
Empirical Software Engineering (2024) 29:111
https://doi.org/10.1007/s10664-024-10520-1

Prioritizing test cases for deep learning-based video
classifiers

Yinghua Li 1 · Xueqi Dang 1 · Lei Ma 2 · Jacques Klein 1 · Tegawendé F. Bissyandé 1

© The Author(s) 2024

Abstract
The widespread adoption of video-based applications across various fields highlights their
importance in modern software systems. However, in comparison to images or text, labelling
video test cases for the purpose of assessing system accuracy can lead to increased expenses
due to their temporal structure and larger volume. Test prioritization has emerged as a promis-
ing approach to mitigate the labeling cost, which prioritizes potentially misclassified test
inputs so that such inputs can be identified earlier with limited time and manual labeling
efforts. However, applying existing prioritization techniques to video test cases faces certain
limitations: they do not account for the unique temporal information present in video data.
Unlike static image datasets that only contain spatial information, video inputs consist ofmul-
tiple frames that capture the dynamic changes of objects over time. In this paper, we propose
VRank, the first test prioritization approach designed specifically for video test inputs. The
fundamental idea behind VRank is that video-type tests with a higher probability of being
misclassified by the evaluated DNN classifier are considered more likely to reveal faults and
will be prioritized higher. To this end, we train a ranking model with the aim of predicting
the probability of a given test input being misclassified by a DNN classifier. This prediction
relies on four types of generated features: temporal features (TF), video embedding features
(EF), prediction features (PF), and uncertainty features (UF). We rank all test inputs in the
target test set based on their misclassification probabilities. Videos with a higher likelihood of
being misclassified will be prioritized higher.We conducted an empirical evaluation to assess
the performance of VRank, involving 120 subjects with both natural and noisy datasets. The
experimental results reveal VRank outperforms all compared test prioritization methods,
with an average improvement of 5.76%∼46.51% on natural datasets and 4.26%∼53.56% on
noisy datasets.

Keywords Test input prioritization · Deep neural network · Learning to rank · Labeling

1 Introduction

The rapid growth of multimedia on the Internet has led to an exponential increase in the
number of videos being shared every minute. The popularity of short videos has further

Communicated by: Massimiliano Di Penta

Extended author information available on the last page of the article

0123456789().: V,-vol 123

Accepted: 19 June 2024 / Published online: 22 July 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10520-1&domain=pdf
http://orcid.org/0000-0003-4097-9543

Empirical Software Engineering (2024) 29:111

heightened the demand for video classification algorithms (Tran et al. 2018) to facilitate
speedy user video recommendations (Covington et al. 2016). Specifically, video classification
plays a crucial role in identifying and tracking objects in a variety of domains, such as accident
detection (Ghosh et al. 2019; Agrawal et al. 2020; Bouhsissin et al. 2021). Given the crucial
usage, the presence of bugs in video-oriented DeepNeural Networks (DNNs) can have severe
real-world consequences, especially in safety-critical domains (Peng et al. 2021). Here, bugs
refer to certain internal parameter weights within the video classification model that can
lead to prediction errors when dealing with video inputs. For example, consider a highway
scenario where the camera-equipped video classification model is specifically engineered
to determine whether a given scene involves a car accident. In the event of an erroneous
prediction, where the model misclassified the accident scene as a safe scenario, there is
a risk of failing to issue a timely warning. This oversight can potentially result in severe
consequences due to a lack of prompt assistance. Therefore, it is crucial to guarantee the
quality of DNN models employed for video classification.

DNN testing (Sun et al. 2018) is widely recognized as an effective means of ensuring the
quality ofDNNs, includingDNNs for video classification.However, a significant challenge in
DNN testing lies in the high cost associated with labelling test inputs to verify the accuracy of
DNN predictions. The general reasons include: 1) the test set is usually large-scale; 2) manual
labelling is still mainstream; 3) labelling can require domain-specific expertise. Furthermore,
in comparison to labeling image and text data, labeling video-type test inputs presents unique
challenges, outlined as follows.

– Video data is characterized by its sequential composition of frames, establishing a
temporal structure. Unlike static images or text, video data necessitates annotators to
meticulously observe and analyze the content over time, frame by frame.

– Video datasets can contain multiple objects and events within a single frame, making it
challenging to identify which objects or events should be labelled.

– Video datasets are typically much larger than image/text datasets, containing multiple
frames per second, which can create a large volume of data to be labelled. This can be
time-consuming and resource-intensive, requiring significant human labor.

To relieve the labelling cost problem, one effective way is test prioritization (Feng et al.
2020), which aims to prioritize bug-revealing test inputs (i.e., test inputs that are more
likely to be misclassified by the DNN model) earlier in the testing process so that those
test inputs can be labeled earlier. To this end, researchers have proposed several test input
prioritization techniques to address the labelling-cost issue in DNNs (Wang et al. 2021;
Feng et al. 2020). These techniques can be broadly categorized into coverage-based and
confidence-based approaches. Coverage-based approaches, such as CTM (Yoo and Harman
2012), prioritize test inputs based on neuron coverage and adapt coverage-based prioritiza-
tion techniques from traditional software testing (Yoo and Harman 2012; Lou et al. 2019).
On the other hand, confidence-based approaches (Feng et al. 2020; Wang et al. 2021) assume
that test inputs with lower model confidence are more likely to be misclassified and hence
should be prioritized higher. DeepGini (Feng et al. 2020), a classical confidence-based test
prioritization approach, considers a test input more likely to be misclassified if the model
outputs similar prediction probabilities for each class. Wang et al. (2021) proposed PRIMA,
which leverages mutation analysis and learning-to-rank methods to prioritize test inputs for
DNNs.

However, when applying the aforementioned existing test prioritization methods to the
scenario of video test inputs, certain limitations arise:

123

111 Page 2 of 39

Empirical Software Engineering (2024) 29:111

– The approaches mentioned above do not take into account the unique temporal informa-
tion present in video data. In contrast to images and text, video inputs consist of multiple
frames that capture the dynamic nature and temporal fluctuations of objects over time.

– The mutation-based test prioritization approach PRIMA is not applicable to video test
inputs because the mutation rules of PRIMA are not adapted for video datasets.

In this paper, we propose VRank (Video Test Inputs Ranking), the first test input pri-
oritization technique tailored exclusively for video test inputs. The fundamental concept
underlying VRank is that video-type tests with a higher probability of being misclassified
by the evaluated DNN classifier are considered more likely to reveal faults and will be pri-
oritized higher. To achieve this, we train a ranking model with the goal of predicting the
probability of a given test input being misclassified by a DNN classifier. Specifically, the
ranking model is trained using a dataset generated from the training sets of the evaluated
DNN classifier. For a given video-type test, we generate four different types of features for
the ranking model to make predictions: temporal features (TF), video embedding features
(EF), prediction features (PF), and uncertainty features (UF). Ma et al. (2018b) previously
demonstrated that test inputs located close to the decision boundary of the DNN classifier are
more likely to be misclassified. Therefore, based on these four types of features, the ranking
model can learn the test’s proximity to the DNN classifier’s decision boundary and, conse-
quently, predict the probability of the test being misclassified by the model. We rank all test
inputs in the target test set based on their misclassification probabilities. Videos with a higher
likelihood of being misclassified are considered more likely to reveal faults. Consequently,
these potentially misclassified videos will be prioritized higher. In the following, we provide
detailed information about the four types of features generated for a specific test input.

– Temporal Features(TF) TF captures the unique temporal coherence inherent in a given
video-type test. The primary objective of generating TF is to convert a video test into a
low-dimensional vector by taking into account the temporal continuity of frames.

– Video Embedding Features (EF) EF captures the intrinsic information of a given video
test input itself. More specifically, EF captures the temporal dimension of video data and
is obtained using existing frame sampling techniques (Team 2023) that are specifically
designed for video data.

– Prediction Features (PF) PF captures the model’s classification information for a test
input. PF features are derived from the output of a DNN classifier and represent the
confidence of a prediction result, as previously utilized in several studies (Li et al. 2019;
Feng et al. 2020).

– Uncertainty Features (UF) UF captures the uncertainty associated with the model’s
classification. UF features are generated by calculating the uncertainty scores assigned
to each test input using existing uncertainty metrics, such as DeepGini (Feng et al. 2020).

VRank demonstrates applicability in various domains. For example, when evaluating a
video classificationmodel designed to identify accident videos captured by highway cameras,
VRank can be utilized to detect potentially misclassified video test cases within the test
dataset. These video tests have a higher likelihood of uncovering bugs in the model. Through
early labeling and diagnosis of these video tests, VRank can accelerate the model debugging
process, minimizing the need for time and manual labeling efforts.

Moreover, prioritizing video-type test inputs can provide several benefits for developers
in the context of DNN testing: 1) Save labeling time and cost: Prioritizing video data for

123

Page 3 of 39 111

Empirical Software Engineering (2024) 29:111

testing can save the cost of traditional manual labeling. Developers can quickly identify tests
that are most likely to be incorrectly predicted by the model and label them, reducing the
overall labeling cost. Videos typically contain numerous frames and continuous dynamic
information, requiring a significant investment of time and manual effort for labeling. Test
prioritization can help reduce the cost of manual labeling; 2) Rapidly uncover bugs in video
models: Test prioritization on video-type tests can help developers quickly identify tests that
aremore likely to bemisclassified by the video classificationmodel. These tests can efficiently
aid in identifying bugs in the model; 3) Identify weight parameters causing prediction
errors:These potentiallymisclassified tests can also assist developers in efficiently analyzing
which weight parameters in the model are responsible for causing prediction errors; 4) Fine-
tuning of videomodels:Through prioritizing video-type tests for rapid bug identification and
quick recognition of weight parameters associated with causing prediction errors, developers
can better perform model fine-tuning.

We conducted an empirical study to evaluate the performance of VRank based on 120
subjects. Here, a subject refers to a pair of video dataset andDNNmodel.We compare VRank
with four test prioritization approaches compatible with video datasets and one baseline
method, random selection. Furthermore,we evaluated the effectiveness ofVRank in scenarios
where noise is present during testing. Our experimental results demonstrate that VRank
achieved better effectiveness over all the compared test prioritization approaches, with an
average improvement of 5.76%∼46.51% on natural datasets and 4.26%∼53.56% on noisy
datasets. We publish our dataset, results, and tools to the community on Github1.

Our work has the following major contributions:

❶ Approach. We propose VRank, the first test prioritization approach that is specifi-
cally designed for video datasets. Specifically, VRank utilizes video-oriented feature
generation and learning-to-rank techniques to rank the test inputs and prioritize
potentially-misclassified video inputs.

❷ StudyWe conduct an extensive study involving 120 subjects, including natural and noisy
test sets, to evaluate the performance of VRank. We compare VRank against existing test
prioritization approaches and random selection. Our experimental results demonstrate
the effectiveness of VRank.

❸ Feature contribution analysis We conducted a comprehensive analysis to assess the
individual contributions of various feature types to the effectiveness of VRank. Our
findings demonstrate that all four types of generated features, namely temporal features
(TF), uncertainty features (UF), prediction features (PF), and video embedding features
(EF), contribute to enhancing the effectiveness of VRank.

The remaining sections of our paper are organized as follows. Section 2 provides the
background for our work. Section 3 presents the specific details of the VRank approach we
propose. Section 4 exhibits the design of our study. Section 5 presents the relevant details
of the experiments and the analysis of the experimental results. Section 6 discusses the
limitations and threats to the validity of our study. Section 7 presents the related work of our
study. Finally, we conclude our paper in Section 8.

1 https://github.com/yinghuali/VRank

123

111 Page 4 of 39

https://github.com/yinghuali/VRank
https://github.com/yinghuali/VRank

Empirical Software Engineering (2024) 29:111

2 Background

2.1 DNNs and DNNTesting

Classification deep neural networks (DNNs) (Zeng et al. 2014) are foundational to many
applications of deep learning (Li et al. 2022). These networks are characterized by their
multilayer architecture consisting of an input layer, one or more hidden layers, and an output
layer. Each layer of a DNN comprises a set of interconnected neurons (Liu et al. 2017) that
interconnect via weighted edges. A neuron is a computational unit that applies an activation
function to the inputs and the weights of the incoming edges. The resulting output is then
propagated to the next layer via the edges. During training, the DNN automatically learns the
optimal weights of the edges using a large set of labeled training data. Once trained, the DNN
can accurately classify an input object, such as an image or a video, into its corresponding
class or category.

Ensuring the quality and reliability of DNNmodels is of paramount importance, and DNN
testing (Chen et al. 2020; Feng et al. 2020; Li et al. 2019; Xie et al. 2011; Du et al. 2019;
Cheng et al. 2018; Aggarwal et al. 2019) has emerged as a widely used approach to achieve
this goal. Analogous to traditional software systems (Do and Rothermel 2006; Henard et al.
2016; Yoo et al. 2009; Di Nardo et al. 2013; Fang et al. 2014), DNN testing involves inputs
and oracles. In the context of DNN testing, test inputs refer to the input that the model is
expected to classify, which can take diverse forms depending on the specific task of the DNN
under test, including images, natural language, or speech. Test oracles in DNN testing rely
on manual labeling, whereby each input is manually labeled with ground truth by human
annotators. By comparing the labeled ground truth and the predicted output of the DNN
model, it is possible to assess the accuracy of the model in predicting the correct output for
the given input.

2.2 DNNs for Video Classification

In recent years, the volume of multimedia content available on the Internet has increased
exponentially, leading to an explosion in the number of videos being shared every minute.
This rapid growth of video content has created a pressing need to analyze and understand
these videos for a variety of applications, including search, recommendation, and ranking.
Over the past few decades, the computer vision community (Wang et al. 2018) has focused
on developing algorithms to address different video analysis problems, notably video clas-
sification. While significant progress has been made in feature learning using deep learning
approaches in the image domain (Krizhevsky et al. 2017), pre-trained convolutional network
(ConvNet) models (Jia et al. 2014) have been developed for generating image features. These
features represent the activations of the network’s last few fully-connected layers. However,
applying these image-based deep features directly to videos is typically not feasible.

To overcome this issue, Tran et al. (2015) proposed the use of deep 3D ConvNets to
learn spatio-temporal features for video classification, leveraging large-scale video datasets.
Building upon their previous work, Tran et al. (2017) conducted an empirical ConvNet
architecture search to improve spatiotemporal feature learning, which outperformed C3D on
several datasets, with faster inference time, smallermodel size, andmore compact representa-
tion. In their subsequent work, Tran et al. (2018) investigated several forms of spatiotemporal
convolutions for video analysis and their effects on action recognition. Moreover, Feichten-
hofer et al. (2019) proposed the SlowFast network for video recognition, which comprises a

123

Page 5 of 39 111

Empirical Software Engineering (2024) 29:111

Slow pathway for capturing spatial semantics and a Fast pathway for capturing motion at a
fine temporal resolution.

2.3 Test Input Prioritization for DNNs

Test input prioritization aims to rank the test inputs based on their likelihood of being
incorrectly predicted by a DNN model. The literature has proposed two main categories
of approaches for test input prioritization: coverage-based and confidence-based. Coverage-
based approaches (e.g., CTM (Yoo and Harman 2012)) extend traditional software system
testing methods to DNN testing. The research work conducted by Feng et al. (2020) com-
pared their proposed confidence-based approach DeepGini with numerous coverage-based
approaches, demonstrating that DeepGini outperforms existing coverage-based techniques in
prioritizing tests regarding both effectiveness and efficiency.Weiss and Tonella (2022) further
conducted an extensive investigation of several notable uncertainty-basedmetrics like Vanilla
SM, Prediction-Confidence Score (PCS), andEntropy. Thesemetrics have been demonstrated
to be effective in test prioritization. While the aforementioned confidence-based approaches
can be adapted to prioritize video test inputs, they fail to account for the distinct characteristics
inherent in video data during the test prioritization process. In contrast, our proposed VRank
explicitly considers the unique features of videos by utilizing a carefully designed feature
generation strategy. By taking into account these video-specific features, VRank achieves
higher prioritization effectiveness compared to the aforementioned uncertainty-based meth-
ods. Currently, Wang et al. (2021) proposed PRIMA, which is based on mutation analysis
and learning-to-rank. However, PRIMA is not applicable to video-oriented test prioritization
because PRIMA’s mutation rules are not adapted to video data.

3 Approach

3.1 Overview

Figure 1 illustrates the comprehensive outline of the sequential stages involved in our pro-
posed VRank test prioritization approach. In the subsequent sections, we provide a more
detailed description of each step.

Fig. 1 Overview of VRank

123

111 Page 6 of 39

Empirical Software Engineering (2024) 29:111

❶ Feature vector generation Given a video test set T and the model M to be evaluated, in
this step, VRank aims to generate a feature vector for each test t ∈ T . To this end, for each
test, VRank generates four different types of features for it and combines these features
into a final feature vector. The specific methods for feature generation can be found in
Section 3.2. Furthermore, Section 3.2 also describes how to combine the generated four
different types of features into a final feature vector.

❷ Ranking model training After obtaining the final feature vector for each test input
t ∈ T , in this step, we aim to leverage a ranking model to predict the probability of each
test being predicted incorrectly by the model M based on its final feature vector. The
specific details regarding the training process of the ranking model and the methodology
for utilizing the ranking model to predict misclassification probabilities can be found in
Section 3.3.

❸ Test prioritization After obtaining the probability of each test (in the test set T) being
misclassifiedby themodelM using the rankingmodel,VRankutilizes this information for
test prioritization. Tests with a higher probability of beingmisclassifiedwill be prioritized
higher. The specific details of this step can be found in Section 3.4.

In the subsequent sections, we provide a comprehensive description of each step out-
lined aforementioned, encompassing Video-oriented Feature Generation (cf. Section 3.2),
Learning-to-rank (cf. Section 3.3), Variants of VRank (cf. Section 3.5), and the Usage of
VRank (cf. Section 3.6). These sections delve into the intricate details of each step, offering
a thorough understanding of themethodologies employed and their associated considerations.

3.2 Step 1: Video-oriented Feature Generation

Given a test set T of videos and a DNN model M to be tested, the objective of VRank is to
prioritize tests that are more likely to be misclassified by the model M . VRank is based on
video-oriented feature generation and the learning-to-rank technique. Therefore, in the first
step, VRank generates four types of features for each video-type test input. In the following,
we provide a comprehensive elucidation of the details for each type of feature, delving into
the underlying rationale behind their inclusion in VRank and the methods employed for their
generation. We aim to establish a clear understanding of their significance and relevance in
the context of VRank.

– Temporal Features(TF) TF captures the distinctive temporal coherence within a given
video-type test. The primary aim of generating TF is to transform a video test into a
low-dimensional vector by considering temporal frame continuity. In the following, we
present the two main approaches we employed for generating TF features from consec-
utive frames: 1) Feature generation based on temporal changes. We compute variations
between adjacent frames, encompassing Euclidean distance (Liberti et al. 2014),Manhat-
tan distance (Malkauthekar 2013), squared difference distance (Pillichshammer 2000),
and Pearson similarity (Cohen et al. 2009). These metrics can indicate the extent of
change between frames, effectively capturing the dynamic information of the video. 2)
Statistical feature computation. We calculate statistical features such as variance, mean,
andmedian for consecutive frames. These features contribute to delineating the individual
characteristics of each frame.

123

Page 7 of 39 111

Empirical Software Engineering (2024) 29:111

– Video Embedding Features (EF) capture the intrinsic information of a given video
test input. To obtain EF, we employ existing frame sampling techniques (Team 2023) to
extract a fixed number of frames from a given video-type test input t . We then utilize the
pre-trained ResNet model (He et al. 2016) to map each frame into a vector representation.
Finally, we compute the average of all frame vectors to obtain a representative vector for
the entire video.

– Prediction Features (PF) captures the model’s classification information for a test input.
To obtain PF, we input t into the model M , and M will output a probability vector
representing the probabilities of t belonging to each class. For example, a feature vector
{0.2, 0.3, 0.5} signifies that, according to the predictionsmade bymodelM , the test input
t has a 20% probability of belonging to class 1, a 30% probability of belonging to class
2, and a 50% probability of belonging to class 3. PF has been utilized in various prior
studies (Li et al. 2019; Feng et al. 2020).

– Uncertainty Features (UF) captures the uncertainty associated with the model’s classi-
fication. To obtain UF, we leverage six existing uncertainty metrics (Weiss and Tonella
2022; Feng et al. 2020;Wang and Shang 2014) (i.e., DeepGini, Vanilla SM, PCS, Entropy,
Margin, and Least Confidence) to obtain a set of uncertainty scores for each test input
t . These metrics have been widely recognized for their outstanding effectiveness in
quantifying uncertainty in classification tasks. For each test input t , we compute the
corresponding uncertainty scores using each of the six metrics. These scores represent
themodel’s uncertainty in predicting the class for t . The UF vector for a given test input is
then constructed by concatenating the six uncertainty scores, resulting in a vector repre-
sentation: {S1, S2, S3, S4, S5, S6}. Each element Si represents the uncertainty associated
with the model’s prediction for the test input t calculated by the ith uncertainty-based
metric.

For each test input t ∈ T , VRank combines its four aforementioned types of features to
generate a comprehensive and representative feature vector. This feature vector encapsulates
the relevant information from all feature types for the given test input.

Below, we explain how the aforementioned features contribute to determining the decision
boundaries of the model:

– Temporal Features (TF) Temporal features can capture the unique temporal coherence
in a given video type test.Generating time features allows the transformation of video tests
into low-dimensional vectors, where the model’s decision boundaries can be perceived
as a geometric interface. Low-dimensional video vectors, when mapped into space, can
indirectly reflect the distance between the video-type test and the decision boundary.

– Video Embedding Features (EF) These features can effectively capture the intrinsic
information of the video test input, particularly the temporal dimension of video data.
Through this capture, the video input can bemapped to a spatial vector, where themodel’s
decision boundaries can be seen as a geometric interface. The numerical video embedding
feature can facilitate the calculation of the distance between a video-type test and the
decision boundary. Therefore, the embedding feature can indirectly reflect the proximity
between a test and the decision boundaries.

– Prediction Features (PF) These features originate from the DNN classifier’s classifi-
cation information for the test input. PF features reflect the model’s confidence in the
prediction results and can be used to evaluate the model’s accuracy in predicting spe-
cific test inputs. If a test input’s PF features indicate that the model is not confident
in its classification result, it can suggest that the input is close to the model’s decision
boundaries.

123

111 Page 8 of 39

Empirical Software Engineering (2024) 29:111

– Uncertainty Features (UF) These features represent the model’s uncertainty about its
classification decisions. By calculating uncertainty scores for each test input (e.g., using
DeepGini), UF features can assist in identifying test inputs for which the model exhibits
higher uncertainty during classification. Test inputs with high uncertainty are more likely
to be located near the model’s decision boundaries.

Below, through a specific example, we illustrate howVRank integrates the aforementioned
four types of features into a final feature vector. Assuming that, for a given video-type test
input, VRank generates four types of features for it: temporal features (TF) of i dimensions,
denoted as (v1, v2, ..., vi), embedding features (EF) of j dimensions, denoted as (e1, e2, ...,
e j), prediction features (PF) of k dimensions, denoted as (p1, p2, ..., pk), and uncertainty
features (UF) of n dimensions, denoted as (u1, u2, ..., un). VRank combines these four types
of vectors by concatenation, producing a final vector of (i + j + k + n) dimensions: (v1, v2,
...vi , e1, e2, ..., e j , p1, p2, ..., pk , u1, u2, ...,un).

In the following section, we provide a detailed explanation of the methodology employed
to obtain the misclassification score.

3.3 Step 2: Learning-to-rank

In this step, we employ the rankingmodel LightGBM (Ke et al. 2017) to learn from the feature
vector of v ∈ V to predict its misclassification score. LightGBM is an advanced gradient-
boosting framework renowned for its ability to learn features for efficient classifications. We
follow the process below to train the LightGBMmodel: Given the video classificationM with
the dataset used for its evaluation, we initially partition the dataset into two sets: the training
set R and the test set T . The test set is kept untouched for evaluating VRank. Our objective
is to construct a training set R′ for training the ranking models based on the training set R.
To achieve this, we generate the final feature vector for each r ∈ R by following the steps
in Section 3.2. These features serve as the training features for the dataset R. Subsequently,
we employ the original video classification model M to classify each instance r ∈ R, aiming
to identify whether each r is misclassified by the model M . If r is misclassified, it will be
labelled as 1; otherwise, it will be labelled as 0. Consequently, we obtain the labels for the
training set R. Using the constructed training set, we train the LightGBM ranking model for
VRank.

3.4 Step 3: Test Prioritization

TheLightGBMrankingmodel, trained in the previous step,was originally designed for binary
classification, classifying a given input into one of two classes. However, our objective is to
obtain a misclassification probability score for each test input, indicating the likelihood of
it being misclassified by the model. To achieve this, we applied specific adjustments to the
original LightGBM model: We extract the intermediate value from the model’s output for
a given input, which can indicate the misclassification probability. Typically, in the model
prediction process, if this intermediate value exceeds a predefined threshold, the input is
labeled as “misclassified"; otherwise, it is labeled as “notmisclassified". Insteadof proceeding
with thefinal classification,wedirectly employ this intermediate value as themisclassification
probability score. A higher score implies a greater probability of the test instance being
misclassified. Finally, we rank all tests in the test set T in descending order based on their
misclassification probability scores.

123

Page 9 of 39 111

Empirical Software Engineering (2024) 29:111

3.5 Variants of VRank

We investigate the impact of different ranking models on the effectiveness of VRank and
propose three variants of VRank, namely VRankX , VRankR , and VRankL . These variants
employ the XGBoost (Chen and Guestrin 2016), Random Forest (Breiman 2001), and Logis-
tic Regression (Minka 2003) respectively, as their underlying ranking models. It is important
to note that the execution workflow of these variants closely resembles that of VRank, and
the sole distinction lies in the selection of ranking models.

Additionally, we also extended the adjustments made to the ranking model LightGBM of
VRank to the ranking models of VRank’s variants. Specifically, for a test input, rather than
having the rankingmodels output a binary classification (i.e.,whether the testwill be predicted
incorrectly by the model), we extract the intermediate output to obtain the probability of this
test being misclassified. In this way, we can obtain the misclassification score of each test
input, which can be utilized for test prioritization. In the following, we provide a detailed
explanation of the specific ranking models utilized by each variant of VRank.

– VRankX In the context of VRankX , we leverage the XGBoost ranking algorithm (Chen
and Guestrin 2016) to predict the misclassification score associated with a given test
input, based on its feature vector. XGBoost is a powerful gradient-boosting technique
that effectively integrates decision trees to augment prediction accuracy.

– VRankR In the contextVRankR , we adopt RandomForest (Breiman 2001) as the ranking
model. Random forest is an ensemble learning algorithm that constructsmultiple decision
trees. The predictions from individual trees are combined to produce the final prediction
using averaging or voting.

– VRankL In the context VRankL , we adopt Logistic Regression (Minka 2003) as the
ranking algorithm. Logistic Regression is a statistical modeling technique that uses a
logistic function to model the association between a categorical dependent variable and
one or more independent variables.

3.6 Usage of VRank

Utilizing ranking models, VRank is capable of predicting a misclassification score for each test
input within a designated test set. Test inputs with higher scores are assigned a higher priority.
The rankingmodels employed inVRank undergo pre-training prior to their execution, follow-
ing standardized and consistent procedures. In the subsequentparts,wecomprehensivelypresent
the training process, outlining the specific steps taken to train the ranking models.

Given a video dataset and the model M under test, the initial step is to partition the
dataset into two subsets: the training set R and the test set T , with a ratio of 7:3 (Nguyen
et al. 2021). The test set T remains untouched to evaluate the effectiveness of VRank. Based
on the training set R, our objective is to construct a new training set R′ specifically for
training the ranking models. Initially, a feature vector Fv is generated for each input r ∈ R.
The generation procedures for the feature vector are described in Section 3.2. These feature
vectors are then used to construct a new training set R′. To obtain the labels for each sample
in R′, we input ri ∈ R into the model M . Leveraging the known ground truth of the training
set R if ri is incorrectly predicted by model M , the label of the corresponding r ′

i ∈ R′ is set
to 1; otherwise, it is set to 0.

Based on the constructed training set R′, we train the ranking models. Upon the comple-
tion of the training process, the ranking models are capable of predicting the likelihood of
misclassification for a given test input based on its corresponding feature vector.

123

111 Page 10 of 39

Empirical Software Engineering (2024) 29:111

4 Study Design

4.1 Research Questions

Our experimental evaluation answers the research questions below.

– RQ1: How does VRank perform in prioritizing video test inputs?
Weassess the effectiveness and efficiency ofVRank and compare it withmultiple existing
testing prioritization approaches, including DeepGini, Vanilla Softmax, PCS, Entropy,
and random selection.

– RQ2: How does VRank perform on noisy video data?
To evaluate the effectiveness of VRank in noisy contexts, we employ a range of noise
generation techniques derived from prior research works (Shorten and Khoshgoftaar
2019; Perez and Wang 2017; Mikołajczyk and Grochowski 2018; Taylor and Nitschke
2018) to generate video datasetswith simulated noise.We compareVRank’s effectiveness
on these generated noisy datasets with the aforementioned test prioritization approaches
to demonstrate its effectiveness.

– RQ3:What is the impact of different rankingmodels on the effectiveness of VRank?
Within the learning-to-rank process of VRank, we employed the LightGBM (Ke et al.
2017) ranking algorithm. In this research question, we introduce three variants of VRank
by modifying the ranking models to Random Forest (Breiman 2001), XGBoost (Chen
and Guestrin 2016), and Logistic Regression (Minka 2003), respectively. By evaluating
the effectiveness of VRank and its variants, we aim to explore which ranking algorithm
can better utilize the generated features for test prioritization.

– RQ4: To what extent do each type of features contribute to the effectiveness of
VRank?
In VRank, we generate four distinct types of features from each test input for test pri-
oritization, namely temporal features (TF), video embedding features (EF), prediction
features (PF), and uncertainty features (UF), as elaborated in Section 3. In this research
question, we focus on comparing the contributions of the three types of features toward
the effectiveness of VRank.

– RQ5: What is the influence of the number of extracted frames on the effectiveness
of VRank?
Two critical steps in VRank are to generate video embedding features and temporal
features from a given test to predict the likelihood of the test beingmisclassified. To obtain
these two types of features, we utilize established frame sampling techniques (Team
2023) to extract a fixed number of frames from the video-type test input. In this research
question, we explore the impact of the number of extracted frames on the effectiveness
of VRank.

4.2 Subjects

The effectiveness of VRank and the compared test prioritization approaches (Feng et al.
2020; Weiss and Tonella 2022) was evaluated using a set of 120 subjects, where each subject
corresponds to a video dataset with a model. Essential details regarding these subjects are
presented in Table 1. Specifically, the “#Videos” column indicates the number of videos in a
dataset, while the “Type” column denotes the dataset’s type. “Original” denotes natural data,
while other non-original types are abbreviations representing different types of noise. For
instance, “HF” indicates Horizontal Flip noise.

123

Page 11 of 39 111

Empirical Software Engineering (2024) 29:111

Table 1 Video models and datasets

ID Dataset # Videos Model Type

1 UCF101 13320 C3D Original, HF, HS, WS, FSN, SR, ZCA, CSR

2 UCF101 13320 R2Plus1D Original, HF, HS, WS, FSN, SR, ZCA, CSR

3 UCF101 13320 R3D Original, HF, HS, WS, FSN, SR, ZCA, CSR

4 UCF101 13320 SlowFastNet Original, HF, HS, WS, FSN, SR, ZCA, CSR

5 UCF101 13320 VT Original, HF, HS, WS, FSN, SR, ZCA, CSR

6 HMDB51 6849 C3D Original, HF, HS, WS, FSN, SR, ZCA, CSR

7 HMDB51 6849 R2Plus1D Original, HF, HS, WS, FSN, SR, ZCA, CSR

8 HMDB51 6849 R3D Original, HF, HS, WS, FSN, SR, ZCA, CSR

9 HMDB51 6849 SlowFastNet Original, HF, HS, WS, FSN, SR, ZCA, CSR

10 HMDB51 6849 VT Original, HF, HS, WS, FSN, SR, ZCA, CSR

11 HWID12 2782 C3D Original, HF, HS, WS, FSN, SR, ZCA, CSR

12 HWID12 2782 R2Plus1D Original, HF, HS, WS, FSN, SR, ZCA, CSR

13 HWID12 2782 R3D Original, HF, HS, WS, FSN, SR, ZCA, CSR

14 HWID12 2782 SlowFastNet Original, HF, HS, WS, FSN, SR, ZCA, CSR

15 HWID12 2782 VT Original, HF, HS, WS, FSN, SR, ZCA, CSR

Among the 120 subjects, 15 subjects (3 video datasets × 5 models) were generated using
natural datasets, while the remaining 105 subjects were generated using noisy datasets. To
generate the noisy datasets, we applied 7 noise generation techniques to each natural dataset,
resulting in 7 noisy datasets. Each noisy dataset was then paired with 5models. Therefore, the
total number of subjects is 105 (3 video datasets× 5models× 7 noise generation techniques).
In the subsequent section, we present a comprehensive description of the datasets andmodels
employed in our research.

4.2.1 DNNModels

We assess the effectiveness of VRank based on five prevalent video classification models:
C3D (Tran et al. 2015), R3D (Tran et al. 2017), R2Plus1D (Tran et al. 2018), SlowFast (Feicht-
enhofer et al. 2019) and VT (Paul 2023). The reason we selected these models for evaluating
VRank is that: 1) These models are widely recognized in the field of video classification and
have extensive applications in both academia and industry (Tran et al. 2015, 2017, 2018;
Feichtenhofer et al. 2019). 2) Each model has its unique architecture and approach to han-
dling video data. 3) Since these models have undergone extensive testing and application
on multiple datasets (Tran et al. 2015, 2017, 2018; Feichtenhofer et al. 2019), they pro-
vide VRank with a solid benchmark for effectively comparing VRank’s performance across
different models.

Althoughwe only conduct tests on these specificmodels, it is important to note that VRank
can be applied to a wide range of video classification models.

– C3D (Tran et al. 2015) The C3D (Convolutional 3D) network is an architecture of 3D
Convolutional Networks designed to learn spatio-temporal data, particularly in the form
of videos. C3D comprises eight convolutional layers, five max-pooling layers, and two
fully connected layers, followed by a softmax output layer. C3D’s unique ability to
model both appearance and motion information simultaneously is a key factor in its

123

111 Page 12 of 39

Empirical Software Engineering (2024) 29:111

superior performance compared to 2D ConvNet features on various video analysis tasks.
This is because videos are inherently spatio-temporal and therefore require specialized
architectures capable of extracting and processing information in all three dimensions.

– R3D (Tran et al. 2017) The R3D network is a variant of 3D Convolutional Networks,
incorporating design elements from both ResNet (He et al. 2016) and C3D architec-
tures. Specifically, R3D leverages residual connections from ResNet, which facilitate the
training of DNNs by allowing gradients to flow directly through the network. Addition-
ally, the R3D architecture uses 3D ConvNets to learn spatiotemporal features, making it
particularly suited for video-based tasks.

– R2Plus1D (Tran et al. 2018) The R2Plus1D architecture effectively addresses the com-
putational complexity associated with action recognition tasks by decomposing the 3D
convolutions into a fusion of spatial and temporal convolutions. This decomposition
enables more efficient utilization of computational resources compared to fully 3D con-
volutions.

– SlowFast (Feichtenhofer et al. 2019) SlowFast is a video recognition architecture that
introduces two pathways, namely the slow pathway and the fast pathway. The slow
pathway effectively functions at a reduced frame rate, thereby facilitating the extraction
and analysis of spatial semantics pertaining to the video content. Conversely, the fast
pathway operates at a significantly higher frame rate, affording the capacity to capture
motion nuances with exceptional temporal resolution.

– VT (Paul 2023) The Video Classification with Transformers (VT) model is an open-
source project officially released by the Keras deep learning framework. It integrates
Convolutional Neural Networks (CNNs) and Transformers to enhance video classifica-
tion capabilities. Specifically, it employs CNNs to extract frame-level features from the
video and then feeds these features into a Transformer to capture temporal relationships
between different frames. The model is designed to effectively learn spatial-temporal
features from video data, enhancing its ability to classify video content accurately. This
approach showcases an advanced application of deep learning in video analysis.

4.2.2 Datasets

In our study, we assess the performance of VRank using three widely-adopted video datasets:
HWID12 (Kezebou et al. 2022), HMDB51 (Kuehne et al. 2011), and UCF101 (Soomro et al.
2012). We selected these three datasets to evaluate VRank due to their representativeness and
extensive usage in the field of video classification (Kezebou et al. 2022; Kuehne et al. 2011;
Soomro et al. 2012). Specifically, their representativeness is mainly reflected in the following
aspects: 1) Diversity. These three datasets cover a wide range of activities and scenes. For
example, HWID12 includes real-world surveillance videos of high-speed highway traffic,
HMDB51 covers various daily actions, and UCF101 contains a variety of action videos from
the real world. This diversity allows these datasets to comprehensively test the performance
of video-oriented test prioritization approaches in different contexts. 2) Complexity. The
actions and scenes in the videos have different levels of complexity, including both simple
daily activities and complex sports and interactions. This allows for a more representative
and comprehensive evaluation of video-oriented test prioritization methods. 3) Widespread
Use. These datasets are widely utilized in both academia and industry (Wang and Schmid
2013; Kuehne et al. 2011), serving as standard benchmarks for many research works.

Although real-world autonomous driving datasets also contain valuable video data, we
did not use autonomous driving datasets to evaluate VRank for the following reasons: 1)

123

Page 13 of 39 111

Empirical Software Engineering (2024) 29:111

Difference in Tasks and Application Scenarios. VRank is primarily designed for DNN
models used in video classification tasks. The core of video classification is to categorize
a video into a specific label. In other words, video classification models aim to classify a
video into a single category based on its content, such as classifying a video as “High Jump",
“Diving", etc. In contrast, the main goal of autonomous driving datasets is to enhance the
reliability and safety of autonomous driving systems through the detection and tracking of
multiple objects. In the context of autonomous driving, a video typically contains multiple
labels. For instance, a video clip can simultaneously include dynamic elements such as
vehicles, pedestrians, traffic signs, etc.2)Differences inDatasetAnnotation.The annotation
method for autonomous driving datasets is typically frame-based, where various objects in
each frame of the image are required to be labeled. Therefore, each video has multiple labels
corresponding to the various detected objects. In contrast, VRank is designed for video
classification datasets, where the annotation is generally based on the overall video rather
than frame-by-frame annotation. In this context, each video has a unique label as a whole.

– HWID12 (Kezebou et al. 2022) The HWID12 dataset serves for the classification task
of real-time highway accident detection in intelligent transportation systems. HWID12
comprises 2,782 video clips with duration ranging from 3 to 8 seconds, categorized into
twelve classes (e.g., “Sideswipe collision”, “Collision with motorcycle” and “Pedestrian
hit”).

– HMDB51 (Kuehne et al. 2011) The HMDB51 dataset comprises video clips sourced
from movies, supplemented by a small portion obtained from public databases such as
the Prelinger Archives, YouTube, and Google Videos. HMDB51 is composed of 6,849
videos, classified into 51 action categories (e.g., “Drink”, “Hug”, and “Walk”), with each
category containing at least 100 clips.

– UCF101 (Soomro et al. 2012) The UCF101 dataset is an action recognition dataset
collected from YouTube. UCF101 consists of 13,320 videos, categorized into 101 action
classes (e.g., “High Jump”, “Punch”, and “Diving”).

4.3 Noise Generation Techniques

In our study, we employed seven noise generation techniques to generate video inputs with
noise. These techniques were selected based on prior research studies (Shorten and Khosh-
goftaar 2019; Perez andWang 2017;Mikołajczyk andGrochowski 2018; Taylor andNitschke
2018). The following is a description of each technique:

– Channel Shift (CSR): CSR applies modifications to the overall color representation
of a video by shifting the value of the color channel. This technique introduces color
perturbations by adding random noise to each pixel’s color channel values, thus altering
the color appearance of the video.

– Feature-wiseNormalization (FSN):FSNperforms normalization of the features in each
video input by dividing it with the standard deviation. This process aims to decentralize
the video dataset and normalize the feature distributions, enabling the model to capture
finer-grained variations in the data.

– Height Shift (HS): HS vertically displaces a given video by a certain number of pixels,
effectively shifting its position up or down within the frame. This augmentation tech-
nique introduces spatial transformations, such as simulating cameramovements or object
repositioning, by adding random noise to the vertical position of each frame.

– Width Shift (WS): WS horizontally shifts the position of a video input by a specified
number of pixels. By applying random horizontal offsets to each frame, WS enables the

123

111 Page 14 of 39

Empirical Software Engineering (2024) 29:111

model to learn robustness to variations in object positioning and enhances its ability to
handle objects appearing at different spatial locations within the frame.

– Shear (SR): SR refers to the intentional distortion of a video along its axes with the
primary objective of creating or correcting perceptual angles.

– Horizontal Flip (HF): HF horizontally flips a given video by mirroring the content along
the vertical axis. This operation introduces left-right orientation changes to the video
frames, augmenting the dataset with horizontally flipped versions of the original videos.

– ZCA Whitening (ZCA): ZCA whitening applies dimension reduction operations to
the given videos, reducing redundant information while preserving crucial features. By
performing a linear transformation on the pixel values of each frame, ZCA whitening
removes correlations between neighboring pixels, effectively decorrelating the data and
enhancing the model’s ability to focus on meaningful variations in the video content.

4.4 Compared Approaches

To demonstrate the effectiveness of VRank, we compare it with five distinct test prioritization
approaches, including a baseline approach, namely random selection, alongside four DNN
test prioritization techniques. The rationale behind selecting these particular methods rests on
three key factors: Firstly, their adaptability to facilitate test prioritization on video datasets,
which is a pivotal requirement for our research context. Secondly, their effectiveness in the
context ofDNNs has beenwell demonstrated in the existing literature (Feng et al. 2020;Weiss
and Tonella 2022; Hu et al. 2021). Lastly, the availability of open-source implementations.
All of the selected approaches are accessible for implementation purposes.

– DeepGini (Feng et al. 2020) employs the Gini coefficient to measure the likelihood of
misclassification, thereby enabling the ranking of test inputs. The calculation of Gini
score is presented in Formula (1).

ξ(x) = 1 −
N∑

i=1

(pi (x))
2 (1)

where ξ(x) refers to the likelihood of the test input x being misclassified. pi (x) refers to
the probability that the test input x is predicted to be label i . N refers to the number of
labels.

– Vanilla SM (Weiss and Tonella 2022) calculates the difference between the value of 1 and
the maximum activation probability in the output softmax layer. Formula (2) provides a
clear depiction of the calculation process.

V(x) = 1 − C
max
c=1

lc(x) (2)

where lc(x) belongs to a valid softmax array in which all values are between 0 and 1,
and their sum is 1.

– Prediction-Confidence Score (PCS) PCS (Weiss and Tonella 2022) quantifies the level
of uncertainty in a classification model’s prediction for a given test by computing the
difference between the predicted class and the second most confident class. PCS is cal-
culated by Formula (3).

P(x) = lk(x) − l j (x) (3)

where lk(x) refers to the most confident prediction probability. l j (x) refers to the second
most confident prediction probability.

123

Page 15 of 39 111

Empirical Software Engineering (2024) 29:111

– Entropy Entropy (Weiss and Tonella 2022) measures uncertainty in a classification
model’s prediction for a given test by computing the entropy of the softmax likelihood.

– Random selection (Elbaum et al. 2002) In random selection, the order of execution for
test inputs is determined randomly.

4.5 Measurements

Following the prior research on DNN test prioritization (Feng et al. 2020), we employ the
Average Percentage of Fault-Detection (APFD) (Yoo and Harman 2012) metric to assess
the effectiveness of VRank and the compared approaches. APFD is a well-established and
widely accepted measure for evaluating prioritization strategies. Generally, higher APFD
scores indicate a faster rate of misclassification detection. We determine the APFD values
by utilizing Formula (4).

APFD = 1 −
∑k

i=1 oi
kn

+ 1

2n
(4)

where n is the number of test inputs in the test set T . k is the number of test inputs in
T that will be misclassified by the DNN model M . oi is the index of the ith misclassified
tests in the prioritized test set. More specifically, oi is an integer that represents the position
of the ith misclassified tests in the test set that has been prioritized. Below, we explain the
rationale for usingAPFD to assess the effectiveness of a test prioritizationmethod in detecting
misclassified tests: In the formula of APFD (Formula (4)), a smaller

∑k
i=1 oi suggests that

the misclassified tests are positioned relatively closer to the front of the prioritized test
set. This implies that the prioritization approach effectively places misclassified tests at the
beginning of the test set, indicating a higher level of effectiveness. Consistent with previous
research (Feng et al. 2020), we normalize the APFD values to the range [0,1]. A prioritization
approach is deemed more effective when the APFD value is closer to 1.
Efficiency measurement of VRank: Following the existing study (Wang et al. 2021), we
evaluate the efficiency of VRank by quantifying the time required for each step of VRank,
as well as the time cost of each compared approach.

4.6 Implementation and Configuration

VRank was implemented in Python utilizing PyTorch 2.0.0 (Paszke et al. 2019), OpenCV
4.7.0, and scikit-learn 1.0.2 libraries. In terms of the compared approaches (Feng et al. 2020;
Weiss and Tonella 2022), we integrated existing implementations of them into our exper-
imental pipeline. In terms of ranking models, for XGBoost and LightGBM, we employed
the specific versions XGBoost 1.7.4 and LightGBM 3.3.5. For the ranking model random
forest and logistic regression, we leveraged the existing algorithm packages provided by
scikit-learn. Concerning the parameter configurations, we set the n_estimators parameter
to 100 for the XGBoost, LightGBM, and Random Forest ranking algorithms. For the Logistic
Regression ranking algorithm, we set themax_i ter parameter to 100. Our experiments were
conducted on NVIDIA Tesla V100 32GBGPUs. In terms of data analysis, the corresponding
experiments were performed on aMacBook Pro laptop withMac OS Big Sur 11.6, Intel Core
i9 CPU, and 64 GB RAM.

123

111 Page 16 of 39

Empirical Software Engineering (2024) 29:111

5 Results and Analysis

5.1 RQ1: Effectiveness and Efficiency of VRank

Objective: We investigate the effectiveness and efficiency of VRank, comparing it with
existing test input prioritization approaches and random selection.
Experimental design: We employed 12 pairs of video datasets and models as subjects in
our study to assess the effectiveness of VRank. The fundamental details of these datasets
and models can be found in Table 1. Specifically, we selected five compared approaches,
consisting of four test prioritization techniques (namely DeepGini, Vanilla SM, PCS, and
Entropy) along with a baseline approach (random selection). We utilize these approaches for
comparison because they can be adapted to prioritize testing on video datasets. To quantify
the effectiveness of each approach, we employed the Average Percentage of Fault-Detection
(APFD), a widely accepted measure in the field. In addition to assessing effectiveness, we
investigated the efficiency of VRank by analyzing the time required for each step of its
execution and comparing its overall execution timewith that of the five compared approaches.

Furthermore, due to the randomness of the model training process, we performed a statis-
tical analysis to ensure the stability of our findings. Specifically, we repeated all experiments
ten times for each subject and reported the average results. Furthermore, we calculated the
p-value of the experiments to assess whether the VRank approach consistently outperformed
the compared approaches.

To further illustrate the statistical significance of the improvements in VRank compared
to other test prioritization approaches, we conducted a statistical analysis by calculating p-
values and effect size associated with the experimental results. Regarding the calculation of
p-values, we employed the paired two-sample t-test (Kim 2015), which is a widely used
statistical method for evaluating differences between two related datasets. If the p-value is
less than 10−05, it indicates that the difference between the two sets of data is statistically
significant (Ma et al. 2021). For the measurement of effect size, we utilized Cohen’s d for
measuring the effect size (Kelley and Preacher 2012). In this context, values of |d| < 0.2 are
categorized as “negligible,” |d| < 0.5 as “small,” |d| < 0.8 as “medium,” and otherwise as
“large”. For instance, if we compare VRank with another test prioritization method, and the
value of d is 0.7, the effect size is categorized as “medium” because 0.5 < 0.7 < 0.8. This
suggests that there is a relatively medium difference between the two methods.
Results: The experimental findings pertaining to RQ1 are presented in Tables 2, 3, 4 and 5.
We highlight the approach with the highest effectiveness in grey to facilitate quick and easy
interpretation of the results. Table 2 presents the effectiveness of VRank and the compared
approaches across different video subjects, as measured by the Average Percentage of Faults
Detected (APFD). We see that VRank performs better than all the compared approaches
regarding APFD across all cases. Specifically, the APFD range for VRank spans from 0.616
to 0.817, whereas the baseline approach exhibits an APFD range of 0.484 to 0.528. Fur-
thermore, the uncertainty-based test prioritization methods yield an APFD range of 0.563
to 0.766. Table 3 provides a detailed analysis of the experimental results for RQ1, focusing
on three aspects: the number of best-performing cases for each test prioritization approach,
the average effectiveness, and the relative improvement of VRank compared to each method.
It is observed that the average APFD of VRank is 0.734, with an average improvement of
5.76%∼46.51%compared to the uncertainty-based test prioritization approaches and random
selection. Based on the aforementioned results, we conclude that VRank exhibits better effec-
tiveness in prioritizing video test inputs compared to DeepGini, VanillaSM, PCS, Entropy,
and Random Selection.

123

Page 17 of 39 111

Empirical Software Engineering (2024) 29:111

Table 2 Effectiveness comparison among VRank, Random, DeepGini, VanillaSM, PCS, and Entropy in terms
of the APFD values on natural datasets

Data Model Approach
Random DeepGini VanillaSM PCS Entropy VRank

HWID12 C3D 0.513 0.717 0.716 0.712 0.717 0.745

R2Plus1D 0.492 0.695 0.696 0.685 0.694 0.735

R3D 0.488 0.696 0.698 0.697 0.694 0.742

SlowFastNet 0.528 0.703 0.701 0.698 0.705 0.744

VT 0.522 0.721 0.723 0.726 0.718 0.746

HMDB51 C3D 0.484 0.661 0.659 0.653 0.663 0.702

R2Plus1D 0.495 0.573 0.577 0.577 0.568 0.616

R3D 0.493 0.619 0.623 0.622 0.609 0.658

SlowFastNet 0.488 0.614 0.614 0.612 0.614 0.650

VT 0.503 0.704 0.708 0.706 0.696 0.735

UCF101 C3D 0.501 0.759 0.758 0.754 0.758 0.817

R2Plus1D 0.503 0.766 0.766 0.764 0.763 0.806

R3D 0.498 0.697 0.697 0.693 0.694 0.755

SlowFastNet 0.492 0.717 0.716 0.711 0.720 0.772

VT 0.507 0.749 0.751 0.749 0.743 0.797

Table 4 presents the results of the statistical analysis evaluating the improvement of VRank
in comparison to other test prioritization methods. The analysis employs two key metrics:
p-value and effect size. As mentioned in the experimental design above, a p-value below
10−05 indicates that the difference between two datasets (Ma et al. 2021) is statistically
significant. An effect size of ≥ 0.8 suggests that the difference in effectiveness between the
two approaches is considered “large”.

In Table 4, we see that all the p-values between VRank and other test prioritization
approaches consistently fall below 10−05. This suggests that VRank significantly outper-
forms all the test prioritization methods being compared. For example, the p-value between
VRank and DeepGini is 7.336× 10−07, while the p-value between VRank and VanillaSM is
1.023× 10−06. Moreover, the effect sizes between VRank and all the compared approaches
exceed 0.8, suggesting that the improvement in VRank’s effectiveness (measured by APFD)
compared to all the other approaches is “large”. For instance, the effect size between VRank
and VanillaSM is 3.669, and the effect size between VRank and DeepGini is 3.816.

Table 3 Performance
improvement of VRank on the 15
initial subjects (i.e., three natural
input sets on 5 Video
classification models)

Approach # Best cases Average APFD Improvement(%)

Random 0 0.501 46.51

DeepGini 0 0.692 6.07

VanillaSM 0 0.694 5.76

PCS 0 0.691 6.22

Entropy 0 0.690 6.38

VRank 15 0.734 −

123

111 Page 18 of 39

Empirical Software Engineering (2024) 29:111

Table 4 Statistical analysis on natural test inputs (in terms of p-value and effect size)

Random DeepGini VanillaSM PCS Entropy

VRank (p-value) 1.755 × 10−09 7.336 × 10−07 1.023 × 10−06 1.605 × 10−06 6.311 × 10−07

VRank (effect size) 7.615 3.816 3.669 3.479 3.884

Table 5 provides a comprehensive breakdown of the time required by each step of VRank
and a comparisonwith uncertainty-based test prioritization approaches and random selection.
The time required for VRank is partitioned into three steps: feature generation, ranking
model training, and prediction. Our findings reveal that feature generation is the most time-
consuming step, taking approximately 2.3 minutes, followed by ranking model training,
which takes approximately 35 seconds. Notably, the prediction time of VRank is fast, taking
less than 1 second once the ranking model is trained and the features have been generated.
Overall, the average time consumption of VRank for each dataset is approximately 3minutes.
Although VRank is less efficient than uncertainty-based test prioritization approaches, which
take less than 1 second, its time cost is acceptable compared to the prohibitively expensive
manual labeling.

Answer to RQ1:When applied to natural datasets, VRank demonstrates better effective-
ness in prioritizing video test inputs compared to DeepGini, VanillaSM, PCS, Entropy,
and Random Selection, with the average improvement of 5.76%∼46.51%. Furthermore,
the total time required for the execution of VRank is less than 3minutes, which falls within
an acceptable range.

5.2 RQ2: Effectiveness on Noisy Test Inputs

Objective We evaluated the effectiveness of VRank on noisy test inputs. To this end, we
incorporated various types of video noise, namely Channel Shift (CSR), Feature-wise Nor-
malization (FSN), Height Shift (HS), Width Shift (WS), Shear (SR), Horizontal Flip (HF),
and ZCA Whitening (ZCA), as discussed in Section 4.3. We derived inspiration for these
noise types from prior research (Shorten and Khoshgoftaar 2019; Perez and Wang 2017;
Mikołajczyk and Grochowski 2018; Taylor and Nitschke 2018).
Experimental Design In order to generate noisy video datasets, we employed seven noise
generation techniques, namely Channel Shift (CSR), Feature-wise Normalization (FSN),
Height Shift (HS), Width Shift (WS), Shear (SR), Horizontal Flip (HF), and ZCAWhitening
(ZCA). By applying these techniques, we introduced various forms of noise and perturbations
to the original video datasets, thereby increasing their diversity and complexity. In total, we
constructed 84 subjects for evaluation (4 videomodels×3video datasets×7noise generation
techniques). Consistent with our previous research question, we compared VRank with four

Table 5 Time cost of VRank and the compared approaches

Time cost Approach
VRank Random DeepGini VanillaSM PCS Entropy

Feature generation 2.3 min – – – – –

Ranking model training 35 s – – – – –

Prediction < 1 s < 1 s < 1 s < 1 s < 1 s < 1 s

123

Page 19 of 39 111

Empirical Software Engineering (2024) 29:111
Ta
bl
e
6

O
ve
ra
ll
ef
fe
ct
iv
en
es
s
co
m
pa
ri
so
n
on

no
is
y
vi
de
o
da
ta
se
ts

N
oi
se

A
pp
ro
ac
h

A
ve
ra
ge

A
PF

D
Im

pr
ov
em

en
t(
%
)

D
at
a

C
3D

R
2P

lu
s1
D

R
3D

Sl
ow

Fa
st
N
et

V
T

C
3D

R
2P

lu
s1
D

R
3D

Sl
ow

Fa
st
N
et

V
T

H
F

R
an
do

m
0.
50

2
0.
50

7
0.
50

5
0.
50

4
0.
50

8
37

.8
5%

31
.3
6%

32
.6
7%

30
.7
5%

46
.2
6%

D
ee
pG

in
i

0.
65

1
0.
62

4
0.
61

8
0.
60

6
0.
70

7
6.
30

%
6.
73

%
8.
41

%
8.
75

%
5.
09

%

V
an
ill
aS

M
0.
65

1
0.
62

5
0.
62

2
0.
60

6
0.
70

9
6.
30

%
6.
56

%
7.
72

%
8.
75

%
4.
80

%

PC
S

0.
64

7
0.
61

6
0.
62

0
0.
60

5
0.
70

8
6.
96

%
8.
12

%
8.
06

%
8.
93

%
4.
94

%

E
nt
ro
py

0.
65

1
0.
62

3
0.
61

2
0.
60

6
0.
70

3
6.
30

%
6.
90

%
9.
48

%
8.
75

%
5.
69

%

V
R
an

k
0.
69

2
0.
66

6
0.
67

0
0.
65

9
0.
74

3
−

−
−

−
−

H
S

R
an
do

m
0.
50

5
0.
49

6
0.
49

8
0.
50

3
0.
49

8
24

.1
6%

30
.4
4%

33
.7
3%

21
.6
7%

43
.1
7%

D
ee
pG

in
i

0.
58

6
0.
60

2
0.
61

1
0.
55

7
0.
67

6
7.
00

%
7.
48

%
9.
00

%
9.
87

%
5.
47

%

V
an
ill
aS

M
0.
58

5
0.
60

4
0.
61

6
0.
55

7
0.
67

7
7.
18

%
7.
12

%
8.
12

%
9.
87

%
5.
32

%

PC
S

0.
58

0
0.
59

7
0.
61

5
0.
55

5
0.
67

3
8.
10

%
8.
38

%
8.
29

%
10

.2
7%

5.
94

%

E
nt
ro
py

0.
58

6
0.
60

1
0.
60

4
0.
55

8
0.
67

2
7.
00

%
7.
83

%
10

.2
6%

9.
68

%
6.
10

%

V
R
an

k
0.
62

7
0.
64

7
0.
66

6
0.
61

2
0.
71

3
−

−
−

−
−

W
S

R
an
do

m
0.
49

8
0.
50

6
0.
50

6
0.
49

9
0.
49

9
33

.5
3%

30
.8
3%

31
.4
2%

27
.4
5%

46
.4
9%

D
ee
pG

in
i

0.
62

7
0.
62

0
0.
61

4
0.
59

1
0.
69

4
6.
06

%
6.
77

%
8.
31

%
7.
61

%
5.
33

%

V
an
ill
aS

M
0.
62

7
0.
62

1
0.
61

7
0.
59

0
0.
69

4
6.
06

%
6.
60

%
7.
78

%
7.
80

%
5.
33

%

PC
S

0.
62

1
0.
61

1
0.
61

7
0.
58

7
0.
69

0
7.
09

%
8.
35

%
7.
78

%
8.
35

%
5.
94

%

E
nt
ro
py

0.
62

7
0.
61

8
0.
60

8
0.
59

2
0.
69

3
6.
06

%
7.
12

%
9.
38

%
7.
43

%
5.
48

%

V
R
an

k
0.
66

5
0.
66

2
0.
66

5
0.
63

6
0.
73

1
−

−
−

−
−

FS
N

R
an
do

m
0.
49

1
0.
49

4
0.
50

1
0.
50

8
0.
50

7
53

.5
6%

45
.5
5%

43
.6
0%

42
.1
3%

49
.7
0%

D
ee
pG

in
i

0.
71

2
0.
67

8
0.
67

0
0.
67

8
0.
72

5
5.
90

%
6.
05

%
7.
16

%
6.
49

%
4.
69

%

V
an
ill
aS

M
0.
71

1
0.
68

0
0.
67

2
0.
67

7
0.
72

8
6.
05

%
5.
74

%
6.
85

%
6.
65

%
4.
26

%

PC
S

0.
70

6
0.
67

6
0.
67

1
0.
67

4
0.
72

8
6.
80

%
6.
36

%
7.
00

%
7.
12

%
4.
26

%

E
nt
ro
py

0.
71

3
0.
67

5
0.
66

6
0.
67

9
0.
71

9
5.
75

%
6.
52

%
7.
81

%
6.
33

%
5.
56

%

V
R
an

k
0.
75

4
0.
71

9
0.
71

8
0.
72

2
0.
75

9
−

−
−

−
−

123

111 Page 20 of 39

Empirical Software Engineering (2024) 29:111
Ta
bl
e
6

co
nt
in
ue
d

N
oi
se

A
pp
ro
ac
h

A
ve
ra
ge

A
PF

D
Im

pr
ov
em

en
t(
%
)

D
at
a

C
3D

R
2P

lu
s1
D

R
3D

Sl
ow

Fa
st
N
et

V
T

C
3D

R
2P

lu
s1
D

R
3D

Sl
ow

Fa
st
N
et

V
T

SR
R
an
do

m
0.
49

9
0.
51

1
0.
49

6
0.
49

6
0.
51

6
50

.3
0%

40
.3
1%

44
.3
5%

45
.1
6%

47
.0
9%

D
ee
pG

in
i

0.
71

0
0.
67

4
0.
66

6
0.
67

3
0.
72

2
5.
63

%
6.
38

%
7.
51

%
6.
98

%
5.
12

%

V
an
ill
aS

M
0.
70

9
0.
67

7
0.
66

8
0.
67

2
0.
72

6
5.
78

%
5.
91

%
7.
19

%
7.
14

%
4.
55

%

PC
S

0.
70

4
0.
67

2
0.
66

6
0.
67

0
0.
72

5
6.
53

%
6.
70

%
7.
51

%
7.
46

%
4.
69

%

E
nt
ro
py

0.
71

0
0.
67

1
0.
66

1
0.
67

4
0.
71

7
5.
63

%
6.
86

%
8.
32

%
6.
82

%
5.
86

%

V
R
an

k
0.
75

1
0.
71

7
0.
71

6
0.
72

0
0.
75

9
−

−
−

−
−

Z
C
A

R
an
do

m
0.
50

5
0.
49

9
0.
50

8
0.
49

0
0.
50

9
49

.3
1%

44
.0
9%

41
.3
4%

47
.3
5%

49
.1
2%

D
ee
pG

in
i

0.
71

2
0.
67

8
0.
67

0
0.
67

8
0.
72

1
5.
90

%
6.
05

%
7.
16

%
6.
49

%
4.
85

%

V
an
ill
aS

M
0.
71

1
0.
68

1
0.
67

2
0.
67

7
0.
72

4
6.
05

%
5.
74

%
6.
85

%
6.
65

%
4.
42

%

PC
S

0.
70

6
0.
67

6
0.
67

1
0.
67

4
0.
72

5
6.
80

%
6.
36

%
7.
00

%
7.
12

%
4.
28

%

E
nt
ro
py

0.
71

3
0.
67

5
0.
66

6
0.
67

9
0.
71

6
5.
75

%
6.
52

%
7.
81

%
6.
33

%
5.
59

%

V
R
an

k
0.
75

4
0.
71

9
0.
71

8
0.
72

2
0.
75

6
−

−
−

−
−

C
SR

R
an
do

m
0.
49

5
0.
49

9
0.
49

3
0.
49

8
0.
51

8
48

.2
8%

33
.2
7%

39
.7
6%

38
.7
6%

46
.5
3%

D
ee
pG

in
i

0.
69

1
0.
61

7
0.
63

4
0.
63

4
0.
72

5
6.
38

%
7.
78

%
8.
68

%
8.
99

%
4.
55

%

V
an
ill
aS

M
0.
68

9
0.
61

6
0.
63

9
0.
63

3
0.
72

7
6.
53

%
7.
95

%
7.
82

%
9.
16

%
4.
26

%

PC
S

0.
68

5
0.
61

0
0.
63

9
0.
63

1
0.
72

6
7.
15

%
9.
02

%
7.
82

%
9.
51

%
4.
41

%

E
nt
ro
py

0.
69

1
0.
61

5
0.
62

7
0.
63

5
0.
71

8
6.
38

%
8.
13

%
9.
89

%
8.
82

%
5.
57

%

V
R
an

k
0.
73

4
0.
66

5
0.
68

9
0.
69

1
0.
75

8
−

−
−

−
−

123

Page 21 of 39 111

Empirical Software Engineering (2024) 29:111

test prioritization approaches and a baseline method (i.e., random selection), using the metric
APFD to quantify their effectiveness.
Results The experimental results for RQ2 are presented in Tables 6, 7 and 8. Table 6 show-
cases the effectiveness of VRank in comparison to several test prioritization techniques and
the baseline (i.e., random selection) across noisy datasets generated using various noise gen-
eration techniques. We see that VRank consistently performs better than all the compared
methods in terms of average APFD across all cases. More specifically, the average APFD
of VRank ranges from 0.612 to 0.758, while the baseline method exhibits an average APFD
ranging from 0.490 to 0.518. The uncertainty-based test prioritization techniques achieve
an average APFD between 0.555 to 0.728. Overall, VRank demonstrates an improvement
ranging from 4.26% to 53.56% compared with DeepGini, VanillaSM, PCS, Entropy, and
Random Selection. This improvement is consistently observed across each noise generation
technique. For instance, under theHSnoise technique, VRank exhibits an improvement ranging
from 5.32% to 43.17%. Similarly, under the HF noise technique, the improvement ranges
from 4.80% to 46.26%, and under the CSR noise technique, it ranges from 4.26% to 48.28%.

Table 7 provides a detailed analysis of the experimental results for RQ2, focusing on
three aspects: the number of best-performing cases for each test prioritization approach, the
average effectiveness, and the relative improvement of VRank compared to each method.We
see the average APFD of VRank is 0.692, with an average improvement of 7.12% to 38.68%
compared to other test prioritization approaches.

In Table 8, we present a detailed analysis of VRank’s effectiveness by using the SR
noise technique as an example. We can see that VRank consistently performs better than
the compared approaches across all subjects (a DNN model associated with a noisy dataset)
related to SR. Moreover, the APFD values of VRank range from 0.577 to 0.756, while that
of the compared approaches range from 0.496 to 0.712. The aforementioned experimental
results indicate that VRank maintains better effectiveness over all the compared approaches
on noisy video datasets.

Answer to RQ2: When applied to noisy datasets, VRank also demonstrates better effec-
tiveness over the compared test prioritization approaches, with an average improvement
of 4.26% to 53.56%. The improvement is consistently observed across each utilized noise
generation technique.

5.3 RQ3: Impact of Different RankingModels

Objective We explore the efficacy of various ranking models in VRank concerning their
ability to leverage the generated video features for test prioritization.

Table 7 Performance improvement of VRank on the 105 noisy subjects (i.e., 3(natural input sets)×5(Video
classification models)×7(noise technique)

Approach # Best cases Average APFD Improvement(%)

Random 0 0.499 38.68

DeepGini 0 0.645 7.29

VanillaSM 0 0.646 7.12

PCS 0 0.642 7.79

Entropy 0 0.644 7.45

VRank 105 0.692 –

123

111 Page 22 of 39

Empirical Software Engineering (2024) 29:111

Table 8 Effectiveness comparison on noisy datasets generated by the WS noise generation technique

Data Model Approach
Random DeepGini VanillaSM PCS Entropy VRank

HWID12 C3D 0.478 0.698 0.699 0.690 0.696 0.719

R2Plus1D 0.506 0.682 0.684 0.662 0.680 0.716

R3D 0.503 0.667 0.669 0.667 0.661 0.715

SlowFastNet 0.498 0.638 0.636 0.633 0.640 0.699

VT 0.503 0.710 0.711 0.712 0.710 0.736

HMDB51 C3D 0.514 0.577 0.576 0.572 0.577 0.617

R2Plus1D 0.504 0.555 0.558 0.554 0.551 0.599

R3D 0.510 0.559 0.565 0.571 0.549 0.610

SlowFastNet 0.499 0.551 0.551 0.549 0.551 0.577

VT 0.497 0.659 0.659 0.650 0.658 0.701

UCF101 C3D 0.499 0.604 0.604 0.600 0.605 0.658

R2Plus1D 0.504 0.621 0.620 0.616 0.620 0.670

R3D 0.504 0.614 0.615 0.612 0.612 0.669

SlowFastNet 0.499 0.583 0.581 0.578 0.585 0.630

VT 0.496 0.711 0.712 0.706 0.708 0.756

Experimental Design In order to explore the influence of different ranking models on the
effectiveness ofVRank,we have proposed threeVRank variants that employ different ranking
models for the learning-to-rank process. Specifically, we evaluate VRank along with its
variants, namely VRankX , VRankR , and VRankL (as described in Section 3.5), on their
ability to prioritize test inputs in both natural and noisy settings and assess their effectiveness
in terms of APFD.
Results The experimental results pertaining to RQ3 are presented in Table 9. The upper
segment of the table displays the average effectiveness across diverse models, while the
lower segment showcases the average effectiveness across different video datasets. We see
that both VRank and its variants perform better than all the compared approaches on average.
Specifically, in the case of natural inputs, VRank exhibits the highest performance in 86.67%
of instances, whereas VRankX achieves superiority in the remaining 13.33% of cases. In the
context of noisy data, VRank achieves the highest performance in 84.61% of cases, while
VRankX excels in the remaining 15.38% of cases. Furthermore, the mean APFD values for
VRank and its variants on the natural dataset range from 0.718 to 0.758, while the compared
approaches exhibit mean APFD values ranging from 0.493 to 0.755. On the noisy dataset,
the mean APFD values for VRank and its variants range from 0.680 to 0.746, while the
compared methods exhibit mean APFD values ranging from 0.499 to 0.742. These findings
demonstrate that VRank and its variants perform better than all the compared methods on
average.

Furthermore,we see thatVRank demonstrates the highest effectiveness among all variants.
As shown in Table 9, regardless of whether the datasets are natural or noisy, VRank consis-
tently achieves the highest average APFD across all cases. In the natural dataset scenario,
the mean APFD of VRank reaches 0.734, while the variants exhibit mean values ranging
from 0.701 to 0.729. In the noisy dataset scenario, VRank attains an average APFD of 0.702,
whereas the variants exhibit mean values ranging from 0.672 to 0.697. These results indicate

123

Page 23 of 39 111

Empirical Software Engineering (2024) 29:111

Ta
bl
e
9

Pe
rf
or
m
an
ce

(A
PF

D
sc
or
es
)
of

V
R
an
k
va
ri
an
ts
w
ith

di
ff
er
en
tr
an
ki
ng

m
od

el
s
(#
B
C

⇔
#B

es
tc
as
es
)
an
d
(A
vg

⇔
A
ve
ra
ge

A
PF

D
sc
or
e)

A
pp
ro
ac
h

N
at
ur
al
in
pu
ts

N
oi
se

in
pu
ts

#B
C

C
3D

R
2P

lu
s1
D

R
3D

Sl
ow

Fa
st
N
et

V
T

#B
C

C
3D

R
2P

lu
s1
D

R
3D

Sl
ow

Fa
st
N
et

V
T

R
an
do

m
0

0.
49

9
0.
49

6
0.
49

3
0.
50

2
0.
51

1
0

0.
49

9
0.
50

1
0.
50

1
0.
49

9
0.
50

7

D
ee
pG

in
i

0
0.
71

2
0.
67

7
0.
67

0
0.
67

8
0.
72

5
0

0.
66

9
0.
64

1
0.
64

0
0.
63

1
0.
71

0

V
an
ill
aS

M
0

0.
71

0
0.
67

9
0.
67

2
0.
67

6
0.
72

7
0

0.
66

8
0.
64

2
0.
64

3
0.
63

0
0.
71

2

PC
S

0
0.
70

6
0.
67

5
0.
67

0
0.
67

3
0.
72

7
0

0.
66

4
0.
63

6
0.
64

2
0.
62

7
0.
71

1

E
nt
ro
py

0
0.
71

2
0.
67

4
0.
66

5
0.
67

9
0.
71

9
16

0.
67

0
0.
63

9
0.
63

4
0.
63

1
0.
70

5

V
R
an
k
X

2
0.
75

0
0.
71

2
0.
71

3
0.
71

3
0.
75

5
0

0.
70

6
0.
67

8
0.
68

7
0.
67

4
0.
74

2

V
R
an
k
R

0
0.
74

3
0.
70

6
0.
70

6
0.
70

5
0.
74

9
1

0.
70

1
0.
67

2
0.
68

1
0.
66

2
0.
73

7

V
R
an
kL

0
0.
71

3
0.
69

0
0.
68

4
0.
69

1
0.
72

8
0

0.
67

7
0.
65

6
0.
65

9
0.
65

1
0.
71

9

V
R
an
k

13
0.
75

4
0.
71

9
0.
71

8
0.
72

2
0.
75

8
88

0.
71

1
0.
68

5
0.
69

1
0.
68

0
0.
74

6

A
pp

ro
ac
h

N
at
ur
al

in
pu

ts
N
oi
se

in
pu

ts

H
W
ID

12
H
M
D
B
51

U
C
F1

01
A
V
G

H
W
ID

12
H
M
D
B
51

U
C
F1

01
A
V
G

R
an
do

m
0.
50

8
0.
49

2
0.
50

1
0.
50

1
0.
50

2
0.
50

1
0.
50

2
0.
50

2

D
ee
pG

in
i

0.
70

6
0.
63

4
0.
73

7
0.
69

2
0.
68

5
0.
60

7
0.
68

3
0.
65

8

V
an
ill
aS

M
0.
70

6
0.
63

6
0.
73

7
0.
69

4
0.
68

6
0.
60

9
0.
68

2
0.
65

9

PC
S

0.
70

3
0.
63

4
0.
73

4
0.
69

1
0.
68

2
0.
60

7
0.
67

9
0.
65

6

E
nt
ro
py

0.
70

5
0.
62

9
0.
73

5
0.
69

0
0.
68

3
0.
60

3
0.
68

1
0.
65

5

V
R
an
k
X

0.
73

9
0.
66

4
0.
78

3
0.
72

9
0.
72

5
0.
63

9
0.
72

8
0.
69

7

V
R
an
k
R

0.
73

1
0.
66

1
0.
77

3
0.
72

2
0.
71

5
0.
63

5
0.
72

1
0.
69

0

V
R
an
kL

0.
71

4
0.
63

6
0.
75

3
0.
70

1
0.
69

9
0.
61

4
0.
70

4
0.
67

2

V
R
an
k

0.
74

2
0.
67

2
0.
78

9
0.
73

4
0.
72

7
0.
64

5
0.
73

5
0.
70

2

123

111 Page 24 of 39

Empirical Software Engineering (2024) 29:111

that VRank surpasses all variants in terms of effectiveness, suggesting that the ranking model
employed by VRank, namely LightGBM, outperforms the ranking models utilized by the
variants in leveraging the features of video input for test prioritization.

Answer to RQ3: VRank and its variants exhibit better average effectiveness than Deep-
Gini, Vanilla SM, PCS, and Entropy. Notably, VRank surpasses all of its variants in terms
of effectiveness, indicating that the ranking model implemented in VRank, LightGBM,
outperforms the ranking models employed by the variants in effectively utilizing the video
input features for test prioritization.

5.4 RQ4: Feature Contribution Analysis

Objective We aim to investigate the contributions of different types of features to the effec-
tiveness of VRank.
Experimental Design To evaluate the importance of different types of features for VRank,
we leverage the cover metric in the XGBoost algorithm (Chen and Guestrin 2016). The cover
metric provides ameans of evaluating feature importance by quantifying the average coverage
of each instance through the leaf nodes within a decision tree. Specifically, this metric entails
the calculation of the frequency with which a specific feature is employed for partitioning the
data across all trees within the ensemble, followed by the summation of the coverage values
associated with each feature across all trees. Subsequently, the resulting coverage value is
appropriately normalized by the total number of instances, thereby yielding the average
coverage of each instance by the leaf nodes. The significance of a particular feature is then
ascertained based on its derived coverage value, with features exhibiting higher coverage
values being attributed greater importance. Upon computing the importance scores for all
features, the identification of the top-N important features was carried out for each dataset,
thereby providing an elucidation of the feature types that significantly contribute to the
effectiveness of VRank.

Moreover, in order to assess the impact of each feature type on the effectiveness of VRank,
we conducted a carefully designed ablation study following themethodology outlined in prior
research (Du 2020). More specifically, we removed individual feature types and evaluated
VRank’s effectiveness under these modified conditions. For example, to measure the con-
tribution of UF features, VRank was executed with UF features excluded while retaining
the other three feature types. The resulting performance of VRank was then evaluated under
these adjusted circumstances. Similarly, to evaluate the contribution of EF features, VRank
was executed without generating EF features while still generating the other three feature
types. The performance of VRank was subsequently assessed in this context. Through the
conducted ablation study, we can compare the contribution of each feature type to the overall
effectiveness of VRank.
Results The findings for RQ4 are presented in Table 10. In Table 10, the abbreviations UF,
PF, EF, and TF represent uncertainty-based features, prediction features, video embedding
features, and temporal features. Additionally, the small superscript numbers on the upper
right corner of the feature abbreviations indicate the index of the feature. For instance, UF5

denotes the UF feature with index 5. In Table 10, we see that, across different video datasets
(i.e., HWID12, HMDB51, and UCF101), all four types of features appear among the top 10
most contributing features. Specifically, for the HWID12 dataset, UF features contribute to
20% of the top 10 features, PF features contribute to 20%, EF features contribute to 30%, and
TF features contribute to 30%. In the case of theHMDB51dataset,UF, PF, EF, andTF features

123

Page 25 of 39 111

Empirical Software Engineering (2024) 29:111

Table 10 Top-10 features in
terms of the average contribution

Rank HWID12 HMDB51 UCF101
Feature Score Feature Score Feature Score

1 UF5 88.56 UF0 104.31 UF1 280.18

2 UF1 80.86 EF1352 84.75 EF984 248.26

3 PF11 61.34 TF2070 80.48 EF1386 219.73

4 EF52 38.23 EF443 72.76 PF65 211.38

5 EF2048 37.49 UF2 70.74 TF2153 201.27

6 TF2104 37.48 UF1 68.38 UF5 163.01

7 EF1456 36.43 EF1819 67.33 TF2164 154.78

8 TF2113 34.88 TF2115 64.25 PF18 147.84

9 TF2068 33.43 EF2124 64.06 TF2184 146.92

10 PF7 32.13 PF44 63.45 UF5 139.84

contribute 30%, 10%, 40%, and 20%, respectively. These experimental results illustrate that
all four types of generated features make visible contributions to the effectiveness of VRank.

The experimental results of the ablation study are presented in Table 11. In this table,
‘w/o’ stands for ‘without.’ For example, ‘VRank w/o EF’ refers to executing VRank without
generating the video embedding features. From Table 11, we see that the original VRank
achieves the highest average effectiveness. Removing any type of feature results in a decrease
in the effectiveness of VRank, demonstrating that each type of feature contributes to VRank’s
effectiveness. For instance, on the HWID12 dataset, the average APFD value of the original
VRank is 0.742. Removing video embedding features results in a decline of VRank’s average
APFD to 0.727, while the removal of temporal features causes a decrease to 0.731, prediction
features to 0.729, and uncertainty features to 0.732.

From Table 11, we see that across different datasets, all four types of features contribute to
VRank. Specifically, the average APFD decrease resulting from the removal of EF is 0.016.
Removing TF leads to an average APFD decrease of 0.015, while PF removal results in
an average APFD decrease of 0.017, and UF removal causes an average APFD decrease of
0.019. These differences are small. Moreover, taking the HMDB51 dataset as an example,
the APFD decreases caused by removing the four types of features are 0.016, 0.018, 0.019,
and 0.02, respectively. These experimental results suggest that all types of generated features
contribute to the effectiveness of VRank.

Answer to RQ4: All four types of generated features, namely uncertainty features, pre-
diction features, video embedding features, and temporal features, visibly contribute to
the effectiveness of VRank.

Table 11 Ablation study on
different features of VRank:
Embedding Features(EF),
Temporal Features(TF),
Prediction Features(PF),
Uncertainty Features(UF). ‘w/o’
means ‘without’

Approach Dataset Average
HWID12 HMDB51 UCF101

VRank w/o EF 0.727 0.656 0.772 0.718

VRank w/o TF 0.731 0.654 0.771 0.719

VRank w/o PF 0.729 0.653 0.768 0.717

VRank w/o UF 0.732 0.652 0.763 0.715

VRank 0.742 0.672 0.788 0.734

123

111 Page 26 of 39

Empirical Software Engineering (2024) 29:111

5.5 Impact of the Number of Extracted Frames on the Effectiveness of VRank

Objective In VRank, two critical steps involve generating video embedding features (EF)
and temporal features (TF) from the video-type test to predict the likelihood of the test being
misclassified. To obtain EF and TF, we utilize established frame sampling techniques (Team
2023) to extract a fixed number of frames from the video-type test input. In this research
question, we explore the impact of the number of extracted frames on the effectiveness of
VRank.
Experimental design In the original VRank implementation, we extracted 16 frames during
the generation of video embedding features and temporal features. To investigate the impact of
the number of generated frames, we kept the other execution processes of VRank unchanged
and only varied the number of frames extracted, specifically changing it to 4, 8, and 32 frames.
The reason we chose these specific numbers of frames to extract is as follows: Selecting 4, 8,
and 32 frames can cover a range of frame numbers from relatively low (4 frames) to relatively
high (32 frames). This can assist researchers in understanding the impact of different frame
count levels on the performance of VRank. We compared the effectiveness (measured by
APFD) of VRank with the different number of frames generated. Through comparison, we
aim to explore the impact of the number of extracted frames on the effectiveness of VRank.
Results The results for RQ5 are presented in Table 12. Specifically, Frames-4 indicates that,
during the video embedding feature and temporal feature generation step in VRank, four
frames were extracted. Similarly, Frames-8, Frames-16, and Frames-32 correspond to the
extraction of 8, 16, and 32 frames, respectively. From Table 12, we see that the effectiveness
of VRank increases slightly with the number of extracted frames. In the HWID12 dataset,
the effectiveness of VRank with 4 frames to 32 frames is as follows: 0.725, 0.735, 0.742,
and 0.748. In the HMDB51 dataset, the effectiveness of VRank with 4 frames to 32 frames
is 0.651, 0.663, 0.672, and 0.681. For the UCF101 dataset, the values are 0.752, 0.768,
0.789, and 0.795. We see that on each dataset, VRank’s APFD values gradually improve
with an increase in the number of frames. However, the augmentation of frames affects
the running time of VRank, impacting efficiency. The original VRank, which utilizes 16
extracted frames, has outperformed all the compared test prioritization methods, and the total
execution time is only around 3minutes. As shown in Table 3, the original VRank (16 frames)
outperforms all the comparedmethods in all cases, with improvements ranging from5.76% to
46.51%. Therefore, for a trade-off between efficiency and effectiveness, we select to extract
16 frames in the process of generating video embedding features and temporal features.

Answer to RQ5: The effectiveness of VRank increases with the number of extracted
frames, but the improvement is slight.

Table 12 Influence of the
number of extracted frames on
the effectiveness of VRank

Data Frames-4 Frames-8 Frames-16 Frames-32

HWID12 0.724 0.735 0.742 0.748

HMDB51 0.651 0.663 0.672 0.681

UCF101 0.752 0.768 0.789 0.795

123

Page 27 of 39 111

Empirical Software Engineering (2024) 29:111

6 Discussion

6.1 Limitations

[Dependency on Visual Features] One noteworthy limitation of the current implementation
of VRank is its exclusive emphasis on extracting visual information from video data, neglect-
ing the incorporation of speech or audio information. This singular focus on visual features
hampers the comprehensive understanding of video content, as audio analysis plays a pivotal
role in decoding the complete semantic meaning embedded within videos. The absence of
audio analysis restricts the model’s ability to capture important auditory cues, such as spo-
ken dialogue, sound effects, or background music, which are integral components of video
content. Consequently, the lack of audio analysis may impede the accuracy and effectiveness
of the ranking process, as the model’s comprehension of videos remains incomplete and
insufficiently nuanced. To address this limitation, future iterations of VRank will include a
robust audio analysis component, which will facilitate a more holistic and comprehensive
approach to video ranking by encompassing both visual and auditory information. By incor-
porating audio analysis, VRank will be empowered to leverage the complementary nature of
audio-visual data, enabling a more nuanced understanding of video content and enhancing
the accuracy and reliability of the ranking process.
[Contextual Understanding] While VRank excels in the analysis of individual frames within
a video, it can exhibit limitations in comprehending the broader contextual aspects and
narrative structure inherent in video content. As focusing solely on individual frames, VRank
can lack the temporal relationships and dependencies between frames, thus failing to capture
the temporal dynamics and sequential nature of video content. This limitation can pose
challenges in accurately ranking videos that heavily rely on temporal coherence, as well as
those that require a comprehensive understanding of the entire video content as a cohesive
narrative. The lack of contextual understanding may result in an incomplete representation
of the video’s meaning and can impact the effectiveness of the ranking process, particularly
for videos with intricate storytelling or complex visual narratives. To mitigate this limitation,
future research efforts will seek to enhance VRank’s contextual understanding capabilities
by exploring methods that can capture narrative structures within videos. By incorporating
contextual understanding, VRank will be better equipped to rank videos that exhibit nuanced
temporal dynamics, thereby improving its overall performance and applicability in real-world
scenarios.
[WholeVideoClassification]Our research is centered aroundmulti-class datasets that concen-
trate on classifying entire videos rather than categorizing each frame of a video individually.
Specifically, in the video dataset we evaluated, each video (sample) is assigned to a specific
category. This implies that within the evaluated video dataset, each frame belongs to the same
category. For instance, in the UCF101 dataset, there are a total of 101 categories. A video
sample classified as “High Jump” has each frame assigned to the “High Jump” category.

6.2 Threats to Validity

Threats to Internal Validity. The internal threats to validity primarily reside within the imple-
mentation of our proposed VRank framework and the test prioritization approaches utilized
for comparison. To mitigate these threats, we took several measures to ensure the reliability
and consistency of our experimental setup. Firstly, we implemented VRank using the widely
recognized and extensively utilized PyTorch library, known for its robustness and compu-

123

111 Page 28 of 39

Empirical Software Engineering (2024) 29:111

tational efficiency in deep learning research. By leveraging a well-established framework,
we aimed to minimize potential implementation biases. Furthermore, to guarantee the reli-
ability of our comparative analysis, we employed the publicly available implementations
of the compared approaches as provided by their respective authors. This approach ensures
consistency across the experimental procedures, reducing the risk of implementation discrep-
ancies and increasing the reproducibility of our findings. Another potential internal threat
arises from the inherent randomness associated with the training process of the models. To
mitigate this threat and enhance the stability of our experimental results, we conducted a
statistical analysis. Specifically, we conducted multiple runs of all experiments, repeating the
training and evaluation procedures ten times. By adopting this approach, our experimental
findings acquire heightened reliability and stability. Furthermore, we calculated the statisti-
cal significance of our experimental results, providing further evidence for the validity and
generalizability of our results.
Threats to External Validity. The external threats to validity in our study primarily stem from
the generalizability of our findings to other models and video datasets. To address this con-
cern, we carefully selected a diverse set of models and video datasets for our experimental
evaluation. By incorporating various model-dataset pairs, we aimed to capture a broad spec-
trum of scenarios and ensure that our findings are not limited to a specific combination of
models and datasets. We intentionally included both natural and noisy inputs during testing.
More specifically, we leveraged well-established noise generation techniques from publicly
available studies. These techniques, derived from the literature on image and video process-
ing (Shorten and Khoshgoftaar 2019; Perez and Wang 2017; Mikołajczyk and Grochowski
2018; Taylor and Nitschke 2018), enable us to augment the diversity of the video datasets
used for evaluation. By incorporating these augmentation techniques, we aimed to evaluate
the effectiveness of VRank on noisy contexts.

7 RelatedWork

We present the related work in three aspects: test prioritization in DNN testing, deep neural
network testing, and test prioritization for traditional software.

7.1 Test Prioritization in DNNTesting

In the domain of DNN testing, test prioritization (Feng et al. 2020; Weiss and Tonella 2022;
Dang et al. 2023, 2024; Li et al. 2024) has emerged as a critical task for identifying possibly-
misclassified test inputs. Various metrics have been proposed for this purpose. DeepGini,
proposed by Feng et al. (2020), aims to prioritize tests based on model uncertainty. Deep-
Gini assumes that a test input is more likely to be mispredicted if the DNN outputs similar
probabilities for each class. Byun et al. (2019) evaluated several white-box metrics for priori-
tizing bug-revealing inputs, includingwidely-usedmetrics like softmax confidence, Bayesian
uncertainty, and input surprise. Moreover, Weiss and Tonella (2022) performed a compre-
hensive investigation of various DNN test input prioritization techniques, including several
uncertainty-based metrics such as Vanilla Softmax, Prediction-Confidence Score (PCS), and
Entropy. These metrics have been shown to be effective in identifying possibly-misclassified
test inputs and aiding test prioritization efforts.Recently,Wanget al. (2021) proposedPRIMA,
which uses intelligent mutation analysis for prioritizing test inputs. This approach can be
applied not only to classification but also to regression models and can handle test inputs

123

Page 29 of 39 111

Empirical Software Engineering (2024) 29:111

generated from adversarial input generation approaches that increase the probability of the
wrong class. While PRIMA has demonstrated its effectiveness on image data, it cannot be
used to prioritize video tests since its mutation rules are not adapted to video data.

The aforementioned uncertainty-based test prioritization methods can be adapted for
test prioritization of video datasets. However, video data possesses unique characteristics,
particularly temporal information, which necessitate a tailored test prioritization strategy.
In comparison to these existing approaches, our proposed VRank introduces a carefully-
designed feature generation strategy specifically for video samples. VRank leverages frame
sampling techniques (Team 2023) and the ResNet model (He et al. 2016) to extract frame rep-
resentations that capture the temporal information embeddedwithin video data. By exploiting
these techniques, VRank enables the effective prioritization of video tests by considering the
temporal dynamics and dependencies present in the video content, thereby augmenting the
accuracy and relevance of the test prioritization process.

7.2 Deep Neural Network Testing

DNN Testing (Humbatova et al. 2021; Jahangirova and Tonella 2020) aims to systematically
assess and enhance the reliability and robustness of neural network models through rigorous
testing methodologies. In addition to test input prioritization, numerous approaches have
been proposed to enhance the efficiency of DNN testing through the process of test selection.
Test selection aims to accurately estimate the accuracy of the entire test set by labeling only
a carefully chosen subset of test inputs, thereby reducing the labeling cost associated with
DNN testing. By effectively selecting a representative subset of test inputs, test selection
techniques can provide reliable estimates of the DNN’s performance without requiring the
evaluation of the entire test set. Li et al. (2019) introduced two test selection methods, namely
Cross Entropy-based Sampling (CES) andConfidence-based Stratified Sampling (CSS). CES
operates by minimizing the cross-entropy between the selected set and the complete test set,
thereby ensuring that the distribution of the selected test set aligns with that of the original
test set. In this way, CES aims to capture the diversity and characteristics of the complete test
set while using only a fraction of the available test inputs. CSS, on the other hand, leverages
the confidence features of test inputs to ensure similarity between the selected test set and the
entire test set. By selecting samples based on their confidence scores, CSS aims to capture
the representative distribution of the test set, thereby providing accurate estimations of the
DNN’s performance.

Building upon the foundation of test selection, Chen et al. (2020) proposed a practical test
selection approach called Practical Accuracy Estimation (PACE). PACE integrates various
techniques, including clustering, prototype selection, and adaptive random testing, to facili-
tate efficient and effective test selection. PACE initiates by clustering all the test inputs based
on their testing capabilities. Through this process, test inputs with similar characteristics and
behaviors are grouped together, enabling the identification of distinct clusters within the test
set. Following clustering, prototypes are selected from each cluster using the MMD-critic
algorithm (Kim et al. 2016). The MMD-critic algorithm ensures that the selected prototypes
are representative of their corresponding clusters, thus capturing the diversity and variability
of the test set. For test inputs that do not fall into any specific cluster, PACE employs adaptive
random testing, which randomly selects samples from the remaining unclustered inputs. By
adapting the sampling strategy to the unique characteristics of the unclustered inputs, adap-
tive random testing helps maintain the representativeness and diversity of the selected test
set. It is important to note that while test selection techniques aim to reduce the labeling cost

123

111 Page 30 of 39

Empirical Software Engineering (2024) 29:111

by selecting a subset of test inputs, our work primarily focuses on the complementary task
of test prioritization. Unlike test selection methods that estimate the performance of a DNN
by utilizing a selected subset of inputs, our proposed approach (VRank) focuses on ranking
all test inputs based on their potential to reveal bugs without discarding any of them.

Besides enhancing the efficiency of DNN testing (Pei et al. 2017; Ma et al. 2018a, b;
Kim et al. 2019; Ma et al. 2018c), evaluating the adequacy of DNNs has been a significant
objective in several studies in the field. These studies have focused on developingmetrics and
frameworks to assess the coverage and effectiveness of test sets. Pei et al. (2017) introduced
the concept of neuron coverage as a metric to evaluate the adequacy of a test set in covering
the logic of a DNN model. Neuron coverage measures the extent to which the activations of
individual neurons in themodel are exercised by the test inputs. Building upon this metric, the
authors developed a white-box testing framework for DNNs, which has shown effectiveness
in detecting faults and revealing hidden vulnerabilities in these models.

Ma et al. (2018a) proposed DeepGauge, a comprehensive set of DNN testing coverage
criteria. One of the key components of DeepGauge is neuron coverage, which serves as a
significant indicator of the effectiveness of a test input. Bymeasuring the coverage of neurons
in the model, DeepGauge provides insights into the regions of the model that are adequately
exercised by the test inputs. Additionally, DeepGauge introduced new coverage metrics with
varying granularities to differentiate between adversarial attacks and legitimate test data.
These metrics capture the subtle differences in the behavior of the model when exposed
to adversarial inputs, enabling the detection and identification of such attacks. Kim et al.
(2019) proposed the surprise adequacy approach for DNN testing. This approach assesses
the effectiveness of a test input by quantifying its surprise with respect to the training set. The
surprise of a test input is measured by the difference in the activation values of neurons in
response to the new input. By evaluating the surprise of test inputs, this approach provides a
means to identify inputs that exhibit unusual or unexpected behavior, highlighting potential
vulnerabilities or weaknesses in the model.

7.3 Test Prioritization for Traditional Software

Within the domain of software testing, various techniques have been explored and adopted
to improve the efficiency and effectiveness of bug detection in the testing process (Lou et al.
2015; Shin et al. 2019; Papadakis et al. 2014; Tonella et al. 2006; Weiss and Tonella 2022).
Among these techniques, test prioritization has gained significant attention as a means to
determine the most advantageous order in which to execute test cases, aiming to detect
software bugs at the earliest possible stage.

The main objective of test case prioritization is to identify the maximum number of test
cases that have the potential to reveal bugs within a limited time frame. Empirical studies
have demonstrated the positive impact of test case prioritization on the fault detection rate of
the overall test suite (Elbaum et al. 2002; de S. Campos Junior et al. 2017; Luo et al. 2016).
For instance, Di Nardo et al. (2013) conducted a case study evaluating coverage-based prior-
itization strategies on real-world regression faults. Their study assessed the effectiveness of
various test case prioritization techniques in detecting bugs, providing insights into the effi-
cacy of different prioritization approaches. Rothermel et al. (2001) introduced and compared
three types of test case prioritization techniques for regression testing, which leveraged test
execution information to determine the order of test case execution. Their research empha-
sized the effectiveness of these prioritization techniques in increasing the fault detection rate
of the test suite. Lou et al. (2015) proposed a test case prioritization approach based on the

123

Page 31 of 39 111

Empirical Software Engineering (2024) 29:111

fault detection capability of individual test cases. They introduced two models, the statistics-
based model, and the probability-based model, to calculate the fault detection capability
of each test case. Through their empirical evaluation, they found that the statistics-based
model outperformed other approaches, highlighting the importance of considering the fault
detection capability in test case prioritization.

Shin et al. (2019) developed a test case prioritization techniqueutilizing the diversity-aware
mutation adequacy criterion. They empirically evaluated the effectiveness of mutation-based
prioritization techniques using a large-scale collection of developer-written test cases. Their
research shed light on the benefits of employing mutation-based prioritization techniques in
practical testing scenarios. Papadakis et al. (2014) proposed a method that involved mutating
Combinatorial Interaction Testing models and prioritizing test cases based on their ability to
detect and eliminate mutants. They demonstrated a strong correlation between the number
of model-based mutants killed and the identification of code-level faults by the test cases,
illustrating the potential of model-based prioritization approaches in software fault detection.

These studies collectively showcase the effectiveness and benefits of test prioritization
techniques in detecting software faults and optimizing the overall software testing process.
By strategically ordering the execution of test cases, testers can allocate their limited resources
more efficiently and uncover bugs earlier, leading to improved software quality and reliability.

7.4 Prediction Techniques for Time-Series Analysis

In the literature (Ahmed et al. 2023; Van Den Oord et al. 2016; Salinas et al. 2020; Wang and
Guan 2024), several notable techniques have been proposed for time-series analysis. Ahmed
et al. (2023) provided a comprehensive tutorial on the use of Transformers in time-series anal-
ysis. They explained the fundamental concepts of self-attention and multi-head self-attention
mechanisms, emphasizing their ability to tackle time-series tasks. Through various examples
and empirical studies, they demonstrated that Transformers offer an efficient alternative to
traditional methods like RNNs and LSTMs. Van Den Oord et al. (2016) introducedWaveNet,
a generative DNN model that uses dilated causal convolutions to effectively capture long-
range temporal dependencies. This architecture allowsWaveNet to model complex temporal
structures in time-series data, making it highly suitable for various time-series analysis tasks.

Salinas et al. (2020) introduced DeepAR, a probabilistic forecasting model using auto-
regressive recurrent networks to handle large volumes of time series data. DeepAR can
effectively capture the probabilistic nature of future values, allowing for more accurate and
reliable demand forecasts. Wang and Guan (2024) proposed a novel approach for time series
prediction utilizing a Multiscale Convolutional Neural-based Transformer Network. This
network integrates multiscale extraction and multidimensional fusion frameworks to effec-
tively capture multiple time-scale dependencies and the correlations among input variables.
Their empirical studies demonstrated that MCTNet can significantly improve the accuracy
of time series predictions, outperforming several state-of-the-art approaches on challenging
datasets.

8 Conclusion

To solve the labeling-cost problem specifically in the context of video test inputs, we pro-
posed a novel test prioritization approach called VRank. The primary objective of VRank
is to assign higher priority to video test inputs that are more likely to be misclassified. The

123

111 Page 32 of 39

Empirical Software Engineering (2024) 29:111

fundamental concept underlying VRank is that test inputs situated closer to the decision
boundary of the model are at a higher risk of being predicted incorrectly. To capture the
spatial relationship between a video test and the decision boundary, we employ a vectoriza-
tion technique that transforms a given video test into a lower-dimensional space to indirectly
reveal the underlying proximity between the test and the decision boundary. To implement
this vectorization strategy, we generate four different types of features for each video-type
test: temporal features, video embedding features, prediction features, and uncertainty fea-
tures. Each of these feature types captures essential aspects of the video tests and the model’s
classification behavior specific to videos. Temporal features capture the unique temporal
coherence inherent in a given video-type test. Video embedding features encapsulate the
inherent information within the videos, while the prediction features focus on the model’s
classification information regarding the videos. Uncertainty features, on the other hand, take
into consideration the level of uncertainty associated with the model’s classification outputs.
By combining these feature types, VRank effectively constructs a comprehensive feature
vector for each individual test input. To assess the misclassification likelihood of each test
input, VRank employs a LightGBM-based ranking model that takes the constructed feature
vector as input and generates a misclassification score. A higher misclassification score indi-
cates a higher probability of the test input being incorrectly predicted by the model. Based
on these misclassification scores, VRank sorts all the tests within the test set in descending
order, establishing a prioritized ranking. To assess the effectiveness of VRank, we carried
out an empirical evaluation, comparing it with several test prioritization methods. Our eval-
uations involved 120 subjects, incorporating both natural and noisy data. The results of our
experiments demonstrate the effectiveness of VRank in comparison to a diverse range of
existing test prioritization approaches. Specifically, VRank yielded an average improvement
of 5.76%∼46.51% on natural datasets and 4.26%∼53.56% on noisy datasets.

Acknowledgements This work was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 949014).

Data Availability The datasets and code used in the present study are available in our repository:
https://github.com/yinghuali/VRank

Declarations

Conflicts of Interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aggarwal A, Lohia P, Nagar S, Dey K, Saha D (2019) Black box fairness testing of machine learning models.
In: Proceedings of the 2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering, pp 625–635

123

Page 33 of 39 111

https://github.com/yinghuali/VRank
http://creativecommons.org/licenses/by/4.0/

Empirical Software Engineering (2024) 29:111

Agrawal AK, Agarwal K, Choudhary J, Bhattacharya A, Tangudu S, Makhija N, Rajitha B (2020) Automatic
traffic accident detection system using resnet and svm. In: 2020 Fifth International conference on research
in computational intelligence and communication networks (ICRCICN), IEEE, pp 71–76

Ahmed S, Nielsen IE, Tripathi A, Siddiqui S, Ramachandran RP, Rasool G (2023) Transformers in time-series
analysis: a tutorial. Circuits, Syst, Signal Process 42(12):7433–7466

Bouhsissin S, Sael N, Benabbou F (2021) Enhanced vgg19 model for accident detection and classification
from video. In: 2021 International conference on digital age & technological advances for sustainable
development (ICDATA), IEEE, pp 39–46

Breiman L (2001) Random forests. Machine Learn 45(1):5–32
Byun T, Sharma V, Vijayakumar A, Rayadurgam S, Cofer D (2019) Input prioritization for testing neural

networks. In: 2019 IEEE International conference on artificial intelligence testing (AITest), IEEE, pp
63–70

Chen J, Wu Z, Wang Z, You H, Zhang L, Yan M (2020) Practical accuracy estimation for efficient deep neural
network testing. ACM Trans Softw Eng Methodol (TOSEM) 29(4):1–35

Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining, pp 785–794

Cheng D, Cao C, Xu C, Ma X (2018) Manifesting bugs in machine learning code: an explorative study with
mutation testing. In: 2018 IEEE International conference on software quality, reliability and security
(QRS), IEEE, pp 313–324

Cohen I, Huang Y, Chen J, Benesty J, Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation
coefficient. Noise Reduction Speech Process pp 1–4

Covington P, Adams J, Sargin E (2016) Deep neural networks for youtube recommendations. In: Proceedings
of the 10th ACM conference on recommender systems, pp 191–198

Dang X, Li Y, Papadakis M, Klein J, Bissyandé TF, Le Traon Y (2023) Graphprior: mutation-based test input
prioritization for graph neural networks. ACM Trans Softw Eng Methodol 33(1):1–40

Dang X, Li Y, Papadakis M, Klein J, Bissyandé TF, Le Traon Y (2024) Test input prioritization for machine
learning classifiers. IEEE Trans Softw Eng

de SCampos Junior H, AraújoMAP,David JMN, Braga R, Campos F, Ströele V (2017) Test case prioritization:
a systematic review and mapping of the literature. In: Proceedings of the XXXI Brazilian symposium on
software engineering, pp 34–43

Di Nardo D, Alshahwan N, Briand L, Labiche Y (2013) Coverage-based test case prioritisation: an industrial
case study. In: 2013 IEEE Sixth international conference on software testing, verification and validation,
IEEE, pp 302–311

Do H, Rothermel G (2006) On the use of mutation faults in empirical assessments of test case prioritization
techniques. IEEE Trans Softw Eng 32(9):733–752

Du L (2020) Howmuch deep learning does neural style transfer really need? an ablation study. In: Proceedings
of the IEEE/CVF winter conference on applications of computer vision, pp 3150–3159

Du X, Xie X, Li Y, Ma L, Liu Y, Zhao J (2019) Deepstellar: model-based quantitative analysis of stateful deep
learning systems. In: Proceedings of the 2019 27th ACM joint meeting on European software engineering
conference and symposium on the foundations of software engineering, pp 477–487

Elbaum S, Malishevsky AG, Rothermel G (2002) Test case prioritization: a family of empirical studies. IEEE
Trans Softw Eng 28(2):159–182

Fang C, Chen Z, Wu K, Zhao Z (2014) Similarity-based test case prioritization using ordered sequences of
program entities. Softw Quality J 22:335–361

Feichtenhofer C, Fan H, Malik J, He K (2019) Slowfast networks for video recognition. In: Proceedings of
the IEEE/CVF international conference on computer vision, pp 6202–6211

Feng Y, Shi Q, Gao X, Wan J, Fang C, Chen Z (2020) Deepgini: prioritizing massive tests to enhance the
robustness of deep neural networks. In: Proceedings of the 29thACMSIGSOFT international symposium
on software testing and analysis, pp 177–188

Ghosh S, Sunny SJ, Roney R (2019) Accident detection using convolutional neural networks. In: 2019 Inter-
national conference on data science and communication (IconDSC), IEEE, pp 1–6

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 770–778

Henard C, Papadakis M, Harman M, Jia Y, Le Traon Y (2016) Comparing white-box and black-box test
prioritization. In: Proceedings of the 38th International conference on software engineering, pp 523–534

Hu Q, Guo Y, Cordy M, Xie X, Ma W, Papadakis M, Le Traon Y (2021) Towards exploring the limitations
of active learning: an empirical study. In: 2021 36th IEEE/ACM International conference on automated
software engineering (ASE), IEEE, pp 917–929

123

111 Page 34 of 39

Empirical Software Engineering (2024) 29:111

Humbatova N, Jahangirova G, Tonella P (2021) Deepcrime: mutation testing of deep learning systems based
on real faults. In: Proceedings of the 30th ACM SIGSOFT international symposium on software testing
and analysis, pp 67–78

Jahangirova G, Tonella P (2020) An empirical evaluation of mutation operators for deep learning systems. In:
2020 IEEE 13th International conference on software testing, validation and verification (ICST), IEEE,
pp 74–84

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe:
convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international
conference on multimedia, pp 675–678

Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) Lightgbm: a highly efficient gradient
boosting decision tree. Adv Neural Inf Process Syst 30

Kelley K, Preacher KJ (2012) On effect size. Psychological Methods 17(2):137
Kezebou L, Oludare V, Panetta K, Intriligator J, Agaian S (2022) Highway accident detection and classi-

fication from live traffic surveillance cameras: a comprehensive dataset and video action recognition
benchmarking. In: Multimodal image exploitation and learning 2022, SPIE, vol 12100, pp 240–250

KimB, Khanna R, Koyejo OO (2016) Examples are not enough, learn to criticize! criticism for interpretability.
Adv Neural Inf Process Syst 29

Kim J, Feldt R, Yoo S (2019) Guiding deep learning system testing using surprise adequacy. In: 2019
IEEE/ACM 41st International conference on software engineering (ICSE), IEEE, pp 1039–1049

Kim TK (2015) T test as a parametric statistic. Korean J Anesthesiol 68(6):540–546
KrizhevskyA, Sutskever I, HintonGE (2017) Imagenet classificationwith deep convolutional neural networks.

Commun ACM 60(6):84–90
Kuehne H, Jhuang H, Garrote E, Poggio T, Serre T (2011) Hmdb: a large video database for human motion

recognition. In: 2011 International conference on computer vision, IEEE, pp 2556–2563
Li Y, Dang X, Tian H, Sun T, Wang Z, Ma L, Klein J, Bissyande TF (2022) Ai-driven mobile apps: an

explorative study. arXiv:2212.01635
Li Y, Dang X, Ma L, Klein J, Traon YL, Bissyandé TF (2024) Test input prioritization for 3d point clouds.

ACM Trans Softw Eng Methodol
Li Z, Ma X, Xu C, Cao C, Xu J, Lü J (2019) Boosting operational dnn testing efficiency through conditioning.

In: Proceedings of the 2019 27th ACM Joint meeting on European software engineering conference and
symposium on the foundations of software engineering, pp 499–509

Liberti L, Lavor C, Maculan N, Mucherino A (2014) Euclidean distance geometry and applications. SIAM
Rev 56(1):3–69

Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A survey of deep neural network architectures and
their applications. Neurocomputing 234:11–26

Lou Y, Hao D, Zhang L (2015) Mutation-based test-case prioritization in software evolution. In: 2015 IEEE
26th International symposium on software reliability engineering (ISSRE), IEEE, pp 46–57

Lou Y, Chen J, Zhang L, Hao D (2019) A survey on regression test-case prioritization. In: Advances in
computers, vol 113, Elsevier, pp 1–46

Luo Q, Moran K, Poshyvanyk D (2016) A large-scale empirical comparison of static and dynamic test case
prioritization techniques. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on
foundations of software engineering, pp 559–570

Ma L, Juefei-Xu F, Zhang F, Sun J, Xue M, Li B, Chen C, Su T, Li L, Liu Y et al (2018a) Deepgauge: multi-
granularity testing criteria for deep learning systems. In: Proceedings of the 33rdACM/IEEE international
conference on automated software engineering, pp 120–131

Ma L, Zhang F, Sun J, Xue M, Li B, Juefei-Xu F, Xie C, Li L, Liu Y, Zhao J, et al (2018b) Deepmutation:
Mutation testing of deep learning systems. In: 2018 IEEE 29th International symposium on software
reliability engineering (ISSRE), IEEE, pp 100–111

Ma L, Zhang F, Xue M, Li B, Liu Y, Zhao J, Wang Y (2018c) Combinatorial testing for deep learning systems.
arXiv:1806.07723

MaW, Papadakis M, Tsakmalis A, Cordy M, Traon YL (2021) Test selection for deep learning systems. ACM
Trans Softw Eng Methodol (TOSEM) 30(2):1–22

MalkauthekarM (2013)Analysis of euclidean distance andmanhattan distancemeasure in face recognition. In:
Third International conference on computational intelligence and information technology (CIIT 2013),
IET, pp 503–507

Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification
problem. In: 2018 international interdisciplinary PhD workshop (IIPhDW), IEEE, pp 117–122

Minka TP (2003) A comparison of numerical optimizers for logistic regression. Unpublished draft pp 1–18

123

Page 35 of 39 111

http://arxiv.org/abs/2212.01635
http://arxiv.org/abs/1806.07723

Empirical Software Engineering (2024) 29:111

Nguyen QH, Ly HB, Ho LS, Al-Ansari N, Le HV, Tran VQ, Prakash I, Pham BT (2021) Influence of data
splitting on performance ofmachine learningmodels in prediction of shear strength of soil.MathProblems
Eng 2021:1–15

Papadakis M, Henard C, Traon YL (2014) Sampling program inputs with mutation analysis: going beyond
combinatorial interaction testing. In: Seventh IEEE International Conference on Software Testing, verifi-
cation and validation, ICST 2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, IEEE Computer
Society, pp 1–10. https://doi.org/10.1109/ICST.2014.11

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
et al (2019) Pytorch: an imperative style, high-performance deep learning library. Advances Neural Inf
Process Syst 32

Paul S (2023) Video classification with transformers. https://keras.io/examples/vision/video_transformers/.
Accessed 10 Jan 2024

Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: automated whitebox testing of deep learning systems. In:
Proceedings of the 26th symposium on operating systems principles, pp 1–18

Peng L, Wang H, Li J (2021) Uncertainty evaluation of object detection algorithms for autonomous vehicles.
Automotive Innovation 4(3):241–252

Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep learning.
arXiv:1712.04621

Pillichshammer F (2000) On the sum of squared distances in the euclidean plane. Archiv der Mathematik
74(6):472–480

Rothermel G, Untch RH, Chu C, Harrold MJ (2001) Prioritizing test cases for regression testing. IEEE Trans
Softw Eng 27(10):929–948

SalinasD, Flunkert V, Gasthaus J, Januschowski T (2020)Deepar: probabilistic forecastingwith autoregressive
recurrent networks. Int J Forecasting 36(3):1181–1191

Shin D, Yoo S, Papadakis M, Bae DH (2019) Empirical evaluation of mutation-based test case prioritization
techniques. Softw Testing, Verification and Reliability 29(1–2):e1695

Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data
6(1):1–48

Soomro K, Zamir AR, Shah M (2012) Ucf101: a dataset of 101 human actions classes from videos in the wild.
arXiv:1212.0402

Sun Y, Huang X, Kroening D, Sharp J, Hill M, Ashmore R (2018) Testing deep neural networks.
arXiv:1803.04792

Taylor L, Nitschke G (2018) Improving deep learning with generic data augmentation. In: 2018 IEEE Sym-
posium series on computational intelligence (SSCI), IEEE, pp 1542–1547

TeamO (2023) Open source computer vision library. https://github.com/opencv/opencv/. AccessedMay 2023
Tonella P, Avesani P, Susi A (2006) Using the case-based ranking methodology for test case prioritization. In:

2006 22nd IEEE international conference on software maintenance, IEEE, pp 123–133
Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3d convolu-

tional networks. In: Proceedings of the IEEE international conference on computer vision, pp 4489–4497
Tran D, Ray J, Shou Z, Chang SF, Paluri M (2017) Convnet architecture search for spatiotemporal feature

learning. arXiv:1708.05038
TranD,WangH, Torresani L, Ray J, LeCunY, PaluriM (2018)A closer look at spatiotemporal convolutions for

action recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 6450–6459

Van Den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A,
Kavukcuoglu K et al (2016) Wavenet: a generative model for raw audio. arXiv:1609.03499 12

Wang D, Shang Y (2014) A new active labeling method for deep learning. In: 2014 International joint confer-
ence on neural networks (IJCNN), IEEE, pp 112–119

Wang H, Schmid C (2013) Action recognition with improved trajectories. In: Proceedings of the IEEE inter-
national conference on computer vision, pp 3551–3558

Wang L, Li W, Li W, Van Gool L (2018) Appearance-and-relation networks for video classification. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1430–1439

Wang Z, Guan Y (2024)Multiscale convolutional neural-based transformer network for time series prediction.
Signal, Image and Video Processing 18(2):1015–1025

WangZ, YouH, Chen J, ZhangY,DongX, ZhangW (2021) Prioritizing test inputs for deep neural networks via
mutation analysis. In: 2021 IEEE/ACM 43rd International conference on software engineering (ICSE),
IEEE, pp 397–409

Weiss M, Tonella P (2022) Simple techniques work surprisingly well for neural network test prioritization and
active learning (replicability study). In: Proceedings of the 31st ACMSIGSOFT international symposium
on software testing and analysis, pp 139–150

123

111 Page 36 of 39

https://doi.org/10.1109/ICST.2014.11
https://keras.io/examples/vision/video_transformers/
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1803.04792
https://github.com/opencv/opencv/
http://arxiv.org/abs/1708.05038
http://arxiv.org/abs/1609.03499

Empirical Software Engineering (2024) 29:111

Xie X, Ho JW,Murphy C, Kaiser G, Xu B, Chen TY (2011) Testing and validating machine learning classifiers
by metamorphic testing. J Syst Softw 84(4):544–558

Yoo S, Harman M (2012) Regression testing minimization, selection and prioritization: a survey. Software
Testing, Verification Reliability 22(2):67–120

Yoo S, HarmanM, Tonella P, Susi A (2009) Clustering test cases to achieve effective and scalable prioritisation
incorporating expert knowledge. In: Proceedings of the eighteenth international symposium on software
testing and analysis, pp 201–212

Zeng D, Liu K, Lai S, Zhou G, Zhao J (2014) Relation classification via convolutional deep neural network. In:
Proceedings of COLING 2014, the 25th international conference on computational linguistics: technical
papers, pp 2335–2344

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Yinghua Li received his master’s degree from Chongqing University.
He was mainly engaged in the research of machine learning. He is
currently working toward the Ph.D. degree with the University of Lux-
embourg. His work mainly involves AI for SE and machine learning
testing.

Xueqi Dang received her master’s degree from King’s College Lon-
don. She is currently working toward the Ph.D. degree with the Uni-
versity of Luxembourg. Her work mainly involves machine learning
testing, especially graph neural network testing and machine learning
testing.

123

Page 37 of 39 111

Empirical Software Engineering (2024) 29:111

Lei Ma is currently an associate professor with The University of
Tokyo, as well as University of Alberta, leading Momentum Lab. His
research spans a wide range of research topics, and comes with a spe-
cial focus centering on the interdisciplinary research fields of Software
Engineering and Artificial Intelligence, in the design and development
of quality assurance and engineering support for building trustworthy
AI systems.

Jacques Klein is a Professor with SnT, University of Luxembourg. He
coleads a group of about 25 researchers focusing on software security,
software reliability, and intelligent software. He has standing experi-
ence and expertise in (1) successfully running industrial projects, (2)
Android security, including both static analysis techniques for track-
ing privacy leaks and machine learning for identifying malware, and
(3) program repair. He published over 150 research papers in top jour-
nals/conferences.

Tegawendé F. Bissyandé is an Associate Professor with SnT, Univer-
sity of Luxembourg, where he leads a group of 25 researchers. He is
an ERC Fellow and Principal Investigator of several projects funded
by the European Commission, the Fonds National de la Recherche,
and by Industry partners. His main interests are in software repair
and software security with techniques based on program analysis and
machine learning. He has published over 80 peer-reviewed research
papers in various fields of computer science. As a native of Burkina
Faso (West Africa), he is an enthusiastic advocate of capacity build-
ing for higher education in Africa.

123

111 Page 38 of 39

Empirical Software Engineering (2024) 29:111

Authors and Affiliations

Yinghua Li 1 · Xueqi Dang 1 · Lei Ma 2 · Jacques Klein 1 ·
Tegawendé F. Bissyandé 1

B Xueqi Dang
xueqi.dang@uni.lu

Yinghua Li
yinghua.li@uni.lu

Lei Ma
ma.lei@acm.org

Jacques Klein
jacques.klein@uni.lu

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu

1 SnT Centre, University of Luxembourg, Esch-sur-Alzette, Luxembourg
2 The University of Tokyo, Tokyo, Japan

123

Page 39 of 39 111

http://orcid.org/0000-0003-4097-9543

	Prioritizing test cases for deep learning-based video classifiers
	Abstract
	1 Introduction
	2 Background
	2.1 DNNs and DNN Testing
	2.2 DNNs for Video Classification
	2.3 Test Input Prioritization for DNNs

	3 Approach
	3.1 Overview
	3.2 Step 1: Video-oriented Feature Generation
	3.3 Step 2: Learning-to-rank
	3.4 Step 3: Test Prioritization
	3.5 Variants of VRank
	3.6 Usage of VRank

	4 Study Design
	4.1 Research Questions
	4.2 Subjects
	4.2.1 DNN Models
	4.2.2 Datasets

	4.3 Noise Generation Techniques
	4.4 Compared Approaches
	4.5 Measurements
	4.6 Implementation and Configuration

	5 Results and Analysis
	5.1 RQ1: Effectiveness and Efficiency of VRank
	5.2 RQ2: Effectiveness on Noisy Test Inputs
	5.3 RQ3: Impact of Different Ranking Models
	5.4 RQ4: Feature Contribution Analysis
	5.5 Impact of the Number of Extracted Frames on the Effectiveness of VRank

	6 Discussion
	6.1 Limitations
	6.2 Threats to Validity

	7 Related Work
	7.1 Test Prioritization in DNN Testing
	7.2 Deep Neural Network Testing
	7.3 Test Prioritization for Traditional Software
	7.4 Prediction Techniques for Time-Series Analysis

	8 Conclusion
	Acknowledgements
	References

