
Cybersecurity4D2024 Conference (CS4D2024)

Security Assessment of Mobile Banking Apps in
West African Economic and Monetary Union

Alioune DIALLO
SnT/TruX

University of Luxemboug
Kirchberg, Luxembourg

alioune.diallo@uni.lu

Jordan SAMHI
Software Research Group

CISPA Helmholtz Center for Information Security
Saarbrücken, Germany
jordan.samhi@cispa.de

Aicha WAR
SnT/TruX

University of Luxemboug
Kirchberg, Luxembourg

aicha.war@uni.lu

Steven ARZT
Secure Software Engineering

Fraunhofer SIT
Darmstadt, Germany

steven.arzt@sit.fraunhofer.de

Jacque KLEIN
SnT/TruX

University of Luxemboug
Kirchberg, Luxembourg

jacques.klein@uni.lu

Moustapha Awwalou DIOUF
SnT/TruX

University of Luxemboug
Kirchberg, Luxembourg
moustapha.diouf@uni.lu

Tegawendé F. BISSYANDE
SnT/TruX

University of Luxemboug
Kirchberg, Luxembourg

tegawende.bissyande@uni.lu

Abstract—Mobile banking adoption is soaring in Africa,
particularly within the West African Economic and Mone-
tary Union (WAEMU) states. These countries, characterized
by widespread smartphone usage, have witnessed banks and
financial institutions introducing mobile banking applications.
These apps empower users to perform transactions such as
money transfers, bill payments, and account inquiries anytime,
anywhere. However, this proliferation of mobile banking apps
also raises significant security concerns. Poorly implemented
security measures during app development can expose users
and financial institutions to substantial financial risks through
increased vulnerability to cyberattacks. Our study evaluated
fifty-nine WAEMU mobile banking apps using static analysis
techniques. These mobile banking apps were collected from
the 160 banks and financial institutions of the eight WAEMU
countries listed on the Central Bank of West African States
(BCEAO) website. We identified security-related code issues that
could be exploited by malicious actors. We investigated the
issues found in the older versions to track their evolution across
updates. Additionally, we identified some banks from regions
such as Europe, the United States, and other developing countries
and analyzed their mobile apps for a security comparison with
WAEMU banking apps. Key findings include: (1) WAEMU apps
exhibit security issues introduced during development, posing
significant risks of exploitation; (2) Despite frequent updates,
underlying security issues often persist; (3) Compared to banking
apps from developed and developing countries, WAEMU apps
exhibit fewer critical security issues; and (4) Apps from banks
that are branches of other non-WAEMU banks often inherit
security concerns from their parent apps while also introducing
additional issues unique to their context. Our research under-
scores the need for robust security practices in WAEMU mobile

banking app development to enhance user safety and trust in
financial services.

Keywords— Android, mobile banking app, security issue,
code smell, vulnerability, WAEMU country, Sub-Sahara
Africa

I. INTRODUCTION

The financial sector plays a pivotal role in the economic
development of any country, with digital financial services,
including mobile money and mobile banking, emerging as
powerful catalysts for this progress, particularly in Sub-
Saharan African nations. The widespread adoption of mobile
banking is a global phenomenon, with Sub-Saharan Africa
leading the way in its innovative implementation [1]. This
surge can be attributed mainly to the remarkable proliferation
of smartphones, a trend projected to continue its upward
trajectory. Nowadays, approximately 60% of people have
smartphones worldwide [2]. By 2022, smartphone adoption
in Sub-Saharan Africa had reached an impressive 51%, with
projections indicating a substantial rise to 87% by 2030 [3].

Recognizing the strategic advantage of widespread smart-
phone penetration, banks and financial institutions within
the West African Economic and Monetary Union (WAEMU)
region are leveraging this technology to extend banking ser-
vices. This leap serves a dual purpose: broadening access
to banking services for millions and empowering existing



account holders with remote control over their finances, facil-
itating transactions and balance checks. In WAEMU, nearly
all banks and financial institutions have embraced mobile
applications, reaching millions reliant on these platforms for
daily financial transactions.

However, the ubiquity of mobile banking applications is ac-
companied by recurring security concerns, posing challenges
for users and institutions alike. Reports highlight, for example,
the persistence of sensitive keys hard-coded into financial mo-
bile applications across Africa [4], underscoring the potential
for significant financial losses. Despite the growing reliance
on these applications in developing countries, including in
the WAEMU, comprehensive studies on their security remain
scarce. A literature review reveals limited studies on mobile
financial applications in developing nations, with no research
specific to the WAEMU region [5].

Various approaches have been explored to assess the secu-
rity issues of mobile banking apps, ranging from investigating
their origins [6] to conducting forensic examinations and
vulnerability assessments [7], [8]. However, there remains a
gap in research addressing these concerns comprehensively.

Against this backdrop, our study extensively investigates
the security landscape of mobile banking applications in
WAEMU countries. Our research aims to identify prevalent
security issues, establish a comprehensive threat model, an-
alyze the evolution of security across different app versions,
and compare the security posture of WAEMU banking apps
with those from the European Union (EU), the United States
(US), and other developing countries (ODC). Moreover, some
WAEMU financial institutions are branches (children) of other
institutions (parents). We explore the security of their mobile
banking apps and determine if they inherit parent app security
issues.

The contributions of this study are as follows:
• Highlighting the most common security problems affect-

ing WAEMU banking apps.
• Providing possible ways to exploit app vulnerabilities to

understand the risks better.
• Offering an assessment of the security evolution in

these apps, including whether concerns are effectively
addressed in subsequent updates.

• Offering a comparative analysis of the security posture of
WAEMU banking apps in the global context, comparing
them with the applications used by leading African and
International banks.

• Shedding light on the security problems between branch
and parent apps.

These findings underscore the imperative of enhancing mo-
bile banking app security to safeguard users and institutions
in an increasingly digital financial landscape.

We present the rest of the study as follows. Section II
presents the motivation of the study. Section III presents the

background by explaining the concepts of mobile banking
and security code smells. Section IV describes the detailed
methodology followed in this paper. We report the results
in Section V and discuss them in Section VI. We discuss
the threat to validity in Section VII and the related works in
Section VIII. Finally, we conclude the SLR in Section IX.

Artifacts. We release all of our artifacts (e.g., list of
mobile apps, detailed results, etc.):

https://anonymous.4open.science/r/Data for WAEMU
Apps Papers-448B/

II. MOTIVATION OF THIS STUDY

Mobile banking is a reality across the world. With the wide
use of Smartphones in Sub-Saharan Africa [3], banks and fi-
nancial institutions leverage this technology to enhance access
to banking services by developing mobile banking applica-
tions (MBAs). Through mobile banking, financial services,
and people’s money have become at risk with the increased
attack surfaces. In Africa, such as WAEMU, the use of mobile
banking is increasing steadily. Nearly all banks and financial
institutions from WAEMU countries have deployed MBAs,
reaching millions of users who rely on these applications for
their daily financial activities.

However, there are security challenges related to MBAs.
Indeed, the low literacy rate in Sub-Saharan Africa [9] poses a
significant challenge in terms of whether these mobile banking
apps are used. For example, the lack of literacy can lead
users to be victims of fraud or phishing attacks when using
apps. Since MBAs process sensitive data, they are not without
risks and vulnerabilities. These can pose recurrent security
problems. For instance, sensitive keys persist within mobile
financial applications from Africa [4]. Such security issues
can result in significant financial losses for both users and
financial institutions.

These known risks motivate our study. It will contribute to
raising awareness and securing MBAs in WAEMU countries.
As mentioned in a prior work [10]: ”Where there is money,
there must be security,” users must be reassured, and banks
should care about users’ security through MBAs to encourage
their adoption and facilitate financial inclusion.

III. BACKGROUND

A. What is mobile banking?

In this study, we excluded mobile money apps that are not
necessarily related to a bank account. We indeed focus on
mobile banking which offers services that allow customers to
use their bank account through mobile equipment [11]. These
services could be bank transfers from one account to another,
balance checking, or bill payments. In general, banks develop
applications that could be used on Smartphones to facilitate
the use of their services. Those applications are called mobile

https://anonymous.4open.science/r/Data_for_WAEMU_Apps_Papers-448B/
https://anonymous.4open.science/r/Data_for_WAEMU_Apps_Papers-448B/


banking applications or mobile banking apps (shortly MBAs
here).

B. What are security code smells and vulnerability?

Security code smells (code smells or smell) are security
issues coming from a bad implementation and poor design
in software [12], [13]. They are not necessarily exploitable.
However, they could have consequences and could compro-
mise the security and privacy of software users [14]. In this
case, they are called vulnerabilities.

IV. METHODOLOGY

This work assesses the security of MBAs from financial
institutions in the WAEMU countries. This section describes
the Research Questions (RQs) and the app collection and
analysis process.

A. Research questions

Our study aimed to provide a comprehensive understanding
of the security landscape surrounding mobile banking apps in
the WAEMU region. To achieve this, we formulated 4 RQs.

RQ1: To what extent do mobile banking apps from
WAEMU present critical security issues?

We have scanned previously collected banking apps for
vulnerabilities to address this RQ. Several critical issues have
been found in WAEMU banking apps. We have confirmed
some of these critical issues as vulnerabilities by manual
verification and have examined real-world attack scenarios for
some of these critical vulnerabilities. This research question
reveals that banking apps in the WAEMU are highly vul-
nerable and can be easily compromised. Hence, practitioners
must recognize these issues and address them to make mobile
banking safer in the WAEMU.

RQ2: How do security issues evolve in WAEMU bank
apps? Given the ever-evolving landscape of technology, the
discovery of new security issues and vulnerabilities in mobile
apps is a persistent concern. This question investigates the
responsiveness of WAEMU banks to these security concerns.
It investigates the practice of proposing and implementing
regular updates to address these concerns and scrutinizes
whether these updates effectively rectify issues in subsequent
app versions.

RQ3: How vulnerable are WAEMU banking apps
compared to apps from 1) the top 20 EU banks, 2) the
top 20 US banks, and 3) the top 20 other developing
countries’ banks? Our study extends its purview to include
a comparative analysis of WAEMU banking apps against
those of top European Union and United States banks and
top banking apps from other (i.e., non-WAEMU) developing
countries. This comparative assessment serves several critical
purposes: it elucidates whether these apps share similar se-
curity issue profiles, discerns the disparities in vulnerability
severity and distribution, and identifies factors that render

WAEMU banking apps more or less vulnerable than their
international counterparts.

RQ4: How vulnerable are child banking apps compared
to parent banking apps? Some WAEMU banks are branches
of international banks. We carry out this study to investigate
if the apps of those banks (child apps) inherit the problems
of the respective African and international parent banks.

Through the answers to these research questions, we pro-
vide a comprehensive examination of the security status
of mobile banking apps in the WAEMU region, offering
actionable insights and potential avenues for enhancing the
security of these applications to safeguard the interests of both
users and financial institutions.

B. App selection process

1) Collecting WAEMU banking apps: We meticulously
considered all the 160 banks and financial institutions across
the eight WAEMU countries1 listed on the Central Bank of
West African States (BCEAO) website [15]. Subsequently, we
gathered a comprehensive dataset comprising only fifty-nine
(59) Android banking applications from Google Play. We do
not have the same number of applications as institutions (160)
because several institutions have the same mobile app, and
others have none. The oldest available APKs have been col-
lected from December 15 to December 16, 2022. Our decision
to focus exclusively on the Android platform stems from its
predominant usage in Africa. As indicated by statistics [16],
the Android operating system lead the market share in Africa
in November 2022, with a rate of 83.87% .

To better understand the security implications of these
findings, we manually analyzed the apps’ source code. This
manual examination facilitated the establishment of potential
real-world attack vectors for exploiting the identified vulner-
abilities.

2) Selection of old versions of WAEMU apps: We meticu-
lously collected historical versions of these apps to investigate
the evolution of security issues across different versions of
WAEMU banking apps. As previously mentioned, our study
encompasses 59 WAEMU apps, comprising the newest avail-
able APKs. These served as reference points for analyzing the
evolution of security features. We relied on AndroZoo [17]
to procure the historical APKs for all 59 apps. Among the
59 apps, some (approximately 20%) do not have more than
2 versions. AndroZoo provides extensive metadata for each
APK, of which the most important for our study are the
SHA256 hash, package name, and the date of addition (the
date on which the corresponding APK is added to AndroZoo).
We differentiate two versions of the same app if they have the
same package name and different SHA256 hashes. The oldest
one among the two versions is determined considering the

1The eight countries are: Benin, Burkina Faso, Côte D’Ivoire, Guinea-
Bissau, Mali, Niger, Senegal, and Togo



dates of addition to AndroZoo. AndroZoo regularly crawls the
Google Play Store. Hence, the date of addition to AndroZoo
is representative of the age of the app in the store.

To facilitate a comprehensive understanding of security
evolution, we aimed to select five versions for each app,
including the oldest APK. The versions were chosen at an
interval of two months, at least between two consecutive
versions. Several apps have an important number of versions.
For those apps, we considered an interval of one year at
least to choose versions. Some apps did not have sufficient
historical versions, so we did not need to exclude versions in
such cases.

Consequently, our final dataset comprises apps with varying
numbers of versions, ranging from 2 to 5, inclusive of the
reference version. This meticulous approach enables a nu-
anced analysis of security trends and evolution across different
iterations of WAEMU mobile banking applications.

3) Selection of European Union’s and United States apps:
For the European Union (EU) and United States (US) banking
apps, we have selected the top 20 banks for each of them
based on their total asset value [18], [19]. Each of the chosen
banks can have many mobile apps due to their presence in
many countries. Thus, we identified the package names of
these banks’ apps from their respective headquarters cities, as
the package name serves as a unique identifier for each app.

4) Selection of apps from other developing countries: Apps
from developing countries other than WAEMU countries have
been selected, too. The goal is to compare the security of
mobile banking apps within similar development contexts.
To respect the same process as for developed countries,
we selected the top 20 banks from developing countries,
excluding WAEMU members. The selection criteria were
based on the 2023 bank rankings provided by Brandirectory
on its website [20], which ranks banks globally according to
their total assets. Brandirectory’s comprehensive ranking lists
the top 500 banks in 2023, from which we identified the 20
most valuable banks in developing countries, excluding those
from WAEMU.

C. Automated analysis tool

To analyze our collected MBAs, we employed a robust vul-
nerability scanner tool called VUSC2. VUSC is a commercial
tool built upon the Dexpler [21] and Soot framework [22],
as detailed in prior research [23]. This tool translates the
app’s bytecode into a more analyzable format, such as Jimple
code [24], facilitating static analysis to uncover potential
vulnerabilities. Furthermore, VUSC utilizes FlowDroid [25] to
conduct data flow analysis, identifying potential data leakage
points within the app. It is essential to note that the re-
sults generated by VUSC primarily comprise Security-Related

2https://www.sit.fraunhofer.de/en/offers/projekte/vusc/

Code Smells (SRCSs), i.e., all of them are not necessarily
exploitable, as elucidated in the literature [23].

V. EMPIRICAL RESULTS

This section presents the result of our empirical study.
As presented above, we have collected and successfully

analyzed 59 MBAs from the WAEMU countries. The VUSC
scanner has reported numerous potential security issues for
MBAs in WAEMU countries. As these issues are not yet
validated, we call them SRCSs, a term coined in previous
research [23]. We grouped these SRCSs into three categories:
high, medium, and low, as shown in Fig. 1.

A. WAEMU banking app vulnerabilities

In the remainder of this work, due to the high number of
findings across all apps, we focus on the most critical ones,
i.e., the ones labeled as high severity by the VUSC scanner.
The results show that each app has at least one possible
security issue, and half have over fifteen SRCSs. As shown in
Fig. 2, the ten most common SRCSs in the WAEMU banking
apps affect between 20 to 80% MBAs. We next describe these
highly prevalent SRCSes in detail.

Use of insecure cryptographic algorithm (80%). Cryp-
tographic algorithms may be used for tasks such as en-
cryption/decryption, electronic signatures and the verification
thereof, computation of hash functions, and other security-
critical functions. Using an insecure or outdated algorithm
compromises the respective security property. In the case of
encryption, attackers with enough computational power may
be able to retrieve the plaintext without knowing the key via
cryptanalysis or brute-force attacks.

Content provider access from WebViews (78%). Apps
may display web content in a component called WebView.
Allowing this WebView to interact with content providers
inside the same app can be a security risk, especially if the
WebView may be tricked into displaying untrusted content
or executing untrusted JavaScript code.

Bad hostname verifier (51%). When an Android app com-
municates with a server over HTTPS (SSL/TLS), it typically
relies on X.509 certificates to authenticate the server and es-
tablish a secure connection. During the SSL/TLS handshake,
an app must verify that the server’s hostname matches the
hostname(s) listed in the X.509 certificate the server presents.
By default, this check is handled by the operating system.
Apps may, however, implement their own verifier, e.g., to
accept debug certificates during development or to cater to
special use cases. However, if bad practices or implementation
mistakes remain in the productive versions, adversaries may
be able to perform man-in-the-middle (MiTM) attacks. If
successful, such an attack allows intercepting and modifying
all network data between the app and the bank’s server.

https://www.sit.fraunhofer.de/en/offers/projekte/vusc/


Fig. 1: Overview of the number of vulnerabilities found in
WAEMU banking apps.

20%

32%

32%

34%

41%

41%

47%

51%

78%

80%

0 20 40 60 80 100

Percentage of app

Hard−coded cryptographic keys

Insecure cryptography mode

No SSL socket hostname verification

Bad protocol verifier

Vulnrability for breach attack

WebView universal access

Bad certificate chain checking

Bad hostname verifier

Content provider access from WebViews

Insecure cryptography algorithm

S
e

c
u

ri
ty

 i
s
s
u

e
s

Fig. 2: Top ten of the most common critical security issues
found in the WAEMU banking apps and the percentage of
apps for each vulnerability.

Bad certificate chain checking (47%). Like hostname
verification, this vulnerability also focuses on improper han-
dling of the TLS handshake. Proper certificate chain checking
involves verifying that the server’s certificate is issued by
a trusted CA, checking for certificate revocation status, and
verifying the entire certificate chain up to a trusted root CA.
However, if the app fails to check the certificate chain prop-
erly, it could potentially trust a certificate that has not been
issued by a trusted certificate authority (CA) or that has been
tampered with. As explained above, this could compromise
the user’s security via a man-in-the-middle attack.

WebView universal access (41%). The app configures a
WebView such that JavaScript code loaded from files can
access any other resource (regardless of its type), effectively
completely disabling the same origin policy for code executed
from a JS file. This configuration allows JavaScript code to

access content providers and similar Android resources. Con-
sequently, this vulnerability can lead to information disclosure
from arbitrary resources.

Vulnrability for breach attack (41%). This is related
to HTTP compression. If an app enables compression for
an HTTP(s) connection when transferring sensitive data, an
attacker can get information about the corresponding response
by simply injecting plaintext into the request.

Bad protocol verifier (34%). SSL/TLS protocol protects
the app’s data by encrypting the connection between the client
and server. If protocols considered insecure, such as SSL(v1),
SSLv2, SSLv3, TLSv1, and TLSv1.1, are used, this can make
connections vulnerable to exploits.

No SSL socket hostname verification (32%). SSL socket
factory with hostname verification allows connections to be
established by ensuring that the certificate presented by the
server matches the expected hostname. If this is not done, it
can lead to a vulnerability allowing MiTM attacks.

Insecure cryptography mode (32%). A cipher mode ap-
plies a cryptographic algorithm to encrypt or decrypt data
larger than a single block. An insecure cipher mode such as
ECB may enable attackers to decrypt data based on patterns
that remain visible in the ciphertext. In the context of banking
apps, this may lead to serious data leaks.

Hard-coded cryptographic key (20%). A cryptographic
key (key) is a secret that is used to encrypt or decrypt data
(when using symmetric ciphers) or to generate signatures.
If the attacker knows the key, they can decrypt the data or
forge signatures. Keys should never be hard-coded into apps
because attackers can decompile the app to extract the key.
Since all users have the same app with the same key, the
attacker may target all users and decrypt their data.

Furthermore, we have identified the components with the
most critical SRCSs inside the app code to understand if these
SRCSs stem from the app developer’s code or libraries used
by the apps with the help of AndroLibZoo [26]. As presented
in Fig. 3, half of the apps have no SRCSs from their used
libraries, i.e., all SRCSs stem from the original app code.
Further, 75% of the apps have at least four SRCSs in the
developer’s code. The most critical SRCSes have been found
in the developer’s code.

To validate the results yielded by the scanner, we manually
analyzed a representative sample of SRCSs in our set of
MBAs. We confirm that 10 of the 21 SRCSs manually
checked can be exploited; thus, they are vulnerabilities.
Among those 10, 6 are among the top ten most common
security issues. Table I shows these vulnerabilities and
possible ways to exploit them.



TABLE I: Description of vulnerabilities and possible exploit cases.
Security issues Description Possible way to exploit

A cryptographic algorithm is used to encrypt and decrypt
Use of insecure data by defining rules. Apps use insecure algorithms, such
cryptographic as SHA1, MD5, etc., in encrypting and decrypting sensitive By using dictionary attacks, an attacker can
algorithm data. Insecure use of cryptography may enable attackers easily crack the hash using these hash
(CWE-327, CWE-328) to access sensitive information which is supposed to be functions.

protected. Using insecure algorithms can lead to reputation
damage, data loss, etc.
SSL/TLS HostnameVerify refers to the process of validating By using MiTM, attackers can spoof the SSL
that the hostname of the server matches the hostname(s) listed server via a valid certificate for a different

Use of a bad in the X.509 certificate presented by the server during the host, leading to potential security breaches
hostname verify SSL/TLS handshake. The SSL/TLS HostnameVerify process is
(CWE-295) not implemented correctly in some apps, allowing

certificates with incorrect or mismatched hostnames to be
accepted. This can lead to data breaches.
Certificate chain checking ensures the validity of SSL certificates An attacker needs to be in a MiTM position to

Bad certificate chain presented by the server when communicating with the app. The intercept the communication. When the victim
checking (CWE-297) certificate must come from a trusted certificate authority (CA). uses the vulnerable app, the attacker can intercept

Apps fail to check the certificate chain properly. and modify the app and server communication.
No SSL socket Apps create sockets to connect to specified hosts at specified ports. Attacker can perform a MiTM attack to intercept
hostname verification However, many do not perform a hostname verification when communications and decrypt and modify data
(CWE-297) establishing connections. transferred for malicious purposes.

Apps use insecure cryptography cipher mode, such as ECB. Since the same inputs result in the same ciphertext,
Insecure cryptography Using insecure cipher modes may enable attackers to decrypt an attacker can use a chosen plaintext attack (CPA)
mode (CWE-327) or tamper data, which can lead to serious security breaches to guess the encrypted data.

and data leaks. With ECB, the same inputs result in the
same ciphertext.
A cryptographic key (key) is used to generate a secret key By reverse-engineering the app, an attacker

Hard-coded from a SecretKeySpec method to encrypt and decrypt data. can get the hard-coded key and use it to
cryptographic If “key” is known, attackers can deduce the secret key to decrypt any sensitive data that is stored or
key (CWE-321) decrypt data. Developers often hard-code this key into the transmitted using the application or device.

app code.
The initialization vector is used to randomize cipher since the same inputs result in the same

Use of static texts with the same input. When a static IV is used, ciphertext when using static IV, an
initialization vector the same inputs result in the same ciphertext, at attacker can use a chosen plaintext attack
(CWE-1204) least in parts. As such, a new IV should be selected (CPA) to guess the encrypted data.

randomly before each use. The IV is considered public
information.
To type confidential info such as password, pin code, etc.,
there are specific input types that allow hiding the

Use of clear text information when typing, such as “textPassword”, By developing malware, an attacker can
password field “numberPassword”, etc. Instead of using these recommended capture password typing by the target,
(CWE-549) input fields, many apps use clear text fields to enter this or by observing the entry password.

kind of sensitive info. This allows an adversary to observe
the entry password, to be copied in the clipboard, or to be
screen captured using malicious apps.

Sensitive data logged Apps log sensitive data such as username and password. Logged data can be accessed by privileged
(CWE-532, CWE-534) Those logged data will be stored in the logcat memory. system apps, rooting or jailbreaking devices,

or by developing mobile malware.
Hard-coded For authentication to a backend server, the user must choose By reverse-engineering the app, an attacker
backend his/her credentials (username, password). In some apps, can get those credentials and steal sensitive
credentials backend credentials are hard-coded for connection to a data from the backend resource.
(CWE-798) backend resource.

RQ1: WAEMU banking apps present numerous security is-
sues. Most of them have been found in the developers’ code
(instead of libraries). Many security issues within the apps
could be exploitable using various methods towards reverse
engineering apps, developing malware, etc.

B. Security issue evolution across the app versions

This section describes the evolution of security issues
through the various app versions. Among the 59 MBAs con-
sidered in this study, 47 have at least two versions, including
the reference one. Recall that not all apps have the same
number of versions. To investigate the evolution, we only
consider 3 versions for each app among those with at least 3
versions, representing 68% (32 over 47 MBAs).

Table II illustrates the number of security issues on the
chosen versions. Around 20 (62%) out of the 32 MBAs

have had increasing security issues between the first and
intermediate versions. This number is around 22 (68%) be-
tween the intermediate and the reference versions. Globally,
approximately 21 (representing 65%) of these MBAs have had
increasing security issues since the first version was available.
However, some of them have seen a decreased number of
security issues on the intermediate version, but it has increased
significantly in the reference one.

To determine the percentage of security concerns that
disappeared and the number of new ones, we considered
all 47 apps. In Table III, we give the means of the number
and percentage of SRCSs that disappeared and the number
of new ones between the versions. We can see that almost
all the WAEMU banking apps have SRCSs disappeared,
and many new ones appear from the first to the reference app.



Fig. 3: SRCSs in developer code and libraries.

TABLE II: Security issue evolution across the app versions.
#SRCSs in #SRCSs in #SRCSs in

Apps 1st version intermediate version reference version
(oldest version) (latest version)

A1 49 45 100
A2 29 32 38
A5 12 20 28
A7 99 29 203
A9 60 100 105
A12 175 135 112
A18 95 45 103
A20 58 76 161
A21 100 102 101
A23 49 52 159
A24 59 25 53
A25 34 14 49
A26 42 108 490
A27 34 36 30
A28 84 49 116
A29 48 4 26
A31 35 18 24
A32 28 29 55
A33 30 33 25
A35 78 81 34
A36 82 28 119
A37 30 119 18
A38 20 26 27
A39 20 35 133
A40 22 68 77
A41 28 26 50
A42 133 129 95
A43 66 70 38
A44 35 98 77
A45 8 46 52
A46 103 107 48
A47 49 68 155

RQ2: We observe an increasing trend of security issues with
the update of apps for most of the studied MBAs. Indeed,
while developers propose updates, the new versions are not
necessarily more secure: some issues are fixed while new ones
are introduced in the process.

TABLE III: Tracking of the security issues across the app
versions.

Average of Average of Average of
Apps disappear SRCSs (#) disappear SRCSs (%) new SRCSs (#)
A1 6.33 13.67 23.33
A2 2.25 7.35 4.5
A3 0 0 17
A4 2 5 16
A5 3.25 18.75 7.25
A6 41 40.2 46
A7 36.5 36.87 88.5
A8 29 25.22 48
A9 24.25 21.89 35.5
A10 2 22.22 3
A11 2 10 99
A12 67.67 48.43 46.67
A13 0 0 14
A14 2 5.88 7
A15 0 0 11
A16 2 22.22 2
A17 2 22.22 2
A18 34 37.87 36
A19 28 58.33 49
A20 42 35.28 67.75
A21 32 35.6 32.25
A22 12 24 14
A23 25 48.19 80
A24 14.5 27.82 13
A25 12.5 40.97 20
A26 22.25 31.92 134.25
A27 5.67 15.85 4.33
A28 17.75 24.14 25.75
A29 17.33 72.5 10
A30 0 0 16
A31 5.75 18.35 3
A32 3.5 12.5 17
A33 8.5 24.9 7.25
A34 0 0 0
A35 36.25 32.01 25.25
A36 24.33 38.84 36.67
A37 32 38.35 29
A38 0.75 2.96 2.5
A39 5 19.44 33.25
A40 5.75 10.9 19.5
A41 3 10.92 8.5
A42 56.75 48.85 47.25
A43 12 17.26 2.67
A44 28.75 52.23 39.25
A45 3.75 9.34 14.75
A46 18.5 18.74 4.75
A47 9 15.2 35.5

C. App security comparison

General comparison. This comparison is based on all
critical issues found in the apps. In other words, we take
all the most critical issues from WAEMU banking apps and
compare them with those coming from apps of the top 20
European Union (EU), top 20 United States (US), and top 20
other developing countries (ODC) banks. The results show
that WAEMU banking apps are more secure than those of
EU, US, and ODC banks. Indeed, as illustrated in Fig. 4, 50%
of the WAEMU banking apps have at least 15 critical issues,
compared to EU, US, and ODC apps, where 50% of the apps
have respectively more than 31, 25, and 17. Moreover, an
average of approximately 24 critical security issues per app
is found in WAEMU apps. EU, US, and ODC banking apps



0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

N
u

m
b

e
r 

o
f 

c
ri
ti
c
a

l 
S

R
C

S
s

EU ODC US WAEMU

Fig. 4: Comparison with WAEMU apps vs. EU, US, and other
developing countries banking apps.

0

5

10

15

20

25

30

35

40

45

50

55

60

N
u

m
b

e
r 

o
f 

c
ri
ti
c
a

l 
S

R
C

S
s

SRCSs in libraries SRCSs in the developer code

EU

WAEMU

Fig. 5: Comparison with WAEMU vs. EU banking apps based
on the security issue location.

present approximately 31, 39, and 38 critical security issues
per app, respectively. We have also compared the security of
those apps based on more specific criteria, which we will
explain next.

Comparison based on the security issue location. We
compare the security of the MBAs based on the location of
the security issues found. For EU banking apps compared
to WAEMU banking apps, we found that around 75% of the
EU apps have at least one critical issue found in libraries used
against 50% of the apps from WAEMU, as illustrated in Fig. 5.
Furthermore, each of the EU apps has two or more critical
issues in the developer code, unlike WAEMU apps, which
have some that do not have any issues with the developer code.
As shown in Fig. 6, US banking apps have more issues found
in libraries and the developer code than WAEMU banking
apps. Indeed, Fig. 6 shows that 50% of the US apps have
more than ten critical issues in libraries when only 50% of
the WAEMU apps have critical issues found in libraries, and
the number does not reach ten. In addition, each US banking
app presents at least three critical issues in the developer code,

0

5

10

15

20

25

30

35

40

45

50

55

60

N
u

m
b

e
r 

o
f 

c
ri
ti
c
a

l 
S

R
C

S
s

SRCSs in libraries SRCSs in the developer code

US

WAEMU

Fig. 6: Comparison with WAEMU vs. US banking apps based
on the security issue location.

whereas around 25% of the WAEMU apps have less than four
critical issues. As for MBAs from other developing countries,

0

5

10

15

20

25

30

35

40

45

50

N
u

m
b

e
r 

o
f 

c
ri
ti
c
a

l 
S

R
C

S
s

SRCSs in libraries SRCSs in the developer code

ODC

WAEMU

Fig. 7: Comparison with WAEMU apps vs. other developing
countries’ banking apps based on the security issue location.

Fig. 7 shows that there are around 75% of them present a
critical issue found in libraries. In addition to this, around
50% of them have at least two critical issues, whereas only
50% of WAEMU apps present at least one critical issue found
in libraries. Besides that, Fig. 7 also shows that 50% of the
MBAs from other developing countries present at least 12
critical issues in developer code compared to WAEMU apps,
in which 50% present 14 critical issues in the developer code.

Comparison based on the top ten most common critical
issues. Most of the top security issues in EU, US, and ODC
are the same in WAEMU, as highlighted in Fig. 8, including
static initialization vector (IV), hard-coded password, bad SSL
error handling and file system access through WebView.

A random initialization vector (IV) ensures that encrypting
the same data multiple times leads to different ciphertexts.
This precaution prevents attackers from matching ciphertexts
against pre-computed tables (e.g., Rainbow Tables) to derive
the plaintext. If the IV is constant, this protection is rendered



20%

32%

32%

34%

41%

41%

47%

51%

78%

80%

0 20 40 60 80 100

Percentage of app

Hard−coded cryptographic keys

Insecure cryptography mode

No SSL socket hostname verification

Bad protocol verifier

Vulnrability for breach attack

WebView universal access

Bad certificate chain checking

Bad hostname verifier

Content provider access from WebViews

Insecure cryptography algorithm

S
e

c
u

ri
ty

 i
s
s
u

e
s

(a) Top ten of WAEMU apps’ most common critical
issues.

45%

45%

50%

50%

55%

60%

65%

70%

70%

80%

0 20 40 60 80 100

Percentage of app

Bad certificate chain checking

Bad hostname verifier

Insecure cryptography algorithm

Insecure cryptography mode

Hard−coded password

Content provider access from WebViews

Hard−coded cryptographic keys

No SSL socket hostname verification

Vulnerability for breach attack

Static initialization vector

S
e

c
u

ri
ty

 i
s
s
u

e
s

(b) Top ten of EU apps’ most common critical issues.

40%

40%

40%

50%

55%

60%

60%

65%

85%

85%

0 20 40 60 80 100

Percentage of app

Bad SSL error handling

Insecure cryptography algorithm

WebView universal access

Bad protocol verifier

No SSL socket hostname verification

Hard−coded cryptographic keys

Static initialization vector

Content provider access from WebViews

Hard−coded password

Vulnerability for breach attack

S
e

c
u

ri
ty

 i
s
s
u

e
s

(c) Top ten of US apps’ most common critical issues.

40%

40%

40%

45%

50%

60%

60%

65%

65%

70%

0 20 40 60 80 100

Percentage of app

Bad protocol verifier

File System Access Through WebView

Insecure cryptography mode

Bad SSL error handling

Hard−coded password

Hard−coded cryptographic keys

No SSL socket hostname verification

Content provider access from WebViews

Static initialization vector

Vulnerability for breach attack

S
e

c
u

ri
ty

 i
s
s
u

e
s

(d) Top ten of ODC apps’ most common critical issues.

Fig. 8: Comparison of WAEMU and EU, US, and other developing country banking apps.

ineffective, and tables can be pre-computed for this IV. This
problem is common in EU, US, and ODC banking apps as
illustrated in Fig. 8b, 8c, and 8d.

In WAEMU apps, on the other hand, most apps use old
algorithms for encrypting and decrypting data, as highlighted
by the high number of apps containing insecure cryptography
algorithm issues in Fig. 8a. Such algorithms can be broken
regardless of a potential IV problem.

At least half of the EU, US, and ODC banking apps use
hard-coded passwords to derive a cryptography key, which is
then used to encrypt and decrypt data. Such behavior is more
complex than directly hard-coding the key but leads to the
same vulnerability. In 20% of the WAEMU apps, this key is
directly hard-coded, avoiding the key derivation step. In either
case, attackers can reconstruct the key and decrypt the data.

An SSL error can occur when a client loads a resource
through webView. Consequently, the applications should
properly handle SSL errors, allowing SSL connections to
be aborted when errors occur. In US and ODC apps, as
presented by their top ten in Fig. 8c and 8d, many apps ignore
SSL certificate errors, making them vulnerable to man-in-the-
middle attacks. WAEMU apps, on the other hand, do not have
these issues in their top ten.

As highlighted by the percentage in Fig. 8d, many ODC
apps configure a WebView such that the WebView can only
access files on the device’s file system. In WAEMU apps,
this practice is uncommon. However, they use universal
access, which allows access to any resource, including files.

RQ3: Banking apps from the WAEMU appear to present
fewer critical issues than MBAs from the top 20 of the EU,
US, and other developing countries (ODC). Their security
issues, as well as those of the apps from the EU, the US,
and other developing countries, come from libraries and
developers’ code. However, WAEMU apps present less critical
issues in the developer code, as well as in libraries. Based on
the top 10 security issues, WAEMU apps have avoided some
of the critical issues that others have, but some specific issues
are more prevalent.

D. Child and parent banking apps

Some of the WAEMU financial institutions are subsidiaries
(child banks) of banks from other regions (parent banks).
Some parent banks are from African countries (African parent
banks), and others are from non-African countries (Interna-
tional parent banks). In this section, we perform a security



TABLE IV: Comparison of SRCS numbers between African
child and parent apps.

African Parent Child # of child # of parent % of inherit % of new
banking apps (AP) apps app SRCSs app SRCSs SRCSs SRCSs

A1 100 33 22% 78%
AP1 A5 28 33 54% 46%

A15 28 33 54% 46%
AP2 A11 117 38 11% 89%

A14 39 72 33% 67%
A24 53 72 30% 70%

AP3 A25 49 72 43% 57%
A41 50 72 44% 56%
A47 155 72 14% 86%
A48 23 72 83% 17%

AP4 A29 26 36 54% 46%
AP5 A32 55 18 18% 82%
AP6 A38 27 35 19% 81%

app comparison of child banking apps with their respective
parent banking apps from both regions.

On the one hand, 13 over 59 MBAs are African child
banking apps. As illustrated in Table IV, all of them inherit
security issues from African parent banking apps, representing
a mean of 37% security issues inherited. Furthermore, at least
17% of their security issues are new ones.

On the other hand, 6 over 59 MBAs are International
child banking apps. As illustrated in Table V, all of the
International child banking apps inherit security issues from
International parent banking apps, representing a mean
of 20% security issues inherited. More than 65% of their
security issues are new.

TABLE V: Comparison of SRCS numbers between Interna-
tional child apps and International parent apps.

Intrenational Parent Child # of child # of parent % of inherit % of new
banking apps (IP) apps app SRCSs app SRCSs SRCSs SRCSs

A16 29 42 14% 86%
IP1 A17 29 42 14% 86%

A49 12 42 33% 67%
IP2 A36 119 29 10% 90%
IP3 A39 133 53 26% 74%
IP4 A40 77 48 21% 79%

RQ4: Child apps always inherit security issues from the
parent apps, with an important number. Further, they always
present several new ones.

VI. DISCUSSIONS AND RECOMMENDATIONS

A. Discussion about results

Our analysis also reveals many SRCSs on the developers’
code and the libraries used by the WAEMU banking apps.
However, most of them have been found in the developers’
code, suggesting that developers compromise, intentionally
or not, the security of users. To avoid such security issues,
developers must understand the best practices and know how
the required features of a banking app can be implemented
securely.

Based on the most critical security issues (csi) found
in the MBAs, WAEMU banking apps present fewer issues
(average of 24 csi/app approximatively) than EU, US, and

ODC banking apps, which present 31, 39, and 38 csi/app
respectively. Most of these security issues have been found
in the developer code. On average, WAEMU apps have fewer
issues than EU, US, and ODC banking apps introduced by
developers. This could be explained by the higher number
of lines of code in non-WAEMU banking applications than
in WAEMU banking applications. It could simply mean that
WAEMU banking application developers are more concerned
with best practices when developing applications than non-
WAEMU banking application developers as well.

Among the security issues found, many could be potentially
exploitable. For instance, cryptography is used to secure users’
sensitive data and avoid unauthorized access by attackers [27].
However, many cryptographic algorithms are considered out-
dated and insecure over time, including SHA1 and MD5.
However, they are still used prevalently in mobile banking
apps. As illustrated in Listing 1, apps often use insecure hash
functions to hash sensitive data. In this app, when updating
the password, the new one is recuperated (in line 4), hashed
using md5, and put in a string variable (in line 32). When
a malicious person retrieves this string value, the password
can be easily recovered. This practice is the most common
since it affects 80% of the WAEMU apps. This suggests
that all the affected apps could be potentially compromised,
leading to significant impacts, including data breaches, data
loss, and reputation damage [28]. It is also important to use
strong cryptographic algorithms. Still, it is also important
for developers to check the best practices regularly since
algorithms considered more secure could be insecure over
time. Besides that, banking apps often use a hard-coded
cryptographic key to encrypt and decrypt data. If this key is
known by a malicious person (which is trivial to achieve by
decompiling the app), it significantly increases the possibility
of recovering the encrypted data [29]. The code snippet in
Listing 2 shows an example of such a hard-coded key (line
4) being used for generating a secret key (line 9) which is used
in the encode (line 12) and decrypt (line 19) methods. These
methods are later used for encrypting and decrypting data,
including passwords, one-time passwords (OTP), and secret
questions/answers. Our analysis found this in 20% of the apps,
representing the 10th most common security issues. There are
more vulnerabilities among the ten most prevalent security
issues such as access to content providers within WebView
(78%), which may allow access to protected content [30], bad
hostname verifier (51%), which may allow certificates with
incorrect or mismatched hostnames to be accepted leading
to data breaches, bad certificate chain checking (47%), which
could potentially trust a certificate that has not been issued by
a trusted certificate authority or that has been tampered with
allowing a man-in-the-middle attack, no SSL socket hostname
verification (32%) when establishing connections, which can
lead to a man-in-the-middle attack, and more. Several MBAs



1 public class classeName {
2 [...]
3 final EditText editText = (EditText) findViewById(R.id.txt0ldPassword)Al
4 final EditText editText2 = (EditText) findViewById(R.id.txtNewPassword) ;
5 final Editrext editiexts = (Edittext)

rindviewbyid(K.d.txtcontirmpassword);↪→
6 ((Button) findViewById(R.id.btnChange)).setOnClickListener(new

View.OnClickListener) {↪→
7 @Override
8 public void onClick(View view) {
9 final String str2;

10 if (...) {
11 [...]
12 }
13 else {
14 String obj = editText2.getText(). toString();
15 try {
16 MessageDigest instance = MessageDigest.get Instance ("MD5");
17 instance.update("P@#$&*(-+"-getBytes(), 0, 10);
18 String str3 = obj * new Biginteger(1,

instance.digest).toString (16);↪→
19 MessageDigest instance2 = MessageDigest.getInstance ("MD5");
20 instance2.update(str3.getBytes(), 0, str3.length());
21 obj = new BigInteger(1, instance2.digest()).toString(16);
22 } catch (Exception unused) {
23 }
24 [...]
25 String obj2 = editText2.getText).toString();
26 try {
27 MessageDigest instance3 = MessageDigest-getInstance ("MD5");
28 instance3.update("P@#$&*(-+"-getBytes(), 0, 10);
29 obj2 = obj2 + new BigInteger(1, instance3.digest()).toString

(16);↪→
30 MessageDigest instance4 = MessageDigest.getinstance ("MD5");
31 instance4.update(obj2.getBytes(), 0, obj2. length()):
32 str2 = new BigInteger(1, instance4.digest()).toString(16);
33 } catch (Exception unused2) {
34 str2 = obj2;
35 }
36 [...]
37 }
38 [...]
39 }
40 [...]
41 }

Listing 1: App using an insecure crypto algorithm.

have the same developer, which could explain the frequency
of certain security problems.

Even outside the top 10 list, there are other severe vul-
nerabilities that, albeit not very common, can be potentially
exploitable and affect several apps. For example, several
WAEMU apps log sensitive information such as the user’s
password under some circumstances, as illustrated at line 26
in listing 3. This vulnerability could be exploitable by simply
connecting the device to a PC and using adb3 commands [31].
Other apps installed in the same device, such as malicious
or privileged system apps, could also potentially exploit this
vulnerability.

Developers should avoid bad practices, including hard-
coded keys and credentials and logging sensitive data. They
must properly verify the hostname and certificate authority
before connecting with servers through the apps.

By investigating security issue evolution through the app
versions, we identified an increased number between the
first and the intermediate versions in most WAEMU apps
(approximately 62%), as well as between the intermediate
and the reference versions (approximately 68%). This indi-
cates that even if banks and financial institutions regularly
propose updates (at least 3 versions in 68% apps), these
updates are ineffective in fixing the security issues. Ideally,
updates should improve the security of the apps by fixing

3https://developer.android.com/tools/adb

1 public class globalmethods {
2 private static final String ALGO = "AES";
3 [...]
4 private static final byte[] keyValue = {64, 97, 112, 101, 120, 53, 48,

102, 116, 119, 64, 114, 51, 53, 49, 56};↪→
5
6 [...]
7
8 private static Key generateKey() throws Exception {
9 return new SecretKeySpec(keyValue, ALGO);

10 }
11
12 public static String encode(String str) throws Exception {
13 Key generateKey = generateKey();
14 Cipher instance = Cipher.getInstance(ALGO);
15 instance.init(1, generateKey);
16 return Base64.encodeToString(instance.doFinal(str.getBytes()),

0).replace(IOUtils.LINE_SEPARATOR_UNIX, "");↪→
17 }
18
19 public String decrypt(String str) {
20 try {
21 Key generateKey = generateKey();
22 Cipher instance = Cipher.getInstance(ALGO);
23 instance.init(2, generateKey);
24 return new String(instance.doFinal(Base64.decode(str.getBytes(),

0)));↪→
25 } catch (Exception unused) {
26 return str;
27 }
28 }

Listing 2: App using a hard-coded key.
1 public class CodeSecretActivity extends AppCompatActivity {
2 private Button btnConfirmer;
3 private EditText editTextCodeSecret;
4 private EditText editTextNewCodeSecret;
5 private Intent passwordIntent;
6 private MyProgressDialog pbar;
7 @Override
8 public void onCreate(Bundle bundle) {
9 new ProgressUpdatePassword().execute(stringExtra, stringExtra2,

CodeSecretActivity.this.editTextNewCodeSecret.getText().toString());↪→
10 this.editTextCodeSecret = (EditText)

findViewById(R.id.edittext_code_login);↪→
11 this.editTextNewCodeSecret = (EditText)

findViewById(R.id.edittext_new_code_login);↪→
12 this.btnConfirmer = (Button) findViewById(R.id.btn_new_code);
13 Intent intent = getIntent();
14 this.passwordIntent = intent;
15 final String stringExtra = intent.getStringExtra("username");
16 final String stringExtra2 =

this.passwordIntent.getStringExtra("password");↪→
17 this.btnConfirmer.setOnClickListener(new View.OnClickListener() {
18 @Override
19 public void onClick(View view) {
20 if (...) {
21 [...]
22 } else {
23 new ProgressUpdatePassword().execute(stringExtra,

stringExtra2,
CodeSecretActivity.this.editTextNewCodeSecret.getText()
.toString());

↪→
↪→
↪→

24 Log.i("username ", stringExtra);
25 Log.i("password ", stringExtra2);
26 Log.i("new password ",

CodeSecretActivity.this.editTextNewCodeSecret.getText()
.toString());

↪→
↪→

27 }
28 }
29 });
30 }
31 [...]
32 }

Listing 3: App logging a password.

security issues. Based on the numbers presented in Table III,
several SRCSs have disappeared between the first to the last
(reference) version. However, the number of new SRCSs has
risen significantly, almost doubling the number of disappeared
SRCSs in most WAEMU apps.

We also noticed that several banks and financial institutions
do not propose updates regularly. For instance, in more than
one year, they could propose a single update or not. This
could suggest they do not care about their customers’
security. Apps should be regularly updated to consider new
security trends, and issues must be fixed after updates.

https://developer.android.com/tools/adb


Of the 59 WAEMU banking apps, 19 out of them are from
banks with parents in a non-WAEMU country, among which
13 have African parents (AP), while 6 have international
parents (IP). We noticed interesting findings by comparing
these apps with those from the parent banks. Indeed, the
19 (child banking apps) inherit security issues from parent
banking apps: from 11 to 83% of the issues for AP and from
14 to 33% for IP. It has also been noticed that even if all the
child banking apps introduce several new security issues, most
parent banking apps have more security issues than them.

B. Limitations and future directions

This work, investigating the security of mobile banking
apps in WAEMU countries, highlights the security issues
mostly introduced by the developers. In this study, we point
out potentially exploitable security issues and propose use
cases that could exploit them. As it is important to know
if these security issues are exploitable to better understand
the security impacts, the future direction could be to propose
approaches and methods for exploiting these issues. When
comparing the security of WAEMU apps with those from
other regions, we focused solely on the total number of secu-
rity issues, the ten most common issues, and their locations.
However, relying on the number of security issues alone can
introduce bias, as the number of issues may correlate with
the app’s size or the number of lines of code. To address
this, future investigations could consider the number of lines
of code in each app to achieve more accurate and unbiased
results. Mobile money apps are as important as mobile bak-
ing apps since they contribute to financial inclusion. Future
research could investigate those apps and extend the study
context rather than limiting it to WAEMU countries only.

VII. THREAT TO THE VALIDITY

We gathered the latest app versions from WAEMU banks
in December 2022. It is likely that from then until the time
of this paper’s composition, banks have introduced new APK
versions by addressing and rectifying security issues. This
could potentially impact the relevance of this study’s findings.

We have conducted a manual review of the app source
codes to verify the identified SRCSs and determine which
ones pose vulnerabilities. However, due to time limitations
and the abundance of certain SRCSs, we were unable to
examine all SRCSs in every MBA. It is crucial to understand
that an SRCS might be a vulnerability in some apps but not
in others. For instance, a scanner might detect SHA1 or MD5
hashing sensitive data such as usernames and passwords in
one app, while in another app, it might hash data that does
not significantly compromise user security.

We examined the evolution of security issues across app
versions, focusing only on those with at least three versions.
We tracked the occurrence of each SRCS within these apps,

comparing its frequency between consecutive versions. If an
SRCS’s frequency increased in the next version, we consid-
ered it as ‘increased’, with the increase being the difference
in occurrence numbers between the two versions. If not, we
considered the SRCS as ‘fixed’. Thus, we considered an SRCS
‘fixed’ if its occurrence number decreased in the subsequent
version. It is important to note that an issue might disappear
due to intentional fixing or code snippet deletion. An SRCS
instance might be present in one version and disappear in
the next, regardless of whether its occurrence number has
surged. Conversely, new SRCSs might emerge even if the oc-
currence number has dropped. Given the difficulty in tracking
disappeared SRCS instances, we focused solely on occurrence
numbers.

VIII. RELATED WORK

To our knowledge, no study focused on mobile banking
apps in WAEMU countries. However, several works have
been performed on mobile banking and money apps in other
contexts.

Bassolé et al. [32] investigate Android banking and pay-
ment apps in African countries by identifying specific vulner-
abilities and raising awareness of the security in those apps.
The authors provide valuable information to developers and
stakeholders, enabling them to improve security measures and
protect user data.

Bowers et al. [33] perform a security analysis of digital
credit apps in developing countries. In their study, they
investigated the privacy policies of several companies and
found previously undisclosed data types were collected. They
investigated the configurations between apps and servers, as
well, and they discovered widespread misconfiguration of
encryption.

In their work, Latifa et al. [34] investigate the impacts
that permissions could have on the security of users’ mobile
banking apps. By analyzing the permissions requested by
some mobile banking apps from Maghreb countries, they
found many apps use unnecessary and dangerous permissions.

Bojjagani and Sastry [35] propose a threat model (VAPTAi)
for enhancing the security of Android and iOS mobile banking
apps. VAPTAi is designed for the assessment of vulnerabilities
and penetration testing of mobile banking apps. This work is
a bit similar to one of their prior work in which the same
authors propose a tool that identifies threats at different levels,
including app, network, and device levels [36]. In this work,
they analyze vulnerabilities using techniques such as static,
dynamic, and forensic analysis and identify several attack
surfaces.

Kaka et al. [37] evaluate the vulnerability of mobile banking
apps from India by mainly performing man-in-the-middle
(MiTM) attacks. In their work, the authors discover that in



most apps, MiTM attacks could be successfully achieved even
if the apps use HTTPS for communication with the servers.

Castle et al. [10] evaluate the security challenges of mo-
bile money systems in the developing world by identifying
vulnerabilities, assessing the factors contributing to them,
and proposing potential solutions to enhance the security of
such systems. In the same paper, the authors have given a
response to a prior work in which Reaves et al. [38] identify
and document the security and privacy issues in branchless
banking apps in order to raise awareness among developers,
financial institutions, and regulators about the importance of
robust security measures.

IX. CONCLUSION

This study performed a security assessment of mobile apps
from banks and financial institutions in the West African Eco-
nomic and Monetary Union (WAEMU) countries. We have
statically analyzed fifty-nine (59) collected mobile banking
apps (MBAs) from the eight WAEMU countries, and the
results show that there are many vulnerabilities that can lead
to several real-world attacks.

An attacker could reverse-engineer the apps to retrieve
hard-coded backend credentials and cryptographic key used
for encrypting/decrypting data. Additionally, attackers could
use dictionary attacks to crack hashes obtained from insecure
algorithms such as SHA1 and MD5. They could develop mo-
bile malware to extract sensitive data, such as usernames and
passwords, from log files in the device or capture credentials
entered into unprotected (clear text) UI fields. Most security
issues are found in the developers’ code. This indicates that
developers, whether intentionally or not, introduce vulnera-
bilities into mobile apps, resulting in user privacy violations
and potential damages. As a result, the reputation of financial
institutions can be compromised.

Some banks and financial institutions offer updates to their
mobile banking apps (MBAs), but these updates often do
not address all security issues. Additionally, new security
vulnerabilities frequently emerge in the latest versions. Other
institutions either do not provide updates or do so irregularly.
The emergence of new threats and exploitation techniques can
compromise app security if the latest protection techniques are
not implemented and newly discovered security breaches are
not addressed.

According to the results of the comparison of WAEMU
apps with European Union (EU) apps, United States (US)
apps, and developing countries other than WAEMU countries
(ODC), MBAs from WAEMU seem to be more secure than
those. Some WAEMU apps are banking apps of subsidiaries
of banks in other regions. Our analysis shows that those
apps always inherit some security issues of their parent
apps, and almost all present several new ones. This indicates

that subsidiary apps seem to be more vulnerable and can
compromise user security much more than parent apps.

As part of responsible disclosure, we have contacted some
banks to discuss our findings regarding their MBAs. The goal
was to help them fix these concerns to improve the security of
their apps. It was hard to find a security contact for reporting
in many banks. In some cases, the email address in the Play
Store did not exist or was a Gmail address. We did not get
responses from the banks we tried to contact. No bank had a
proper vulnerability disclosure process.

We have given recommendations for the developers to allow
them to avoid some practices that can lead to damage and
adopt more secure practices.

X. DATA AVAILABILITY

To promote transparency in scientific research, we make all
of the artifacts used in this study available to the community:

https://github.com/liounea/Data for WAEMU Apps Papers

ACKNOWLEDGMENTS

This work is supported by the Luxembourg Ministry
of Foreign and European Affairs through their Digi-
tal4Development (D4D) portfolio under the project LuxWAyS
(Luxembourg/West-Africa Lab for Higher Education Capacity
Building in CyberSecurity and Emerging Topics in ICT4Dev.)

REFERENCES

[1] B.E.I. (2016) Le secteur bancaire en afrique subsaharienne:
Évolutions récentes et inclusion financière numérique. [On-
line]. Available: https://www.eib.org/attachments/efs/economic report
banking africa digital financial inclusion fr.pdf

[2] A. Turner. (2024) How many people have smartphones in
the world? [Online]. Available: https://www.bankmycell.com/blog/
how-many-phones-are-in-the-world#

[3] Osiris. (2023) En afrique subsaharienne, le taux d’adoption des
smartphones atteindra 87% en 2030. [Online]. Available: http:
//www.osiris.sn/En-Afrique-subsaharienne-le-taux-d.html

[4] Approov. (2023) Security challenges of financial mobile
apps in africa. [Online]. Available: https://approov.io/info/
security-challenges-of-financial-mobile-apps-in-africa

[5] A. Diallo, J. Samhi, T. Bissyandé, and J. Klein, “(in) security of mobile
apps in developing countries: A systematic literature review,” arXiv
preprint arXiv:2405.05117, 2024.

[6] E. D. Ansong and T. Q. Synaepa-Addision, “A comparative study of
user data security and privacy in native and cross platform android
mobile banking applications,” in 2019 International Conference on
Cyber Security and Internet of Things (ICSIoT), 2019, pp. 5–10.

[7] A. Uduimoh, I. Idris, O. Osho, and S. Abdulhamid, “Forensic analysis
of mobile banking applications in nigeria,” i-manager’s Journal on
Mobile Applications and Technologies, vol. 6, pp. 9–20, 06 2019.

[8] O. Osho, U. L. Mohammed, N. N. Nimzing, A. A. Uduimoh, and
S. Misra, “Forensic analysis of mobile banking apps,” in Computational
Science and Its Applications – ICCSA 2019, S. Misra, O. Gervasi,
B. Murgante, E. Stankova, V. Korkhov, C. Torre, A. M. A. Rocha,
D. Taniar, B. O. Apduhan, and E. Tarantino, Eds. Cham: Springer
International Publishing, 2019, pp. 613–626.

[9] W. P. Review. (2024) Literacy rate by country 2024. [On-
line]. Available: https://worldpopulationreview.com/country-rankings/
literacy-rate-by-country

https://github.com/liounea/Data_for_WAEMU_Apps_Papers
https://www.eib.org/attachments/efs/economic_report_banking_africa_digital_financial_inclusion_fr.pdf
https://www.eib.org/attachments/efs/economic_report_banking_africa_digital_financial_inclusion_fr.pdf
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world#
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world#
http://www.osiris.sn/En-Afrique-subsaharienne-le-taux-d.html
http://www.osiris.sn/En-Afrique-subsaharienne-le-taux-d.html
https://approov.io/info/security-challenges-of-financial-mobile-apps-in-africa
https://approov.io/info/security-challenges-of-financial-mobile-apps-in-africa
https://worldpopulationreview.com/country-rankings/literacy-rate-by-country
https://worldpopulationreview.com/country-rankings/literacy-rate-by-country


[10] S. Castle, F. Pervaiz, G. Weld, F. Roesner, and R. Anderson, “Let’s
talk money: Evaluating the security challenges of mobile money in
the developing world,” in Proceedings of the 7th Annual Symposium
on Computing for Development, ser. ACM DEV ’16. New York,
NY, USA: Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/3001913.3001919

[11] K. Pousttchi and M. Schurig, “Assessment of today’s mobile banking
applications from the view of customer requirements,” in 37th Annual
Hawaii International Conference on System Sciences, 2004. Proceed-
ings of the. IEEE, 2004, pp. 10–pp.

[12] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lu-
cia, and D. Poshyvanyk, “When and why your code starts to smell bad
(and whether the smells go away),” IEEE Transactions on Software
Engineering, vol. 43, no. 11, pp. 1063–1088, 2017.

[13] A. A. Elkhail and T. Cerny, “On relating code smells to security
vulnerabilities,” in 2019 IEEE 5th intl conference on big data security
on cloud (BigDataSecurity), IEEE Intl Conference on High Performance
and Smart Computing,(HPSC) and IEEE intl conference on intelligent
data and security (IDS). IEEE, 2019, pp. 7–12.

[14] M. Ghafari, P. Gadient, and O. Nierstrasz, “Security smells in android,”
in 2017 IEEE 17th international working conference on source code
analysis and manipulation (SCAM). IEEE, 2017, pp. 121–130.

[15] BCEAO. (2022, june) Paysage bancaire. [Online]. Available: https:
//www.bceao.int/fr/content/paysage-bancaire

[16] GlobalStats. (2022) Mobile operating system market share in africa.
[Online]. Available: https://gs.statcounter.com/os-market-share/mobile/
africa/2022

[17] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, ser. MSR ’16. New York, NY, USA: ACM, 2016,
pp. 468–471. [Online]. Available: http://doi.acm.org/10.1145/2901739.
2903508

[18] M. Yuen. (2023) Here are the top 50 biggest european banks
in 2023. [Online]. Available: https://www.emarketer.com/insights/
largest-banks-europe-list/

[19] G. Villaluz and Z. Gull. (2023) 50 largest us banks by total
assets, q3 2023. [Online]. Available: https://www.spglobal.
com/marketintelligence/en/news-insights/latest-news-headlines/
50-largest-us-banks-by-total-assets-q3-2023-79625289

[20] B. Finance. (2023) Banking 500 2023 ranking. [Online]. Available:
https://brandirectory.com/rankings/banking/2023/table

[21] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler:
converting android dalvik bytecode to jimple for static analysis with
soot,” in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis, ser. SOAP ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p.
27–38. [Online]. Available: https://doi.org/10.1145/2259051.2259056

[22] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework
for java program analysis: a retrospective,” in Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), vol. 15, no. 35, 2011.

[23] S. Arzt, “Security code smells in apps: Are we getting better?”
in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2022. New York, NY, USA:
Association for Computing Machinery, 2022, p. 245–255. [Online].
Available: https://doi.org/10.1145/3540250.3549091

[24] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java bytecode
for analyses and transformations,” 1998.

[25] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in ACM SIGPLAN Notices, vol. 49, no. 6. ACM, 2014, pp. 259–
269.

[26] J. Samhi, T. F. Bissyandé, and J. Klein, “Androlibzoo: A reliable
dataset of libraries based on software dependency analysis,” in
Proceedings of the 21st International Conference on Mining Software
Repositories, ser. MSR ’24. New York, NY, USA: Association

for Computing Machinery, 2024, p. 32âC“36. [Online]. Available:
https://doi.org/10.1145/3643991.3644866

[27] O. M. A. Security. Mobile app cryptogra-
phy. [Online]. Available: https://mas.owasp.org/MASTG/General/
0x04g-Testing-Cryptography/#mobile-app-cryptography

[28] GUARDRAILS. Insecure algorithm. [Online]. Available: https:
//docs.guardrails.io/docs/vulnerability-classes/insecure-use-of-crypto/
insecure-algorithm

[29] T. Mappings, “Cwe-321: Use of hard-coded cryptographic key,” CWE
Version 1.11, vol. 629, p. 420, 2010.

[30] CodeQL. Android webview settings allows access to content links.
[Online]. Available: https://codeql.github.com/codeql-query-help/java/
java-android-websettings-allow-content-access/#

[31] D. Svoboda. (2014, October) Drd04-j. do not log sensitive
information. [Online]. Available: https://wiki.sei.cmu.edu/confluence/
display/android/DRD04-J.+Do+not+log+sensitive+information

[32] D. Bassolé, G. Koala, Y. Traoré, and O. Sié, “Vulnerability analysis in
mobile banking and payment applications on android in african coun-
tries,” in Innovations and Interdisciplinary Solutions for Underserved
Areas, J. P. R. Thorn, A. Gueye, and A. P. Hejnowicz, Eds. Cham:
Springer International Publishing, 2020, pp. 164–175.

[33] J. Bowers, I. N. Sherman, K. R. B. Butler, and P. Traynor,
“Characterizing security and privacy practices in emerging digital
credit applications,” ser. WiSec ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 94–107. [Online].
Available: https://doi.org/10.1145/3317549.3319723

[34] E.-r. Latifa, E. K. M. Ahemed, and E. G. Mohamed, “Side-effects of
permissions requested by mobile banking on android platform: A case
study of morocco,” in Proceedings of the 1st International Conference
on E-Commerce, E-Business and E-Government, ser. ICEEG ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
76–81. [Online]. Available: https://doi.org/10.1145/3108421.3108433

[35] S. Bojjagani and V. Sastry, “Vaptai: a threat model for vulnerability
assessment and penetration testing of android and ios mobile banking
apps,” in 2017 IEEE 3rd International Conference on Collaboration
and Internet Computing (CIC). IEEE, 2017, pp. 77–86.

[36] S. Bojjagani and V. N. Sastry, “Stamba: Security testing for android
mobile banking apps,” in Advances in Signal Processing and Intelligent
Recognition Systems, S. M. Thampi, S. Bandyopadhyay, S. Krishnan,
K.-C. Li, S. Mosin, and M. Ma, Eds. Cham: Springer International
Publishing, 2016, pp. 671–683.

[37] S. Kaka, V. N. Sastry, and R. R. Maiti, “On the mitm vulnerability in
mobile banking applications for android devices,” in 2016 IEEE Inter-
national Conference on Advanced Networks and Telecommunications
Systems (ANTS), 2016, pp. 1–6.

[38] B. Reaves, N. Scaife, A. Bates, P. Traynor, and K. R. Butler, “Mo (bile)
money, mo (bile) problems: Analysis of branchless banking applica-
tions in the developing world,” in 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 17–32.

https://doi.org/10.1145/3001913.3001919
https://www.bceao.int/fr/content/paysage-bancaire
https://www.bceao.int/fr/content/paysage-bancaire
https://gs.statcounter.com/os-market-share/mobile/africa/2022
https://gs.statcounter.com/os-market-share/mobile/africa/2022
http://doi.acm.org/10.1145/2901739.2903508
http://doi.acm.org/10.1145/2901739.2903508
https://www.emarketer.com/insights/largest-banks-europe-list/
https://www.emarketer.com/insights/largest-banks-europe-list/
https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/50-largest-us-banks-by-total-assets-q3-2023-79625289
https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/50-largest-us-banks-by-total-assets-q3-2023-79625289
https://www.spglobal.com/marketintelligence/en/news-insights/latest-news-headlines/50-largest-us-banks-by-total-assets-q3-2023-79625289
https://brandirectory.com/rankings/banking/2023/table
https://doi.org/10.1145/2259051.2259056
https://doi.org/10.1145/3540250.3549091
https://doi.org/10.1145/3643991.3644866
https://mas.owasp.org/MASTG/General/0x04g-Testing-Cryptography/#mobile-app-cryptography
https://mas.owasp.org/MASTG/General/0x04g-Testing-Cryptography/#mobile-app-cryptography
https://docs.guardrails.io/docs/vulnerability-classes/insecure-use-of-crypto/insecure-algorithm
https://docs.guardrails.io/docs/vulnerability-classes/insecure-use-of-crypto/insecure-algorithm
https://docs.guardrails.io/docs/vulnerability-classes/insecure-use-of-crypto/insecure-algorithm
https://codeql.github.com/codeql-query-help/java/java-android-websettings-allow-content-access/#
https://codeql.github.com/codeql-query-help/java/java-android-websettings-allow-content-access/#
https://wiki.sei.cmu.edu/confluence/display/android/DRD04-J.+Do+not+log+sensitive+information
https://wiki.sei.cmu.edu/confluence/display/android/DRD04-J.+Do+not+log+sensitive+information
https://doi.org/10.1145/3317549.3319723
https://doi.org/10.1145/3108421.3108433

	Introduction
	Motivation of this study
	Background
	What is mobile banking?
	What are security code smells and vulnerability?

	Methodology
	Research questions
	App selection process
	Collecting WAEMU banking apps
	Selection of old versions of WAEMU apps
	Selection of European Union's and United States apps
	Selection of apps from other developing countries

	Automated analysis tool

	Empirical Results
	WAEMU banking app vulnerabilities
	Security issue evolution across the app versions
	App security comparison
	Child and parent banking apps

	Discussions and Recommendations
	Discussion about results
	Limitations and future directions

	Threat to the validity
	Related Work
	Conclusion
	Data Availability
	References

