability
of these systems.
Mutation-based test prioritization for DNNs Wang et
al. [15] introduced PRIMA, an innovative test input priori-
tization technique founded on intelligent mutation analysis.
PRIMA is applicable to both classification and regression
models and possesses the capability to handle test inputs
generated through adversarial input generation techniques,
thereby enhancing the probability of misclassification. How-
ever, PRIMA’s model mutation rules cannot be adapted to
classical ML models.

In this study, we proposed MLPrior, a mutation-based
test input prioritization approach specifically designed for
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classical ML models. The significant differences between
MLPrior and PRIMA are as follows:

• Different Approaches for Model Mutation MLPrior and
PRIMA leverage different model mutation approaches. In
MLPrior, model mutations are specifically designed for
white-box classical machine learning models. These muta-
tions are based on the interpretable nature of these models
and involve modifying the architecture parameters or
weight parameters of the evaluated model. PRIMA, on
the other hand, is primarily focused on DNNs, which are
non-interpretable black-box models. Examples of model
mutations in PRIMA include adding noise to the weights
of neurons and altering the structure of DNN layers.

• Attribute Feature Inclusion Another significant differ-
ence is that MLPrior employs the inherent attribute fea-
tures of classical ML model datasets for test prioritization.
In contrast, PRIMA does not incorporate this informa-
tion into its test prioritization procedure. The motivation
behind MLPrior’s utilization of attribute features for test
prioritization is that classical ML datasets typically exhibit
lower-dimensional features compared to DNN test data.
Additionally, these features are carefully selected by do-
main experts, directly reflecting the attribute information
associated with each test input.

• Feature Generation Strategy In terms of model and input
mutation, compared to PRIMA, MLPrior emphasizes gen-
erating mutation features directly from mutation results.
For example, in model mutation, the ith element in the
vector indicates whether the ith mutated model is ’killed’
by this input. This method is intuitive and reproducible.

• Use of Multiple Ranking Models MLPrior employs five
different ranking models and assesses their effectiveness
in utilizing mutation features for test prioritization. In
contrast, PRIMA utilizes only a single ranking model. By
comparing multiple ranking models, MLPrior can identify
the most effective model for learning mutation features in
the context of test prioritization.

8 CONCLUSION

In order to solve the labeling cost problem for classical
ML models, we propose MLPrior, which prioritizes tests
that are more likely to be misclassified. MLPrior leverages
the unique characteristics of classical ML classifiers, includ-
ing their interpretability and carefully engineered dataset
features, to effectively prioritize test inputs. The founda-
tional principles of MLPrior are twofold: Firstly, tests ex-
hibiting higher sensitivity to mutations are more likely to be
misclassified. Secondly, tests situated closer to the decision
boundary of the model are more susceptible to misclassifi-
cation. Capitalizing on these principles, we design mutation
rules specifically for classical ML models and their datasets.
For each test, we generate mutation features while simulta-
neously transforming its attribute into a feature vector that
can indirectly quantify the proximity between it and the
decision boundary. Concatenating these features, MLPrior
constructs a final vector for each test, which will be inputted
into a pre-trained ranking model for the purpose of predict-
ing its misclassification probability. Finally, MLPrior ranks
all the tests according to their misclassification scores in

descending order. We conducted an extensive study to eval-
uate MLPrior, utilizing 185 different types of subjects that
encompass natural, noisy, and fairness datasets. The experi-
mental results demonstrate that MLPrior exhibits higher ef-
fectiveness compared to existing test prioritization methods,
yielding an average improvement of 14.74%∼66.93% on
natural datasets, 18.55%∼67.73% on mixed noisy datasets,
and 15.34%∼62.72% on fairness datasets.

AVAILABILITY

Our replication package is available at

https://github.com/yinghuali/MLPrior.
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