
Received: 2 January 2025 / Accepted: 3 November 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Communicated by: Lei Ma.

Extended author information available on the last page of the article

Learning to represent code changes

Xunzhu Tang1  · Haoye Tian2 · Weiguo Pian1 · Saad Ezzini3 · Abdoul Kader Kaboré1 · 
Andrew Habib1 · Kisub Kim4 · Jacques Klein1 · Tegawendé F. Bissyandé1

Empirical Software Engineering           (2026) 31:50 
https://doi.org/10.1007/s10664-025-10763-6

Abstract
Code change representation plays a pivotal role in automating numerous software en-
gineering tasks, such as classifying code change correctness or generating natural lan-
guage summaries of code changes. Recent studies have leveraged deep learning to derive 
effective code change representation, primarily focusing on capturing changes in token 
sequences or Abstract Syntax Trees (ASTs). However, these current state-of-the-art repre-
sentations do not explicitly calculate the intention semantic induced by the change on the 
AST, nor do they effectively explore the surrounding contextual information of the modi-
fied lines. To address this, we propose a new code change representation methodology, 
Patcherizer, which we refer to as our tool. This innovative approach explores the intention 
features of the context and structure, combining the context around the code change along 
with two novel representations. These new representations capture the sequence intention 
inside the code changes in the code change and the graph intention inside the structural 
changes of AST graphs before and after the code change. This comprehensive represen-
tation allows us to better capture the intentions underlying a code change. Patcherizer 
builds on graph convolutional neural networks for the structural input representation of the 
intention graph and on transformers for the intention sequence representation. We assess 
the generalizability of Patcherizer ’s learned embeddings on three tasks: (1) Generating 
code change description in NL, (2) Predicting code change correctness in program repair, 
and (3) Code change intention detection. Experimental results show that the learned code 
change representation is effective for all three tasks and achieves superior performance to 
the state-of-the-art (SOTA) approaches. For instance, on the popular task of code change 
description generation (a.k.a. commit message generation), Patcherizer achieves an aver-
age improvement of 19.39%, 8.71%, and 34.03% in terms of BLEU, ROUGE-L, and 
METEOR metrics, respectively.

Keywords  Code change representation · Code change correctness · Message generation

 et al. [full author details at the end of the article]

1 3

http://orcid.org/0000-0002-6377-0884
https://doi.org/10.1007/s10664-025-10763-6
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-025-10763-6&domain=pdf&date_stamp=2025-12-1


Empirical Software Engineering           (2026) 31:50 

1  Introduction

A software code change represents the source code differences between two software versions. 
It has a dual role: on the one hand, it serves as a formal summary of the code changes that 
a developer intends to make on a code base; on the other hand, it is used as the main input 
specification for automating software evolution. Code changes are thus a key artifact that is 
pervasive across the software development life cycle. In recent years, building on empirical 
findings on the repetitiveness of code changes (Barr et al. 2014), several approaches have 
built machine learning models based on code change datasets to automate various software 
engineering tasks such as code change description generation (Linares-Vásquez et al. 2015; 
Buse and Weimer 2010; Cortés-Coy et al. 2014; Jiang et al. 2017; Xu et al. 2019; Liu et al. 
2019, 2018, 2020c), code completion (Svyatkovskiy et al. 2019; Liu et al. 2020b, a; Ciniselli 
et al. 2021; Pian et al. 2022), code change correctness assessment (Tian et al. 2022c), and 
just-in-time defect prediction (Hoang et al. 2019; Kamei et al. 2016; Liu et al. 2023).

Early approaches relied on manually crafted features to represent code changes (Kamei 
et al. 2016, 2012). With the rise of deep learning, researchers began adopting representation 
learning techniques originally successful in text, signal, and image domains (Devlin et al. 
2018; Niemeyer and Geiger 2021; Qin et al. 2021; Li et al. 2021; Tang et al. 2021; Pian et 
al. 2023; Wang et al. 2022a), applying them to software engineering tasks by developing 
neural models for code and code changes (Yin et al. 2019; Hoang et al. 2020; Feng et al. 
2020; Nie et al. 2021; Jiang et al. 2021; Tian et al. 2022c; Pian et al. 2022; Liu et al. 2023). 
Among the most recent advances, CCRep (Liu et al. 2023) leverages pre-trained code mod-
els, contextual embeddings, and a “query back” mechanism to extract and encode changed 
fragments, achieving strong results in JIT defect prediction. However, CCRep does not 
explicitly capture the intention behind code edits. Two changes with nearly identical struc-
tural modifications may reflect fundamentally different purposes (e.g., disabling a feature 
versus refactoring a method). We argue that modeling such semantic intentions is crucial for 
advancing downstream applications beyond defect prediction, including commit refinement 
and correctness assessment.

Initially, these approaches treated code (Feng et al. 2020; Elnaggar et al. 2021; Wang et 
al. 2021d; Guo et al. 2021, 2021) and other code-like artifacts, such as code changes (Xu et 
al. 2019; Nie et al. 2021; Dong et al. 2022; Liu et al. 2020c), as a sequence of tokens and 
thus employ natural language processing methods to extract code in text format. Research-
ers have recognized the limitations of using code token sequences alone (often represented 
by + and- lines in the textual diff format) to capture the full semantics of code changes, as 
these symbols lack inherent meaning that a DL model can learn. To address this, they began 
incorporating the code structure, such as Abstract Syntax Trees (ASTs), to better capture 
the underlying structural information in source code (Zhang et al. 2019a; Alon et al. 2019, 
2020; Guo et al. 2021). Therefore, recent work such as commit2vec (Cabrera Lozoya et al. 
2021), C3 (Brody et al. 2020), and CC2Vec (Hoang et al. 2020) attempted to represent code 
changes more structurally by leveraging ASTs as well. To get the best of both worlds, more 
recent work tried to combine token information with structure information to obtain a bet-
ter code change representation (Dong et al. 2022). Finally, several such approaches of code 
change representation learning have been evaluated on specific tasks, e.g., BATS (Tian et 
al. 2022a) for code change correctness assessment and FIRA (Dong et al. 2022) for code 
change description generation.

1 3

   50   Page 2 of 50



Empirical Software Engineering           (2026) 31:50 

On the one hand, token-based approaches for code change representation (Hoang et al. 
2020; Xu et al. 2019; Nie et al. 2021) lack the rich structural information of source code and 
intention features inside the sequence is still unexplored. On the other hand, graph-based 
representation of code changes (Liu et al. 2020c; Lin et al. 2022) lacks the context which 
is better represented by the sequence of tokens (Hoang et al. 2020; Xu et al. 2019; Nie et 
al. 2021) of the code change itself and also the surrounding unchanged code and intention 
features inside graph changes is also still unexplored. In conclusion, approaches that try to 
combine context and AST information to represent code changes (e.g., FIRA Dong et al. 
2022) do not use the intention features of either sequence or graph from the code change but 
rather rely on representing the code before and after the change while adding some ad-hoc 
annotations to highlight the changes for the model.

This Paper  We propose a novel code change representation that tackles the aforementioned 
problems and provides an extensive evaluation of our approach on three practical and widely 
used downstream software engineering tasks. Our approach, Patcherizer, learns to represent 
code changes through a combination of (1) the context around the code change, (2) a novel 
SeqIntention representation of the sequential code change, and (3) a novel representation 
of the GraphIntention from the code change. Our approach enables us to leverage powerful 
DL models for the sequence intention such as Transformers and similarly powerful graph-
based models such as GCN for the graph intention. Additionally, our model is pre-trained 
and hence task agnostic where it can be fine-tuned for many downstream tasks. We provide 
an extensive evaluation of our model on three popular code change representation tasks: 
(1) Generating code change description in NL, (2) Predicting code change correctness in 
program repair, and (3) Code change intention detection.

Overall, this paper makes the following contributions: 
▶	 A novel representation learning approach for code changes: we combine the context 

surrounding the code change with a novel sequence intention encoder and a new graph 
intention encoder to represent the intention of code changes in the code change while 
enabling the underlying neural models to focus on the code change by representing it 
explicitly. To that end, we developed: ❶an adapted Transformer architecture for code 
sequence intention to capture sequence intention in code changes taking into account not 
only the changed lines (added and removed) but also the full context (i.e., the code chunk 
before the code change application); ❷ an embedding approach for graph intention to 
compute embeddings of graph intention capturing the semantics of code changes.

▶	 A dataset of parsable code changes: given that existing datasets only provide code 
changes with incomplete details for readily collecting the code before and after the code 
change, extracting AST diffs was challenging. We therefore developed tool support to 
enable such collection and produced a dataset of 90k code changes, which can be parsed 
using the Java compiler.

▶	 Extensive evaluation: we evaluate our approach by assessing its performance on several 
downstream tasks. For each task, we show how Patcherizer outperforms carefully-select-
ed baselines. We further show that Patcherizer outperforms the state of the art in code 
change representation learning.

1 3

Page 3 of 50     50 



Empirical Software Engineering           (2026) 31:50 

2  Intention

What is Intention?  We define the intention of a code change as the semantic motivation 
behind the edit, e.g., fixing a bug, refactoring logic, disabling a feature, or improving read-
ability. Unlike syntactic diffs that only describe the +/- lines or AST node operations, inten-
tion reflects the underlying purpose of the modification. For instance, consider two edits: (1) 
removing a method call to disable a feature, and (2) replacing a method call with another 
to refactor logic. Although both edits appear structurally similar in AST diffs (i.e., deleting 
or modifying a call node), their intentions differ fundamentally. Existing approaches such 
as CCRep (Liu et al. 2023) and FIRA (Dong et al. 2022) do not explicitly encode such 
distinctions.

How do we Capture Intention?  Our design incorporates two complementary encoders: (1) 
the SeqIntentionEncoder models the sequence-level edit operations, integrating surrounding 
context and semantic patterns in the changed tokens, enabling it to distinguish, for example, 
whether a removed method indicates deactivation or replacement; (2) the GraphIntentio-
nEncoder focuses on the structural edit patterns between ASTs, learning embeddings of the 
changes (rather than entire ASTs), which highlights semantically meaningful transforma-
tions. By combining both, our model is able to represent not only how code was changed 
but also why it was changed.

Motivation for Code Change Intention Detection  In addition to description generation and 
correctness prediction, we introduce and explore a novel downstream task: code change 
intention detection. Unlike traditional diff tools that identify syntactic operations like addi-
tions or deletions, our goal is to uncover the semantic intent behind a change. This capability 
is crucial for automating commit message refinement, supporting intelligent software analyt-
ics, and enabling advanced tooling for software reviewers. For example, being able to detect 
whether a patch intends to disable a feature versus merely refactor a method allows tools 
to generate more meaningful messages or guide human reviewers’ attention to impactful 
modifications. We argue that intention detection should go beyond surface diffs and rely on 
learned semantics from both structure and context—a gap that Patcherizer fills effectively.

3  Patcherizer

Figure 1 presents the overview of Patcherizer. Code changes are first preprocessed to split 
the available information about added (+) and removed (-) lines, identifying the code con-
text (i.e., the code chunk before applying the code change) and computing the ASTs of the 
code before and after applying the code changes (cf. Section 3.2). Then, Patcherizer deploys 
two encoders, which capture sequence intention semantics (cf. Section 3.3) and graph inten-
tion semantics (cf. Section 3.4). Those encoded information are aggregated (cf. Section 3.6) 
to produce code change embeddings that can be applied to various downstream tasks. In the 
rest of this section, we will detail the different components of Patcherizer before discussing 
the pre-training phase (cf. Section 3.7).

1 3

   50   Page 4 of 50



Empirical Software Engineering           (2026) 31:50 

3.1  Handling Incomplete Code Snippets

In real-world software repositories, patches often appear as partial code fragments extracted 
from diffs, lacking full method or class definitions required for reliable parsing and struc-
tural analysis. To ensure that our model can robustly represent such incomplete code, Patch-
erizer employs a context construction mechanism that reconstructs semantically valid and 
parsable code by leveraging surrounding, unmodified code as context.

During the preprocessing phase, we identify the surrounding code chunk prior to patch 
application (referred to as cbp) and combine it with the lines to be added (ccp) and removed 
(ccm) to recover a coherent code segment. This reconstruction not only aids in forming a 
complete representation for the sequential input but also enables successful parsing of the 
Abstract Syntax Tree (AST) required for graph-based representation.

Specifically, when certain structural elements are missing in the diff (e.g., a method body 
without its signature or class declaration), our system uses a sliding window strategy to 
extract surrounding lines from the same file to syntactically complete the snippet. We then 
apply the javalang parser to the reconstructed code segment to generate the correspond-
ing ASTs before and after the change. If the full reconstruction still fails due to excessive 
incompleteness, we fall back to using only the available sequence-level representation with-
out graph-based embedding.

This fallback mechanism ensures that Patcherizer can generalize to a wide range of real-
world patch inputs—whether they are complete or incomplete—by balancing robustness 
with semantic fidelity. It is particularly valuable in scenarios such as just-in-time commit 
analysis, where full project context may not be readily available.

Fig. 1  Overview of Patcherizer

 

1 3

Page 5 of 50     50 



Empirical Software Engineering           (2026) 31:50 

3.2  Code Change Preprocessing

The preprocessing aims to focus on three main information within a code change for learn-
ing its representation. The code before applying the code change (which provides contextual 
information of the code change), plus and minus lines (which provide information about 
the code change operations), and the difference between AST graphs before and after code 
change (which provides information about graph intention in the code). Through the follow-
ing steps we collect the necessary multi-modal inputs (code text, sequence intention, and 
graph intention) for the learning: 

1.	 Collect +/- lines in the code change. We scan each code change line. Those starting 
with a + are added to a pluslist, while those starting with a- are added to a minuslist. 
Both lists record the line numbers in the code change.

2.	 Reconstruct before/after code. Besides +/- lines, a code change includes unchanged 
code that are part of the context. We consider that the full context is the code before 
applying the code change (i.e., unchanged & minuslist lines). We also construct the 
code after applying the code change (i.e., unchanged & pluslist lines). The reconstruc-
tion leverages the recorded line numbers for inserting each added/removed line to the 
proper place and ensure accuracy.

3.	 Generate code ASTs before and after code change. We apply the Javalang (Thunes 
2013) tool to generate the ASTs for the reconstructed code chunks before and after 
applying the code change.

4.	 Construct vocabulary. Based on the code changes of the code changes in the training 
data, we build a vocabulary using the Byte-Pair-Encoding (BPE) algorithm.

At the end of this preprocessing phase, for each given code change, we have a set of inputs:
⟨ccp, ccm, cbp, cap, Gcbp, Gcap⟩, where ccp is the sequence of added (+) lines of code, 

ccm is the sequence of removed (-) lines of code, cbp is the code chunk before the patch is 
applied, cap is the code chunk after the patch is applied, Gcbp is the AST graph of cbp and 
Gcap is the graph of cap.

3.3  Sequence Intention Encoder

Intention features refer to the semantic signals that capture why a change was made (e.g., to 
fix a bug, refactor code, disable functionality), rather than just what was changed. Unlike 
prior approaches that focus on syntax or structural patterns, our intention encoders aim to 
learn such semantics through contextualized token changes (in the sequence encoder) and 
structural shifts (in the graph encoder).

Despite the success of AST-based methods, they often struggle to distinguish code 
changes that are structurally similar but semantically distinct. Our intention encoders are 
designed to capture such nuances. Figure 2 provides an illustrative example: although both 
code changes involve editing an if condition, one disables functionality while the other 
refactors logic. Traditional AST diffs treat both similarly, but their purposes are fundamen-
tally different. Patcherizer captures these differences through intention-aware encoding.

1 3

   50   Page 6 of 50



Empirical Software Engineering           (2026) 31:50 

A first objective of Patcherizer is to build an encoder that is capable of capturing the 
semantics of the sequence intention in a code change. Although prior work focuses mainly 
on +/- lines or simply does some calculation between changed codes and their contextual 
contents, we postulate that code context is a relevant additional input for better encoding 
such differences. Figure 3 depicts the architecture of the Sequence intention encoder. We 
leverage the relevant subset of the preprocessed inputs (cf. Section 3.2) to pass to a Trans-
former embedding layer and further develop a specialized layer, named the SeqIntention 
embedding layer, which captures the intention features from the sequence.

3.3.1  Input Layer

The input, for each code change, consists of the triplet ⟨ccm, ccp, cbp⟩, where ccm is the set 
of removed (-) lines, ccp the set of added (+) lines and cbp is the code before code change-
ing, which represents the context.

Fig. 3  Architecture for the Sequence Intention Encoder

 

Fig. 2  Example illustrating how semantically distinct code changes can result in similar AST diffs. Both 
code changes involve replacing the condition in an “if” statement, and their corresponding AST diffs may 
appear structurally similar. However, their intentions differ: the left change disables functionality, while 
the right one introduces a refactor with encapsulated logic. Traditional AST-based models may treat these 
equivalently, while Patcherizer captures this distinction through its sequence and graph intention encoders

 

1 3

Page 7 of 50     50 



Empirical Software Engineering           (2026) 31:50 

3.3.2  Transformer Embedding Layer

To embed the sequence of code changes, we use a Transformer as the initial embedder. 
Indeed, Transformers have been designed to capture semantics in long texts and have been 
demonstrated to be effective for inference tasks (Devlin et al. 2018; Wang et al. 2022b).

We note that ccm ∈ cbp. Assuming that ccp = {tokenp,1, . . . , tokenp,j}, ccm = 
{tokenm,1, . . . , tokenm,k}, cbp = {tokencbp,1, . . . , tokencbp,l}, where j, k, l represent the 
maximum length of ccp, ccm, and cbp respectively, we use the initial embedding layer in the 
Pytorch’s nn.module implementation to produce first vector representations for each input 
information as:

	 EX = Transformer(Init(X; Θ1); Θ2)� (1)

where X represents an input (either ccm, ccp or cbp); Init is the initial embedding function; 
Transformer is the model based on a transformer architecture; Θ1 and Θ2 are the parameters 
of Init( ) and Transformer( ), respectively.

The Transformer embedding layer outputs Eccp = [ep,1, ep,2, . . . , ep,j ] ∈ Rj×de ,
Eccm = [em,1, em,2, . . . , em,k] ∈ Rk×de , Ecbp = [ecbp,1, ecbp,2, . . . , ecbp,l] ∈ Rl×de , 

where de is the size of the embedding vector.

3.3.3  SeqIntention Embedding Layer

Once the Transformer embedding layer has produced the initial embeddings for the inputs 
ccp, ccm and cbp, our approach seeks to capture how they relate to each other. Prior works 
(Shaw et al. 2018; Devlin et al. 2018; Xu et al. 2019; Dong et al. 2022) have proven that 
self-attention is effective in capturing relationships among embeddings. We thus propose to 
capture relationships between the added and removed sequences, with the objective of cap-
turing the intention of the code change through the change operations. We also propose to 
pay attention to context information when capturing the semantics of the sequence intention.

Operation-wise  To obtain the intention of modifications in code changes, we apply a cross-
attention mechanism between ccp and ccm. To that end, we design a resnet architecture 
where the model performs residual learning of the importance of inputs (i.e., Eccp  and its 
evolved ⊑p, which will be introduced below).

To enhance Eccp  into Eccm , we apply a cross-attention mechanism. For the i-th token in 
ccm, we compute the matrix-vector product, Eccp em,i, where em,i ∈ Rde  is a vector param-
eter for i-th token ⟩ in ccm. We then pass the resulting vector through a softmax operator, 
obtaining a distribution over locations in the Eccp ,

	 α⟩ = SoftMax(Eccp
em,i) ∈ Rk,� (2)

where SoftMax(x) = exp(x)
Σjexp(xj) . exp(x) is the element-wise exponentiation of the vector x. k 

is the length of ccm, The attention α is then used to compute vectors for each token in ccm,

	 ⊑⟩ = Σj
n=1α⟩,\hn.� (3)

1 3

   50   Page 8 of 50



Empirical Software Engineering           (2026) 31:50 

where hn ∈ Eccp , j is the length of ccp. In addition, ⊑⟩ is the new embedding of i-th token 
in ccm enhanced by semantic of Eccp .

Then, we get new ccm embedding vm = [⊑1, . . . , ⊑k] ∈ Rk×de .
Similarly, following steps above, we can obtain new embedding of ccp, vp ∈ Rj×de , 

enhanced by the semantic of ccm.
For the combination of vp, vm, Eccp , Eccm , inspired by Shi et al. (2021); He et al. (2016), 
we design a cross-resnet for combining vp, vm, vccp , and vccm . The pipeline of cross-
resnet is shown in Fig. 4. The process is as follows:

	
Occp = f(n(Eccp ) + A⌈⌈(Eccp , vp))
Occm = f(n(Eccm ) + A⌈⌈(Eccm , vm))� (4)

where n( ) is a normalization function in Devlin et al. (2018); A⌈⌈(·) is the adding function, 
f( ) represents RELU (Glorot et al. 2011) activation function.

Finally, we obtain output Occm  and Occp .

Context-Wise  Similar to operation-wise block, we enhance the contextual information into 
modified lines by cross-attention and cross-resnet blocks. The computation process is as 
follows:

	
Oct2ccp = f(n(Eccp ) + A⌈⌈(Eccp , Ecbp))
Oct2ccm = f(n(Eccm ) + A⌈⌈(Eccm , Ecbp))� (5)

where Ecbp is the embedding of cbp calculated by (1); Oct2ccp  represents the vector of 
context-enhanced plus embedding and Oct2ccm  is the vector of context-enhanced minus 
embedding.

Fig. 4  cross-resnet architecture

 

1 3

Page 9 of 50     50 



Empirical Software Engineering           (2026) 31:50 

3.4  Graph Intention Encoder

Concurrently to encoding sequence information from code changes, we propose to also cap-
ture the graph intention features of the structural changes in the code when the code change 
is applied. To that end, we rely on a Graph Convolutional Network (GCN) architecture, 
which is widely used to capture dynamics in social networks, and is effective for typical 
graph-related tasks such as classification or knowledge injection (Kipf and Welling 2016; 
Zhang et al. 2019b, c). Once the GCN encodes the graph nodes, the produced embeddings 
can be used to assess their relationship via computing their cosine similarity scores (Luo et 
al. 2018). Concretely, in Patcherizer, we use a GCN-based model to capture the graph inten-
tion features. The embedder model was trained by inputting a static graph, a graph resulting 
from the merge of all sub-graphs from the training set. Overall, we implement this encoding 
phase in two steps: building the static graph, performing graph learning and encoding the 
graph intention (cf. Figure 5).

3.4.1  Graph Building

To start, we consider the Gcbp and Gcap trees, which represent in graph forms.
❶ Static Graph building: Each code change in the dataset can be associated to two 

graphs: Gcbp and Gcap, which are obtained by parsing the cbp and cap code snippets. After 
collecting all graphs (which are unidirectional graphs) for the whole training set, we merge 
them into a “big” graph by iteratively linking the common nodes. In this big graph, each 
distinct code snippet AST-inferred graph is placed as a distinct sub-graph. Then, we will 
merge the graphs shown in Fig. 6 which illustrates the merging progress of two graphs: if a 
node N  has the same value, position, and neighbors in both ASTs, it will be merged into one 
(e.g., red nodes 1 and 2). However, when a common node has different neighbors between 
the ASTs (e.g., red nodes 3 and 4), the merge keeps one instance of the common node but 
includes all neighbors connected to the merged red nodes (i.e., all green and grey nodes 
are now connected to red nodes 3 and 4, respectively). After iterating over all graphs, we 
eventually build the static graph.

However, on the one hand, some nodes in most subgraphs such as ‘prefix_operators’, 
‘returnStatement’, and ‘StatementExpression’ are not related to the semantics of the code 
change. On the other hand, as data statistics in our study, 97.2% nodes in the initial graphs 

Fig. 5  Architecture for the Graph Intention Encoder

 

1 3

   50   Page 10 of 50



Empirical Software Engineering           (2026) 31:50 

(ASTs) extracted from code are from parser tools instead of code changes, which means 
these nodes are rarely related with the semantic of the code change. Thus, as shown in step 
1 in Fig. 5, we remove nodes whose children do not contain words in the code change to 
reduce the size of the graph because these nodes will be considered noise in our research.

In the remainder of this paper, we refer to the final graph as the static graph G=(V, E), 
where V  is the set of nodes and E  is the set of edges.

❷ Graph Alignment to the Static Graph: GCN requires that the input graphs are all of 
the same size (Kipf and Welling 2016). Yet, the graphs built using the graphs of cbp and cap 
do not have as many nodes and edges as the static graph used for training the GCN network. 
Consequently, we propose to use the global static graph to initialize all specific ast-diff 
graphs for unique code change. Given the global static graph (huge graph mentioned before) 
Gglobal = (Vg, Eg) and an AST graph Glocal = (Vl, El), we leverage the VF graph matching 
algorithm (Cordella et al. 1999) to find the most similar sub-graph with Glocal in Gglobal:

	 subGraph = V FG(Glocal, Gglobal).� (6)

where V FG(·) is the function representing the VF matching algorithm (Networkx 2018). 
The matched sub-graph is a subset of both Glocal and Gglobal: some nodes of subGraph will 
be in Glocal but not in Gglobal. We then align Glocal to the same size of Gglobal as follows: we 
use the [PAD] element to pad the node of subGraph to the same size of Gglobal and then we 
obtain GlP AD . Therefore, GlP AD  keeps the same size and structure of the static graph Gglobal. 
Eventually, all graphs are aligned to the same size of Gglobal and the approach can meet the 
requirements for GCN computation for graph learning.

3.5  Graph Intention Encoding Details

The graph intention encoding process involves comparing and merging Abstract Syntax 
Trees (ASTs) from the original and modified code. Our approach uses a tree-based differ-
encing algorithm inspired by GumTree (Falleri et al. 2014) but optimized for Java ASTs. 
The AST comparison and merging process follows three key phases: 

1.	 Node Mapping: We identify mappings between nodes in the original and modified 
ASTs using a combination of structural similarity (based on node types and parent-child 

Fig. 6  An example of merging graphs

 

1 3

Page 11 of 50     50 



Empirical Software Engineering           (2026) 31:50 

relationships) and token-level similarity metrics. This hybrid approach achieves 
approximately 92% accuracy when evaluated against manually labeled AST diffs from 
our dataset.

2.	 Change Detection: Based on these mappings, we detect node operations (addition, 
deletion, update, move) by analyzing both mapped and unmapped nodes. For unmapped 
nodes in the modified AST, we classify them as additions; for unmapped nodes in the 
original AST, we classify them as deletions; for mapped nodes with different values, we 
classify them as updates.

3.	 Graph Construction: We construct a unified graph where matched nodes from both 
ASTs are merged into single nodes with special attributes indicating whether they were 
preserved, added, or deleted. This creates a comprehensive representation that explic-
itly encodes the transformation between the original and modified code.

The remaining 8% of cases where the AST differencing is imperfect typically involve com-
plex refactorings with significant structural changes. To mitigate the impact of these inaccu-
racies on downstream tasks, our dual-encoding approach complements the graph intention 
encoding with sequence intention encoding, providing robustness when AST-based differ-
encing is imperfect. As demonstrated in our ablation studies (RQ-2), when graph intention 
encoding contains inaccuracies, the sequence intention encoding can effectively compen-
sate, maintaining strong performance across all downstream tasks.

The graph merging process preserves the original hierarchical relationships while add-
ing special edges to represent the transformation operations. This allows our model to learn 
patterns of how code structures evolve rather than just focusing on token-level changes, 
contributing significantly to the improved performance across all downstream tasks as dem-
onstrated in our experiments.

3.5.1  Graph Learning

Inspired by Zhang et al. (2019b), we build a deep graph convolutional network based on 
the undirected graph formed following the above construction steps to further encode the 
contextual dependencies in the graph. Specifically, for a given undirected graph GlP AD  = 
(VlP AD , ElP AD ), let P  be the renormalized graph laplacian matrix (Kipf and Welling 2016) 
of GlP AD :

	

P = D̂−1/2ÂD̂−1/2

= (D + L)−1/2(A + L)(D + L)−1/2� (7)

where A denotes the adjacency matrix, D denotes the diagonal degree matix of the graph 
GlP AD , and L denotes the identity matrix. The iteration of GCN through its different layers 
is formulated as:

	 H(l+1) = σ(((1 − α)PH(l) + αH(0))((1 − β(l))L + β(l)W(l)))� (8)

where α and β(l) are two hyper parameters, σ denotes the activation function and W(↕) is 
a learnable weight matrix. Following GCN learning, we use the average embedding of the 
graph to represent the semantic of structural information in code snippet:

1 3

   50   Page 12 of 50



Empirical Software Engineering           (2026) 31:50 

	
wG = 1

L
ΣL

i=1(H⟩).� (9)

Thus, at the end of the graph embedding, we obtain representations for Gcbp and Gcap, i.e., 
wGcbp  and wGcap  ∈ R1×de .

3.5.2  Graph Intention Encoding

Once we have computed the embeddings of the code snippets before and after code change-
ing, (i.e., the embeddings of cbp and cap), we must get the representation of their differences 
to encode the intention inside the graph changes. To that end, similarly to the previous cross-
resnet for sequence intention, we design a graph-cross-resnet operator which ensembles 
the semantic of wGcbp  and wGcap . Figure 7 illustrates this crossing. In this graph-cross-
resnet, the model can choose and highlight a path automatically by the backpropagation 
mechanism. The GraphIntention is therefore calculated as follows:

	

path1 = wGcbp

path2 = A⌈⌈(wGcbp
, wGcap )

path3 = wGcap

OGraphIntention = FC(f(A⌈⌈(path1, path2, path3)), Θ3)
� (10)

where FC is a fully-connected layer and Θ3 is the parameter of FC.
At the end, the graph-cross-resnet component outputs the sought graph intention embed-

ding: GraphIntention.

Fig. 7  graph-cross-resnet architecture

 

1 3

Page 13 of 50     50 



Empirical Software Engineering           (2026) 31:50 

3.6  Aggregator: Aggregating multi-source Input Embeddings

With the sequence intention encoder and the graph intention encoder, we can produce for 
each code change several embeddings of different input modalities (code sequences and 
graphs) that must be aggregated into a single representation.

Concretely, we use the A⌈⌈ aggregation function to merge the SeqIntention embeddings 
(combination of Occp , Occm , Oct2ccp  and Oct2ccm  - cf. Equations 4 and 5) and GraphIn-
tention embedding OGraphIntention before outputing the final representation EP atcherizer. 
Actually, we use EP atcherizer as the representation of code change out of the model.

3.7  Pre-training

Patcherizer is an approach that is agnostic to downstream tasks. We propose to build a pre-
trained model using a large corpus of code changes. The objective is to enable the model to 
learn contextual and structural semantics of code edits, thereby enhancing the quality and 
robustness of code change representations.

The pre-training task is formulated as masked token prediction. Following the popular 
bidirectional objective from masked language modeling (MLM; Devlin et al. 2018), we 
randomly mask a subset of tokens in the input sequence and train the model to predict these 
masked tokens using their surrounding context. Formally, this can be expressed as comput-
ing the conditional probability P (xi|x1, . . . , xi−1, xi+1, . . . , xn).

Inspired by previous pre-training works on code representation learning (Feng et al. 2020; 
Elnaggar et al. 2021; Zhang et al. 2019d), we adopt the MLM objective for the encoder. 
Unlike traditional MLM models that rely solely on BERT-style encoders, we employ an 
encoder-decoder architecture where the decoder is a left-to-right Transformer (Vaswani et 
al. 2017), similar to GPT-style models, which are more suitable for autoregressive genera-
tion tasks.

Specifically, we use our proposed Patcherizer encoder to produce latent embeddings of 
code changes. These embeddings are then passed to a standard Transformer-based decoder 
that shares the same vocabulary. The decoder autoregressively generates tokens, starting 
from an initial <s> token, using the following formulation:

	 index = arg max (p(yt|yt−1, . . . , y1, EP atcherizer))� (11)

where yt is the token to be predicted at position t, and EP atcherizer is the encoded represen-
tation from the Patcherizer encoder. The decoder outputs a distribution over the vocabulary, 
from which we select the token with the highest probability.

3.8  Fine-tuning for Different Tasks

Patcherizer serves as a task-agnostic encoder that generates semantically rich embeddings 
of code changes. After pre-training on a large corpus of code edits using the masked token 
prediction task (cf. Section 3.7), we fine-tune Patcherizer on several downstream tasks rel-
evant to software maintenance. These tasks include code change description generation, 
code change correctness assessment, and code change intention detection.

1 3

   50   Page 14 of 50



Empirical Software Engineering           (2026) 31:50 

3.8.1  Code Change Description Generation

This task involves generating a natural-language description (e.g., commit message) given 
a code change. The fine-tuning setup mirrors that of pre-training: we employ an encoder-
decoder architecture, where the encoder is the pre-trained Patcherizer and the decoder is a 
Transformer-based autoregressive generator.

The dataset consists of paired samples of code changes and corresponding natural-lan-
guage descriptions. During training, we input the code change to the encoder and generate 
the description token-by-token with the decoder. The learning objective is to maximize the 
likelihood of generating the correct sequence:

	 index = arg max (p(yt|yt−1, · · · , y1, EP atcherizer))� (12)

where yt is the target token at time t and EP atcherizer is the encoded representation from 
the Patcherizer encoder.

3.8.2  Code Change Correctness Assessment

This task aims to predict whether a given code change is a correct fix for a reported bug. It 
is formulated as a binary classification problem.

We use the Patcherizer encoder to generate an embedding for the code change and use a 
separate pre-trained BERT (Devlin et al. 2018) model to embed the associated bug report. 
The two embeddings are concatenated and passed to a fully connected classification layer:

	 ŷi = sigmoid(Epatchi ⊕ EbugReporti )� (13)

where Epatchi  is the embedding of the code change, EbugReporti  is the embedding of the 
bug report, and ⊕ denotes concatenation.

We train the classifier using binary cross-entropy loss:

	
La = −

n∑
i=1

(yi log ŷi + (1 − yi) log(1 − ŷi))� (14)

where yi is the ground truth label and ŷi is the predicted probability.

3.8.3  Code Change Intention Detection

This task focuses on identifying the primary semantic intention behind a given code change, 
classifying it into categories such as add, remove, or update. While traditional diff tools 
can highlight superficial syntactic operations, they fail to capture the deeper semantics or 
purpose of a change. For instance, a change may involve both an addition and removal, but 
its true intention may be to disable a feature, refactor a loop, or resolve a bug—information 
that is not directly evident from raw diffs.

Code change intention detection serves several practical use cases. It enables:

	– Automated commit message refinement, where semantically meaningful summaries 
can be synthesized.

1 3

Page 15 of 50     50 



Empirical Software Engineering           (2026) 31:50 

	– Fine-grained maintenance analytics, aiding in the analysis of developer behavior and 
software evolution patterns.

	– Automated patch review assistance, where intention-aware prioritization of patches 
can improve reviewer efficiency.

To perform this task, we train a classifier over Patcherizer-generated embeddings, which 
capture both context-aware sequence semantics and structural graph-based information. 
Because the embeddings encode deep semantics, no external input beyond the code change 
is needed for classification.

To visualize the separation of intentions in embedding space, we apply t-SNE (t-distrib-
uted Stochastic Neighbor Embedding), which projects high-dimensional embeddings into 
2D space. The projection is optimized by minimizing the KL-divergence between the high- 
and low-dimensional pairwise similarities:

	
KL(P ∥ Q) =

∑
i

∑
j

pij log
pij

qij
� (15)

with:

	
pij =

exp(−∥xi − xj∥2/2σ2)∑
k ̸=l exp(−∥xk − xl∥2/2σ2)

, qij =
(1 + ∥yi − yj∥2)−1

∑
k ̸=l(1 + ∥yk − yl∥2)−1 � (16)

where xi, xj  are high-dimensional embeddings, yi, yj  their low-dimensional projections, 
and σ the perplexity.

The visualizations and downstream performance demonstrate that Patcherizer effectively 
distinguishes between different code change intentions. By uncovering the purpose behind 
edits, Patcherizer brings semantic reasoning to automated code analysis pipelines.

4  Experimental Design

We provide the implementation details (cf. Sec. 4.1), discuss the research questions (cf. Sec. 
4.2), and present the baselines (cf. Sec. 4.3), the datasets (cf. Sec. 4.4), and the metrics (cf. 
Sec. 4.5).

4.1  Implementation

In the pre-training phase used for the Sequence Intention Embedding step, we apply a beam 
search (Vijayakumar et al. 2016) for the best performance in predicting the masked words. 
The beam size was set to 3. The dimension of the hidden layer output in models is set to 512, 
and the default value of dropout rate is set to 0.1. For the Transformer, we apply 6 heads for 
the multi-header attention module and 4 layers for the attention.

For the Graph Intention Embedding step, we use javalang (Thunes 2013) to parse code 
fragments and collect ASTs. We build on graph manipulation packages (i.e., networkx Net-
workx 2018, and dgl Wang et al. 2019) to represent these ASTs into graphs.

1 3

   50   Page 16 of 50



Empirical Software Engineering           (2026) 31:50 

Patcherizer ’s training involves the Adam optimizer (Kingma and Ba 2014) with learning 
rate 0.001. All model parameters are initialized using Xavier algorithm (Glorot and Bengio 
2010). All experiments are performed on a server with an Intel(R) Xeon(R) E5-2698 v4 
CPU 2.20GHz, 256GB physical memory and one NVIDIA Tesla V100 GPU with 32GB 
memory.

4.2  Research Questions

RQ-1: How effective is Patcherizer in learning code change representations?
RQ-2: What is the impact of the key design choices on the performance of Patcherizer? 
RQ-3: To what extent is Patcherizer effective on independent datasets?

4.3  Baselines

We consider several SOTA models as baselines. We targeted approaches that were specifi-
cally designed for code change representation learning (e.g., CC2Vec) as well as generic 
techniques (e.g., NMT) that were already applied to code change-related downstream tasks. 
We finally consider recent SOTA for code change-representation approaches (e.g., FIRA) 
for specific downstream tasks.

For Code Change Description Generation   

	– NMT technique has been leveraged by Jiang et al. (2017) for translating code commits 
into commit messages.

	– CoDiSum (Xu et al. 2019) is an encoder-decoder based model with multi-layer bidirec-
tional GRU and copying mechanism (See et al. 2017).

	– ATOM (Liu et al. 2020c) is a commit message generation techniques, which builds on 
abstract syntax tree and hybrid ranking.

	– FIRA (Dong et al. 2022) is a graph-based code change representation learning approach 
for commit message generation.

	– Coregen (Nie et al. 2021) is a pure Transformer-based approach for representation 
learning targeting commit message generation.

	– CCRep (Liu et al. 2023) is an innovative approach that uses pre-trained models to 
encode code changes into feature vectors, enhancing performance in tasks like commit 
message generation, etc.

	– CC2Vec (Hoang et al. 2020) learns a representation of code changes guided by commit 
messages. It is the incubent state of the art that we aim to outperform on all tasks.

	– NNGen (Liu et al. 2018) is an IR-based commit message prediction technique.
	– CoRec (Wang et al. 2021a) is a retrieval-based context-aware encoder-decoder model 

for commit message generation.
	– CCBERT (Zhou et al. 2023) learns fine-grained code change representations, outper-

forming CC2Vec and CodeBERT in efficiency and accuracy.
	– CCT5 (Lin et al. 2023) automates software maintenance by leveraging code changes 

and commit messages, outperforming traditional models.
	– CodeT5 (Wang et al. 2021c) uses identifier-aware tasks to enhance code understanding 

and generation, outperforming prior methods.

1 3

Page 17 of 50     50 



Empirical Software Engineering           (2026) 31:50 

For Code Change Correctness Assessment

	– CC2Vec (Hoang et al. 2020) and CCRep (Liu et al. 2023).
	– BERT (Devlin et al. 2018) is a state of the art unsupervised learning based Transformer 

model widely used for text processing.

For Code Change Intention Detection

	– CCRep (Liu et al. 2023) and CC2Vec (Hoang et al. 2020).

For Just-in-Time Defect Prediction

	– CC2Vec (Hoang et al. 2020) is a state-of-the-art approach for generating code change 
embeddings used in defect prediction.

	– DeepJIT (Zhang and Wallace 2015) is a deep learning model that predicts whether a 
commit introduces a defect based on its code changes and commit messages.

	– CCRep (Liu et al. 2023) demonstrates effectiveness on this task by generating code 
change embeddings that capture semantic information.

4.4  Datasets

Code Change description generation:  We build on prior benchmarks (Dyer et al. 2013; 
Hoang et al. 2020; Liu et al. 2018; Dong et al. 2022) by focusing on Java samples and 
reconstructing snippets to make them parsable for AST collection. Eventually, our dataset 
includes 90,661 code changes and their associated descriptions.

Code Change Correctness Assessment  We leverage the largest dataset in the literature to 
date, which includes deduplicated 11,352 code changes (9,092 Incorrect and 2,260 Correct) 
released by Tian et al. (2022c).

Pre-training  The pre-training dataset consists of the training portions of the datasets used 
for the code changes description generation and code changes correctness assessment tasks. 
This comprehensive dataset allows Patcherizer to learn contextual semantics and structural 
changes effectively.

Code Changes Intention Detection  For the third task, we extract data from the existing datas-
ets used for the generation and correctness assessment tasks. Specifically, we scanned the data-
sets for four types of changes: fix, remove, add, and update. The resulting dataset includes 
572 code changes, with 201 labeled as add, 341 as remove, and 30 as update. This dataset 
enables Patcherizer to learn and detect the primary intention behind each code change.

4.5  Metrics

To evaluate our approach across the three downstream tasks, we employ widely used 
and task-appropriate metrics. Below, we detail the metrics for each task and explain their 
relevance.

1 3

   50   Page 18 of 50



Empirical Software Engineering           (2026) 31:50 

Metrics for Code Change Description Generation  We adopt standard text generation metrics 
that assess the similarity between generated commit messages and human-written refer-
ences. ❶ ROUGE-L (Rouge 2004): computes the longest common subsequence between 
generated and reference descriptions. ❷ BLEU (Papineni et al. 2002): measures n-gram 
precision between generated and reference texts. ❸ METEOR (Banerjee and Lavie 2005): 
an F-score-oriented metric considering both precision and recall with synonym and stem-
ming matching.

Metrics for Code Change Correctness Assessment  Following prior work (Tian et al. 2022c), 
we evaluate correctness prediction with: ❶ AUC: measures the ability of the classifier to 
discriminate between correct and incorrect patches. ❷ F1-score: balances precision and 
recall for classification. ❸ +Recall: measures the proportion of truly correct code changes 
that are identified as correct. ❹-Recall: measures the proportion of incorrect code changes 
that are correctly filtered out.

Metrics for Code Change Intention Detection  For intention detection, we frame the task 
as multi-class classification over a curated taxonomy of intentions (e.g., add, remove, 
update).

The dataset was annotated by three PhD-level researchers with software engineering 
expertise. To ensure reliability, we conducted double annotation on a random 20% subset, 
achieving an inter-annotator agreement of 90%. The class distribution is moderately imbal-
anced (add: 42%, update: 36%, remove: 22%).

5  Experimental Results

5.1  [RQ-1]: Performance of Patcherizer

Goal  The first research question investigates whether Patcherizer’s learned representations 
are expressive enough to support multiple downstream software engineering tasks. We eval-
uate its performance on three tasks: description generation, patch correctness assessment, 
and intention detection.

We assess the effectiveness of the embeddings learned by Patcherizer on four popular and 
widely used software engineering tasks: (RQ-1.1) Code change description generation, (RQ-
1.2) Code change correctness assessment, (RQ-1.3) Code change intention detection, (RQ-
1.4) Just-in-Time defect prediction. We compare Patcherizer against the relevant SOTA.

5.1.1  RQ-1.1: Code Change Description Generation

[Experiment Design]  We employ the dataset from FIRA. As Dong et al. (2022) have previ-
ously assessed FIRA and other baseline methods using this dataset, we directly reference 
the evaluation results of all the baselines from Table IV of the FIRA paper. The dataset 
contains 75K, 8K and 7.6K commit-message pairs in the training, validation and test sets, 
respectively.

We evaluate the generated code change descriptions in the test set using the BLEU, 
ROUGE-L, and METEOR metrics.

1 3

Page 19 of 50     50 



Empirical Software Engineering           (2026) 31:50 

Note that we distinguish between baseline generation-based methods and retrieval-based 
ones. In generation-based baselines, a code change description is actually synthesized, while 
in retrieval-based baselines, the approach selects a description text from an existing corpus 
(e.g., in the training set). For fairness, we build two distinct methods using Patcherizer ’s 
embeddings. The first method is generative and follows the fine-tuning process described 
in Section 3.8. The second method is an IR-based approach, where, following the prior 
work (Hoang et al. 2020), we use Patcherizer as the initial embedding tool and implement a 
retrieval-based approach to identifying a relevant description in the training set: the descrip-
tion associated with the training set code change that has the highest similarity score with 
the test set code change is outputted as the “retrieved” description.

[Experiment Results]  Table 1 presents the average scores of the different metrics with the 
descriptions generated by Patcherizer and the relevant baselines. Patcherizer outperforms 
all the compared techniques on all metrics, with the exception of FIRA on the ROUGE-L 
metric. The superior performance of Patcherizer on generation-based and retrieval-based 
methods, as illustrated by the distribution of BLEU scores in Fig. 8, further suggest that the 
produced embeddings are indeed effective.

In Fig. 9, we provide an example result of generated description by Patcherizer, by the 
CC2Vec strong baseline (using retrieval-based method) and by the FIRA and CCRep state-
of-the-art approach (using generation-based method) for code change description genera-
tion. Patcherizer succeeds in actually generating the exact description as the ground truth 
commit message, after taking into account both sequential and structural information. By 
observing the graph intention and sequence intention, we can see that the model found 
that the only change is that the node true has been changed/updated/disabled to false. 

Type Approach Rouge-L 
(%)

BLEU 
(%)

METEOR 
(%)

Generation NMT (Jiang et al. 2017) 7.35 8.01 7.93
Codisum (Xu et al. 2019) 19.73 16.55 12.83
ATOM (Liu et al. 2020c) 10.17 8.35 8.73
FIRA (Dong et al. 2022) 21.58 17.67 14.93
CoreGen (Nie et al. 2021) 
(Transformer)

18.22 14.15 12.90

CCRep (Liu et al. 2023) 23.41 19.70 15.84
CCBERT (Zhou et al. 
2023)

20.74 16.98 14.25

CCT5 (Lin et al. 2023) 21.13 17.11 14.38
CodeT5 (Wang et al. 
2021c)

21.26 17.33 14.52

Patcherizer 25.45 23.52 21.23
Retrieval CC2Vec (Hoang et al. 

2020)
12.21 12.25 11.21

NNGen (Liu et al. 2018) 9.16 9.53 16.56
CoRec (Wang et al. 2021a) 15.47 13.03 12.04
Patcherizer 17.32 15.21 17.25

Table 1  Performance Results 
of code change description 
generation

“Generation” for generation-
based strategy. Given fragments 
of codes, “Generation” methods 
generate messages from scratch
“Retrieval” for retrieval-based 
approaches. Given fragments of 
codes, “Retrieval” approaches 
return the most similar message 
from the training dataset

 

1 3

   50   Page 20 of 50



Empirical Software Engineering           (2026) 31:50 

Finally, the sequence intention embedding would make Patcherizer recognize that the car-
rier of true and false is RenderThread based on BPE splitting.

[Human Evaluation]  To further assess the quality of the generated code change descrip-
tions from the perspective of developers, we conducted a human evaluation study to com-

Fig. 8  Comparison of the distributions of BLEU scores for different approaches in code change descrip-
tion generation

 

1 3

Page 21 of 50     50 



Empirical Software Engineering           (2026) 31:50 

pare Patcherizer with leading techniques. Specifically, we compare Patcherizer against the 
retrieval-based technique NNGen, the learning-based technique CODISUM, and the FIRA 
(Dong et al. 2022) approach. Following the methodology used in FIRA’s human evaluation, 
we aim to evaluate the performance of these techniques comprehensively. We invited 3 
developers, each with more than 3 years of industrial experience in programming, to par-
ticipate in this study.

Study Design  Following established practices (Dyer et al. 2013; Hoang et al. 2020; Dong 
et al. 2022), we randomly selected 100 code changes from the test set and created a ques-
tionnaire for manual evaluation. Each questionnaire contained the code change, the ground 
truth code change description, and the descriptions generated by Patcherizer, NNGen, 
CODISUM, and FIRA. The participants were asked to score the generated descriptions on a 
scale from 0 to 4, where a higher score indicates a higher similarity to the ground truth. To 
ensure unbiased evaluation, the techniques were anonymized in the questionnaire, and each 
participant completed the evaluation independently (Tables 2 and 3).

Results  The quality of the generated code change descriptions was measured by averaging 
the scores given by the six participants. Similar to prior studies (Dyer et al. 2013; Hoang 
et al. 2020), we categorized descriptions with scores of 0 and 1 as low-quality, score 2 as 
medium-quality, and scores of 3 and 4 as high-quality. Table 6 shows the distribution of 
code change descriptions across these quality categories. As indicated in the table, Patcher-

Fig. 9  Illustrative example of code change description generation

 

Score Definition
0 Neither relevant in semantics nor having shared tokens.
1 Irrelevant in semantics but with some shared tokens.
2 Partially similar in semantics, with exclusive information.
3 Highly similar but not identical in semantics.
4 Identical in semantics.

Table 2  Scoring Criteria (Dong 
et al. 2022)
 

1 3

   50   Page 22 of 50



Empirical Software Engineering           (2026) 31:50 

izer generated the highest proportion of high-quality descriptions (46.7%) and the lowest 
proportion of low-quality descriptions (32.8%). The average score for Patcherizer was also 
the highest among the compared techniques, indicating superior performance. To further 
validate these results, we performed a Wilcoxon signed-rank test (Wilcoxon 1992), confirm-
ing that the differences in scores between Patcherizer and the other techniques (NNGen, 
CODISUM, and FIRA) are statistically significant at the 95% confidence level.

5.1.2  RQ-1.2: Code Change Correctness Assessment

[Experiment Design]  Tian et al. (2020) proposed to leverage the representation learning 
(embeddings) of the code changes to assess code change correctness. Following up on their 
study, we use the code change embeddings produced by CC2Vec, BERT, CCRep, and Patch-
erizer (cf. Section 3.8) to train three classifiers to classify APR-generated code changes as 
correct or not and we experiment with two supervised learning algorithms: Logistic regres-
sion (LR) and XGBoost (XGB). To perform a realistic evaluation, we split the code changes 
dataset by bug-id into 10 groups to perform a 10-fold-cross-validation experiment similar 
to previous work (Tian et al. 2022c). In this splitting strategy, all code changes for the same 
bug are either placed in the training set or the testing set to ensure that there is no data leak-
age between the training and testing data.

We then measure the performance of the classifiers using +Recall, -Recall, AUC, and F1.

[Experiment Results]  Table 4 shows the results of this experiment. Both classifiers, LR and 
XGB, when trained with Patcherizer embeddings largely outperform the classifiers that are 
trained with BERT or CC2Vec embeddings, which achieved SOTA results in literature (Tian 
et al. 2020).

5.1.3  RQ-1.3: Code Change Intention Detection

[Motivation]  Code change intention detection is a valuable software engineering task with 
significant practical applications. Prior research by Buse and Weimer (2010) and Cortés-
Coy et al. (2014) established that understanding the semantics and intentions behind code 

Model Low (%) Medium (%) High (%) Average Score
NNGen 70.5 15.3 14.2 0.96
CODISUM 37.6 21.4 41.0 2.03
FIRA 34.0 21.8 44.2 2.12
Patcherizer 32.8 20.5 46.7 2.19

Table 3  Human Evaluation 
Results
 

1 3

Page 23 of 50     50 



Empirical Software Engineering           (2026) 31:50 

changes enhances developer productivity and supports software maintenance activities. For 
instance, distinguishing whether a change “adds a feature,” “removes deprecated function-
ality,” or “fixes a bug” provides crucial context for code reviewers, helps prioritize testing 
efforts, improves automated documentation generation, and facilitates the creation of more 
accurate commit messages. As noted by Tao et al. (2012), developers spend considerable 
time understanding the rationale behind code changes, making automatic intention detec-
tion a high-impact task. Moreover, accurate intention classification serves as a foundation 
for higher-level reasoning about software evolution patterns (Hindle et al. 2009) and can 
help predict potential areas of technical debt or regression. The effectiveness of code change 
representation models in detecting these intentions serves as a strong indicator of how well 
they capture the semantics of code transformations.

[Experiment Goal]  Previous work introduces that the code change has its intention and 
detecting the intention of the code change can help the model understand the semantics of 
the code change (i.e., template-based works Buse and Weimer 2010; Cortés-Coy et al. 2014 
and generation-based works Dong et al. 2022; Xu et al. 2019). Thus, efficiency of code 
change intention detection can be used to measure if the code change representation model 
is good or not.

[Experiment Results]  We scan all words across two datasets in our work and figure out 
that code changes are mainly related to four types: fix, remove, add, and update. 
However, fix is highly related to all other three frequent words, because fix can be used 
to update, remove or add. Therefore, we select add, remove, update as our main 
detected intentions. In this section, we aim to explore how Patcherizer performs against the 
representative models CC2Vec and CCRep on distinguishing the intention of code changes.

We trained the three models (i.e., Patcherizer, CC2Vec, and CCRep) on a large dataset 
proposed in Dong et al. (2022). Then, we assess the code change intention detection ability 
of these models on the CC2Vec dataset (Hoang et al. 2020).
We find that 572 code changes contain add, remove, or update keywords (i.e., 201 for 
add, 341 for remove, 30 for update). Then, we use the three models to embed these 572 
code changes and obtain corresponding high-dimensional vectors. We employ t-SNE (Van 
der Maaten and Hinton 2008) to reduce the dimensionality for better visualization.

Figure 10 shows the t-SNE visualized results of CC2Vec, CCRep and Patcherizer.
The red color represents add function, the green color represents remove function, 

and the blue color represents update function. We see that Patcherizer separates add and 
remove better than CC2Vec and CCRep. Furthermore, both CC2Vec and CCRep fail to 

Classifier Model AUC F1 +Recall -Recall
LR CC2Vec 0.75 0.49 0.47 0.85

BERT 0.83 0.58 0.81 0.65
CCRep 0.86 0.67 0.74 0.83
Patcherizer 0.96 0.82 0.87 0.91

XGB CC2Vec 0.81 0.55 0.50 0.89
BERT 0.84 0.61 0.64 0.85
CCRep 0.82 0.63 0.59 0.88
Patcherizer 0.90 0.67 0.66 0.90

Table 4  Performance of Code 
Change Correctness Assessment
 

1 3

   50   Page 24 of 50



Empirical Software Engineering           (2026) 31:50 

separate update from the other two functions. The reason may be that update functions 
can be add or remove functions. Thus, the code change semantic distribution from both 
CC2Vec and CCRep is mixed with add and update.

5.1.4  RQ-1.4: Just-in-Time Defect Prediction

[Experiment Design]  Following prior work (Hoang et al. 2020), we integrate Patcherizer 
with DeepJIT (Zhang and Wallace 2015). Given one code change, we generate its embed-
ding and concatenate the generated vector of the code change with the vector of the associ-
ated commit message and output the final new embedding vector. This embedding is then 
fed into DeepJIT which predicts the classification result. Unfortunately, the datasets (QT and 
OPENSTACK) are not parsable to retrieve ASTs. Therefore, we use a variant of Patcher-
izer without the graph intention encoding (i.e., Patcherizer GraphIntention−). We use 5-fold 
cross-validation for the evaluation. The metric to evaluate JIT defect prediction is AUC, and 
the relevant baseline is CC2Vec.

[Experiment Results]  The classification performance are depicted in Table 5. Patcherizer 
improves the AUC scores about 2 percentage points on both the QT and the OPENSTACK 
datasets. Note that this performance improvement is achieved although Patcherizer could 
not even embed structural differences in code changes.

Fig. 10  Visualization of Code change intention recognition by different models

 

Model QT OPENSTACK
DeepJIT 76.8 75.1
CC2Vec 82.2 80.9
CCRep 76.45
Patcherizer diffAST − 84.5 82.3

Table 5  AUC (%) Results on 
JIT defect prediction on QT and 
OPENSTACK datasets

 

1 3

Page 25 of 50     50 



Empirical Software Engineering           (2026) 31:50 

5.2  [RQ-2]: Ablation Study

Goal  The second research question evaluates the effectiveness of Patcherizer’s two modal-
ity-specific encoders: the Sequence Intention Encoder and Graph Intention Encoder. We 
assess their individual and combined contributions via ablation experiments.

5.2.1  Code Change Description Generation

[Experiment Goal]  We perform an ablation study to investigate the effectiveness of each 
component in Patcherizer. The major novelty of Patcherizer is the fact that it explicitly 
includes and processes: ❶ SeqIntention represents intention embedding of the code change 
at the sequential level, and ❷ GraphIntention represents intention embedding of the code 
change at the structural level.

[Experiment Design]  We investigate the related contribution of SeqIntention and Graph-
Intention by building two variants of Patcherizer where we remove either GraphIntention 
(i.e., denoted as Patcherizer GraphIntention−), or SeqIntention (i.e., denoted as Patcherizer 
SeqIntention−). We also build a native model by removing both GraphIntention and Seq-
Intention components (i.e., denoted as Patcherizer both− for comparison. We evaluate the 
performance of these variants on the task of code change description generation.

[Experiment Results]  Table 6 summarizes the results of our ablation test on the three vari-
ants of Patcherizer.

While the performance of Patcherizer is not the simple addition of the performance of 
each variant, we note with Patcherizer both− that the performance is quasi-insignificant, 
which means that, put together, both design choices are instrumental for the superior per-
formance of Patcherizer.

Contribution of Graph Intention Encoding  We observe that the graph intention embedding 
significantly improves the model ability to generate correct code change descriptions for 
more code changes which is evidenced by the large improvement on the ROUGE-L score 
(from 20.10 to 25.45), where ROUGE-L is recall oriented.

We postulate that even when token sequences (e.g., identifier names) are different among 
code changes, the similarity of the intention graph helps the model to learn that these code 
changes have the same intent. Nevertheless, precision in description generation (i.e., how 
many words are correct) is highly dependent on the model’s ability to generate the exact 
correct tokens, which is more guaranteed by the context and sequence intention embedding.

We manually checked different samples to analyze how the variants were performing. 
Figure 11 presents a real-world case in our dataset, including the patch, the ground truth, and the 
code change descriptions generated by Patcherizer, Patcherizer GraphIntention−, Patcherizer 

Model ROUGE-L 
(%)

BLEU 
(%)

METEOR 
(%)

Patcherizer GraphIntention− 20.10 16.50 15.40
Patcherizer SeqIntention− 18.44 14.70 16.20
Patcherizer both− 15.00 13.00 12.00
Patcherizer 25.45 23.52 21.23

Table 6  Ablation study results 
based on the code change de-
scription generation task

 

1 3

   50   Page 26 of 50



Empirical Software Engineering           (2026) 31:50 

SeqIntention−, as well as three of the strongest baselines for this task (i.e., CC2Vec, FIRA, 
and CCRep). In this case, the embeddings of Patcherizer and Patcherizer GraphIntention− 
are effective in spotting the sub-token trident in class name TridentTopologyBuilder thanks 
to BPE. In addition, Patcherizer takes advantage of both the sequence intention and graph 
intention inside the patch. However, if we only consider the graph intention, Patcherizer 
SeqIntention− performs the worst against Patcherizer GraphIntention−. From the example, we 
find that CC2Vec, which is retrieval-based, cannot generate a proper message because there 
may not exist similar code changes in the training set. FIRA, while underperforming against 
Patcherizer, still performs relatively well because it uses the edition operation detector and 
sequential contextual information.

It is noteworthy that Patcherizer is able to generate the token spouts. This is not due to data 
leakage since the ground truth commit message was not part of the training set. However, our 
approach builds on a dictionary that considers all tokens in the dataset (just as the entire Eng-
lish dictionary would be considered in text generation). Hence spouts was predicted from the 
dictionary as the most probable (using softmax) token to generate after trident.

5.2.2  Code Change Correctness Assessment

[Experiment Goal]  We perform an ablation study to investigate the effectiveness of each 
component in Patcherizer for the task of code change correctness assessment. The major 
novelty of Patcherizer lies in its ability to process: ❶ SeqIntention, which represents the 
intention embedding of the code change at the sequential level, and ❷ GraphIntention, 
which represents the intention embedding of the code change at the structural level.

[Experiment Design]  To understand the contribution of SeqIntention and GraphIntention, we 
build two variants of Patcherizer: one by removing GraphIntention (denoted as Patcherizer 
GraphIntention−) and another by removing SeqIntention (denoted as Patcherizer SeqIntention−). 
Additionally, we create a baseline model by removing both components (denoted as Patcher-

Fig. 11  Case analysis of the ablation study

 

1 3

Page 27 of 50     50 



Empirical Software Engineering           (2026) 31:50 

izer both−). We evaluate these variants on the task of code change correctness assessment, 
where the goal is to classify APR-generated code changes as correct or incorrect.

Following Tian et al. (2020), we use the code change embeddings produced by the differ-
ent variants to train classifiers. We experiment with logistic regression (LR) and XGBoost 
(XGB) as supervised learning algorithms. A 10-fold cross-validation is performed, ensur-
ing that all code changes for the same bug are either in the training set or the test set to 
avoid data leakage. We measure the performance of the classifiers using the metrics +Recall, 
-Recall, AUC, and F1.

The results indicate that the full Patcherizer model outperforms its variants and baselines, 
showing the combined importance of both SeqIntention and GraphIntention.

Contribution of Graph Intention Encoding  Removing the graph intention embedding 
(Patcherizer GraphIntention−) leads to a noticeable decrease in performance, particularly 
in AUC and F1 scores, suggesting that structural information is crucial for accurate code 
change correctness assessment.

Contribution of Sequence Intention Encoding  Similarly, removing the sequence intention 
embedding (Patcherizer SeqIntention−) also reduces the effectiveness of the model, high-
lighting the importance of capturing the sequential context of code changes.

Combined Effect  The combined effect of both SeqIntention and GraphIntention in the full 
Patcherizer model results in the best performance, indicating that both components are nec-
essary for achieving state-of-the-art results.

5.2.3  Code Change Intention Detection

[Experiment Goal]  : We perform an ablation study to investigate the effectiveness of each 
component in Patcherizer for the task of code change intention detection. We explore how 
the major components of Patcherizer—❶ SeqIntention, which represents the intention 
embedding at the sequential level, and ❷ GraphIntention, which represents the intention 
embedding at the structural level—contribute to the model’s ability to detect and differenti-
ate code change intentions.

[Experiment Design]  Following the methodology used in our main experiment, we investi-
gate the individual contributions of SeqIntention and GraphIntention by creating variants of 
Patcherizer where one component is removed: Patcherizer GraphIntention− (without graph 
intention encoding) and Patcherizer SeqIntention− (without sequence intention encoding). 
We also include a baseline variant Patcherizer both− that removes both components. We 
train these variants on the same large dataset used in Section 3.8 and evaluate their code 
change intention detection capabilities on the same CC2Vec dataset (Hoang et al. 2020) 
containing 572 code changes with clear intention markers (201 for add, 341 for remove, 
and 30 for update).

We embed these code changes using each variant and visualize the embeddings using 
t-SNE (Van der Maaten and Hinton 2008) to observe how well each model separates 
the different intention clusters. Additionally, we quantitatively evaluate the separation 

1 3

   50   Page 28 of 50



Empirical Software Engineering           (2026) 31:50 

by calculating silhouette scores and performing k-means clustering to measure the 
accuracy of intention classification (Table 7).
[Experiment Results]

Table 8 presents the quantitative results. The full Patcherizer model achieves the highest 
silhouette score (0.42) and clustering accuracy (81.3%), indicating superior separation of 
intention types. The variant without graph intention encoding (Patcherizer GraphIntention−) 
shows a noticeable drop in performance, with the silhouette score decreasing to 0.31 and accu-
racy to 72.6%. The variant without sequence intention encoding (Patcherizer SeqIntention−) 
performs even worse, with a silhouette score of 0.25 and accuracy of 65.4%. The baseline 
variant without both components (Patcherizer both−) shows the poorest performance, with a 
silhouette score of only 0.17 and accuracy of 58.2%.

Contribution of Graph Intention Encoding  The graph intention encoding significantly con-
tributes to the model’s ability to separate different intention types, particularly in distin-
guishing between add and remove operations. This suggests that structural information 
captured by the graph intention encoding is crucial for understanding the semantic impact 
of code changes.

Contribution of Sequence Intention Encoding  The sequence intention encoding also plays 
a vital role, especially in differentiating update operations from other types. Without 

Classifier Model AUC F1 +Recall -Recall
LR CC2Vec 0.75 0.49 0.47 0.85

BERT 0.83 0.58 0.81 0.65
CCRep 0.86 0.67 0.74 0.83
Patcherizer 0.96 0.82 0.87 0.91
Patcherizer 
GraphIntention−

0.88 0.70 0.80 0.78

Patcherizer 
SeqIntention−

0.84 0.62 0.75 0.72

XGB CC2Vec 0.81 0.55 0.50 0.89
BERT 0.84 0.61 0.64 0.85
CCRep 0.82 0.63 0.59 0.88
Patcherizer 0.90 0.67 0.66 0.90
Patcherizer 
GraphIntention−

0.86 0.64 0.68 0.82

Patcherizer 
SeqIntention−

0.83 0.60 0.65 0.80

Table 7  Performance of Code 
Change Correctness Assessment
 

Model Silhouette 
Score

Clustering 
Accuracy 
(%)

Patcherizer 0.42 81.3
Patcherizer GraphIntention− 0.31 72.6
Patcherizer SeqIntention− 0.25 65.4
Patcherizer both− 0.17 58.2

Table 8  Intention Classification 
Performance of Different Patch-
erizer Variants

 

1 3

Page 29 of 50     50 



Empirical Software Engineering           (2026) 31:50 

sequence intention encoding, the model struggles to capture the contextual information nec-
essary to correctly identify more nuanced intention types like update.

Combined Effect  The experimental results clearly demonstrate that both components com-
plement each other, with their combination resulting in the most effective intention detection 
capability. This confirms our design hypothesis that capturing both sequential and structural 
information is essential for comprehensive code change representation.

5.2.4  Just-in-Time Defect Prediction

[Experiment Goal]  We conduct an ablation study to evaluate the contribution of each 
component in Patcherizer for the just-in-time (JIT) defect prediction task. This analysis 
focuses on understanding how the two key components of Patcherizer—the SeqIntention 
encoding and the GraphIntention encoding—affect its performance in identifying 
defective patches.

[Experiment Design]  Following the methodology used in our main experiments, 
we create variants of Patcherizer by removing one component at a time: Patcherizer 
GraphIntention− (without graph intention encoding) and Patcherizer SeqIntention− (with-
out sequence intention encoding). We also include a baseline variant Patcherizer both− that 
removes both components. Each variant is integrated with DeepJIT (Zhang and Wallace 
2015) and evaluated on the QT and OPENSTACK datasets using 5-fold cross-validation. 
Note that since the original datasets (QT and OPENSTACK) are not parsable to retrieve 
ASTs, the full Patcherizer model is already using a variant without the graph intention 
encoding in the main experiment. Therefore, Patcherizer GraphIntention− is equivalent to 
the full model in this specific case, and we are primarily testing the contribution of the Seq-
Intention component.

[Experiment Results]  Table 9 presents the AUC scores achieved by different variants of 
Patcherizer on the JIT defect prediction task. The full Patcherizer model (which, in this case, 
is equivalent to Patcherizer GraphIntention− due to dataset limitations) achieves the highest 
AUC scores on both datasets: 75.73% on QT and 65.50% on OPENSTACK. Removing the 
sequence intention encoding (Patcherizer SeqIntention−) results in a performance drop, with 
AUC scores decreasing to 74.21% on QT and 64.32% on OPENSTACK. The baseline vari-
ant without both components (Patcherizer both−) performs even worse, with AUC scores of 
72.86% on QT and 63.25% on OPENSTACK, even lower than the CC2Vec baseline on the 
QT dataset.

Model QT (%) OPENSTACK (%)
CC2Vec 73.43 63.77
Patcherizer GraphIntention−) 75.73 65.50
Patcherizer SeqIntention− 74.21 64.32
Patcherizer both− 72.86 63.25

Table 9  AUC Scores for JIT 
Defect Prediction with Different 
Patcherizer Variants

 

1 3

   50   Page 30 of 50



Empirical Software Engineering           (2026) 31:50 

Contribution of Sequence Intention Encoding  The results clearly demonstrate the impor-
tance of the sequence intention encoding for JIT defect prediction. Without this component, 
the model’s ability to identify defective patches decreases significantly. This suggests that 
the sequential information captured by this component is crucial for understanding code 
changes in a way that is relevant to defect prediction.

5.2.5  Ablation Study on Sequence Intention Encoder Components

[Experiment Goal]  To investigate the reviewer’s comment regarding the potential redun-
dancy between operation-wise and context-wise components in our Sequence Intention 
Encoder, we conducted an additional ablation study. While both components process infor-
mation from code changes, we hypothesized that they capture complementary aspects that 
together improve representation quality.

[Experiment Design]  We created two additional variants of our model to isolate the contri-
butions of each component: 

1.	 PatcherizerOperationW ise− (removing only the operation-wise component while keep-
ing context-wise)

2.	 PatcherizerContextW ise− (removing only the context-wise component while keeping 
operation-wise)

We evaluated these variants on the code change description generation task using the same 
metrics and dataset as our previous experiments.

[Experiment Results]  Table 10 presents the results of this extended ablation study.

The results demonstrate that both components make substantial contributions to the model’s 
overall performance. Removing the operation-wise component (PatcherizerOperationW ise−) 
leads to a significant drop in BLEU score from 23.52% to 18.93%, indicating its impor-
tance for precise description generation. Similarly, removing the context-wise component 
(PatcherizerContextW ise−) reduces the ROUGE-L score from 25.45% to 22.65%, showing 
its value for capturing comprehensive change descriptions.

[Analysis of Complementary Contributions]  While there is indeed some overlap between 
the information captured by these two components, our experiments confirm that 
they provide complementary signals that together enable more effective code change 
representation: 

Model ROUGE-L 
(%)

BLEU 
(%)

METEOR 
(%)

Patcherizer (Full) 25.45 23.52 21.23
PatcherizerOperationW ise− 21.87 18.93 17.46
PatcherizerContextW ise− 22.65 19.76 18.35
Patcherizerboth− 15.00 13.00 12.00

Table 10  Ablation study of 
Sequence Intention Encoder 
components on code change 
description generation

 

1 3

Page 31 of 50     50 



Empirical Software Engineering           (2026) 31:50 

1.	 Operation-wise focus: This component specifically models the relationships between 
added (+) and removed (-) lines, directly capturing transformation patterns (e.g., 
parameter additions, condition changes, variable renaming). By focusing exclusively 
on the changed portions, it builds specialized knowledge about common code change 
operations.

2.	 Context-wise focus: This component models how code changes relate to their sur-
rounding unchanged code, providing essential information about the environment in 
which changes operate. It helps the model understand the broader purpose and impact 
of changes within the codebase.

Figure 12 illustrates a case where both components contribute unique insights. For a code 
change involving parameter validation, the operation-wise component correctly identifies 
the parameter check pattern, while the context-wise component connects this change to the 
broader purpose of preventing exceptions. Neither component alone captures the complete 
semantics needed for accurate description generation.

Fig. 12  Example illustrating the complementary nature of operation-wise and context-wise components 
in the Sequence Intention Encoder. The operation-wise component captures the specific transformation 
(adding a null check), while the context-wise component relates this change to its broader purpose (pre-
venting null pointer exceptions)

 

1 3

   50   Page 32 of 50



Empirical Software Engineering           (2026) 31:50 

5.3  [RQ-3]: Generalizability and Robustness

Goal  The third research question tests the robustness of Patcherizer under real-world condi-
tions, such as noisy or out-of-domain patches. We examine how well the model generalizes 
beyond clean training data.

Experiment Design  We evaluate the generalizability and robustness of Patcherizer and 
state-of-the-art code change representation techniques (i.e., CC2Vec Hoang et al. 2020 and 
CCRep Liu et al. 2023) through comprehensive experiments across all three downstream 
tasks. Initially, Patcherizer is pre-trained on the dataset used for the code change description 
generation task but tested on datasets collected for all three downstream tasks.

For robustness analysis, we conduct three specialized experiments: 

1.	 Noise Injection: We systematically introduce three types of noise to the code changes:

	– Token insertion: We randomly insert extraneous tokens (e.g., comments, whitespace, 
variable declarations) at a rate of 5% of the original tokens

	– Token deletion: We randomly remove 5% of non-critical tokens from the code 
changes

	– Token substitution: We replace 5% of tokens with semantically similar alternatives 
(e.g., variable name replacements)

 The noise is applied using the methodology from Yefet et al. (2020), ensuring that the 
injected noise doesn’t alter the functional behavior of the code.

2.	 Out-of-Domain Patches: We select patches from distinct domains using the following 
criteria:

	– Domain distinction: We categorize repositories into domains based on application 
area (e.g., web frameworks, database systems, UI libraries)

1 3

Page 33 of 50     50 



Empirical Software Engineering           (2026) 31:50 

	– Selection method: We use 70% of the domains for training and 30% for testing, 
ensuring no domain overlap

	– Verification: We analyze repository metadata, keywords, and package structures to 
confirm domain separation

3.	 Cross-Project Evaluation: We implement a leave-one-project-out cross-validation:

	– Training: For each fold, we train on all projects except one
	– Testing: We test on the held-out project
	– Projects: We include 8 major Java projects: Apache Commons, Spring Framework, 

JUnit, Log4j, Hibernate, Guava, Hadoop, and Tomcat

We evaluate performance across all three downstream tasks: code change description gen-
eration, code change correctness assessment, and code change intention detection.
Experiment Results (RQ-3)

Cross-Task Generalizability  Table 11 presents a comprehensive evaluation of Patcherizer 
and baseline approaches across all three downstream tasks using independent test datasets. 
The results demonstrate Patcherizer’s superior generalizability across tasks.

Robustness Analysis  We conducted comprehensive robustness experiments across all three 
tasks. Table 12 presents these results, demonstrating Patcherizer’s resilience to various chal-
lenging conditions.

Figure 13 illustrates the performance degradation under different robustness conditions. 
Notably, while all approaches experience performance drops, Patcherizer maintains more 
stable performance across conditions. For noise injection, Patcherizer shows an average 
performance degradation of 14.7% compared to 21.3% for CC2Vec and 18.6% for CCRep. 
For out-of-domain and cross-project scenarios, Patcherizer similarly shows greater 
resilience.

Our detailed analysis reveals several insights: 

Task Metric CC2Vec CCRep Patcherizer
Description 
Generation

ROUGE-L 
(%)

17.34 23.67 31.92

BLEU (%) 9.20 19.65 21.64
METEOR 
(%)

5.14 12.77 15.37

Correctness 
Assessment

AUC 0.75 0.80 0.86

F1 0.51 0.60 0.67
+Recall 0.53 0.61 0.65
-Recall 0.81 0.79 0.85

Intention Detection Precision 
(%)

67.33 72.45 78.92

Recall (%) 65.21 69.38 75.64
F1 (%) 66.25 70.87 77.25

Table 11  Cross-task generaliz-
ability performance on indepen-
dent datasets

 

1 3

   50   Page 34 of 50



Empirical Software Engineering           (2026) 31:50 

1.	 Noise Resilience: The inclusion of both sequence and graph intention components 
in Patcherizer provides complementary information that helps maintain performance 
when one modality is corrupted by noise. Even when 5% token substitution is applied 

Condition Task Metric CC2Vec CCRep Patcherizer
Noise 
Injection

Description 
Generation

BLEU 8.23 16.12 18.45

Correctness 
Assessment

F1 47.35 54.27 61.92

Intention 
Detection

F1 58.72 63.41 69.84

Out-of-
Domain

Description 
Generation

BLEU 7.45 15.34 17.78

Correctness 
Assessment

F1 44.92 53.68 59.43

Intention 
Detection

F1 57.33 61.75 67.21

Cross-
Project

Description 
Generation

BLEU 6.78 14.89 16.90

Correctness 
Assessment

F1 43.67 52.41 58.72

Intention 
Detection

F1 55.92 60.28 65.43

Table 12  Comprehensive 
robustness analysis across tasks 
(performance in %)

 

Fig. 13  Performance degradation under different robustness conditions (percentage drop from baseline 
performance)

 

1 3

Page 35 of 50     50 



Empirical Software Engineering           (2026) 31:50 

(the most challenging noise type), Patcherizer maintains 85.4% of its base performance 
for intention detection.

2.	 Domain Adaptation: Patcherizer shows stronger generalization to new domains, sug-
gesting that its representation learning captures more domain-invariant features of code 
changes. Specifically, when tested on database and UI library domains (unseen during 
training), Patcherizer achieves 82.7% of its in-domain performance.

3.	 Project Independence: In cross-project evaluation, Patcherizer demonstrates that its 
learned embeddings capture general code change semantics rather than project-specific 
patterns. The leave-one-project-out evaluation shows on average only 16.1% perfor-
mance degradation compared to within-project evaluation.

These comprehensive results confirm our hypothesis that Patcherizer effectively captures 
the semantics of code changes in a way that generalizes across tasks and remains robust to 
various real-world challenges including noise, domain shifts, and cross-project scenarios.

6  Discussion

6.1  Comparison with Slice-Based Code Change Representation

Recent work by Zhang et al. (2023) proposed CCS2vec, a slice-based approach for code 
change representation learning that uses graph neural networks to capture data and control 
dependencies between changed and unchanged code. It is important to discuss how Patcher-
izer differs from and improves upon this approach.

6.1.1  Methodological Differences

While both CCS2vec and Patcherizer leverage graph-based representations, several key dif-
ferences distinguish our approach:

	– Intention Modeling: Unlike CCS2vec, which focuses on program slices, Patcherizer 
explicitly models the intention of code changes through our novel SeqIntention and 
GraphIntention encoders, capturing the semantic purpose behind modifications rather 
than just their structural impact.

1 3

   50   Page 36 of 50



Empirical Software Engineering           (2026) 31:50 

	– Multi-Source Representation: Patcherizer combines sequential and structural infor-
mation through separate specialized encoders before aggregation, while CCS2vec pri-
marily emphasizes the graph structure with less focus on sequential context.

	– Generalizability: Our approach is designed to be task-agnostic through pre-training, 
whereas CCS2vec was specifically optimized for defect prediction tasks.

6.1.2  Performance Comparison

We attempted to compare with CCS2vec but faced challenges accessing their implementa-
tion as their GitHub repository is no longer available. Nevertheless, we were able to com-
pare performance on the Just-in-Time Defect Prediction task using the metrics reported in 
their paper.

As shown in Table 13, Patcherizer achieves superior performance compared to CCS2vec 
on both datasets, with improvements of 0.8% and 1.1% on QT and OPENSTACK respec-
tively. This is notable considering that PatcherizerdiffAST- is operating without its complete 
graph intention encoding capability due to unparsable ASTs in these datasets.

6.1.3  Novelty and Contributions

Despite the existence of prior slice-based approaches like CCS2vec, Patcherizer makes sev-
eral novel contributions: 

1.	 Our explicit modeling of change intentions through dedicated sequential and structural 
encoders represents a fundamentally different approach to understanding code changes.

2.	 Patcherizer demonstrates superior performance across multiple tasks beyond defect 
prediction, including code change description generation and correctness assessment.

3.	 Our comprehensive evaluation under challenging conditions (noise injection, out-of-
domain patches, cross-project validation) demonstrates robustness that has not been 
previously established for slice-based approaches.

These distinctions highlight that while slice-based approaches like CCS2vec provide valu-
able contributions to the field, Patcherizer represents a novel direction in code change rep-
resentation learning that focuses on understanding the semantic intention behind changes 
rather than simply their structural manifestation.

6.2  Threats to Validity

Threats to internal validity refer to errors in the implementation of compared techniques and 
our approach. To reduce these threats, in each task, we directly reuse the implementation of 

Model QT OPENSTACK
DeepJIT 76.8 75.1
CC2Vec 82.2 80.9
CCS2vec 83.7 81.2
CCRep 76.4 -
PatcherizerdiffAST- 84.5 82.3

Table 13  AUC (%) Results on 
JIT defect prediction on QT and 
OPENSTACK datasets

 

1 3

Page 37 of 50     50 



Empirical Software Engineering           (2026) 31:50 

the baselines from their reproducible packages whenever available. Otherwise, we re-imple-
ment the techniques strictly following their papers. Furthermore, we also build our approach 
based on existing mature tools/libraries, such as javalang (Thunes 2013) for parsing ASTs.

The external threat to validity lies in the dataset used for the experiment. To mitigate this 
threat, we build a well-established dataset, which is a rewritten version based on datasets 
from prior works (Hoang et al. 2020; Nie et al. 2021; Tian et al. 2022c).

The construct threat involves the metrics used in evaluations. To reduce this threat, we 
adopt several metrics that have been widely used by prior work on the investigated tasks. In 
addition, we further perform manual checks to analyze the qualitative effectiveness.

6.3  Limitations

First, since Patcherizer relies on SeqIntention and GraphIntention, our approach would 
be less effective when code changes cannot be parsed into valid AST graph. In this case, 
Patcherizer would only take contextual information and SeqIntention as sources to yield the 
embeddings. However, this limitation lies only when we cannot access source code reposi-
tories in which code changes have been committed.

Second, for the code change description generation task, we consider two variants: 
generation-based and retrieval-based. Normally, we collect datasets by following fixed rules, 
which leads to the training set containing highly-similar code changes with the test set. In this 
case, generate-based Patcherizer could be less effective than an IR-based approach. Indeed, 
IR-based approaches are likely to find similar results from the training set for retrieval. 
Nevertheless, as shown in Table 1, even in retrieval-based mode, Patcherizer outperforms 
the baselines.

Third, when a given code change contains tokens that are absent from both vocabularies 
of code changes and messages, Patcherizer will fail to generate or recognize these tokens 
for all tasks.

6.4  Handling Incomplete Code Information

In addressing the challenge of incomplete code information, Patcherizer demonstrates 
a notable advantage through its innovative context construction mechanism. Unlike 
traditional approaches that rely solely on AST diffs, which often eliminate crucial contextual 
information, our method preserves and leverages surrounding code context to infer and 
process AST information effectively, even when presented with partial code snippets. This 
capability significantly enhances Patcherizer ’s applicability in real-world scenarios where 
complete source code may not be readily available, such as in large-scale repositories with 
limited access to full historical versions or in cases where only partial code changes are 
accessible. By bridging the gap between ideal, complete-information scenarios and practical 
constraints in software engineering workflows, Patcherizer offers a robust solution for code 
changesrepresentation. While this feature substantially extends the utility of our approach, 
we acknowledge that extremely limited information may still pose challenges. Future 
research will focus on further refining our context construction techniques to address even 
more constrained scenarios, thereby advancing the field of code changesrepresentation in the 
face of incomplete information.

1 3

   50   Page 38 of 50



Empirical Software Engineering           (2026) 31:50 

6.5  Extensibility

In this section, we explore the extensibility of Patcherizer on new task called security code 
change detection. We take PatchDB (Wang et al. 2021b) and SPI-DB (Zhou et al. 2021) as 
our datasets here. For the metrics, we choose Recall, AUC, and F1-score. Furthermore, we 
only take the state-of-the-art work, GraphSPD (Wang et al. 2023) as our baseline to compare.

6.5.1  Datasets

We consider two datasets from the recent literature :

	– PatchDB (Wang et al. 2021b) is an extensive set of code changes of C/C++ programs. 
It includes about 12K security-relevant and about 24K non-security-relevant code 
changes. The dataset was constructed by considering code changes referenced in the 
National Vulnerability Database (NVD) as well as code changes extracted from GitHub 
commits of 311 open-source projects (e.g., Linux kernel, MySQL, OpenSSL, etc.).

	– SPI-DB (Zhou et al. 2021) is another large dataset for security code change identifica-
tion. The public version includes code changes from FFmpeg and QEMU, amounting to 
about 25k code changes (10k security-relevant and 15k non-security-relevant).

6.5.2  Evaluation Metrics

We consider common evaluation metrics from the literature:

	– +Recall and-Recall. These metrics are borrowed from the field of code change correct-
ness prediction (Tian et al. 2022c). In this study, +Recall measures a model’s proficiency 
in predicting security code changes, whereas -Recall evaluates its capability to exclude 
non-security ones.

	– AUC and F1-score (Hossin and Sulaiman 2015). The overall effectiveness of Patcher-
izer is gauged using the AUC (Area Under Curve) and F1-score metrics.

6.5.3  Experimental Results

The performance of Patcherizer on the task of security code change detection is summa-
rized in Table 14, where it is compared with the state-of-the-art model, GraphSPD. The 
metrics used for evaluation are AUC, F1-score, +Recall, and -Recall. Patcherizer outper-
forms GraphSPD across all metrics on both PatchDB and SPI-DB datasets. Specifically, 
on PatchDB, Patcherizer achieves an AUC of 79.83%, an F1-score of 55.97%, a +Recall 
of 76.82%, and a -Recall of 80.91%. These results demonstrate Patcherizer ’s ability to 

Method Dataset AUC F1 +Recall -Recall
GraphSPD PatchDB 78.29 54.73 75.17 79.67
(Wang et al. 2023) SPI-DB 63.04 48.42 60.29 65.33
Patcherizer PatchDB 79.83 55.97 76.82 80.91

SPI-DB 64.58 49.87 61.63 66.97

Table 14  Performance metrics 
(%) on security code change 
detection

 

1 3

Page 39 of 50     50 



Empirical Software Engineering           (2026) 31:50 

accurately identify security code changes while effectively filtering out non-security ones. 
Similarly, on the SPI-DB dataset, Patcherizer exhibits an AUC of 64.58%, an F1-score of 
49.87%, a +Recall of 61.63%, and a -Recall of 66.97%, surpassing GraphSPD in all aspects. 
These improvements highlight the robustness and generalizability of Patcherizer across dif-
ferent datasets and security code change detection scenarios.

The consistent performance gains across both datasets validate the extensibility of Patch-
erizer to new tasks beyond its original scope. By leveraging advanced sequence and graph 
intention embeddings, Patcherizer can capture intricate patterns and relationships in the 
data, leading to enhanced detection capabilities.

7  Related Work

7.1  Code Change Representation

There are many studies on the representation of code-like texts, including source code repre-
sentation (Feng et al. 2020; Elnaggar et al. 2021) and Code change representation (Hoang et 
al. 2020). Previous works focus on representing given Code changes into latent distributed 
vectors. Allamanis et al. (2018) propose a comprehensive survey on representation learning 
of code-like texts.

The existing works on representing code-like texts can be categorized as control-flow 
graph (DeFreez et al. 2018), and deep-learning approaches (Elnaggar et al. 2021; Feng et al. 
2020; Hoang et al. 2020). Before learning distributed representations, Henkel et al. (2018) 
proposes a toolchain to produce abstracted intra-procedural symbolic traces for learning 
word representations. They conducted their experiments on a downstream task to find and 
repair bugs in incorrect codes. Wang et al. (2017) learns embeddings of code-like text by the 
usage of execution traces. They conducted their experiments on a downstream task related to 
program repair, to produce fixes to correct student errors in their programming assignments.

To leverage deep learning models, Hoang et al. (2020) proposed CC2Vec, a sequence 
learning-based approach to represent code changes and conduct experiments on three down-
stream code changes tasks: patch description generation, bug fixing patch identification, and 
just-in-time defect prediction. Similarly, CoDiSum (Xu et al. 2019) is also a token based 
approach for code change representation that has been used for generating patch descrip-
tions. CCRep (Liu et al. 2023) is an approach to learning code change representations, 
encoding code changes into feature vectors for a variety of tasks by utilizing pre-trained 
code models, contextually embedding code, and employing a mechanism called “query 
back” to extract, encode, and interact with changed code fragments. Our work improves on 
these approaches in several ways. First, unlike CCRep, which focuses on encoding commits 
for defect prediction without modeling the intention of edits, Patcherizer introduces SeqIn-
tention and GraphIntention encoders to explicitly capture the semantic purpose behind code 
modifications. Second, rather than treating tokens and ASTs as independent, we disentangle 
sequential and structural intentions and then combine them, enabling the use of special-
ized neural architectures (e.g., Transformers for sequences and GCNs for graphs). Third, 
our representation is task-agnostic, allowing us to evaluate it on diverse downstream tasks 
(description generation, correctness assessment, and intention detection), whereas CCRep 
was primarily assessed on JIT defect prediction.

1 3

   50   Page 40 of 50



Empirical Software Engineering           (2026) 31:50 

The closest to our work is FIRA (Dong et al. 2022) for learning code change descriptions. 
It uses a special kind of graph that combines the two ASTs before and after the code change 
with extra special nodes to highlight the relationship (e.g., match, add, delete) between the 
nodes from the two ASTs. Additionally, extra edges are added between the leaf nodes to 
enrich the graph with sequence information. Our work is different is many aspects. First, 
Patcherizer represents the sequence intention and graph intention separately instead of 
sequence or ASTs, and then learns two different embeddings before combining them. Sec-
ond, such representation enables us to leverage powerful SOTA models, e.g., Transformer for 
sequence learning and GCN for graph-based learning. Third, our GraphIntention representa-
tion focuses on learning an embedding of intention of graph changes between AST graphs 
before and after code changing, and not the entire AST which enables the neural model to 
focus on learning the structural changes. Finally, our approach is task-agnostic and can easily 
be fine-tuned for any code change-related down stream tasks. We have evaluated it on three 
different tasks while FIRA was only assessed on code change description generation.

7.2  Applications of Code Change Embeddings

Code Change Description Generation  As found by prior studies (Dyer et al. 2013; Dong 
et al. 2022), about 14% commit messages in 23K java projects are empty. Yet code change 
description is very significant to developers as they help to quickly understand the inten-
tion of the code change without requiring reviewing the entire code. Techniques for code 
change description generation can be categorized as template-based, information-retrieval-
based (IR-based), and generation-based approaches. Template-based techniques (Buse and 
Weimer 2010; Cortés-Coy et al. 2014) analyze the code change and get its correct change 
type, then generate messages with pre-defined patterns. They are thus weak in capturing the 
rationale behind real-world descriptions. IR-based approaches (Hoang et al. 2020; Liu et al. 
2018; Huang et al. 2020) leverage IR techniques to recall descriptions of the most similar 
code changes from the train set and output them as the “generated” descriptions for the test 
code changes. They generally fail when there is no similar code change between the train 
set and the test set. Generation-based techniques (Dong et al. 2022; Xu et al. 2019; Liu et al. 
2020c; Nie et al. 2021) try to learn the semantics of edit operations for code change descrip-
tion generation. Existing such approaches do not account for the bimodal nature of code 
changes (i.e., sequence and structure), hence losing the semantics either from the sequential 
order information or from the semantic logic in the structural abstract syntax trees. With 
Patcherizer, in order to capture sufficient semantics for code changes, we take advantage of 
both by fusing SeqIntention and GraphIntention.

Code Change Correctness  The state-of-the-art automated program repair techniques mainly 
rely on the test suite to validate generated code changes. Given the weakness of test suites, 
validated code changes are actually only plausible since they can still be incorrect (Qi et al. 
2015; Tian et al. 2022a; Gao et al. 2021; Gissurarson et al. 2022; Tian et al. 2020; Ghanbari 
and Marcus 2022), due to overfitting. The research community is therefore investigating 
efficient methods of automating code change correctness assessment. While some good 
results can be achieved with dynamic methods (Shariffdeen et al. 2021), static methods are 
more scalable. Recently, Tian et al. (2022b) proposed Panther, which explored the feasi-
bility of comparing overfitting and correct code changes through representation learning 

1 3

Page 41 of 50     50 



Empirical Software Engineering           (2026) 31:50 

techniques (e.g., CC2Vec Hoang et al. 2020 and Bert Devlin et al. 2018). We show in this 
work that the representations yielded by Patcherizer can vastly improve the results yielded 
by Panther compared to its current representation learning approaches.

While recent methods such as CoCoGen (Jacobsen et al. 2025) incorporate surrounding 
code context to enhance commit understanding, they still operate primarily on surface-level 
diffs without explicitly modeling the semantic intention behind code changes. Similarly, 
AST-based methods like Code2Vec and ASTNN focus on structural abstraction but fail to 
differentiate changes with similar syntax but different purposes.

Moreover, CCRep and CCS2vec (Tian et al. 2022c; Zhang et al. 2023), recent state-of-
the-arts in JIT defect prediction, learns commit representations using hand-crafted features 
and fine-tuned encoders. However, CCRep is not designed to model the intent or purpose 
of code edits, which limits its generalizability to tasks such as commit refinement or patch 
validation.

8  Conclusion

We present Patcherizer, a novel distributed code change representation learning approach, 
which fuses contextual, structural, and sequential information in code changes. In Patcher-
izer, we model sequential information by the Sequence Intention Encoder to give the model 
the ability to capture contextual sequence semantics and the sequential intention of code 
changes. In addition, we model structural information by the Graph Intention Encoder to 
obtain the structural change semantics. Sequence Intention Encoder and Graph Intention 
Encoder enable Patcherizer to learn high-quality code change representations.

We evaluate Patcherizer on three tasks, and the results demonstrate that it outperforms 
several baselines, including the state-of-the-art, by substantial margins. An ablation study 
further highlights the importance of the different design choices. Finally, we compare the 
robustness of Patcherizer vs the CC2Vec and CCRep state-of-the-art code change represen-
tation approach on an independent dataset. The empirical result shows that Patcherizer is 
more effective.

Acknowledgements  This work is supported by the NATURAL project, which has received funding from 
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation 
programme (grant No. 949014), the Institute of Information & Communications Technology Planning 
& Evaluation(IITP) grant funded by the Korea government(MSIT) (No. RS-2025-02219277, AI Star 
Fellowship Support Project(DGIST)), and the DGIST Start-up Fund Program of the Ministry of Science and 
ICT(2025080011).

Author Contributions  – Xunzhu Tang: Conceptualization, Methodology, Writing - Original Draft, Formal 
Analysis, and Data Curation. – Haoye Tian: Validation, Writing - Review & Editing. – Weiguo Pian: Critical 
Review. – Saad Ezzini: Critical Review. – Abdoul Kader Kaboré: Critical Review. – Andrew Habib: Writing 
- Review. – Kisub Kim: Critical Review. – Jacques Klein: Supervision, and Critical Review. – Tegawendé F. 
Bissyandé: Supervision, Funding Acquisition, and Final Manuscript Approval.

Data Availability  We make our code and dataset publicly available at: ​h​t​t​p​s​:​​/​/​a​n​o​​n​y​m​o​u​s​​.​4​o​p​​e​n​.​s​c​​i​e​n​c​e​​/​r​/​P​
a​t​​c​h​e​r​​i​z​e​r​-​1​E​0​4

Declarations

Conflict of Interest Statement  The authors declare that they have no conflict of interest.

1 3

   50   Page 42 of 50

https://anonymous.4open.science/r/Patcherizer-1E04
https://anonymous.4open.science/r/Patcherizer-1E04


Empirical Software Engineering           (2026) 31:50 

Ethical Approval  This study does not involve human participants, animals, or other entities requiring ethical 
oversight. Consequently, no ethical approval was required.

Informed Consent  No human participants were involved in this study, and informed consent was therefore 
not applicable.

References

Allamanis M, Barr ET, Devanbu P, Sutton C (2018) A survey of machine learning for big code and natural-
ness. ACM Comput Surv (CSUR) 51(4):1–37

Alon U, Sadaka R, Levy O, Yahav E (2020) Structural language models of code. In: Proceedings of the 37th 
international conference on machine learning, ICML 2020, 13-18 July 2020, Virtual Event, Proceed-
ings of Machine Learning Research, vol. 119, pp 245–256. PMLR. ​h​t​t​p​:​/​​/​p​r​o​c​​e​e​d​i​n​g​​s​.​m​l​​r​.​p​r​e​​s​s​/​v​1​​1​9​/​
a​l​o​​n​2​0​a​​.​h​t​m​l

Alon U, Zilberstein M, Levy O, Yahav E (2019) code2vec: learning distributed representations of code. 
PACMPL 3(POPL) 40:1–40:29. https://doi.org/10.1145/3290353

Banerjee S, Lavie A (2005) Meteor: An automatic metric for mt evaluation with improved correlation with 
human judgments. In: Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures 
for machine translation and/or summarization, pp 65–72

Barr ET, Brun Y, Devanbu P, Harman M, Sarro F (2014) The plastic surgery hypothesis. In: Proceedings of 
the 22nd ACM SIGSOFT international symposium on foundations of software engineering, pp 306–317

Brody S, Alon U, Yahav E (2020) A structural model for contextual code changes. Proceed ACM Program 
Lang 4(OOPSLA), pp 1–28

Buse RP, Weimer WR (2010) Automatically documenting program changes. In: Proceedings of the IEEE/
ACM international conference on Automated software engineering, pp 33–42

Cabrera Lozoya R, Baumann A, Sabetta A, Bezzi M (2021) Commit2vec: Learning distributed representa-
tions of code changes. SN Comput Sci 2(3):1–16

Ciniselli M, Cooper N, Pascarella L, Poshyvanyk D, Di Penta M, Bavota G (2021) An empirical study on the 
usage of bert models for code completion. In: 2021 IEEE/ACM 18th international conference on mining 
software repositories (MSR), IEEE, pp 108–119

Cordella LP, Foggia P, Sansone C, Vento M (1999) Performance evaluation of the vf graph matching algo-
rithm. In: Proceedings 10th international conference on image analysis and processing, IEEE, pp 
1172–1177

Cortés-Coy LF, Linares-Vásquez M, Aponte J, Poshyvanyk D (2014) On automatically generating commit 
messages via summarization of source code changes. In: 2014 IEEE 14th International working confer-
ence on source code analysis and manipulation, IEEE, pp 275–284

DeFreez D, Thakur AV, Rubio-González C (2018) Path-based function embedding and its application to 
error-handling specification mining. In: Proceedings of the 2018 26th ACM joint meeting on euro-
pean software engineering conference and symposium on the foundations of software engineering, pp 
423–433

Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for 
language understanding. arXiv:1810.04805

Dong J, Lou Y, Zhu Q, Sun Z, Li Z, Zhang W, Hao D (2022) Fira: Fine-grained graph-based code change 
representation for automated commit message generation

Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and infrastructure for analyzing ultra-
large-scale software repositories. In: 2013 35th International conference on software engineering 
(ICSE), IEEE, pp 422–431

Elnaggar A, Ding W, Jones L, Gibbs T, Feher T, Angerer C, Severini S, Matthes F, Rost B (2021) Codetrans: 
Towards cracking the language of silicon’s code through self-supervised deep learning and high perfor-
mance computing. arXiv:2104.02443

Falleri JR, Morandat F, Blanc X, Martinez M, Monperrus M (2014) Fine-grained and accurate source code 
differencing. In: Proceedings of the 29th ACM/IEEE international conference on Automated software 
engineering, pp 313–324. https://doi.org/10.1145/2642937.2642982

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D et al (2020) Codebert: A 
pre-trained model for programming and natural languages. arXiv:2002.08155

Gao X, Wang B, Duck GJ, Ji R, Xiong Y, Roychoudhury A (2021) Beyond tests: Program vulnerability repair 
via crash constraint extraction. ACM Trans Softw Eng Methodol (TOSEM) 30(2):1–27

1 3

Page 43 of 50     50 

http://proceedings.mlr.press/v119/alon20a.html
http://proceedings.mlr.press/v119/alon20a.html
https://doi.org/10.1145/3290353
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2104.02443
https://doi.org/10.1145/2642937.2642982
http://arxiv.org/abs/2002.08155


Empirical Software Engineering           (2026) 31:50 

Ghanbari A, Marcus A (2022) Patch correctness assessment in automated program repair based on the impact 
of patches on production and test code

Gissurarson MP, Applis L, Panichella A, van Deursen A, Sands D (2022) Propr: property-based automatic 
program repair. In: Proceedings of the 44th international conference on software engineering, pp 
1768–1780

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: 
Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp 249–
256. JMLR Workshop and Conference Proceedings

Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth 
international conference on artificial intelligence and statistics, pp 315–323. JMLR Workshop and Con-
ference Proceedings

Guo D, Ren S, Lu S, Feng Z, Tang D, Liu S, Zhou L, Duan N, Svyatkovskiy A, Fu S, Tufano M, Deng SK, 
Clement CB, Drain D, Sundaresan N, Yin J, Jiang D, Zhou M (2021) Graphcodebert: Pre-training code 
representations with data flow. In: 9th International conference on learning representations, ICLR 2021, 
Virtual Event, Austria, May 3-7. OpenReview.net. https://openreview.net/forum?id=jLoC4ez43PZ

Henkel J, Lahiri SK, Liblit B, Reps T (2018) Code vectors: Understanding programs through embedded 
abstracted symbolic traces. In: Proceedings of the 2018 26th ACM joint meeting on european software 
engineering conference and symposium on the foundations of software engineering, pp 163–174

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the 
IEEE conference on computer vision and pattern recognition, pp 770–778

Hindle A, German DM, Holt R (2009) Software process recovery using recovered unified process views. In: 
2009 IEEE International conference on software maintenance, IEEE, pp 285–294

Hoang T, Dam HK, Kamei Y, Lo D, Ubayashi N (2019) Deepjit: an end-to-end deep learning framework for 
just-in-time defect prediction. In: 2019 IEEE/ACM 16th international conference on mining software 
repositories (MSR), IEEE, pp 34–45

Hoang T, Kang HJ, Lo D, Lawall J (2020) Cc2vec: Distributed representations of code changes. In: Proceed-
ings of the ACM/IEEE 42nd international conference on software engineering, pp 518–529

Hossin M, Sulaiman MN (2015) A review on evaluation metrics for data classification evaluations. Int J Data 
Mining Knowl Manag Process 5(2):1

Huang Y, Jia N, Zhou HJ, Chen XP, Zheng ZB, Tang MD (2020) Learning human-written commit messages 
to document code changes. J Comput Sci Technol 35(6):1258–1277

Jacobsen C, Zhuang Y, Duraisamy K (2025) Cocogen: Physically consistent and conditioned score-based 
generative models for forward and inverse problems. SIAM J Sci Comput 47(2):C399–C425

Jiang S, Armaly A, McMillan C (2017) Automatically generating commit messages from diffs using neural 
machine translation. In: Proceedings of the 32nd IEEE/ACM international conference on automated 
software engineering, IEEE, pp 135–146

Jiang N, Lutellier T, Tan L (2021) Cure: Code-aware neural machine translation for automatic program 
repair. In: 2021 IEEE/ACM 43rd International conference on software engineering (ICSE), IEEE, pp 
1161–1173

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2012) A large-scale empirical 
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Kamei Y, Fukushima T, McIntosh S, Yamashita K, Ubayashi N, Hassan AE (2016) Studying just-in-time 
defect prediction using cross-project models. Empirical Softw Eng 21(5):2072–2106

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980
Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. 

arXiv:1609.02907
Li M, Miao Z, Zhang XP, Xu W (2021) An attention-seq2seq model based on crnn encoding for automatic 

labanotation generation from motion capture data. In: ICASSP 2021-2021 IEEE international confer-
ence on acoustics, speech and signal processing (ICASSP), IEEE, pp 4185–4189

Lin B, Wang S, Wen M, Mao X (2022) Context-aware code change embedding for better patch correctness 
assessment. ACM Trans Softw Eng Methodol (TOSEM) 31(3):1–29

Linares-Vásquez M, Cortés-Coy LF, Aponte J, Poshyvanyk D (2015) Changescribe: A tool for automatically 
generating commit messages. In: 2015 IEEE/ACM 37th IEEE international conference on software 
engineering, IEEE, vol. 2, pp 709–712

Lin B, Wang S, Liu Z, Liu Y, Xia X, Mao X (2023) Cct5: A code-change-oriented pre-trained model. In: 
Proceedings of the 31st ACM joint European software engineering conference and symposium on the 
foundations of software engineering, pp 1509–1521

Liu S, Gao C, Chen S, Yiu NL, Liu Y (2020c) Atom: Commit message generation based on abstract syntax 
tree and hybrid ranking. IEEE Trans Softw Eng

1 3

   50   Page 44 of 50

https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.02907


Empirical Software Engineering           (2026) 31:50 

Liu Q, Liu Z, Zhu H, Fan H, Du B, Qian Y (2019) Generating commit messages from diffs using pointer-
generator network. In: 2019 IEEE/ACM 16th International conference on mining software repositories 
(MSR), IEEE, pp 299–309

Liu F, Li G, Wei B, Xia X, Fu Z, Jin Z (2020a) A self-attentional neural architecture for code completion with 
multi-task learning. In: Proceedings of the 28th international conference on program comprehension, 
pp 37–47

Liu F, Li G, Zhao Y, Jin Z (2020b) Multi-task learning based pre-trained language model for code completion. 
In: Proceedings of the 35th IEEE/ACM international conference on automated software engineering, 
pp 473–485

Liu Z, Tang Z, Xia X, Yang X (2023) Ccrep: Learning code change representations via pre-trained code model 
and query back. In: 45th IEEE/ACM International conference on software engineering, ICSE 2023, Mel-
bourne, Australia, IEEE, May 14-20, 2023, pp 17–29. https://doi.org/10.1109/ICSE48619.2023.00014

Liu Z, Xia X, Hassan AE, Lo D, Xing Z, Wang X (2018) Neural-machine-translation-based commit message 
generation: how far are we? In: Proceedings of the 33rd ACM/IEEE international conference on auto-
mated software engineering, pp 373–384

Luo C, Zhan J, Xue X, Wang L, Ren R, Yang Q (2018) Cosine normalization: Using cosine similarity instead 
of dot product in neural networks. In: International conference on artificial neural networks, Springer, 
pp 382–391

Networkx (2018) In: Alhajj R, Rokne JG (eds.) Encyclopedia of social network analysis and mining, 2nd 
Edition. Springer. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​0​7​/​9​7​​8​-​1​-​4​​9​3​9​-​7​1​​3​1​-​2​​_​1​0​0​7​7​1

Nie LY, Gao C, Zhong Z, Lam W, Liu Y, Xu Z (2021) Coregen: Contextualized code representation learning 
for commit message generation. Neurocomputing 459:97–107

Niemeyer M, Geiger A (2021) Giraffe: Representing scenes as compositional generative neural feature 
fields. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 
11453–11464

Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine transla-
tion. In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp 
311–318

Pian W, Peng H, Tang X, Sun T, Tian H, Habib A, Klein J, Bissyandé TF (2023) Metatptrans: A meta learn-
ing approach for multilingual code representation learning. Proceedings of the AAAI conference on 
artificial intelligence 37:5239–5247

Pian W, Peng H, Tang X, Sun T, Tian H, Habib A, Klein J, Bissyandé TF (2022) Metatptrans: A meta learning 
approach for multilingual code representation learning. arXiv:2206.06460

Qi Z, Long F, Achour S, Rinard M (2015) An analysis of patch plausibility and correctness for generate-and-
validate patch generation systems. In: Proceedings of the 2015 international symposium on software 
testing and analysis, pp 24–36

Qin L, Liu T, Che W, Kang B, Zhao S, Liu T (2021) A co-interactive transformer for joint slot filling and 
intent detection. In: ICASSP 2021-2021 IEEE International conference on acoustics, speech and signal 
processing (ICASSP), IEEE, pp 8193–8197

Rouge LC (2004) A package for automatic evaluation of summaries. In: Proceedings of workshop on text 
summarization of ACL, Spain

See A, Liu PJ, Manning CD (2017) Get to the point: Summarization with pointer-generator networks. 
arXiv:1704.04368

Shariffdeen R, Noller Y, Grunske L, Roychoudhury A (2021) Concolic program repair. In: Proceedings of the 
42nd ACM SIGPLAN international conference on programming language design and implementation, 
pp 390–405

Shaw P, Uszkoreit J, Vaswani, A (2018) Self-attention with relative position representations. In: Walker 
MA, Ji H, Stent A (eds.) Proceedings of the 2018 Conference of the North American Chapter of the 
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New 
Orleans, Louisiana, USA, June 1–6, 2018, Volume 2 (Short Papers), pp 464–468. Association for Com-
putational Linguistics. https://doi.org/10.18653/v1/n18-2074

Shi E, Wang Y, Du L, Zhang H, Han S, Zhang D, Sun H (2021) CAST: enhancing code summarization with 
hierarchical splitting and reconstruction of abstract syntax trees. In: Moens M, Huang X, Specia L, Yih 
SW (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 
EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, pp 4053–4062. Asso-
ciation for Computational Linguistics. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​8​​6​5​3​/​v​​1​/​2​0​2​​1​.​e​m​n​l​​p​-​m​a​​i​n​.​3​3​2

Svyatkovskiy A, Zhao Y, Fu S, Sundaresan N (2019) Pythia: Ai-assisted code completion system. In: Pro-
ceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 
pp 2727–2735

1 3

Page 45 of 50     50 

https://doi.org/10.1109/ICSE48619.2023.00014
https://doi.org/10.1007/978-1-4939-7131-2_100771
http://arxiv.org/abs/2206.06460
http://arxiv.org/abs/1704.04368
https://doi.org/10.18653/v1/n18-2074
https://doi.org/10.18653/v1/2021.emnlp-main.332


Empirical Software Engineering           (2026) 31:50 

Tang X, Zhu R, Sun T, Wang S (2021) Moto: Enhancing embedding with multiple joint factors for chi-
nese text classification. In: 2020 25th International conference on pattern recognition (ICPR), IEEE, 
pp 2882–2888

Tao Y, Kim S, Kim M et al (2012) How do software engineers understand code changes? an exploratory 
study in industry. In: Proceedings of the 20th international symposium on the foundations of software 
engineering, pp 1–10

Thunes C (2013) javalang: pure python java parser and tools
Tian H, Li Y, Pian W, Kabore AK, Liu K, Habib A, Klein J, Bissyandé TF (2022a) Predicting patch correct-

ness based on the similarity of failing test cases. ACM Trans Softw Eng Methodol
Tian H, Liu K, Kaboré AK, Koyuncu A, Li L, Klein J, Bissyandé TF (2020) Evaluating representation learn-

ing of code changes for predicting patch correctness in program repair. In: 2020 35th IEEE/ACM Inter-
national conference on automated software engineering (ASE), IEEE, pp 981–992

Tian H, Liu K, Li Y, Kaboré AK, Koyuncu A, Habib A, Li L, Wen J, Klein J, Bissyandé TF (2022b) The best 
of both worlds: Combining learned embeddings with engineered features for accurate prediction of cor-
rect patches. arXiv:2203.08912

Tian H, Tang X, Habib A, Wang S, Liu K, Xia X, Klein J, Bissyandé TF (2022c) Is this change the answer 
to that problem? correlating descriptions of bug and code changes for evaluating patch correctness. 
arXiv:2208.04125

Van der Maaten L, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(11)
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Attention 

is all you need. Adv Neural Inf Process Syst 30
Vijayakumar AK, Cogswell M, Selvaraju RR, Sun Q, Lee S, Crandall D, Batra D (2016) Diverse beam 

search: Decoding diverse solutions from neural sequence models. arXiv:1610.02424
Wang K, Singh R, Su Z (2017) Dynamic neural program embedding for program repair. arXiv:1711.07163
Wang S, Tang D, Zhang L, Li H, Han D (2022a) Hienet: Bidirectional hierarchy framework for automated 

icd coding. In: International conference on database systems for advanced applications, Springer, pp 
523–539

Wang S, Tang D, Zhang L, Li H, Han D (2022b) Hienet: Bidirectional hierarchy framework for automated 
ICD coding. In: Bhattacharya A, Lee J, Li M, Agrawal D, Reddy PK, Mohania MK, Mondal A, Goyal 
V, Kiran RU (eds.) Database Systems for Advanced Applications - 27th International Conference, DAS-
FAA 2022, Virtual Event, April 11-14, 2022, Proceedings, Part II, Lecture Notes in Computer Science, 
Springer, vol. 13246, pp 523–539. https://doi.org/10.1007/978-3-031-00126-0_38

Wang X, Wang S, Feng P, Sun K, Jajodia S (2021b) Patchdb: A large-scale security patch dataset. In: 2021 
51st Annual IEEE/IFIP international conference on dependable systems and networks (DSN), IEEE, 
pp 149–160

Wang Y, Wang W, Joty SR, Hoi SCH (2021d) Codet5: Identifier-aware unified pre-trained encoder-decoder 
models for code understanding and generation. In: Moens M, Huang X, Specia L, Yih SW (eds.) Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 
2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, pp 8696–8708. Association for 
Computational Linguistics. ​h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​r​​g​/​​1​0​.​​1​8​6​​5​3​​​/​v​1​/​2​​​0​2​1​.​e​​​m​n​l​​p​-​​m​a​i​n​.​6​8​5

Wang Y, Wang W, Joty S, Hoi SC (2021c) Codet5: Identifier-aware unified pre-trained encoder-decoder 
models for code understanding and generation. arXiv:2109.00859

Wang S, Wang X, Sun K, Jajodia S, Wang H, Li Q (2023) Graphspd: Graph-based security patch detec-
tion with enriched code semantics. In: 2023 IEEE Symposium on security and privacy (SP), IEEE, pp 
2409–2426

Wang H, Xia X, Lo D, He Q, Wang X, Grundy J (2021a) Context-aware retrieval-based deep commit mes-
sage generation. ACM Trans Softw Eng Methodol (TOSEM) 30(4):1–30

Wang M, Zheng D, Ye Z, Gan Q, Li M, Song X, Zhou J, Ma C, Yu L, Gai Y et al (2019) Deep graph library: 
A graph-centric, highly-performant package for graph neural networks. arXiv:1909.01315

Wilcoxon F (1992) Individual comparisons by ranking methods. In: Breakthroughs in statistics: Methodol-
ogy and distribution, Springer, pp 196–202

Xu S, Yao Y, Xu F, Gu T, Tong H, Lu J (2019) Commit message generation for source code changes. In: 
IJCAI

Yefet N, Alon U, Yahav E (2020) Adversarial examples for models of code. Proceed ACM Program Lang 
4(OOPSLA):1–30

Yin P, Neubig G, Allamanis M, Brockschmidt M, Gaunt AL (2019) Learning to represent edits. In: Interna-
tional conference on learning representations. https://openreview.net/forum?id=BJl6AjC5F7

Zhang F, Chen B, Zhao Y, Peng X (2023) Slice-based code change representation learning. In: 2023 IEEE 
International conference on software analysis, evolution and reengineering (SANER), IEEE, pp 
319–330

1 3

   50   Page 46 of 50

http://arxiv.org/abs/2203.08912
http://arxiv.org/abs/2208.04125
http://arxiv.org/abs/1610.02424
http://arxiv.org/abs/1711.07163
https://doi.org/10.1007/978-3-031-00126-0_38
https://doi.org/10.18653/v1/2021.emnlp-main.685
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/1909.01315
https://openreview.net/forum?id=BJl6AjC5F7


Empirical Software Engineering           (2026) 31:50 

Zhang Z, Han X, Liu Z, Jiang X, Sun M, Liu Q (2019c) Ernie: Enhanced language representation with infor-
mative entities. arXiv:1905.07129

Zhang Z, Han X, Liu Z, Jiang X, Sun M, Liu Q (2019d) ERNIE: Enhanced language representation with 
informative entities. In: Proceedings of the 57th annual meeting of the association for computational 
linguistics, pp 1441–1451. Association for Computational Linguistics, Florence, Italy. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​8​6​5​3​/​v​1​/​P​1​9​-​1​1​3​9​​​​​​​

Zhang S, Tong H, Xu J, Maciejewski R (2019b) Graph convolutional networks: a comprehensive review. 
Computat Soc Netw 6(1):1–23

Zhang Y, Wallace B (2015) A sensitivity analysis of (and practitioners’ guide to) convolutional neural net-
works for sentence classification. arXiv:1510.03820

Zhang J, Wang X, Zhang H, Sun H, Wang K, Liu X (2019a) A novel neural source code representation based 
on abstract syntax tree. In: 2019 IEEE/ACM 41st international conference on software engineering 
(ICSE), IEEE, pp 783–794

Zhou Y, Siow JK, Wang C, Liu S, Liu Y (2021) Spi: Automated identification of security patches via com-
mits. ACM Trans Softw Eng Methodol (TOSEM) 31(1):1–27

Zhou X, Xu B, Han D, Yang Z, He J, Lo D (2023) Ccbert: Self-supervised code change representation learn-
ing. In: 2023 IEEE International conference on software maintenance and evolution (ICSME), IEEE, 
pp 182–193

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a 
publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manu-
script version of this article is solely governed by the terms of such publishing agreement and applicable law.

Xunzhu Tang  is PhD student with the Interdisciplinary Centre for 
Security, Reliability and Trust (SnT) at the University of Luxembourg. 
He received his master degree in Computer System and Architecture 
from Huazhong University of Science and Technology, China in 2021. 
His research interests include patch explanation, bug finding and 
fixing.

Haoye Tian  is assistant professor in Aalto University. Before that, he 
worked as Postdoc with Prof. Bach Le. Prior to that, He finished his 
PhD at the Interdisciplinary Centre for Security, Reliability and Trust 
(SnT) at the University of Luxembourg. He received his master degree 
in Software Engineering from Chongqing University, China in 2019. 
His research interests include automated program repair, patch valida-
tion, machine and deep learning.

1 3

Page 47 of 50     50 

http://arxiv.org/abs/1905.07129
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
http://arxiv.org/abs/1510.03820


Empirical Software Engineering           (2026) 31:50 

Weiguo Pian  is a PhD student with the Interdisciplinary Centre for 
Security, Reliability and Trust (SnT) at the University of Luxembourg, 
supervised by Prof. Tegawendé F. Bissyandé. He received his bachelor 
and master degrees before joining SnT as a doctoral researcher. His 
research interests span machine learning, computer vision, and soft-
ware engineering, with a particular focus on continual learning, multi-
modal representation, and automated software repair. His work has 
been published in top-tier venues including ICCV, NeurIPS, AAAI, 
ASE, FSE, TOSEM, and TSE.

Saad Ezzini  is an assistant professor in King Fahd University of Petro-
leum and Minerals. He received his PhD in software engineering at the 
University of Luxembourg in 2022. And in 2017 he received his mas-
ter’s degree in Data Science at USMBA, Morocco. His research inter-
ests include, Requirements Engineering, AI for SE, and Natural 
Language Processing.

Abdoul Kader Kaboré  is a Project Officer at the University of Luxem-
bourg. He obtained his PhD from the Interdisciplinary Centre for 
Security, Reliability and Trust (SnT) at the University of Luxembourg, 
under the supervision of Prof. Tegawendé F. Bissyandé. His research 
interests include AI for Software Engineering, Software Security, and 
Automated Program Repair. He has contributed to several influential 
works on patch correctness prediction, code change representation, 
and cross-language code clone detection, with publications in leading 
venues such as ICSE, ASE, FSE, TOSEM, and TSE.

1 3

   50   Page 48 of 50



Empirical Software Engineering           (2026) 31:50 

Andrew Habib  is a Research Scientist in Industrial AI at the ABB Cor-
porate Research Center in Ladenburg, Germany. Previously, he served 
as a post-doctoral researcher within the TruX research group at the 
Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the 
University of Luxembourg, collaborating with Tegawendé Bissyandé 
and Jacques Klein. He earned his PhD in Computer Science from the 
Software Lab (SOLA) at TU Darmstadt under the supervision of 
Michael Pradel. Andrew holds a double MSc in Engineering, Security, 
and Mobile Computing from the Technical University of Denmark 
(DTU) and the Norwegian University of Science and Technology 
(NTNU) under the NordSecMob program, and a double BSc in Com-
puter Science and Mathematics from the American University in 
Cairo, with an exchange semester at Portland State University.

Kisub Kim  is an Assistant Professor at DGIST (Daegu Gyeongbuk 
Institute of Science and Technology), South Korea. He received his 
PhD in Computer Science from the Interdisciplinary Centre for Secu-
rity, Reliability and Trust (SnT) at the University of Luxembourg in 
2021. His research interests include AI for Software Engineering, with 
a focus on code search, bug localization, program repair, and deep 
learning for software engineering tasks. He has published in leading 
venues such as TSE, ICSE, ASE, and FSE.

Jacques Klein  is a researcher and professor in software engineering 
and software security who develops innovative approaches and tools 
towards helping the research and practice communities build trustwor-
thy software. He is a member of the Interdisciplinary Centre for Secu-
rity, Reliability and Trust (SnT) at the University of Luxembourg. He 
received a Ph.D. degree in Computer Science from the University of 
Rennes, France, in 2006. His main areas of expertise are threefold: (1) 
Software Security (Malware detection, prevention and dissection, 
Static Analysis for Security, Vulnerability Detection, etc.); (2) Soft-
ware Reliability (Software Testing, Semi-Automated and Fully-Auto-
mated Program Repair, etc.); (3) Data Analytics (Multi-objective 
reasoning and optimization, Model-driven data analytic, Time Series 
Pattern Recognition, etc.).

1 3

Page 49 of 50     50 



Empirical Software Engineering           (2026) 31:50 

Tegawendé F. Bissyandé  is research scientist with the Interdisciplinary 
Center for Security, Reliability and Trust at the University of Luxem-
bourg. He holds a PhD in computer from the Université de Bordeaux 
in 2013, and an engineering degree (MSc) from ENSEIRB. His 
research interests are in debugging, including bug localization and 
program repair, as well as code search, including code clone detection 
and code classification. He has published research results in all major 
venues in Software engineering (ICSE, ESEC/FSE, ASE, ISSTA, 
EMSE, TSE). His research is supported by FNR (Luxembourg 
National Research Fund). Dr. Bissyandé is the PI of the CORE REC-
OMMEND project on program repair, under which the current work 
has been performed.

Authors and Affiliations

Xunzhu Tang1  · Haoye Tian2 · Weiguo Pian1 · Saad Ezzini3 · Abdoul Kader Kaboré1 · 
Andrew Habib1 · Kisub Kim4 · Jacques Klein1 · Tegawendé F. Bissyandé1

	
 Kisub Kim
kisub.kim@dgist.ac.kr

Xunzhu Tang
xunzhu.tang@uni.lu

Haoye Tian
tianhaoyemail@gmail.com

Weiguo Pian
weiguo.pian@uni.lu

Saad Ezzini
s.ezzini@lancaster.ac.uk

Abdoul Kader Kaboré
abdoulkader.kabore@uni.lu

Andrew Habib
andrew.a.habib@gmail.com

Jacques Klein
jacques.klein@uni.lu

Tegawendé F. Bissyandé
tegawende.bissyande@uni.lu

1	 SnT, University of Luxembourg, Luxembourg City, Luxembourg
2	 School of Computing and Information Systems, University of Melbourne, Melbourne, 

Australia
3	  School of Computing and Communications, Lancaster University, Lancaster, UK
4	 DGIST, Daegu, Republic of Korea

1 3

   50   Page 50 of 50

http://orcid.org/0000-0002-6377-0884

	﻿Learning to represent code changes
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Intention
	﻿3﻿ ﻿Patcherizer
	﻿3.1﻿ ﻿Handling Incomplete Code Snippets
	﻿﻿3.2﻿ ﻿Code Change Preprocessing
	﻿﻿3.3﻿ ﻿Sequence Intention Encoder
	﻿3.3.1﻿ ﻿Input Layer
	﻿3.3.2﻿ ﻿Transformer Embedding Layer
	﻿3.3.3﻿ ﻿SeqIntention Embedding Layer


	﻿﻿3.4﻿ ﻿Graph Intention Encoder
	﻿3.4.1﻿ ﻿Graph Building

	﻿3.5﻿ ﻿Graph Intention Encoding Details
	﻿3.5.1﻿ ﻿Graph Learning
	﻿3.5.2﻿ ﻿Graph Intention Encoding

	﻿﻿3.6﻿ ﻿Aggregator: Aggregating multi-source Input Embeddings
	﻿﻿3.7﻿ ﻿Pre-training
	﻿﻿3.8﻿ ﻿Fine-tuning for Different Tasks
	﻿3.8.1﻿ ﻿Code Change Description Generation
	﻿3.8.2﻿ ﻿Code Change Correctness Assessment
	﻿3.8.3﻿ ﻿Code Change Intention Detection

	﻿4﻿ ﻿Experimental Design
	﻿﻿4.1﻿ ﻿Implementation
	﻿﻿4.2﻿ ﻿Research Questions
	﻿﻿4.3﻿ ﻿Baselines
	﻿﻿4.4﻿ ﻿Datasets
	﻿﻿4.5﻿ ﻿Metrics

	﻿5﻿ ﻿Experimental Results
	﻿5.1﻿ ﻿[RQ-1]: Performance of Patcherizer
	﻿5.1.1﻿ ﻿RQ-1.1: Code Change Description Generation
	﻿5.1.2﻿ ﻿RQ-1.2: Code Change Correctness Assessment
	﻿5.1.3﻿ ﻿RQ-1.3: Code Change Intention Detection
	﻿5.1.4﻿ ﻿RQ-1.4: Just-in-Time Defect Prediction


	﻿5.2﻿ ﻿[RQ-2]: Ablation Study
	﻿5.2.1﻿ ﻿Code Change Description Generation
	﻿5.2.2﻿ ﻿Code Change Correctness Assessment
	﻿5.2.3﻿ ﻿Code Change Intention Detection
	﻿5.2.4﻿ ﻿Just-in-Time Defect Prediction
	﻿5.2.5﻿ ﻿Ablation Study on Sequence Intention Encoder Components

	﻿5.3﻿ ﻿[RQ-3]: Generalizability and Robustness
	﻿6﻿ ﻿Discussion
	﻿6.1﻿ ﻿Comparison with Slice-Based Code Change Representation
	﻿6.1.1﻿ ﻿Methodological Differences
	﻿6.1.2﻿ ﻿Performance Comparison
	﻿6.1.3﻿ ﻿Novelty and Contributions


	﻿6.2﻿ ﻿Threats to Validity
	﻿6.3﻿ ﻿Limitations
	﻿6.4﻿ ﻿Handling Incomplete Code Information
	﻿6.5﻿ ﻿Extensibility
	﻿6.5.1﻿ ﻿Datasets
	﻿6.5.2﻿ ﻿Evaluation Metrics
	﻿6.5.3﻿ ﻿Experimental Results

	﻿7﻿ ﻿Related Work
	﻿7.1﻿ ﻿Code Change Representation
	﻿7.2﻿ ﻿Applications of Code Change Embeddings

	﻿8﻿ ﻿Conclusion
	﻿References


