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Abstract

Code change representation plays a pivotal role in automating numerous software en-
gineering tasks, such as classifying code change correctness or generating natural lan-
guage summaries of code changes. Recent studies have leveraged deep learning to derive
effective code change representation, primarily focusing on capturing changes in token
sequences or Abstract Syntax Trees (ASTs). However, these current state-of-the-art repre-
sentations do not explicitly calculate the intention semantic induced by the change on the
AST, nor do they effectively explore the surrounding contextual information of the modi-
fied lines. To address this, we propose a new code change representation methodology,
Patcherizer, which we refer to as our tool. This innovative approach explores the intention
features of the context and structure, combining the context around the code change along
with two novel representations. These new representations capture the sequence intention
inside the code changes in the code change and the graph intention inside the structural
changes of AST graphs before and after the code change. This comprehensive represen-
tation allows us to better capture the intentions underlying a code change. Patcherizer
builds on graph convolutional neural networks for the structural input representation of the
intention graph and on transformers for the intention sequence representation. We assess
the generalizability of Patcherizer ’s learned embeddings on three tasks: (1) Generating
code change description in NL, (2) Predicting code change correctness in program repair,
and (3) Code change intention detection. Experimental results show that the learned code
change representation is effective for all three tasks and achieves superior performance to
the state-of-the-art (SOTA) approaches. For instance, on the popular task of code change
description generation (a.k.a. commit message generation), Patcherizer achieves an aver-
age improvement of 19.39%, 8.71%, and 34.03% in terms of BLEU, ROUGE-L, and
METEOR metrics, respectively.
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1 Introduction

A software code change represents the source code differences between two software versions.
It has a dual role: on the one hand, it serves as a formal summary of the code changes that
a developer intends to make on a code base; on the other hand, it is used as the main input
specification for automating software evolution. Code changes are thus a key artifact that is
pervasive across the software development life cycle. In recent years, building on empirical
findings on the repetitiveness of code changes (Barr et al. 2014), several approaches have
built machine learning models based on code change datasets to automate various software
engineering tasks such as code change description generation (Linares-Vasquez et al. 2015;
Buse and Weimer 2010; Cortés-Coy et al. 2014; Jiang et al. 2017; Xu et al. 2019; Liu et al.
2019, 2018, 2020c¢), code completion (Svyatkovskiy et al. 2019; Liu et al. 2020b, a; Ciniselli
et al. 2021; Pian et al. 2022), code change correctness assessment (Tian et al. 2022c¢), and
just-in-time defect prediction (Hoang et al. 2019; Kamei et al. 2016; Liu et al. 2023).

Early approaches relied on manually crafted features to represent code changes (Kamei
et al. 2016, 2012). With the rise of deep learning, researchers began adopting representation
learning techniques originally successful in text, signal, and image domains (Devlin et al.
2018; Niemeyer and Geiger 2021; Qin et al. 2021; Li et al. 2021; Tang et al. 2021; Pian et
al. 2023; Wang et al. 2022a), applying them to software engineering tasks by developing
neural models for code and code changes (Yin et al. 2019; Hoang et al. 2020; Feng et al.
2020; Nie et al. 2021; Jiang et al. 2021; Tian et al. 2022c¢; Pian et al. 2022; Liu et al. 2023).
Among the most recent advances, CCRep (Liu et al. 2023) leverages pre-trained code mod-
els, contextual embeddings, and a “query back” mechanism to extract and encode changed
fragments, achieving strong results in JIT defect prediction. However, CCRep does not
explicitly capture the intention behind code edits. Two changes with nearly identical struc-
tural modifications may reflect fundamentally different purposes (e.g., disabling a feature
versus refactoring a method). We argue that modeling such semantic intentions is crucial for
advancing downstream applications beyond defect prediction, including commit refinement
and correctness assessment.

Initially, these approaches treated code (Feng et al. 2020; Elnaggar et al. 2021; Wang et
al. 2021d; Guo et al. 2021, 2021) and other code-like artifacts, such as code changes (Xu et
al. 2019; Nie et al. 2021; Dong et al. 2022; Liu et al. 2020c), as a sequence of tokens and
thus employ natural language processing methods to extract code in text format. Research-
ers have recognized the limitations of using code token sequences alone (often represented
by + and- lines in the textual diff format) to capture the full semantics of code changes, as
these symbols lack inherent meaning that a DL model can learn. To address this, they began
incorporating the code structure, such as Abstract Syntax Trees (ASTs), to better capture
the underlying structural information in source code (Zhang et al. 2019a; Alon et al. 2019,
2020; Guo et al. 2021). Therefore, recent work such as commit2vec (Cabrera Lozoya et al.
2021), C? (Brody et al. 2020), and CC2Vec (Hoang et al. 2020) attempted to represent code
changes more structurally by leveraging ASTs as well. To get the best of both worlds, more
recent work tried to combine token information with structure information to obtain a bet-
ter code change representation (Dong et al. 2022). Finally, several such approaches of code
change representation learning have been evaluated on specific tasks, e.g., BATS (Tian et
al. 2022a) for code change correctness assessment and FIRA (Dong et al. 2022) for code
change description generation.
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On the one hand, token-based approaches for code change representation (Hoang et al.
2020; Xu et al. 2019; Nie et al. 2021) lack the rich structural information of source code and
intention features inside the sequence is still unexplored. On the other hand, graph-based
representation of code changes (Liu et al. 2020c; Lin et al. 2022) lacks the context which
is better represented by the sequence of tokens (Hoang et al. 2020; Xu et al. 2019; Nie et
al. 2021) of the code change itself and also the surrounding unchanged code and intention
features inside graph changes is also still unexplored. In conclusion, approaches that try to
combine context and AST information to represent code changes (e.g., FIRA Dong et al.
2022) do not use the intention features of either sequence or graph from the code change but
rather rely on representing the code before and after the change while adding some ad-hoc
annotations to highlight the changes for the model.

This Paper We propose a novel code change representation that tackles the aforementioned
problems and provides an extensive evaluation of our approach on three practical and widely
used downstream software engineering tasks. Our approach, Patcherizer, learns to represent
code changes through a combination of (1) the context around the code change, (2) a novel
SeqlIntention representation of the sequential code change, and (3) a novel representation
of the GraphlIntention from the code change. Our approach enables us to leverage powerful
DL models for the sequence intention such as Transformers and similarly powerful graph-
based models such as GCN for the graph intention. Additionally, our model is pre-trained
and hence task agnostic where it can be fine-tuned for many downstream tasks. We provide
an extensive evaluation of our model on three popular code change representation tasks:
(1) Generating code change description in NL, (2) Predicting code change correctness in
program repair, and (3) Code change intention detection.

Overall, this paper makes the following contributions:

» A novel representation learning approach for code changes: we combine the context
surrounding the code change with a novel sequence intention encoder and a new graph
intention encoder to represent the intention of code changes in the code change while
enabling the underlying neural models to focus on the code change by representing it
explicitly. To that end, we developed: @an adapted Transformer architecture for code
sequence intention to capture sequence intention in code changes taking into account not
only the changed lines (added and removed) but also the full context (i.e., the code chunk
before the code change application); @ an embedding approach for graph intention to
compute embeddings of graph intention capturing the semantics of code changes.

» A dataset of parsable code changes: given that existing datasets only provide code
changes with incomplete details for readily collecting the code before and after the code
change, extracting AST diffs was challenging. We therefore developed tool support to
enable such collection and produced a dataset of 90k code changes, which can be parsed
using the Java compiler.

» Extensive evaluation: we evaluate our approach by assessing its performance on several
downstream tasks. For each task, we show how Patcherizer outperforms carefully-select-
ed baselines. We further show that Patcherizer outperforms the state of the art in code
change representation learning.
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2 Intention

What is Intention? We define the intention of a code change as the semantic motivation
behind the edit, e.g., fixing a bug, refactoring logic, disabling a feature, or improving read-
ability. Unlike syntactic diffs that only describe the +/ - lines or AST node operations, inten-
tion reflects the underlying purpose of the modification. For instance, consider two edits: (1)
removing a method call to disable a feature, and (2) replacing a method call with another
to refactor logic. Although both edits appear structurally similar in AST diffs (i.e., deleting
or modifying a call node), their intentions differ fundamentally. Existing approaches such
as CCRep (Liu et al. 2023) and FIRA (Dong et al. 2022) do not explicitly encode such
distinctions.

How do we Capture Intention? Our design incorporates two complementary encoders: (1)
the SeqIntentionEncoder models the sequence-level edit operations, integrating surrounding
context and semantic patterns in the changed tokens, enabling it to distinguish, for example,
whether a removed method indicates deactivation or replacement; (2) the Graphlntentio-
nEncoder focuses on the structural edit patterns between ASTs, learning embeddings of the
changes (rather than entire ASTs), which highlights semantically meaningful transforma-
tions. By combining both, our model is able to represent not only how code was changed
but also why it was changed.

Motivation for Code Change Intention Detection In addition to description generation and
correctness prediction, we introduce and explore a novel downstream task: code change
intention detection. Unlike traditional diff tools that identify syntactic operations like addi-
tions or deletions, our goal is to uncover the semantic intent behind a change. This capability
is crucial for automating commit message refinement, supporting intelligent software analyt-
ics, and enabling advanced tooling for software reviewers. For example, being able to detect
whether a patch intends to disable a feature versus merely refactor a method allows tools
to generate more meaningful messages or guide human reviewers’ attention to impactful
modifications. We argue that intention detection should go beyond surface diffs and rely on
learned semantics from both structure and context—a gap that Patcherizer fills effectively.

3 Patcherizer

Figure 1 presents the overview of Patcherizer. Code changes are first preprocessed to split
the available information about added (+) and removed (-) lines, identifying the code con-
text (i.e., the code chunk before applying the code change) and computing the ASTs of the
code before and after applying the code changes (cf. Section 3.2). Then, Patcherizer deploys
two encoders, which capture sequence intention semantics (cf. Section 3.3) and graph inten-
tion semantics (cf. Section 3.4). Those encoded information are aggregated (cf. Section 3.6)
to produce code change embeddings that can be applied to various downstream tasks. In the
rest of this section, we will detail the different components of Patcherizer before discussing
the pre-training phase (cf. Section 3.7).
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Fig.1 Overview of Patcherizer

3.1 Handling Incomplete Code Snippets

In real-world software repositories, patches often appear as partial code fragments extracted
from diffs, lacking full method or class definitions required for reliable parsing and struc-
tural analysis. To ensure that our model can robustly represent such incomplete code, Patch-
erizer employs a context construction mechanism that reconstructs semantically valid and
parsable code by leveraging surrounding, unmodified code as context.

During the preprocessing phase, we identify the surrounding code chunk prior to patch
application (referred to as cbp) and combine it with the lines to be added (ccp) and removed
(ccm) to recover a coherent code segment. This reconstruction not only aids in forming a
complete representation for the sequential input but also enables successful parsing of the
Abstract Syntax Tree (AST) required for graph-based representation.

Specifically, when certain structural elements are missing in the diff (e.g., a method body
without its signature or class declaration), our system uses a sliding window strategy to
extract surrounding lines from the same file to syntactically complete the snippet. We then
apply the javalang parser to the reconstructed code segment to generate the correspond-
ing ASTs before and after the change. If the full reconstruction still fails due to excessive
incompleteness, we fall back to using only the available sequence-level representation with-
out graph-based embedding.

This fallback mechanism ensures that Patcherizer can generalize to a wide range of real-
world patch inputs—whether they are complete or incomplete—by balancing robustness
with semantic fidelity. It is particularly valuable in scenarios such as just-in-time commit
analysis, where full project context may not be readily available.
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3.2 Code Change Preprocessing

The preprocessing aims to focus on three main information within a code change for learn-
ing its representation. The code before applying the code change (which provides contextual
information of the code change), plus and minus lines (which provide information about
the code change operations), and the difference between AST graphs before and after code
change (which provides information about graph intention in the code). Through the follow-
ing steps we collect the necessary multi-modal inputs (code text, sequence intention, and
graph intention) for the learning:

1. Collect +/- lines in the code change. We scan each code change line. Those starting
with a + are added to a pluslist, while those starting with a— are added to a minuslist.
Both lists record the line numbers in the code change.

2. Reconstruct before/after code. Besides +/- lines, a code change includes unchanged
code that are part of the context. We consider that the full context is the code before
applying the code change (i.e., unchanged & minuslist lines). We also construct the
code after applying the code change (i.e., unchanged & pluslist lines). The reconstruc-
tion leverages the recorded line numbers for inserting each added/removed line to the
proper place and ensure accuracy.

3. Generate code ASTs before and after code change. We apply the Javalang (Thunes
2013) tool to generate the ASTs for the reconstructed code chunks before and after
applying the code change.

4. Construct vocabulary. Based on the code changes of the code changes in the training
data, we build a vocabulary using the Byte-Pair-Encoding (BPE) algorithm.

At the end of this preprocessing phase, for each given code change, we have a set of inputs:

(cep, cCm, cbp, cap, Gepp, Geap), Where cc,, is the sequence of added (+) lines of code,
cc, 18 the sequence of removed (-) lines of code, chp is the code chunk before the patch is
applied, cap is the code chunk after the patch is applied, G is the AST graph of ¢bp and
G cqp 1s the graph of cap.

3.3 Sequence Intention Encoder

Intention features refer to the semantic signals that capture why a change was made (e.g., to
fix a bug, refactor code, disable functionality), rather than just what was changed. Unlike
prior approaches that focus on syntax or structural patterns, our intention encoders aim to
learn such semantics through contextualized token changes (in the sequence encoder) and
structural shifts (in the graph encoder).

Despite the success of AST-based methods, they often struggle to distinguish code
changes that are structurally similar but semantically distinct. Our intention encoders are
designed to capture such nuances. Figure 2 provides an illustrative example: although both
code changes involve editing an if condition, one disables functionality while the other
refactors logic. Traditional AST diffs treat both similarly, but their purposes are fundamen-
tally different. Patcherizer captures these differences through intention-aware encoding.
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if (x) { if (checkCondition()) {
doSomething(); doSomething();
Listing 1: Disabling a Feature Listing 2: Refactoring Logic

Fig. 2 Example illustrating how semantically distinct code changes can result in similar AST diffs. Both
code changes involve replacing the condition in an “if” statement, and their corresponding AST diffs may
appear structurally similar. However, their intentions differ: the left change disables functionality, while
the right one introduces a refactor with encapsulated logic. Traditional AST-based models may treat these
equivalently, while Patcherizer captures this distinction through its sequence and graph intention encoders

A first objective of Patcherizer is to build an encoder that is capable of capturing the
semantics of the sequence intention in a code change. Although prior work focuses mainly
on +/- lines or simply does some calculation between changed codes and their contextual
contents, we postulate that code context is a relevant additional input for better encoding
such differences. Figure 3 depicts the architecture of the Sequence intention encoder. We
leverage the relevant subset of the preprocessed inputs (cf. Section 3.2) to pass to a Trans-
former embedding layer and further develop a specialized layer, named the Seglntention
embedding layer, which captures the intention features from the sequence.

3.3.1 Input Layer
The input, for each code change, consists of the triplet (cc,, ccp, cbp), where cc,, is the set

of removed (-) lines, cc,, the set of added (+) lines and cbp is the code before code change-
ing, which represents the context.
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Fig. 3 Architecture for the Sequence Intention Encoder
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3.3.2 Transformer Embedding Layer

To embed the sequence of code changes, we use a Transformer as the initial embedder.
Indeed, Transformers have been designed to capture semantics in long texts and have been
demonstrated to be effective for inference tasks (Devlin et al. 2018; Wang et al. 2022b).

We note that cc,, € cbp. Assuming that cc, = {token,1,...,tokeny ;}, ccm =
{tokenm,...,tokeny, i}, cbp = {tokencyp 1, ..., tokency,, }, where j, k, I represent the
maximum length of cc,, cc,,, and cbp respectively, we use the initial embedding layer in the
Pytorch’s nn.module implementation to produce first vector representations for each input
information as:

Ex = Transformer(Init(X;01);02) )

where X represents an input (either cc,,, cc, or cbp); Init is the initial embedding function;
Transformer is the model based on a transformer architecture; ©; and O, are the parameters
of Init( ) and Transformer( ), respectively.

The Transformer embedding layer outputs E.., = [ep1,€p2, ..., €p ;] € RI*de,

Eccm = [em_’l, €m,2; - - ,emvk] € RkXde, Ecbp = [ecbp,l, €chbp,2s - - - 7ecbp,l] S Rlee,
where d, is the size of the embedding vector.

3.3.3 Segintention Embedding Layer

Once the Transformer embedding layer has produced the initial embeddings for the inputs
ccp, ccmy and cbp, our approach seeks to capture how they relate to each other. Prior works
(Shaw et al. 2018; Devlin et al. 2018; Xu et al. 2019; Dong et al. 2022) have proven that
self-attention is effective in capturing relationships among embeddings. We thus propose to
capture relationships between the added and removed sequences, with the objective of cap-
turing the intention of the code change through the change operations. We also propose to
pay attention to context information when capturing the semantics of the sequence intention.

Operation-wise To obtain the intention of modifications in code changes, we apply a cross-
attention mechanism between cc, and cc,,. To that end, we design a resnet architecture
where the model performs residual learning of the importance of inputs (i.e., E.., and its
evolved C,,, which will be introduced below).

To enhance E,., into E..,,, we apply a cross-attention mechanism. For the i-th token in
cCm, we compute the matrix-vector product, Ee., €m, i, where e, ; € R is a vector param-
eter for i-th token ) in cc,,. We then pass the resulting vector through a softmax operator,
obtaining a distribution over locations in the E..,,

ay = SoftMax(Ecc,em,) € R, )

where SoftMax(x) = #}E(Z)) exp(x) is the element-wise exponentiation of the vector x. k
J J

is the length of cc,,, The attention « is then used to compute vectors for each token in cc,y,,

;> = Eiz:la%\h”' (3)
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where hy, € E¢,,j is the length of cc,. In addition, C, is the new embedding of i-th token
in ccp, enhanced by semantic of F.,.

Then, we get new cc,, embedding v,, = [C1, ..., Cy] € RF*de,

Similarly, following steps above, we can obtain new embedding of cc,, v, € RI*de
enhanced by the semantic of cc,y,.
For the combination of vy, vy, Ecc,, Fec,, , inspired by Shi et al. (2021); He et al. (2016),
we design a cross-resnet for combining vy, Vi, Vec,, and vec,,. The pipeline of cross-
resnet is shown in Fig. 4. The process is as follows:

Oce, = f(n(Eee,) + Al (Eec, s vp)) )
Oce,, = f(n(Eee,,) + Al[(Eee,, vm))

where n( ) is a normalization function in Devlin et al. (2018); A[[(-) is the adding function,
SU) represents RELU (Glorot et al. 2011) activation function.
Finally, we obtain output O, and O, .

Context-Wise Similar to operation-wise block, we enhance the contextual information into
modified lines by cross-attention and cross-resnet blocks. The computation process is as
follows:

Oct2ccp = f(n(Eccp) + A”(Eccpv Ecbp)) (5)
OctQCcm = f(n(Eccm) + AH_(Eccma Ecbp))

where Ep, is the embedding of chp calculated by (1); Oc2cc, represents the vector of
context-enhanced plus embedding and Os2.c,, is the vector of context-enhanced minus
embedding.

Output : Output :
Ofcp OTcm
@D - @D -
T Skip T Skip
Yp connection Um connection
€ Rixd € Rixd
Eccp ECGm
E RIXd‘ e [{l)(f.’lv
Input

Fig. 4 cross-resnet architecture
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3.4 Graph Intention Encoder

Concurrently to encoding sequence information from code changes, we propose to also cap-
ture the graph intention features of the structural changes in the code when the code change
is applied. To that end, we rely on a Graph Convolutional Network (GCN) architecture,
which is widely used to capture dynamics in social networks, and is effective for typical
graph-related tasks such as classification or knowledge injection (Kipf and Welling 2016;
Zhang et al. 2019b, c). Once the GCN encodes the graph nodes, the produced embeddings
can be used to assess their relationship via computing their cosine similarity scores (Luo et
al. 2018). Concretely, in Patcherizer, we use a GCN-based model to capture the graph inten-
tion features. The embedder model was trained by inputting a static graph, a graph resulting
from the merge of all sub-graphs from the training set. Overall, we implement this encoding
phase in two steps: building the static graph, performing graph learning and encoding the
graph intention (cf. Figure 5).

3.4.1 Graph Building

To start, we consider the Gy, and G4, trees, which represent in graph forms.

O Static Graph building: Each code change in the dataset can be associated to two
graphs: Gepp and Gqp, which are obtained by parsing the chp and cap code snippets. After
collecting all graphs (which are unidirectional graphs) for the whole training set, we merge
them into a “big” graph by iteratively linking the common nodes. In this big graph, each
distinct code snippet AST-inferred graph is placed as a distinct sub-graph. Then, we will
merge the graphs shown in Fig. 6 which illustrates the merging progress of two graphs: if a
node N has the same value, position, and neighbors in both ASTs, it will be merged into one
(e.g., red nodes 1 and 2). However, when a common node has different neighbors between
the ASTs (e.g., red nodes 3 and 4), the merge keeps one instance of the common node but
includes all neighbors connected to the merged red nodes (i.e., all green and grey nodes
are now connected to red nodes 3 and 4, respectively). After iterating over all graphs, we
eventually build the static graph.

However, on the one hand, some nodes in most subgraphs such as ‘prefix_operators’,
‘returnStatement’, and ‘StatementExpression’ are not related to the semantics of the code
change. On the other hand, as data statistics in our study, 97.2% nodes in the initial graphs

=
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graph 1

13 000
O B T L

. common nodes O O different nodes in each graph ---- merge operation

Fig. 6 An example of merging graphs

(ASTs) extracted from code are from parser tools instead of code changes, which means
these nodes are rarely related with the semantic of the code change. Thus, as shown in step
1 in Fig. 5, we remove nodes whose children do not contain words in the code change to
reduce the size of the graph because these nodes will be considered noise in our research.

In the remainder of this paper, we refer to the final graph as the static graph G=(V, £),
where V is the set of nodes and £ is the set of edges.

® Graph Alignment to the Static Graph: GCN requires that the input graphs are all of
the same size (Kipfand Welling 2016). Yet, the graphs built using the graphs of cbp and cap
do not have as many nodes and edges as the static graph used for training the GCN network.
Consequently, we propose to use the global static graph to initialize all specific ast-diff
graphs for unique code change. Given the global static graph (huge graph mentioned before)
Ggiobat = (Vg,&4) and an AST graph Giocar = (V1, &), we leverage the VF graph matching
algorithm (Cordella et al. 1999) to find the most similar sub-graph with Gjocqr in Ggiopai:

SUbGTCLph = VFG(glocala gglobal)- (6)

where V F'G(-) is the function representing the VF matching algorithm (Networkx 2018).
The matched sub-graph is a subset of both Giocar and Ggiopar: some nodes of subGraph will
be in Gjocqr but not in Ggiopar. We then align Giocq to the same size of Ggiopar as follows: we
use the [PAD] element to pad the node of subGraph to the same size of G014, and then we
obtain Gy, , ,. Therefore, G . , , keeps the same size and structure of the static graph Ggiopai.
Eventually, all graphs are aligned to the same size of Gjobq; and the approach can meet the
requirements for GCN computation for graph learning.

3.5 Graph Intention Encoding Details

The graph intention encoding process involves comparing and merging Abstract Syntax
Trees (ASTs) from the original and modified code. Our approach uses a tree-based differ-
encing algorithm inspired by GumTree (Falleri et al. 2014) but optimized for Java ASTs.
The AST comparison and merging process follows three key phases:

1. Node Mapping: We identify mappings between nodes in the original and modified

ASTs using a combination of structural similarity (based on node types and parent-child
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relationships) and token-level similarity metrics. This hybrid approach achieves
approximately 92% accuracy when evaluated against manually labeled AST diffs from
our dataset.

2. Change Detection: Based on these mappings, we detect node operations (addition,
deletion, update, move) by analyzing both mapped and unmapped nodes. For unmapped
nodes in the modified AST, we classify them as additions; for unmapped nodes in the
original AST, we classify them as deletions; for mapped nodes with different values, we
classify them as updates.

3.  Graph Construction: We construct a unified graph where matched nodes from both
ASTs are merged into single nodes with special attributes indicating whether they were
preserved, added, or deleted. This creates a comprehensive representation that explic-
itly encodes the transformation between the original and modified code.

The remaining 8% of cases where the AST differencing is imperfect typically involve com-
plex refactorings with significant structural changes. To mitigate the impact of these inaccu-
racies on downstream tasks, our dual-encoding approach complements the graph intention
encoding with sequence intention encoding, providing robustness when AST-based differ-
encing is imperfect. As demonstrated in our ablation studies (RQ-2), when graph intention
encoding contains inaccuracies, the sequence intention encoding can effectively compen-
sate, maintaining strong performance across all downstream tasks.

The graph merging process preserves the original hierarchical relationships while add-
ing special edges to represent the transformation operations. This allows our model to learn
patterns of how code structures evolve rather than just focusing on token-level changes,
contributing significantly to the improved performance across all downstream tasks as dem-
onstrated in our experiments.

3.5.1 Graph Learning

Inspired by Zhang et al. (2019b), we build a deep graph convolutional network based on
the undirected graph formed following the above construction steps to further encode the
contextual dependencies in the graph. Specifically, for a given undirected graph G;,.,, =
Vipans> E1pap), let P be the renormalized graph laplacian matrix (Kipf and Welling 2016)
of glPAD:

P =D AD

=(D+L) A+ LD+ L) @

where A denotes the adjacency matrix, D denotes the diagonal degree matix of the graph
G0, and L denotes the identity matrix. The iteration of GCN through its different layers
is formulated as:

HED = (1 = a)PHY + aH D) (1 = pO) L + pOWDY) (8)
where a and () are two hyper parameters, o denotes the activation function and W@ is

a learnable weight matrix. Following GCN learning, we use the average embedding of the
graph to represent the semantic of structural information in code snippet:
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1
wg = ZZiL=1(H>)- )

Thus, at the end of the graph embedding, we obtain representations for G, and Gegp, i.¢.,
WG .4, and WG ap S Rlee.

3.5.2 Graph Intention Encoding

Once we have computed the embeddings of the code snippets before and after code change-
ing, (i.e., the embeddings of chp and cap), we must get the representation of their differences
to encode the intention inside the graph changes. To that end, similarly to the previous cross-
resnet for sequence intention, we design a graph-cross-resnet operator which ensembles
the semantic of wg,,, and wg,,,. Figure 7 illustrates this crossing. In this graph-cross-
resnet, the model can choose and highlight a path automatically by the backpropagation
mechanism. The Graphintention is therefore calculated as follows:

pathl = WG ey
paths = Al w6enr) (10)

= WG qp
OGraphIntention = fC(f(AH(pathl,path27path3)), 93)

where FC is a fully-connected layer and Og is the parameter of FC.
At the end, the graph-cross-resnet component outputs the sought graph intention embed-
ding: Graphlntention.

Output :
FC Layer >
A\y_/_\ OGraphI ntention
L L L el L L L Jepl 1 1 1,
At R
Bl we Tl
cbp
— IS Rlxd
chbp T chap
€ Rlxde € R1xd
chap
IS Rlxd.
Input

Fig.7 graph-cross-resnet architecture
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3.6 Aggregator: Aggregating multi-source Input Embeddings

With the sequence intention encoder and the graph intention encoder, we can produce for
each code change several embeddings of different input modalities (code sequences and
graphs) that must be aggregated into a single representation.

Concretely, we use the A[[ aggregation function to merge the Seqlntention embeddings
(combination of Occ,, Oce,,> Octace, and Ocizce,, - cf. Equations 4 and 5) and Graphin-
tention embedding OGraphIntention before outputing the final representation Epgtcherizer-
Actually, we use Epgtcherizer as the representation of code change out of the model.

3.7 Pre-training

Patcherizer is an approach that is agnostic to downstream tasks. We propose to build a pre-
trained model using a large corpus of code changes. The objective is to enable the model to
learn contextual and structural semantics of code edits, thereby enhancing the quality and
robustness of code change representations.

The pre-training task is formulated as masked token prediction. Following the popular
bidirectional objective from masked language modeling (MLM; Devlin et al. 2018), we
randomly mask a subset of tokens in the input sequence and train the model to predict these
masked tokens using their surrounding context. Formally, this can be expressed as comput-
ing the conditional probability P(z;|®1, ..., Ti—1, Tit1, .-, Tn)-

Inspired by previous pre-training works on code representation learning (Feng et al. 2020;
Elnaggar et al. 2021; Zhang et al. 2019d), we adopt the MLM objective for the encoder.
Unlike traditional MLM models that rely solely on BERT-style encoders, we employ an
encoder-decoder architecture where the decoder is a left-to-right Transformer (Vaswani et
al. 2017), similar to GPT-style models, which are more suitable for autoregressive genera-
tion tasks.

Specifically, we use our proposed Patcherizer encoder to produce latent embeddings of
code changes. These embeddings are then passed to a standard Transformer-based decoder
that shares the same vocabulary. The decoder autoregressively generates tokens, starting
from an initial <s> token, using the following formulation:

index = arg max (p(yt‘yt—h - Y1, EPatcherizer)) (1 1)

where ¥, is the token to be predicted at position #, and Epgtcherizer 18 the encoded represen-
tation from the Patcherizer encoder. The decoder outputs a distribution over the vocabulary,
from which we select the token with the highest probability.

3.8 Fine-tuning for Different Tasks

Patcherizer serves as a task-agnostic encoder that generates semantically rich embeddings
of code changes. After pre-training on a large corpus of code edits using the masked token
prediction task (cf. Section 3.7), we fine-tune Patcherizer on several downstream tasks rel-
evant to software maintenance. These tasks include code change description generation,
code change correctness assessment, and code change intention detection.
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3.8.1 Code Change Description Generation

This task involves generating a natural-language description (e.g., commit message) given
a code change. The fine-tuning setup mirrors that of pre-training: we employ an encoder-
decoder architecture, where the encoder is the pre-trained Patcherizer and the decoder is a
Transformer-based autoregressive generator.

The dataset consists of paired samples of code changes and corresponding natural-lan-
guage descriptions. During training, we input the code change to the encoder and generate
the description token-by-token with the decoder. The learning objective is to maximize the
likelihood of generating the correct sequence:

index = argmax (p(yt ‘ytflv Y1, EPatcheMzer)) (12)

where y, is the target token at time ¢ and Epgtcherizer 18 the encoded representation from
the Patcherizer encoder.

3.8.2 Code Change Correctness Assessment

This task aims to predict whether a given code change is a correct fix for a reported bug. It
is formulated as a binary classification problem.

We use the Patcherizer encoder to generate an embedding for the code change and use a
separate pre-trained BERT (Devlin et al. 2018) model to embed the associated bug report.
The two embeddings are concatenated and passed to a fully connected classification layer:

yAi = Singid(Epatchi 2] EbugReporti) (13)

where Epqich,; is the embedding of the code change, Epygreport; is the embedding of the
bug report, and & denotes concatenation.
We train the classifier using binary cross-entropy loss:

n

Lo== (yloggi + (1 - y:)log(1— ) (14)
i=1

where y; is the ground truth label and g; is the predicted probability.
3.8.3 Code Change Intention Detection

This task focuses on identifying the primary semantic intention behind a given code change,
classifying it into categories such as add, remove, or update. While traditional diff tools
can highlight superficial syntactic operations, they fail to capture the deeper semantics or
purpose of a change. For instance, a change may involve both an addition and removal, but
its true intention may be to disable a feature, refactor a loop, or resolve a bug—information
that is not directly evident from raw diffs.

Code change intention detection serves several practical use cases. It enables:

— Automated commit message refinement, where semantically meaningful summaries
can be synthesized.
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— Fine-grained maintenance analytics, aiding in the analysis of developer behavior and
software evolution patterns.

— Automated patch review assistance, where intention-aware prioritization of patches
can improve reviewer efficiency.

To perform this task, we train a classifier over Patcherizer-generated embeddings, which
capture both context-aware sequence semantics and structural graph-based information.
Because the embeddings encode deep semantics, no external input beyond the code change
is needed for classification.

To visualize the separation of intentions in embedding space, we apply t-SNE (t-distrib-
uted Stochastic Neighbor Embedding), which projects high-dimensional embeddings into
2D space. The projection is optimized by minimizing the KL-divergence between the high-
and low-dimensional pairwise similarities:

KL(P || Q) :sz log% (15)
j (3

i
with:

T 1 ) U (a1 N
(/A ’ v B
T exp(= ok — ]2 /202) T k(U e —wl?)

where z;, z; are high-dimensional embeddings, y;, ; their low-dimensional projections,
and o the perplexity.

The visualizations and downstream performance demonstrate that Patcherizer effectively
distinguishes between different code change intentions. By uncovering the purpose behind
edits, Patcherizer brings semantic reasoning to automated code analysis pipelines.

4 Experimental Design

We provide the implementation details (cf. Sec. 4.1), discuss the research questions (cf. Sec.
4.2), and present the baselines (cf. Sec. 4.3), the datasets (cf. Sec. 4.4), and the metrics (cf.
Sec. 4.5).

4.1 Implementation

In the pre-training phase used for the Sequence Intention Embedding step, we apply a beam
search (Vijayakumar et al. 2016) for the best performance in predicting the masked words.
The beam size was set to 3. The dimension of the hidden layer output in models is set to 512,
and the default value of dropout rate is set to 0.1. For the Transformer, we apply 6 heads for
the multi-header attention module and 4 layers for the attention.

For the Graph Intention Embedding step, we use javalang (Thunes 2013) to parse code
fragments and collect ASTs. We build on graph manipulation packages (i.e., networkx Net-
workx 2018, and dgl Wang et al. 2019) to represent these ASTs into graphs.
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Patcherizer ’s training involves the Adam optimizer (Kingma and Ba 2014) with learning
rate 0.001. All model parameters are initialized using Xavier algorithm (Glorot and Bengio
2010). All experiments are performed on a server with an Intel(R) Xeon(R) E5-2698 v4
CPU 2.20GHz, 256GB physical memory and one NVIDIA Tesla V100 GPU with 32GB
memory.

4.2 Research Questions

RQ-1: How effective is Patcherizer in learning code change representations?
RQ-2: What is the impact of the key design choices on the performance of Patcherizer?
RQ-3: 7o what extent is Patcherizer effective on independent datasets?

4.3 Baselines

We consider several SOTA models as baselines. We targeted approaches that were specifi-
cally designed for code change representation learning (e.g., CC2Vec) as well as generic
techniques (e.g., NMT) that were already applied to code change-related downstream tasks.
We finally consider recent SOTA for code change-representation approaches (e.g., FIRA)
for specific downstream tasks.

For Code Change Description Generation

— NMT technique has been leveraged by Jiang et al. (2017) for translating code commits
into commit messages.

— CoDiSum (Xu et al. 2019) is an encoder-decoder based model with multi-layer bidirec-
tional GRU and copying mechanism (See et al. 2017).

— ATOM (Liu et al. 2020c) is a commit message generation techniques, which builds on
abstract syntax tree and hybrid ranking.

— FIRA (Dong et al. 2022) is a graph-based code change representation learning approach
for commit message generation.

— Coregen (Nie et al. 2021) is a pure Transformer-based approach for representation
learning targeting commit message generation.

— CCRep (Liu et al. 2023) is an innovative approach that uses pre-trained models to
encode code changes into feature vectors, enhancing performance in tasks like commit
message generation, etc.

— CC2Vec (Hoang et al. 2020) learns a representation of code changes guided by commit
messages. It is the incubent state of the art that we aim to outperform on all tasks.

— NNGen (Liu et al. 2018) is an IR-based commit message prediction technique.

— CoRec (Wang et al. 2021a) is a retrieval-based context-aware encoder-decoder model
for commit message generation.

— CCBERT (Zhou et al. 2023) learns fine-grained code change representations, outper-
forming CC2Vec and CodeBERT in efficiency and accuracy.

— CCT5 (Lin et al. 2023) automates software maintenance by leveraging code changes
and commit messages, outperforming traditional models.

— CodeT5 (Wang et al. 2021c) uses identifier-aware tasks to enhance code understanding
and generation, outperforming prior methods.
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For Code Change Correctness Assessment

— CC2Vec (Hoang et al. 2020) and CCRep (Liu et al. 2023).
— BERT (Devlin et al. 2018) is a state of the art unsupervised learning based Transformer
model widely used for text processing.

For Code Change Intention Detection
— CCRep (Liu et al. 2023) and CC2Vec (Hoang et al. 2020).
For Just-in-Time Defect Prediction

— CC2Vec (Hoang et al. 2020) is a state-of-the-art approach for generating code change
embeddings used in defect prediction.

— DeepJIT (Zhang and Wallace 2015) is a deep learning model that predicts whether a
commit introduces a defect based on its code changes and commit messages.

— CCRep (Liu et al. 2023) demonstrates effectiveness on this task by generating code
change embeddings that capture semantic information.

4.4 Datasets

Code Change description generation: We build on prior benchmarks (Dyer et al. 2013;
Hoang et al. 2020; Liu et al. 2018; Dong et al. 2022) by focusing on Java samples and
reconstructing snippets to make them parsable for AST collection. Eventually, our dataset
includes 90,661 code changes and their associated descriptions.

Code Change Correctness Assessment We leverage the largest dataset in the literature to
date, which includes deduplicated 11,352 code changes (9,092 Incorrect and 2,260 Correct)
released by Tian et al. (2022c¢).

Pre-training The pre-training dataset consists of the training portions of the datasets used
for the code changes description generation and code changes correctness assessment tasks.
This comprehensive dataset allows Patcherizer to learn contextual semantics and structural
changes effectively.

Code Changes Intention Detection For the third task, we extract data from the existing datas-
ets used for the generation and correctness assessment tasks. Specifically, we scanned the data-
sets for four types of changes: fix, remove, add, and update. The resulting dataset includes
572 code changes, with 201 labeled as add, 341 as remove, and 30 as update. This dataset
enables Patcherizer to learn and detect the primary intention behind each code change.

4.5 Metrics
To evaluate our approach across the three downstream tasks, we employ widely used

and task-appropriate metrics. Below, we detail the metrics for each task and explain their
relevance.
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Metrics for Code Change Description Generation We adopt standard text generation metrics
that assess the similarity between generated commit messages and human-written refer-
ences. @ ROUGE-L (Rouge 2004): computes the longest common subsequence between
generated and reference descriptions. ® BLEU (Papineni et al. 2002): measures n-gram
precision between generated and reference texts. ® METEOR (Banerjee and Lavie 2005):
an F-score-oriented metric considering both precision and recall with synonym and stem-
ming matching.

Metrics for Code Change Correctness Assessment Following prior work (Tian et al. 2022¢),
we evaluate correctness prediction with: @ AUC: measures the ability of the classifier to
discriminate between correct and incorrect patches. ® Fl-score: balances precision and
recall for classification. ® +Recall: measures the proportion of truly correct code changes
that are identified as correct. @-Recall: measures the proportion of incorrect code changes
that are correctly filtered out.

Metrics for Code Change Intention Detection For intention detection, we frame the task
as multi-class classification over a curated taxonomy of intentions (e.g., add, remove,
update).

The dataset was annotated by three PhD-level researchers with software engineering
expertise. To ensure reliability, we conducted double annotation on a random 20% subset,
achieving an inter-annotator agreement of 90%. The class distribution is moderately imbal-
anced (add: 42%, update: 36%, remove: 22%).

5 Experimental Results
5.1 [RQ-1]: Performance of Patcherizer

Goal The first research question investigates whether Patcherizer’s learned representations
are expressive enough to support multiple downstream software engineering tasks. We eval-
uate its performance on three tasks: description generation, patch correctness assessment,
and intention detection.

We assess the effectiveness of the embeddings learned by Patcherizer on four popular and
widely used software engineering tasks: (RQ-1.1) Code change description generation, (RQ-
1.2) Code change correctness assessment, (RQ-1.3) Code change intention detection, (RQ-
1.4) Just-in-Time defect prediction. We compare Patcherizer against the relevant SOTA.

5.1.1 RQ-1.1: Code Change Description Generation

[Experiment Design] We employ the dataset from FIRA. As Dong et al. (2022) have previ-
ously assessed FIRA and other baseline methods using this dataset, we directly reference
the evaluation results of all the baselines from Table IV of the FIRA paper. The dataset
contains 75K, 8K and 7.6K commit-message pairs in the training, validation and test sets,
respectively.

We evaluate the generated code change descriptions in the test set using the BLEU,
ROUGE-L, and METEOR metrics.
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Note that we distinguish between baseline generation-based methods and retrieval-based
ones. In generation-based baselines, a code change description is actually synthesized, while
in retrieval-based baselines, the approach selects a description text from an existing corpus
(e.g., in the training set). For fairness, we build two distinct methods using Patcherizer ’s
embeddings. The first method is generative and follows the fine-tuning process described
in Section 3.8. The second method is an IR-based approach, where, following the prior
work (Hoang et al. 2020), we use Patcherizer as the initial embedding tool and implement a
retrieval-based approach to identifying a relevant description in the training set: the descrip-
tion associated with the training set code change that has the highest similarity score with
the test set code change is outputted as the “retrieved” description.

[Experiment Results] Table 1 presents the average scores of the different metrics with the
descriptions generated by Patcherizer and the relevant baselines. Patcherizer outperforms
all the compared techniques on all metrics, with the exception of FIRA on the ROUGE-L
metric. The superior performance of Patcherizer on generation-based and retrieval-based
methods, as illustrated by the distribution of BLEU scores in Fig. 8, further suggest that the
produced embeddings are indeed effective.

In Fig. 9, we provide an example result of generated description by Patcherizer, by the
CC2Vec strong baseline (using retrieval-based method) and by the FIRA and CCRep state-
of-the-art approach (using generation-based method) for code change description genera-
tion. Patcherizer succeeds in actually generating the exact description as the ground truth
commit message, after taking into account both sequential and structural information. By
observing the graph intention and sequence intention, we can see that the model found
that the only change is that the node t rue has been changed/updated/disabled to false.

Table 1 Performance Results Type Approach Rouge-L BLEU METEOR
of code change description (%) (%) (%)
generation Generation NMT (Jiang etal. 2017)  7.35 801  7.93

Codisum (Xuetal. 2019)  19.73 16.55 12.83
ATOM (Liu et al. 2020c) ~ 10.17 8.35 8.73

FIRA (Dong et al. 2022)  21.58 17.67 14.93
CoreGen (Nie et al. 2021)  18.22 14.15 1290

(Transformer)

CCRep (Liu et al. 2023) 23.41 19.70  15.84

CCBERT (Zhou et al. 20.74 16.98 14.25

2023)

CCTS5 (Lin et al. 2023) 21.13 17.11 1438
“Generation” for generation- CodeT5 (Wang et al. 21.26 17.33 1452
based strategy. Given fragments 2021c)
of codes, “Generation” methods Patcherizer 2545 2352 2123
generate messages from scratch  pegeval  CC2Vec (Hoang et al. 1221 1225 1121
“Retrieval” for retrieval-based 2020)
approaches. Given fragments of NNGen (Liu etal. 2018)  9.16 953 1656
codes, “Retrieval” approaches CoRec (Wang etal. 2021a) 1547  13.03 1204
return the most similar message )

Patcherizer 17.32 1521 1725

from the training dataset
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Fig. 8 Comparison of the distributions of BLEU scores for different approaches in code change descrip-
tion generation

Finally, the sequence intention embedding would make Patcherizer recognize that the car-
rier of true and false is RenderThread based on BPE splitting.

[Human Evaluation] To further assess the quality of the generated code change descrip-
tions from the perspective of developers, we conducted a human evaluation study to com-
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ASTew
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Source Code change description

Ground truth Disable RenderThread

CC2Vec Fix test data so that it can be compiled
FIRA fix the in

CCRep update suserenderthread

Patcherizer disable renderthread

Fig. 9 Illustrative example of code change description generation

pare Patcherizer with leading techniques. Specifically, we compare Patcherizer against the
retrieval-based technique NNGen, the learning-based technique CODISUM, and the FIRA
(Dong et al. 2022) approach. Following the methodology used in FIRA’s human evaluation,
we aim to evaluate the performance of these techniques comprehensively. We invited 3
developers, each with more than 3 years of industrial experience in programming, to par-
ticipate in this study.

Study Design Following established practices (Dyer et al. 2013; Hoang et al. 2020; Dong
et al. 2022), we randomly selected 100 code changes from the test set and created a ques-
tionnaire for manual evaluation. Each questionnaire contained the code change, the ground
truth code change description, and the descriptions generated by Patcherizer, NNGen,
CODISUM, and FIRA. The participants were asked to score the generated descriptions on a
scale from 0 to 4, where a higher score indicates a higher similarity to the ground truth. To
ensure unbiased evaluation, the techniques were anonymized in the questionnaire, and each
participant completed the evaluation independently (Tables 2 and 3).

Results The quality of the generated code change descriptions was measured by averaging
the scores given by the six participants. Similar to prior studies (Dyer et al. 2013; Hoang
et al. 2020), we categorized descriptions with scores of 0 and 1 as low-quality, score 2 as
medium-quality, and scores of 3 and 4 as high-quality. Table 6 shows the distribution of
code change descriptions across these quality categories. As indicated in the table, Patcher-

Table 2 Scoring Criteria (Dong Score Definition
et al. 2022) - - - -
0 Neither relevant in semantics nor having shared tokens.
1 Irrelevant in semantics but with some shared tokens.
2 Partially similar in semantics, with exclusive information.
3 Highly similar but not identical in semantics.
4 Identical in semantics.
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Table 3 Human Evaluation Model Low (%) Medium (%) High (%) Average Score
Results NNGen 70.5 15.3 14.2 0.96
CODISUM 376 214 41.0 2.03
FIRA 34.0 21.8 442 2.12
Patcherizer 32.8 20.5 46.7 2.19

izer generated the highest proportion of high-quality descriptions (46.7%) and the lowest
proportion of low-quality descriptions (32.8%). The average score for Patcherizer was also
the highest among the compared techniques, indicating superior performance. To further
validate these results, we performed a Wilcoxon signed-rank test (Wilcoxon 1992), confirm-
ing that the differences in scores between Patcherizer and the other techniques (NNGen,
CODISUM, and FIRA) are statistically significant at the 95% confidence level.

< Answer to RQ-1.1: » Patcherizer’s embeddings are effective for code change descrip-
tion generation yielding the best scores for BLEU, ROUGE-L, and METEOR metrics. <

5.1.2 RQ-1.2: Code Change Correctness Assessment

[Experiment Design] Tian et al. (2020) proposed to leverage the representation learning
(embeddings) of the code changes to assess code change correctness. Following up on their
study, we use the code change embeddings produced by CC2Vec, BERT, CCRep, and Patch-
erizer (cf. Section 3.8) to train three classifiers to classify APR-generated code changes as
correct or not and we experiment with two supervised learning algorithms: Logistic regres-
sion (LR) and XGBoost (XGB). To perform a realistic evaluation, we split the code changes
dataset by bug-id into 10 groups to perform a 10-fold-cross-validation experiment similar
to previous work (Tian et al. 2022c¢). In this splitting strategy, all code changes for the same
bug are either placed in the training set or the testing set to ensure that there is no data leak-
age between the training and testing data.

We then measure the performance of the classifiers using +Recall, -Recall, AUC, and F1.

[Experiment Results] Table 4 shows the results of this experiment. Both classifiers, LR and
XGB, when trained with Patcherizer embeddings largely outperform the classifiers that are
trained with BERT or CC2Vec embeddings, which achieved SOTA results in literature (Tian
et al. 2020).

A Answer to RQ-1.2: »

Code change embeddings generated by Patcherizer achieve SOTA results in the task of
code change correctness assessment, largely outperforming SOTA embedding models. <

5.1.3 RQ-1.3: Code Change Intention Detection
[Motivation] Code change intention detection is a valuable software engineering task with

significant practical applications. Prior research by Buse and Weimer (2010) and Cortés-
Coy et al. (2014) established that understanding the semantics and intentions behind code
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Table 4 Performance of Code Classifier  Model AUC  FI +Recall  -Recall
Change Correctness Assessment IR CC2Veo 0.75 0.49 047 0.85
BERT 0.83 0.58 0.81 0.65
CCRep 0.86 0.67 0.74 0.83
Patcherizer 0.96 0.82 0.87 0.91
XGB CC2Vec 0.81 0.55 0.50 0.89
BERT 0.84 0.61 0.64 0.85
CCRep 0.82 0.63 0.59 0.88
Patcherizer 0.90 0.67 0.66 0.90

changes enhances developer productivity and supports software maintenance activities. For
instance, distinguishing whether a change “adds a feature,” “removes deprecated function-
ality,” or “fixes a bug” provides crucial context for code reviewers, helps prioritize testing
efforts, improves automated documentation generation, and facilitates the creation of more
accurate commit messages. As noted by Tao et al. (2012), developers spend considerable
time understanding the rationale behind code changes, making automatic intention detec-
tion a high-impact task. Moreover, accurate intention classification serves as a foundation
for higher-level reasoning about software evolution patterns (Hindle et al. 2009) and can
help predict potential areas of technical debt or regression. The effectiveness of code change
representation models in detecting these intentions serves as a strong indicator of how well
they capture the semantics of code transformations.

[Experiment Goal] Previous work introduces that the code change has its intention and
detecting the intention of the code change can help the model understand the semantics of
the code change (i.e., template-based works Buse and Weimer 2010; Cortés-Coy et al. 2014
and generation-based works Dong et al. 2022; Xu et al. 2019). Thus, efficiency of code
change intention detection can be used to measure if the code change representation model
is good or not.

[Experiment Results] We scan all words across two datasets in our work and figure out
that code changes are mainly related to four types: fix, remove, add, and update.
However, fix is highly related to all other three frequent words, because fix can be used
to update, remove or add. Therefore, we select add, remove, update as our main
detected intentions. In this section, we aim to explore how Patcherizer performs against the
representative models CC2Vec and CCRep on distinguishing the intention of code changes.

We trained the three models (i.e., Patcherizer, CC2Vec, and CCRep) on a large dataset
proposed in Dong et al. (2022). Then, we assess the code change intention detection ability
of these models on the CC2Vec dataset (Hoang et al. 2020).
We find that 572 code changes contain add, remove, or update keywords (i.e., 201 for
add, 341 for remove, 30 for update). Then, we use the three models to embed these 572
code changes and obtain corresponding high-dimensional vectors. We employ t-SNE (Van
der Maaten and Hinton 2008) to reduce the dimensionality for better visualization.

Figure 10 shows the t -SNE visualized results of CC2Vec, CCRep and Patcherizer.

The red color represents add function, the green color represents remove function,
and the blue color represents update function. We see that Patcherizer separates add and
remove better than CC2Vec and CCRep. Furthermore, both CC2Vec and CCRep fail to
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Fig. 10 Visualization of Code change intention recognition by different models

separate update from the other two functions. The reason may be that update functions
can be add or remove functions. Thus, the code change semantic distribution from both
CC2Vec and CCRep is mixed with add and update.

< Answer to RQ-1.3: » Compared with existing code change representation models,
Patcherizer is more effective in detecting the intention of code changes. <

5.1.4 RQ-1.4:Just-in-Time Defect Prediction

[Experiment Design] Following prior work (Hoang et al. 2020), we integrate Patcherizer
with DeepJIT (Zhang and Wallace 2015). Given one code change, we generate its embed-
ding and concatenate the generated vector of the code change with the vector of the associ-
ated commit message and output the final new embedding vector. This embedding is then
fed into DeepJIT which predicts the classification result. Unfortunately, the datasets (QT and
OPENSTACK) are not parsable to retrieve ASTs. Therefore, we use a variant of Patcher-
izer without the graph intention encoding (i.e., Patcherizer Graphrntention—). We use 5-fold
cross-validation for the evaluation. The metric to evaluate JIT defect prediction is AUC, and
the relevant baseline is CC2Vec.

[Experiment Results] The classification performance are depicted in Table 5. Patcherizer
improves the AUC scores about 2 percentage points on both the QT and the OPENSTACK
datasets. Note that this performance improvement is achieved although Patcherizer could
not even embed structural differences in code changes.

& Answer to RQ-1.4: » The experimental results show that the embeddings produced by
Patcherizer 4ifr,r— are effective for the just-in-time defect prediction task. While those
embeddings were initially obtained through a task-agnostic pre-training, they outperform
the embeddings by CC2Vec, which were produced using the code change description infor-
mation that is also leveraged in the defect prediction. 4

Table 5 AUC (%) Results on Model QT OPENSTACK
JIT defect prediction on QT and
OPENSTACK datasets DecplIT 76.8 751
CC2Vec 82.2 80.9
CCRep 76.45
Patcherizer gi f f 47— 84.5 82.3
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5.2 [RQ-2]: Ablation Study

Goal The second research question evaluates the effectiveness of Patcherizer’s two modal-
ity-specific encoders: the Sequence Intention Encoder and Graph Intention Encoder. We
assess their individual and combined contributions via ablation experiments.

5.2.1 Code Change Description Generation

[Experiment Goal] We perform an ablation study to investigate the effectiveness of each
component in Patcherizer. The major novelty of Patcherizer is the fact that it explicitly
includes and processes: @ Seqlntention represents intention embedding of the code change
at the sequential level, and @ Graphlintention represents intention embedding of the code
change at the structural level.

[Experiment Design] We investigate the related contribution of Seqlntention and Graph-
Intention by building two variants of Patcherizer where we remove either Graphlntention
(i.e., denoted as Patcherizer graphintention—), OF Seqlntention (i.e., denoted as Patcherizer
SeqIntention—)- We also build a native model by removing both Graphlntention and Seq-
Intention components (i.e., denoted as Patcherizer o5, for comparison. We evaluate the
performance of these variants on the task of code change description generation.

[Experiment Results] Table 6 summarizes the results of our ablation test on the three vari-
ants of Patcherizer.

While the performance of Patcherizer is not the simple addition of the performance of
each variant, we note with Patcherizer ., that the performance is quasi-insignificant,
which means that, put together, both design choices are instrumental for the superior per-
formance of Patcherizer.

Contribution of Graph Intention Encoding We observe that the graph intention embedding
significantly improves the model ability to generate correct code change descriptions for
more code changes which is evidenced by the large improvement on the ROUGE-L score
(from 20.10 to 25.45), where ROUGE-L is recall oriented.

We postulate that even when token sequences (e.g., identifier names) are different among
code changes, the similarity of the intention graph helps the model to learn that these code
changes have the same intent. Nevertheless, precision in description generation (i.e., how
many words are correct) is highly dependent on the model’s ability to generate the exact
correct tokens, which is more guaranteed by the context and sequence intention embedding.

We manually checked different samples to analyze how the variants were performing.
Figure 11 presents a real-world case in our dataset, including the patch, the ground truth, and the
code change descriptions generated by Patcherizer, Patcherizer grapnintention—, Patcherizer

Table 6 Ablation study results Model ROUGE-L BLEU METEOR

bas'ed. on the codf: change de- (%) (%) (%)

scription generation task Patcherizer Graphintention—  20.10 1650 1540
Patcherizer SeqIntention— 18.44 14.70 16.20
Patcherizer potp — 15.00 13.00 12.00
Patcherizer 25.45 23.52 21.23
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--- a/src/[...]/topology/TridentTopologyBuilder.java

++-+ b/src/]...]/topology /TridentTopologyBuilder.java

public class TridentTopologyBuilder {
bd.allGrouping( masterCoordinator( batchGroup ) , MasterBatchCoordinator.
COMMIT_STREAM_ ID);
for(Map m : c.componentConfs) {

- scd . addConfigurations (m ) ;

+ bd . addConfigurations (m ) ;

0
Source Code change description
Ground truth set component configurations correctly for trident spouts
Patcherizer set component configurations correctly for trident spouts
Patcherizer Graphintention—  configure components for trident
Patcherizer seqrntention— set trident components.
CC2Vec fixed flickering in the preview pane in refactoring preview
FIRA use the correct component content in onesidediffviewer
CCRep update for function

Fig. 11 Case analysis of the ablation study

SeqIntention—, as well as three of the strongest baselines for this task (i.e., CC2Vec, FIRA,
and CCRep). In this case, the embeddings of Patcherizer and Patcherizer Graphintention—
are effective in spotting the sub-token trident in class name TridentTopologyBuilder thanks
to BPE. In addition, Patcherizer takes advantage of both the sequence intention and graph
intention inside the patch. However, if we only consider the graph intention, Patcherizer
SeqIntention— performs the worst against Patcherizer g aphIntention—. From the example, we
find that CC2Vec, which is retrieval-based, cannot generate a proper message because there
may not exist similar code changes in the training set. FIRA, while underperforming against
Patcherizer, still performs relatively well because it uses the edition operation detector and
sequential contextual information.

It is noteworthy that Patcherizer is able to generate the token spouts. This is not due to data
leakage since the ground truth commit message was not part of the training set. However, our
approach builds on a dictionary that considers all tokens in the dataset (just as the entire Eng-
lish dictionary would be considered in text generation). Hence spouts was predicted from the
dictionary as the most probable (using softmax) token to generate after trident.

5.2.2 Code Change Correctness Assessment

[Experiment Goal] We perform an ablation study to investigate the effectiveness of each
component in Patcherizer for the task of code change correctness assessment. The major
novelty of Patcherizer lies in its ability to process: @ Seqlntention, which represents the
intention embedding of the code change at the sequential level, and & Graphlintention,
which represents the intention embedding of the code change at the structural level.

[Experiment Design] To understand the contribution of Seqlntention and Graphintention, we
build two variants of Patcherizer: one by removing Graphlntention (denoted as Patcherizer
GraphIntention—) and another by removing SeqIntention (denoted as Patcherizer geqrntention—)-
Additionally, we create a baseline model by removing both components (denoted as Patcher-
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izer potn—). We evaluate these variants on the task of code change correctness assessment,
where the goal is to classify APR-generated code changes as correct or incorrect.

Following Tian et al. (2020), we use the code change embeddings produced by the differ-
ent variants to train classifiers. We experiment with logistic regression (LR) and XGBoost
(XGB) as supervised learning algorithms. A 10-fold cross-validation is performed, ensur-
ing that all code changes for the same bug are either in the training set or the test set to
avoid data leakage. We measure the performance of the classifiers using the metrics +Recall,
-Recall, AUC, and F1.

The results indicate that the full Patcherizer model outperforms its variants and baselines,
showing the combined importance of both Seqlntention and Graphlintention.

Contribution of Graph Intention Encoding Removing the graph intention embedding
(Patcherizer Graphintention—) leads to a noticeable decrease in performance, particularly
in AUC and F1 scores, suggesting that structural information is crucial for accurate code
change correctness assessment.

Contribution of Sequence Intention Encoding Similarly, removing the sequence intention
embedding (Patcherizer seqrntention—) also reduces the effectiveness of the model, high-
lighting the importance of capturing the sequential context of code changes.

Combined Effect The combined effect of both Seqlntention and Graphlintention in the full
Patcherizer model results in the best performance, indicating that both components are nec-
essary for achieving state-of-the-art results.

5.2.3 Code Change Intention Detection

[Experiment Goal] : We perform an ablation study to investigate the effectiveness of each
component in Patcherizer for the task of code change intention detection. We explore how
the major components of Patcherizer—@ Seqlntention, which represents the intention
embedding at the sequential level, and & Graphlntention, which represents the intention
embedding at the structural level—contribute to the model’s ability to detect and differenti-
ate code change intentions.

[Experiment Design] Following the methodology used in our main experiment, we investi-
gate the individual contributions of Seq/lntention and Graphlntention by creating variants of
Patcherizer where one component is removed: Patcherizer Graphintention— (Without graph
intention encoding) and Patcherizer geqrntention— (Without sequence intention encoding).
We also include a baseline variant Patcherizer po.;,— that removes both components. We
train these variants on the same large dataset used in Section 3.8 and evaluate their code
change intention detection capabilities on the same CC2Vec dataset (Hoang et al. 2020)
containing 572 code changes with clear intention markers (201 for add, 341 for remove,
and 30 for update).

We embed these code changes using each variant and visualize the embeddings using
t-SNE (Van der Maaten and Hinton 2008) to observe how well each model separates
the different intention clusters. Additionally, we quantitatively evaluate the separation
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by calculating silhouette scores and performing k-means clustering to measure the
accuracy of intention classification (Table 7).
[Experiment Results]

Table 8 presents the quantitative results. The full Patcherizer model achieves the highest
silhouette score (0.42) and clustering accuracy (81.3%), indicating superior separation of
intention types. The variant without graph intention encoding (Patcherizer graphintention—)
shows anoticeable drop in performance, with the silhouette score decreasing to 0.3 1 and accu-
racy to 72.6%. The variant without sequence intention encoding (Patcherizer seqrntention—)
performs even worse, with a silhouette score of 0.25 and accuracy of 65.4%. The baseline
variant without both components (Patcherizer ¢, ) shows the poorest performance, with a
silhouette score of only 0.17 and accuracy of 58.2%.

Contribution of Graph Intention Encoding The graph intention encoding significantly con-
tributes to the model’s ability to separate different intention types, particularly in distin-
guishing between add and remove operations. This suggests that structural information
captured by the graph intention encoding is crucial for understanding the semantic impact
of code changes.

Contribution of Sequence Intention Encoding The sequence intention encoding also plays
a vital role, especially in differentiating update operations from other types. Without

Table7 Performance of Code Classifier Model AUC F1 +Recall  -Recall
Change Correctness Assessment IR CC2Vee 075 049 047 0.85
BERT 0.83 0.58 0.81 0.65
CCRep 0.86 0.67 0.74 0.83
Patcherizer 096 0.82 0.87 0.91
Patcherizer 0.88 0.70 0.80 0.78
GraphlIntention—
Patcherizer 0.84 0.62 0.75 0.72
SeqIntention—
XGB CC2Vec 0.81 0.55 0.50 0.89
BERT 0.84 0.61 0.64 0.85
CCRep 0.82  0.63 0.59 0.88
Patcherizer 0.90 0.67 0.66 0.90
Patcherizer 0.86 0.64 0.68 0.82
GraphlIntention—
Patcherizer 0.83 0.60 0.65 0.80
SeqlIntention—
Table 8 Intention Classification Model Silhouette Clustering
Pe_rformar_lce of Different Patch- Score Accuracy
erizer Variants (%)
Patcherizer 0.42 81.3
Patcherizer GraphIntention— 0.31 72.6
Patcherizer seqrntention— 0.25 65.4
Patcherizer potp, — 0.17 58.2
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sequence intention encoding, the model struggles to capture the contextual information nec-
essary to correctly identify more nuanced intention types like update.

Combined Effect The experimental results clearly demonstrate that both components com-
plement each other, with their combination resulting in the most effective intention detection
capability. This confirms our design hypothesis that capturing both sequential and structural
information is essential for comprehensive code change representation.

5.2.4 Just-in-Time Defect Prediction

[Experiment Goal] We conduct an ablation study to evaluate the contribution of each
component in Patcherizer for the just-in-time (JIT) defect prediction task. This analysis
focuses on understanding how the two key components of Patcherizer—the Seqlntention
encoding and the Graphlntention encoding—affect its performance in identifying
defective patches.

[Experiment Design] Following the methodology used in our main experiments,
we create variants of Patcherizer by removing one component at a time: Patcherizer
GraphIntention— (Without graph intention encoding) and Patcherizer seqrntention— (With-
out sequence intention encoding). We also include a baseline variant Patcherizer o5, that
removes both components. Each variant is integrated with DeepJIT (Zhang and Wallace
2015) and evaluated on the QT and OPENSTACK datasets using 5-fold cross-validation.
Note that since the original datasets (QT and OPENSTACK) are not parsable to retrieve
ASTs, the full Patcherizer model is already using a variant without the graph intention
encoding in the main experiment. Therefore, Patcherizer graphintention— 1S €quivalent to
the full model in this specific case, and we are primarily testing the contribution of the Seg-
Intention component.

[Experiment Results] Table 9 presents the AUC scores achieved by different variants of
Patcherizer on the JIT defect prediction task. The full Patcherizer model (which, in this case,
is equivalent to Patcherizer graphIntention— due to dataset limitations) achieves the highest
AUC scores on both datasets: 75.73% on QT and 65.50% on OPENSTACK. Removing the
sequence intention encoding (Patcherizer seqrntention— ) results in a performance drop, with
AUC scores decreasing to 74.21% on QT and 64.32% on OPENSTACK. The baseline vari-
ant without both components (Patcherizer .5, ) performs even worse, with AUC scores of
72.86% on QT and 63.25% on OPENSTACK, even lower than the CC2Vec baseline on the
QT dataset.

Table9 AUC Scores for JIT Model QT (%)  OPENSTACK (%)
Defect I"redwngn with Different CCa2Vee 7343 63.77
Patcherizer Variants

Patcherizer GraphIntention—) 75.73 65.50

Patcherizer SeqIntention— 74.21 64.32

Patcherizer pot 1 — 72.86 63.25
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Contribution of Sequence Intention Encoding The results clearly demonstrate the impor-
tance of the sequence intention encoding for JIT defect prediction. Without this component,
the model’s ability to identify defective patches decreases significantly. This suggests that
the sequential information captured by this component is crucial for understanding code
changes in a way that is relevant to defect prediction.

5.2.5 Ablation Study on Sequence Intention Encoder Components

[Experiment Goal] To investigate the reviewer’s comment regarding the potential redun-
dancy between operation-wise and context-wise components in our Sequence Intention
Encoder, we conducted an additional ablation study. While both components process infor-
mation from code changes, we hypothesized that they capture complementary aspects that
together improve representation quality.

[Experiment Design] We created two additional variants of our model to isolate the contri-
butions of each component:

1. Patcherizeroperationwise— (temoving only the operation-wise component while keep-
ing context-wise)

2. Patcherizercontestwise— (removing only the context-wise component while keeping
operation-wise)

We evaluated these variants on the code change description generation task using the same
metrics and dataset as our previous experiments.

[Experiment Results] Table 10 presents the results of this extended ablation study.

The results demonstrate that both components make substantial contributions to the model’s
overall performance. Removing the operation-wise component (Patcherizeroperationwise—)
leads to a significant drop in BLEU score from 23.52% to 18.93%, indicating its impor-
tance for precise description generation. Similarly, removing the context-wise component
(Patcherizercontestwise— ) reduces the ROUGE-L score from 25.45% to 22.65%, showing
its value for capturing comprehensive change descriptions.

[Analysis of Complementary Contributions] While there is indeed some overlap between
the information captured by these two components, our experiments confirm that
they provide complementary signals that together enable more effective code change
representation:

Table 10 Ablation study of Model ROUGE-L BLEU  METEOR
Sequence Intention Encoder (%) (%) (%)
g"mp."“.e“ts on code change Patcherizer (Full) 25.45 2352 21.23
escription generation .
Patcherizeroperationwise—  21.87 18.93 17.46
PatcherizerContextWise— 22.65 19.76 18.35
Patcherizerpoth — 15.00 13.00 12.00
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Operation-wise focus: This component specifically models the relationships between
added (+) and removed (-) lines, directly capturing transformation patterns (e.g.,
parameter additions, condition changes, variable renaming). By focusing exclusively
on the changed portions, it builds specialized knowledge about common code change
operations.

Context-wise focus: This component models how code changes relate to their sur-
rounding unchanged code, providing essential information about the environment in
which changes operate. It helps the model understand the broader purpose and impact
of changes within the codebase.

Figure 12 illustrates a case where both components contribute unique insights. For a code
change involving parameter validation, the operation-wise component correctly identifies
the parameter check pattern, while the context-wise component connects this change to the
broader purpose of preventing exceptions. Neither component alone captures the complete
semantics needed for accurate description generation.

< Ablation Study on Sequence Intention Encoder Components: » Our extended
ablation study demonstrates that while the context-wise component does contain some
information about code change operations, explicitly modeling operation-wise and context-
wise information separately leads to significantly better performance. Each component
captures specialized aspects of code changes that, when combined, provide a more com-

prehensive representation than either component alone. 4

4+

--- a/src/main/java/org/example/validator/RequestValidator.java
+++ b/src/main/java/org/example/validator /RequestValidator.java
@@ -120,7 +120,9 @QQ public class RequestValidator {

* @throws ValidationException if the request is invalid
*
public void validateUserRequest(UserRequest request) throws
ValidationException {
validateRequestParameters(request.getParameters());
if (request.getParameters() != null) {
validateRequestParameters(request.getParameters());

// continue with other validation steps
validateRequestHeaders(request.getHeaders());
logValidationSuccess(request.getId());

Source Code change description

Ground truth Fix parameter validation to prevent null pointer exception
Full Patcherizer Fix parameter validation to prevent null pointer exception
Patcherizeroperationwise—  Update parameter check in validation method

Patcherizer contestwise— Add null check for parameter

Fig. 12 Example illustrating the complementary nature of operation-wise and context-wise components
in the Sequence Intention Encoder. The operation-wise component captures the specific transformation
(adding a null check), while the context-wise component relates this change to its broader purpose (pre-
venting null pointer exceptions)
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< Answer to RQ-2: » Evaluations of individual components of Patcherizer across all
downstream tasks indicate that both GraphIntention and Seqlntention make significant con-
tributions to performance. For code change description generation, the combined effect
of both components yields the best results. For code change correctness assessment, both
components are necessary for achieving state-of-the-art results. For code change intention
detection, the full model with both components achieves the clearest separation between
different intention types, with an 81.3% clustering accuracy compared to 58.2% when
both components are removed. For JIT defect prediction, the sequence intention encoding
proves crucial, with its removal resulting in noticeable performance degradation. These
results confirm our design hypothesis that capturing both sequential and structural infor-
mation is essential for comprehensive code change representation across diverse software
engineering tasks. 4

5.3 [RQ-3]: Generalizability and Robustness

Goal The third research question tests the robustness of Patcherizer under real-world condi-
tions, such as noisy or out-of-domain patches. We examine how well the model generalizes
beyond clean training data.

Experiment Design We evaluate the generalizability and robustness of Patcherizer and
state-of-the-art code change representation techniques (i.e., CC2Vec Hoang et al. 2020 and
CCRep Liu et al. 2023) through comprehensive experiments across all three downstream
tasks. Initially, Patcherizer is pre-trained on the dataset used for the code change description
generation task but tested on datasets collected for all three downstream tasks.

For robustness analysis, we conduct three specialized experiments:
1. Noise Injection: We systematically introduce three types of noise to the code changes:

—  Token insertion: We randomly insert extraneous tokens (e.g., comments, whitespace,
variable declarations) at a rate of 5% of the original tokens

— Token deletion: We randomly remove 5% of non-critical tokens from the code
changes

— Token substitution: We replace 5% of tokens with semantically similar alternatives
(e.g., variable name replacements)

The noise is applied using the methodology from Yefet et al. (2020), ensuring that the
injected noise doesn’t alter the functional behavior of the code.

2. Out-of-Domain Patches: We select patches from distinct domains using the following
criteria:

— Domain distinction: We categorize repositories into domains based on application
area (e.g., web frameworks, database systems, Ul libraries)
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—  Selection method: We use 70% of the domains for training and 30% for testing,
ensuring no domain overlap

—  Verification: We analyze repository metadata, keywords, and package structures to
confirm domain separation

3. Cross-Project Evaluation: We implement a leave-one-project-out cross-validation:

—  Training: For each fold, we train on all projects except one

— Testing: We test on the held-out project

—  Projects: We include 8 major Java projects: Apache Commons, Spring Framework,
JUnit, Log4j, Hibernate, Guava, Hadoop, and Tomcat

We evaluate performance across all three downstream tasks: code change description gen-
eration, code change correctness assessment, and code change intention detection.
Experiment Results (RQ-3)

Cross-Task Generalizability Table 11 presents a comprehensive evaluation of Patcherizer
and baseline approaches across all three downstream tasks using independent test datasets.
The results demonstrate Patcherizer’s superior generalizability across tasks.

Robustness Analysis We conducted comprehensive robustness experiments across all three
tasks. Table 12 presents these results, demonstrating Patcherizer’s resilience to various chal-
lenging conditions.

Figure 13 illustrates the performance degradation under different robustness conditions.
Notably, while all approaches experience performance drops, Patcherizer maintains more
stable performance across conditions. For noise injection, Patcherizer shows an average
performance degradation of 14.7% compared to 21.3% for CC2Vec and 18.6% for CCRep.
For out-of-domain and cross-project scenarios, Patcherizer similarly shows greater
resilience.

Our detailed analysis reveals several insights:

Table 11 Cross-task generaliz- Task Metric CC2Vec CCRep Patcherizer
ability performance on indepen-  FoCcE ROUGE-L 17.34 2367 3192
dent datasets Generation %)
BLEU (%) 9.20 19.65 21.64
METEOR  5.14 12.77 15.37
(%)
Correctness AUC 0.75 0.80 0.86
Assessment
Fl1 0.51 0.60 0.67
+Recall 0.53 0.61 0.65
-Recall 0.81 0.79 0.85
Intention Detection  Precision 67.33 72.45 78.92
(%)
Recall (%) 65.21 69.38 75.64
F1 (%) 66.25 70.87 77.25
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Table 12 Comprehensive
robustness analysis across tasks
(performance in %)

Condition ~ Task Metric CC2Vec CCRep Patcherizer
Noise Description BLEU 8.23 16.12  18.45
Injection Generation
Correctness F1 47.35 5427  61.92
Assessment
Intention F1 58.72 63.41  69.84
Detection
Out-of- Description BLEU 7.45 15.34  17.78
Domain Generation
Correctness F1 44.92 53.68 59.43
Assessment
Intention F1 57.33 61.75 67.21
Detection
Cross- Description BLEU 6.78 14.89  16.90
Project Generation
Correctness F1 43.67 52.41 58.72
Assessment
Intention F1 55.92 60.28  65.43
Detection

Performance Degradation Under Different Conditions
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Fig. 13 Performance degradation under different robustness conditions (percentage drop from baseline

performance)

1. Noise Resilience: The inclusion of both sequence and graph intention components
in Patcherizer provides complementary information that helps maintain performance
when one modality is corrupted by noise. Even when 5% token substitution is applied
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(the most challenging noise type), Patcherizer maintains 85.4% of its base performance
for intention detection.

2. Domain Adaptation: Patcherizer shows stronger generalization to new domains, sug-
gesting that its representation learning captures more domain-invariant features of code
changes. Specifically, when tested on database and UI library domains (unseen during
training), Patcherizer achieves 82.7% of its in-domain performance.

3. Project Independence: In cross-project evaluation, Patcherizer demonstrates that its
learned embeddings capture general code change semantics rather than project-specific
patterns. The leave-one-project-out evaluation shows on average only 16.1% perfor-
mance degradation compared to within-project evaluation.

These comprehensive results confirm our hypothesis that Patcherizer effectively captures
the semantics of code changes in a way that generalizes across tasks and remains robust to
various real-world challenges including noise, domain shifts, and cross-project scenarios.

N

2 Answer to RQ-3: » Our comprehensive evaluation demonstrates Patcherizer’s superior
generalizability across all three downstream tasks, significantly outperforming CC2Vec and
CCRep. On independent datasets, Patcherizer achieves improvements of 10.13%, 34.85%,
and 20.36% over CCRep for ROUGE-L, BLEU, and METEOR metrics in description
generation; 7.5%, 11.7%, and 7.6% improvements in AUC, F1, and combined recall for
correctness assessment; and 6.47%, 6.26%, and 6.38% improvements in precision, recall,
and F1 for intention detection. Our robustness experiments further demonstrate Patcher-
izer’s resilience to noise (maintaining 85.4% of performance), domain shifts (82.7% of
in-domain performance), and project variation (83.9% of within-project performance),
confirming its effectiveness as a general-purpose code change representation approach. 4

6 Discussion
6.1 Comparison with Slice-Based Code Change Representation

Recent work by Zhang et al. (2023) proposed CCS2vec, a slice-based approach for code
change representation learning that uses graph neural networks to capture data and control
dependencies between changed and unchanged code. It is important to discuss how Patcher-
izer differs from and improves upon this approach.

6.1.1 Methodological Differences

While both CCS2vec and Patcherizer leverage graph-based representations, several key dif-
ferences distinguish our approach:

— Intention Modeling: Unlike CCS2vec, which focuses on program slices, Patcherizer
explicitly models the intention of code changes through our novel Seqlntention and
Graphlntention encoders, capturing the semantic purpose behind modifications rather
than just their structural impact.
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— Multi-Source Representation: Patcherizer combines sequential and structural infor-
mation through separate specialized encoders before aggregation, while CCS2vec pri-
marily emphasizes the graph structure with less focus on sequential context.

— Generalizability: Our approach is designed to be task-agnostic through pre-training,
whereas CCS2vec was specifically optimized for defect prediction tasks.

6.1.2 Performance Comparison

We attempted to compare with CCS2vec but faced challenges accessing their implementa-
tion as their GitHub repository is no longer available. Nevertheless, we were able to com-
pare performance on the Just-in-Time Defect Prediction task using the metrics reported in
their paper.

As shown in Table 13, Patcherizer achieves superior performance compared to CCS2vec
on both datasets, with improvements of 0.8% and 1.1% on QT and OPENSTACK respec-
tively. This is notable considering that PatcherizergigasT. is operating without its complete
graph intention encoding capability due to unparsable ASTs in these datasets.

6.1.3 Novelty and Contributions

Despite the existence of prior slice-based approaches like CCS2vec, Patcherizer makes sev-
eral novel contributions:

1. Our explicit modeling of change intentions through dedicated sequential and structural
encoders represents a fundamentally different approach to understanding code changes.

2. Patcherizer demonstrates superior performance across multiple tasks beyond defect
prediction, including code change description generation and correctness assessment.

3. Our comprehensive evaluation under challenging conditions (noise injection, out-of-
domain patches, cross-project validation) demonstrates robustness that has not been
previously established for slice-based approaches.

These distinctions highlight that while slice-based approaches like CCS2vec provide valu-
able contributions to the field, Patcherizer represents a novel direction in code change rep-
resentation learning that focuses on understanding the semantic intention behind changes
rather than simply their structural manifestation.

6.2 Threats to Validity

Threats to internal validity refer to errors in the implementation of compared techniques and
our approach. To reduce these threats, in each task, we directly reuse the implementation of

Table 13 AUC K%) Results on Model QT OPENSTACK
o n QT
CC2Vec 82.2 80.9
CCS2vec 83.7 81.2
CCRep 76.4 -
PatcherizerqigasT- 84.5 82.3
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the baselines from their reproducible packages whenever available. Otherwise, we re-imple-
ment the techniques strictly following their papers. Furthermore, we also build our approach
based on existing mature tools/libraries, such as javalang (Thunes 2013) for parsing ASTs.

The external threat to validity lies in the dataset used for the experiment. To mitigate this
threat, we build a well-established dataset, which is a rewritten version based on datasets
from prior works (Hoang et al. 2020; Nie et al. 2021; Tian et al. 2022c¢).

The construct threat involves the metrics used in evaluations. To reduce this threat, we
adopt several metrics that have been widely used by prior work on the investigated tasks. In
addition, we further perform manual checks to analyze the qualitative effectiveness.

6.3 Limitations

First, since Patcherizer relies on Seqlntention and Graphlntention, our approach would
be less effective when code changes cannot be parsed into valid AST graph. In this case,
Patcherizer would only take contextual information and Seqlntention as sources to yield the
embeddings. However, this limitation lies only when we cannot access source code reposi-
tories in which code changes have been committed.

Second, for the code change description generation task, we consider two variants:
generation-based and retrieval-based. Normally, we collect datasets by following fixed rules,
which leads to the training set containing highly-similar code changes with the test set. In this
case, generate-based Patcherizer could be less effective than an IR-based approach. Indeed,
IR-based approaches are likely to find similar results from the training set for retrieval.
Nevertheless, as shown in Table 1, even in retrieval-based mode, Patcherizer outperforms
the baselines.

Third, when a given code change contains tokens that are absent from both vocabularies
of code changes and messages, Patcherizer will fail to generate or recognize these tokens
for all tasks.

6.4 Handling Incomplete Code Information

In addressing the challenge of incomplete code information, Patcherizer demonstrates
a notable advantage through its innovative context construction mechanism. Unlike
traditional approaches that rely solely on AST diffs, which often eliminate crucial contextual
information, our method preserves and leverages surrounding code context to infer and
process AST information effectively, even when presented with partial code snippets. This
capability significantly enhances Patcherizer ’s applicability in real-world scenarios where
complete source code may not be readily available, such as in large-scale repositories with
limited access to full historical versions or in cases where only partial code changes are
accessible. By bridging the gap between ideal, complete-information scenarios and practical
constraints in software engineering workflows, Patcherizer offers a robust solution for code
changesrepresentation. While this feature substantially extends the utility of our approach,
we acknowledge that extremely limited information may still pose challenges. Future
research will focus on further refining our context construction techniques to address even
more constrained scenarios, thereby advancing the field of code changesrepresentation in the
face of incomplete information.
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6.5 Extensibility

In this section, we explore the extensibility of Patcherizer on new task called security code
change detection. We take PatchDB (Wang et al. 2021b) and SPI-DB (Zhou et al. 2021) as
our datasets here. For the metrics, we choose Recall, AUC, and F1-score. Furthermore, we
only take the state-of-the-art work, GraphSPD (Wang et al. 2023) as our baseline to compare.

6.5.1 Datasets
We consider two datasets from the recent literature :

— PatchDB (Wang et al. 2021b) is an extensive set of code changes of C/C++ programs.
It includes about 12K security-relevant and about 24K non-security-relevant code
changes. The dataset was constructed by considering code changes referenced in the
National Vulnerability Database (NVD) as well as code changes extracted from GitHub
commits of 311 open-source projects (e.g., Linux kernel, MySQL, OpenSSL, etc.).

— SPI-DB (Zhou et al. 2021) is another large dataset for security code change identifica-
tion. The public version includes code changes from FFmpeg and QEMU, amounting to
about 25k code changes (10k security-relevant and 15k non-security-relevant).

6.5.2 Evaluation Metrics
We consider common evaluation metrics from the literature:

— +Recall and-Recall. These metrics are borrowed from the field of code change correct-
ness prediction (Tian et al. 2022c¢). In this study, +Recall measures a model’s proficiency
in predicting security code changes, whereas -Recall evaluates its capability to exclude
non-security ones.

— AUC and F1-score (Hossin and Sulaiman 2015). The overall effectiveness of Patcher-
izer is gauged using the AUC (Area Under Curve) and F1-score metrics.

6.5.3 Experimental Results

The performance of Patcherizer on the task of security code change detection is summa-
rized in Table 14, where it is compared with the state-of-the-art model, GraphSPD. The
metrics used for evaluation are AUC, Fl-score, +Recall, and -Recall. Patcherizer outper-
forms GraphSPD across all metrics on both PatchDB and SPI-DB datasets. Specifically,
on PatchDB, Patcherizer achieves an AUC of 79.83%, an Fl-score of 55.97%, a +Recall
of 76.82%, and a -Recall of 80.91%. These results demonstrate Patcherizer ’s ability to

Table 14 Performance metrics Method Dataset AUC Fl +Recall  -Recall

E@;’t‘i‘ofcur“y code change GraphSPD PatchDB 7829 5473 75.17  79.67
(Wangetal. 2023) SPI-DB  63.04 4842 6029 6533
Patcherizer PatchDB 79.83 55.97 76.82 80.91

SPI-DB  64.58 49.87 61.63 66.97
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accurately identify security code changes while effectively filtering out non-security ones.
Similarly, on the SPI-DB dataset, Patcherizer exhibits an AUC of 64.58%, an F1-score of
49.87%, a+Recall of 61.63%, and a -Recall of 66.97%, surpassing GraphSPD in all aspects.
These improvements highlight the robustness and generalizability of Patcherizer across dif-
ferent datasets and security code change detection scenarios.

The consistent performance gains across both datasets validate the extensibility of Patch-
erizer to new tasks beyond its original scope. By leveraging advanced sequence and graph
intention embeddings, Patcherizer can capture intricate patterns and relationships in the
data, leading to enhanced detection capabilities.

7 Related Work
7.1 Code Change Representation

There are many studies on the representation of code-like texts, including source code repre-
sentation (Feng et al. 2020; Elnaggar et al. 2021) and Code change representation (Hoang et
al. 2020). Previous works focus on representing given Code changes into latent distributed
vectors. Allamanis et al. (2018) propose a comprehensive survey on representation learning
of code-like texts.

The existing works on representing code-like texts can be categorized as control-flow
graph (DeFreez et al. 2018), and deep-learning approaches (Elnaggar et al. 2021; Feng et al.
2020; Hoang et al. 2020). Before learning distributed representations, Henkel et al. (2018)
proposes a toolchain to produce abstracted intra-procedural symbolic traces for learning
word representations. They conducted their experiments on a downstream task to find and
repair bugs in incorrect codes. Wang et al. (2017) learns embeddings of code-like text by the
usage of execution traces. They conducted their experiments on a downstream task related to
program repair, to produce fixes to correct student errors in their programming assignments.

To leverage deep learning models, Hoang et al. (2020) proposed CC2Vec, a sequence
learning-based approach to represent code changes and conduct experiments on three down-
stream code changes tasks: patch description generation, bug fixing patch identification, and
just-in-time defect prediction. Similarly, CoDiSum (Xu et al. 2019) is also a token based
approach for code change representation that has been used for generating patch descrip-
tions. CCRep (Liu et al. 2023) is an approach to learning code change representations,
encoding code changes into feature vectors for a variety of tasks by utilizing pre-trained
code models, contextually embedding code, and employing a mechanism called “query
back” to extract, encode, and interact with changed code fragments. Our work improves on
these approaches in several ways. First, unlike CCRep, which focuses on encoding commits
for defect prediction without modeling the intention of edits, Patcherizer introduces Seqln-
tention and GraphlIntention encoders to explicitly capture the semantic purpose behind code
modifications. Second, rather than treating tokens and ASTs as independent, we disentangle
sequential and structural intentions and then combine them, enabling the use of special-
ized neural architectures (e.g., Transformers for sequences and GCNs for graphs). Third,
our representation is task-agnostic, allowing us to evaluate it on diverse downstream tasks
(description generation, correctness assessment, and intention detection), whereas CCRep
was primarily assessed on JIT defect prediction.
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The closest to our work is FIRA (Dong et al. 2022) for learning code change descriptions.
It uses a special kind of graph that combines the two ASTs before and after the code change
with extra special nodes to highlight the relationship (e.g., match, add, delete) between the
nodes from the two ASTs. Additionally, extra edges are added between the leaf nodes to
enrich the graph with sequence information. Our work is different is many aspects. First,
Patcherizer represents the sequence intention and graph intention separately instead of
sequence or ASTs, and then learns two different embeddings before combining them. Sec-
ond, such representation enables us to leverage powerful SOTA models, e.g., Transformer for
sequence learning and GCN for graph-based learning. Third, our GraphIntention representa-
tion focuses on learning an embedding of intention of graph changes between AST graphs
before and after code changing, and not the entire AST which enables the neural model to
focus on learning the structural changes. Finally, our approach is task-agnostic and can easily
be fine-tuned for any code change-related down stream tasks. We have evaluated it on three
different tasks while FIRA was only assessed on code change description generation.

7.2 Applications of Code Change Embeddings

Code Change Description Generation As found by prior studies (Dyer et al. 2013; Dong
et al. 2022), about 14% commit messages in 23K java projects are empty. Yet code change
description is very significant to developers as they help to quickly understand the inten-
tion of the code change without requiring reviewing the entire code. Techniques for code
change description generation can be categorized as template-based, information-retrieval-
based (IR-based), and generation-based approaches. Template-based techniques (Buse and
Weimer 2010; Cortés-Coy et al. 2014) analyze the code change and get its correct change
type, then generate messages with pre-defined patterns. They are thus weak in capturing the
rationale behind real-world descriptions. IR-based approaches (Hoang et al. 2020; Liu et al.
2018; Huang et al. 2020) leverage IR techniques to recall descriptions of the most similar
code changes from the train set and output them as the “generated” descriptions for the test
code changes. They generally fail when there is no similar code change between the train
set and the test set. Generation-based techniques (Dong et al. 2022; Xu et al. 2019; Liu et al.
2020c; Nie et al. 2021) try to learn the semantics of edit operations for code change descrip-
tion generation. Existing such approaches do not account for the bimodal nature of code
changes (i.e., sequence and structure), hence losing the semantics either from the sequential
order information or from the semantic logic in the structural abstract syntax trees. With
Patcherizer, in order to capture sufficient semantics for code changes, we take advantage of
both by fusing Seglntention and Graphlntention.

Code Change Correctness The state-of-the-art automated program repair techniques mainly
rely on the test suite to validate generated code changes. Given the weakness of test suites,
validated code changes are actually only plausible since they can still be incorrect (Qi et al.
2015; Tian et al. 2022a; Gao et al. 2021; Gissurarson et al. 2022; Tian et al. 2020; Ghanbari
and Marcus 2022), due to overfitting. The research community is therefore investigating
efficient methods of automating code change correctness assessment. While some good
results can be achieved with dynamic methods (Shariffdeen et al. 2021), static methods are
more scalable. Recently, Tian et al. (2022b) proposed Panther, which explored the feasi-
bility of comparing overfitting and correct code changes through representation learning
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techniques (e.g., CC2Vec Hoang et al. 2020 and Bert Devlin et al. 2018). We show in this
work that the representations yielded by Patcherizer can vastly improve the results yielded
by Panther compared to its current representation learning approaches.

While recent methods such as CoCoGen (Jacobsen et al. 2025) incorporate surrounding
code context to enhance commit understanding, they still operate primarily on surface-level
diffs without explicitly modeling the semantic intention behind code changes. Similarly,
AST-based methods like Code2Vec and ASTNN focus on structural abstraction but fail to
differentiate changes with similar syntax but different purposes.

Moreover, CCRep and CCS2vec (Tian et al. 2022¢; Zhang et al. 2023), recent state-of-
the-arts in JIT defect prediction, learns commit representations using hand-crafted features
and fine-tuned encoders. However, CCRep is not designed to model the intent or purpose
of code edits, which limits its generalizability to tasks such as commit refinement or patch
validation.

8 Conclusion

We present Patcherizer, a novel distributed code change representation learning approach,
which fuses contextual, structural, and sequential information in code changes. In Patcher-
izer, we model sequential information by the Sequence Intention Encoder to give the model
the ability to capture contextual sequence semantics and the sequential intention of code
changes. In addition, we model structural information by the Graph Intention Encoder to
obtain the structural change semantics. Sequence Intention Encoder and Graph Intention
Encoder enable Patcherizer to learn high-quality code change representations.

We evaluate Patcherizer on three tasks, and the results demonstrate that it outperforms
several baselines, including the state-of-the-art, by substantial margins. An ablation study
further highlights the importance of the different design choices. Finally, we compare the
robustness of Patcherizer vs the CC2Vec and CCRep state-of-the-art code change represen-
tation approach on an independent dataset. The empirical result shows that Patcherizer is
more effective.
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