
Toward LLM-Driven GDPRCompliance Checking
for Android Apps

Marco Alecci, Nicolas Sannier, Marcello Ceci, Sallam Abualhaija,
Jordan Samhi, Domenico Bianculli, Tegawendé F. Bissyandé, Jacques Klein

University of Luxembourg
Luxembourg, Luxembourg
[name].[surname]@uni.lu

Abstract
Android apps extensively collect sensitive personal data from our de-
vices daily. Despite stringent regulations like the European Union’s
General Data Protection Regulation (GDPR), many applications
(apps) fail to comply with these legal requirements. While previous
studies have focused on the compliance of privacy policies, check-
ing how these policies are implemented in the actual code has not
yet been extensively investigated. Moreover, previous efforts have
often been limited in scope.

This paper explores the potential of Large Language Models
(LLMs) to address the challenge of verifying privacy regulation com-
pliance in Android apps. Specifically, we address scenarios where
source code is unavailable by investigating whether LLM can work
with Smali code—a human-readable representation of Android byte-
code extracted from APK files. Through this exploratory investiga-
tion, we aim to uncover if LLMs can bridge the gap between legal
privacy requirements and their technical implementation in mobile
apps. Through initial experiments, we assess the feasibility and ef-
fectiveness of a straightforward LLM-driven method for identifying
compliance issues and provide directions for our future research ef-
forts to improve our approach and perform large-scale experiments.

1 Introduction
Recent studies have shown that many mobile applications (apps)
may collect sensitive personal information excessively or without
obtaining proper user consent [1–3]. As a result, to protect users,
mobile apps are generally required to adhere to legal frameworks
such as the European Union’s General Data Protection Regulation
(GDPR) [4] on data access, storage, and processing. Apps distributed
through official app stores are expected to be accompanied by a pri-
vacy policy, i.e., an accessible document that outlines how personal
data is handled and how the app complies with GDPR principles,
helping users make informed decisions. In this paper, we focus
specifically on Android apps, which, of course, must also comply
with these regulations.

In the past, several studies have analyzed the compliance of
privacy policies with GDPR regulations through different natural
language processing (NLP) techniques, both in mobile apps and
in more general software systems [1, 5–9]. More recently, with
the rise of Large Language Models (LLMs), many researchers have

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion ’25, June 23–28, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3728508

attempted to use them to identify privacy policy violations, address-
ing the limitations of traditional tools, such as the need for extensive
data labeling and training in traditional approaches [10–13].

Despite extensive research on this topic, a common limitation
arises among these works. Specifically, they focus exclusively on
whether privacy policies—i.e., what developers claim to do—comply
with GDPR, without analyzing the actual behavior or code of the
app. This distinction is crucial because privacy policies may not
always reflect the app’s real data collection and processing prac-
tices [3]. For instance, an app’s privacy policy might comply with
GDPR regulations, while violations within the app code could re-
main undetected. Some works have attempted to explore this by
investigating whether apps truly adhere to their stated privacy poli-
cies [3, 14, 15], using traditional techniques like static and dynamic
analysis, but without checking if the privacy policies comply with
GDPR. Others have focused on specific cases, e.g., cross-border per-
sonal data transfers [16] or limited categories of apps, e.g., health
applications [17]. However, a general-purpose approach that can (1)
directly verify whether Android apps comply with GDPR and simi-
lar regulations—without relying solely on what developers claim in
privacy policies—and (2) assess compliance across all GDPR prin-
ciples is still lacking. Inspired by the increasing use of LLMs in
program analysis, software engineering, and other code-related
tasks [18–28], we aim to check to what extent LLMs can also help
address the gap between GDPR and similar regulations and their
technical implementation in Android apps.

In this paper, we present our vision toward leveraging LLMs
for GDPRCompliance Checking in Android Apps, alongside
initial results and plans for refining our approach and conducting
large-scale experiments. We make two major contributions:

(1) We explore the use of LLMs to directly analyze Android app
code (i.e., Dalvik bytecode [29]) for compliance with privacy
requirements, without requiring prior knowledge or relying on
the app’s privacy policies—i.e., what the developers claim to do
with the data. This forms the essence of our novel idea: we fully
leverage LLM capabilities to examine the app’s code for regulatory
compliance.

(2) We run a preliminary assessment of LLMs’ ability to work with
low-level languages like Smali (a human-readable text format of
Dalvik bytecode), reflecting real-world scenarios where source
code is unavailable.

Given the promising nature of our preliminary results, we discuss
our plans for improvement, challenges to overcome, and strategies
for large-scale experimentation, ultimately aiming to develop a stan-
dalone tool for thorough compliance assessments in Android apps.

https://orcid.org/0000-0002-5963-4599
https://orcid.org/0000-0002-5963-4599
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696630.3728508


Data Availability. The implementation of our approach and the
experimental data are available online [30, 31].

2 Background
GDPR. In the European Union (EU), the GDPR, enforced in 2018,
governs the processing of personal data by companies or organi-
zations, known as data controllers, from individuals within the EU,
referred to as data subjects. It aims to regulate activities such as
the collection, recording, organization, structuring, and storage of
personal data. Compliance against GDPR is essential to avoid hefty
fines and damage to reputation [32]. In this work, we elicited, in close
collaboration with legal experts, detailed privacy requirements con-
cerning fundamental individuals’ rights under GDPR, such as the
right to access, erase, and rectify personal data. These requirements
serve as the foundation of our analysis, ensuring that the app’s data
handling practices align with essential privacy regulations.

Android Bytecode. Android apps are primarily developed in
Java or Kotlin, with their source code compiled into DEX (Dalvik Ex-
ecutable) bytecode stored in .dex files. Since APKs typically contain
only compiled DEX code, the original source code is inaccessible.
Tools like apktool [33] can, however, decompile APKs into Smali, a
low-level, assembly-like language. This paper investigates whether
LLMs can effectively work with Smali.

3 Approach
In this section, we introduce our novel approach, which uses LLMs
to evaluate the compliance of Android apps with privacy require-
ments derived from GDPR regulations. Our method fully lever-
ages LLM capabilities to bridge the gap between natural language
requirements and code, eliminating the need for prior technical
knowledge. An overview of the approach is shown in Figure 1.

Android App
[APK File]

3. LLM
Inference

1. Decompilation

Prompt
Template

Privacy
Requirement Results

2. Preprocessing

Smali
code

Figure 1: Approach Overview.

Our approach takes as input an APK file of the Android app to
be analyzed and a set of privacy requirements expressed in natural
language, such as: “The data subject [user] shall be able to request
from the controller [mobile app] the erasure of their personal data
(GDPR, Articles 13.2(b) and 14.2(c)).” We aim to verify whether the
app satisfies this requirement. The approach is divided into three
phases: ❶ Decompilation, ❷ Preprocessing, and ❸ LLM Inference,
which are described hereafter.

❶ Decompilation. The first step is decompiling the APK using
apktool, which extracts the code, resources, and manifest into a
folder while converting the compiled Dalvik bytecode from .dex
files into human-readable Smali code.

❷ Preprocessing. Since the output from apktool consists of a
large number of ‘.smali’ files of different lengths related to the same
app, this step reorganizes the Smali code into classes and individual
methods, primarily to address the input size limitations of LLMs in
phase 3. Moreover, code originating from system libraries and third-
party libraries is filtered out to focus exclusively on the developer’s
code, as the developer’s code will inherently contain the calls to
these libraries. This filtering process relies on the list of Android
libraries provided by Samhi et al. [34].

❸ LLM Inference. Since the exact locations of interest within
the code are unknown, eachmethod within the apps is used for LLM
inference. More specifically, we created a zero-shot prompt template
that provides the LLM with only a task description and a relevant
question1. Using a prompt without examples helps mitigate the
risk of biasing the outcome, as there are many ways to implement
privacy requirements; moreover, it allows us to thoroughly assess
the LLM’s capabilities without any prior knowledge being provided.
The exact prompt template can be found in our repository.

The LLM is instructed to assume the role of an expert in Android
app security, with a focus on Smali code analysis, and to provide a
binary YES/NO response along with an explanation. This approach
allows for streamlined verification across all app methods without
the need to examine each LLM answer individually, making it easier
to conduct evaluation efficiently due to the large number of meth-
ods. The template is then filled with two key pieces of information:
(1) the specific request for the LLM, which depends on the privacy
requirement being checked, and (2) the Smali code of the method
in question. Finally, the LLM’s answers are parsed and saved into
a results file for later analysis.

3.1 Implementation
We implemented the approach through a series of Python scripts,
which are available in our repository. Specifically, for our experi-
ments with LLMs, we employed Ollama [35], an open-source plat-
form that simplifies running LLMs by providing an efficient HTTP
server for lifecycle management. This platform also allows access
to several pre-trained language models [36]. For our experiments,
we relied on the open source LLaMa-3.1 8B version [37], which
we ran on an Nvidia DGX-V100 Station [38]. Comparing different
LLMs is left for future work, as it will be discussed in Section 5.

4 Preliminary Experiments
In this section, we report on our preliminary experimental evalua-
tion of the proposed approach. Our primary goal is to investigate
whether LLMs can identify implementation elements that
fulfill privacy requirements. To this end, we first outline the
privacy requirement selected for our experiments, followed by a
description of the apps chosen for analysis. Finally, we present the
experimental results and their implications.

4.1 Requirement
We elicited (in close collaboration with legal experts) from GDPR sev-
eral detailed privacy requirements concerning data subject rights,
including the rights to access, rectify, or erase personal data. Our
1Since we have already achieved good results with this straightforward prompting tech-
nique, see Section 4.3, we leave the exploration of other LLM techniques for futurework.

2



requirements elicitation is motivated by two reasons. First, such
requirements are less studied in the literature [39]. Second, these
requirements are highly relevant to the development of mobile apps,
which are frequently interacting with users. We further refine these
requirements to facilitate the compliance checking of mobile apps.
In this work, we scope ourselves to the following requirement (R1):

“The user shall be able to delete their account”

R1 is one way to implement the "Right to Erasure" under GDPR, as
outlined in Article 17, providing users with the ability to request
the deletion of their personal data and offering the most direct way
to exercise this right.

In accordance with the requirement, the prompt template will be
filled with a corresponding action. For instance, for R1, the prompt
will be modified to: “[. . . ] Your objective is to determine if this
method specifically enables the deletion of a user’s account,
which is a critical componentofdataprivacycompliance. [. . . ]”

4.2 Apps Under Analysis.
The main challenge we encountered was the lack of a ground-truth
dataset. This study is indeed the first to analyze low-level language
constructs (i.e., Smali) with LLMs within the context of Android
apps. Second, unlike prior work that compared Smali code against
privacy policies, our analysis directly checks Smali code against
privacy requirements derived from GDPR. Since our objective at
this stage is primarily to evaluate the feasibility and effectiveness
of using LLMs for this task, we tackle this challenge by analyzing
two apps: ❶ RegApp, a demo app we created, and ❷ WordPress2, a
real-world app with more than 10 million downloads.

On the one hand, RegApp (our demo app) was developed to
maintain full control over it, ensuring we know exactly where the
code responsible for meeting the privacy requirements is located,
allowing for fast, straightforward, and comprehensive manual ver-
ification. Furthermore, it serves as an example of how the abstract,
often generic, requirements of the GDPR can be implemented in
practice. On the other hand, WordPress serves as a concrete ex-
ample and is used to explore the challenges that could arise with
real-world apps. Due to the exploratory nature of the work, even
analyzing a small set of real-world apps would have been extremely
impractical due to the time-intensive nature of reverse-engineering
the apps’ code to locate privacy-relevant code. Nevertheless, fur-
ther analysis of more real-world apps is a key aspect of our future
research plans, as discussed in Section 5.

RegApp is implemented in Java with the Google Firebase API [40]
for authentication and real-time database management; the app
simulates real-world app behavior with an external service. The
full source code is available in our repository for other researchers
as a baseline. In the app, the account deletion mechanism is im-
plemented in the MyAccountFragment class through two API calls:
FirebaseUser.delete() removes the user from the Firebase data-
base, and FirebaseDatabase.removeValue() sets all its data to
null. Both methods are typically used together to ensure that all
user-related information is fully cleared.

2https://play.google.com/store/apps/details?id=org.wordpress.android

4.3 Preliminary Results
4.3.1 RegApp. After the first two phases of our approach, 192 Smali
classes were found and restructured into 1388 methods. Through
manual code inspection, we found the two Smali methods imple-
menting the account deletion logic described in Section 4.2. This
indicates that only these two methods are satisfying the privacy
requirements, while the remaining Smali methods do not. It follows
that there can be up to 2 True Positives (i.e., methods that meet
the privacy requirements, where our approach correctly answers
“YES”) and up to 1386 True Negatives (i.e., methods that do not meet
the requirements, where our approach correctly answers “NO”).
The remaining cases are False Positives (i.e., methods incorrectly
labeled with “YES” even if they do not meet the requirements) and
False Negatives (i.e., methods incorrectly labeled “NO” even if they
actually meet the requirements).

We then compared the LLM’s responses with the results of our
manual inspection. The LLM correctly identified both account dele-
tion methods, resulting in 0 False Negatives (FN) and 2 True Posi-
tives (TP). Below, we show an example of one of these true positives.

LLMAnswer [True Positive]: YES. The method is designed to delete
a user’s account when the reauthTask is successful. The code calls
‘delete()’ on the FirebaseUser instance, which is then passed to an
OnCompleteListener to handle the deletion task. This suggests that the
method’s primary purpose is to enable the deletion of a user’s account.

Regarding the other 1386 non-compliant methods, we obtained
1383 True Negatives (TN) and 3 False Positives (FP); we manually
inspected the latter to understand why the LLM provided incorrect
answers. Here is one example:

LLM Answer [False Positive]: YES, The Smali code includes a
condition where the Firebase Authentication service is signed out when
a specificmenu item (nav_log_out) is clicked. This is clear evidence that
this method enables the deletion of a user’s account, which matches
your objective.

The LLM answered “YES”, which is a false positive as this method
only logs the user out of the app. The other false positives are similar
in nature and can be reviewed in our repository. We believe these
types of false positives could be avoided with better-performing
LLMs and an improved prompt strategy (see Section 5). Further
considerations on the results will be outlined in Section 4.4.

4.3.2 WordPress. The first two phases resulted in 380 Smali classes
being restructured into 1296 methods. However, unlike RegApp, we
cannot determine a priori the correct labels (“YES” or “NO”) for
these Smali methods, as this would require locating privacy-relevant
code through reverse engineering (see Section 4.2). Consequently,
the only reliable method of evaluation is conducting a manual val-
idation of the LLM responses to confirm that the flagged methods
comply with the privacy requirement for account deletion. The
LLM answered “YES” for 6 methods and “NO” for 1290 methods.
Among the positive answers, we report the following:

LLM Answer [True Positive]: YES. The method onClick calls
WordPressDB.deleteAccount, which is a clear indication that the
functionality is related to account deletion. The method passes context
and a string (likely identifying the account) to this function, which
returns a boolean indicating success. If the deletion is successful, a toast

3



is shown, and the current activity is finished. If not, an alert dialog is
shown to the user, which provides further interaction options. This
demonstrates a method that handles account deletion.

We manually inspected the Smali code of the method and found
the exact behavior described in the LLM answer. We even installed
the app, created an account, and tried to manually delete it, ob-
serving what was reflected in the Smali code. Another method also
shows similar behavior. Even the WordPressDB.deleteAccount()
method has been flagged as compliant; upon inspection, we ob-
served that it deletes the user account from an SQLite database. In to-
tal, we confirmed 3 Smali methods responsible for the account dele-
tion mechanisms. Unfortunately, as mentioned earlier, we cannot
confirm whether this list of compliant methods is exhaustive (i.e.,
we cannot check for false negatives), as we lack the ground truth
for this app. Regarding the other 3 methods, we consider them false
positives. For example, org.wordpress.android.IntHashMap.remove(I)
was incorrectly flagged as compliant when, in fact, it is merely
a custom IntHashMap implementation. The other false positives
share a similar nature.

4.4 Discussion
After analyzing both apps, we computed Precision for both of them
and Recall only for RegApp (due to limited access to the real-world
app’s source code). For RegApp, despite having a relatively low Preci-
sion (40%), our approach achieves 100% Recall by successfully iden-
tifying both methods that meet the privacy requirement. For Word-
Press, the Precision reached 50%. Althoughwe could not compute Re-
call for it, finding at least one True Positive suggests that the privacy
requirement has been taken (at least partially) into consideration.

Regarding the relatively low values for Precision, three consid-
erations should be made :
(1) The nature of the false positive (for both apps) results suggests

that a better-performing LLM or an improved prompting strat-
egy could potentially solve at least this type of false positive.

(2) In this task, Recall is paramount, as missing relevant methods
would be more problematic—this would entail the need for man-
ually reviewing the entire code to identify the missed methods.

(3) The False Positive Rate (FPR) (FPR=FP/(FP+TN)) is 0.21% on
our demo app. Although some false positives may occur, the
search space for manual verification is significantly reduced
(e.g., for the demo app, it would be enough to manually analyze
five methods instead of more than a thousand).
As emphasized throughout this paper, our main goal is to assess

the feasibility of using LLMs for this task. While the results are
promising, they also reveal areas for improvement. Additionally,
working with a real-world app has allowed us to identify potential
challenges, which we will explore in greater detail in Section 5. Fi-
nally, a more detailed discussion about practical implications is left
for future work, after the completion of large-scale experiments.

5 Conclusions and Research Outlook
This paper outlines our vision of leveraging LLMs to address GDPR
compliance challenges in Android apps. By focusing on Smali code,
we explore the feasibility of using LLMs to analyze app behavior
without requiring source code or relying solely on privacy policies.

Here, we outline our strategy to evolve this proof of concept into
a more robust solution and address challenges that may arise when
working with a larger real-world app dataset.
Future Plans: Our future plans involve iterating over these steps:
(1) Large Scale Experiments. We plan to conduct more exten-

sive experiments using a larger dataset of real-world apps. To
achieve this, we intend to manually analyze a selection of real-
world apps to assess their compliance with a defined set of
requirements. This process will enable us to create a larger
ground-truth dataset based on real-world apps. However, as
explained in Section 4.3.2, we can focus exclusively on precision,
as computing recall would imply fully reverse-engineering a set
of real-world apps, which is impractical. Another option could
be to start with a selection of open-source apps, similar to what
we did with our RegApp.

(2) More Privacy Requirements.We intend to expand our exper-
iments by using a more comprehensive list of privacy require-
ments (starting from the list of requirements we already elicited
with legal experts, see Section 4.1), rather than just the one used
as an example in this paper. Additionally, we aim to explore
how the same requirement can be satisfied at different levels.
For instance, a requirement related to contacting the Data Pro-
tection Officer (DPO) to enable the user to exercise their rights
can be fulfilled in various ways, such as through a direct and
dedicated form or by displaying an email form or a generic link.

(3) CompareDifferent LLMs.We plan to compare different LLMs
with the open-source LLM Llama 3.1–8B version we used, in-
cluding other open-source models such as Mistral [41], as well
as proprietary solutions like GPT-4 [42] or GPT-4o [43].

Challenges: New challenges could emerge when conducting such
larger-scale experiments such as:
(1) Scalability. Given the increasing size and complexity of mobile

apps, [44], scalability issues could arise given the straightfor-
ward nature of our approach. However, some measures could
be taken to address this issue. For example, some extra pre-
processing could be performed through static and/or dynamic
analysis to reduce the amount of code to be analyzed. Moreover,
with the increasing size of input windows in LLMs, it might
be possible to submit an entire Smali class instead of a Smali
method, thus reducing the number of requests sent to the LLM.

(2) Obfuscated code. We also want to investigate whether and to
what extent, our approach can be negatively affected by obfus-
cated code in Android apps, as real-world apps may indeed con-
tain obfuscated code. Recent studies have begun analyzing the
capabilities of LLMs in understanding obfuscated code [45, 46],
but the topic has not yet been extensively explored, making it
difficult to predict any potential drop in performance.

Acknowledgments
This research was funded in whole, or in part, by the Luxem-
bourg National Research Fund (FNR), grant reference NCER22/IS/16
570468/NCER-FT and REPROCESS grant reference C21/IS/16344458.
For the purpose of open access, and in fulfillment of the obligations
arising from the grant agreement, the author has applied a Creative
Commons Attribution 4.0 International (CC BY 4.0) license to any
Author Accepted Manuscript version arising from this submission.

4



References
[1] L. Zhou, C. Wei, T. Zhu, G. Chen, X. Zhang, S. Du, H. Cao, and H. Zhu,

“{POLICYCOMP}: Counterpart comparison of privacy policies uncovers
overbroad personal data collection practices,” in 32nd USENIX Security Symposium
(USENIX Security 23), 2023, pp. 1073–1090.

[2] J. Reardon,Á. Feal, P.Wijesekera,A. E. B.On,N.Vallina-Rodriguez, and S. Egelman,
“50 ways to leak your data: An exploration of apps’ circumvention of the android
permissions system,” in 28th USENIX Security Symposium (USENIX Security 19).
Santa Clara, CA: USENIX Association, Aug. 2019, pp. 603–620. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon

[3] L. Verderame, D. Caputo, A. Romdhana, and A. Merlo, “On the (un) reliability
of privacy policies in android apps,” in 2020 international joint conference on neural
networks (IJCNN). IEEE, 2020, pp. 1–9.

[4] European Parliament and Council of the European Union, “Regulation (EU)
2016/679 of the European Parliament and of the Council,” 2016. [Online].
Available: https://data.europa.eu/eli/reg/2016/679/oj

[5] A. Xiang, W. Pei, and C. Yue, “Policychecker: Analyzing the gdpr completeness of
mobile apps’ privacy policies,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, 2023, pp. 3373–3387.

[6] S. Liu, B. Zhao, R. Guo, G.Meng, F. Zhang, andM. Zhang, “Have you been properly
notified? automatic compliance analysis of privacy policy text with gdpr article
13,” in Proceedings of the Web Conference 2021, 2021, pp. 2154–2164.

[7] O. Amaral Cejas, S. Abualhaija, and L. Briand, “Compai: A tool for gdpr com-
pleteness checking of privacy policies using artificial intelligence,” in IEEE/ACM
International Conference on Automated Software Engineering. Association for
Computing Machinery, 2024.

[8] O. Amaral, S. Abualhaija, D. Torre, M. Sabetzadeh, and L. C. Briand, “Ai-enabled
automation for completeness checking of privacy policies,” IEEE Trans. Software
Eng., vol. 48, no. 11, pp. 4647–4674, 2022.

[9] R. E. Hamdani, M. Mustapha, D. R. Amariles, A. Troussel, S. Meeùs, and
K. Krasnashchok, “A combined rule-based and machine learning approach
for automated gdpr compliance checking,” in Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Law, 2021, pp. 40–49.

[10] S. Hassani, M. Sabetzadeh, D. Amyot, and J. Liao, “Rethinking legal compli-
ance automation: Opportunities with large language models,” arXiv preprint
arXiv:2404.14356, 2024.

[11] D. Rodriguez, I. Yang, J. M. Del Alamo, and N. Sadeh, “Large language models:
a new approach for privacy policy analysis at scale,” Computing, pp. 1–25, 2024.

[12] A. Hooda, R. Khandelwal, P. Chalasani, K. Fawaz, and S. Jha, “Policylr: A logic
representation for privacy policies,” arXiv preprint arXiv:2408.14830, 2024.

[13] A. Goknil, F. B. Gelderblom, S. Tverdal, S. Tokas, and H. Song, “Privacy policy anal-
ysis through prompt engineering for LLMs,” arXiv preprint arXiv:2409.14879, 2024.

[14] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia, T. D. Breaux,
and J. Niu, “Toward a framework for detecting privacy policy violations in android
application code,” in Proceedings of the 38th International conference on software
engineering, 2016, pp. 25–36.

[15] X. Zhang, J. Heaps, R. Slavin, J. Niu, T. Breaux, and X. Wang, “Daisy: Dynamic-
analysis-induced source discovery for sensitive data,” ACM Trans. Softw. Eng.
Methodol., vol. 32, no. 4, 2023. [Online]. Available: https://doi.org/10.1145/3569936

[16] D. S. Guamán, J. M. Del Alamo, and J. C. Caiza, “Gdpr compliance assessment
for cross-border personal data transfers in android apps,” IEEE Access, vol. 9, pp.
15 961–15 982, 2021.

[17] M. Fan, L. Yu, S. Chen, H. Zhou, X. Luo, S. Li, Y. Liu, J. Liu, and T. Liu, “An empirical
evaluation of gdpr compliance violations in android mhealth apps,” in 2020 IEEE
31st international symposium on software reliability engineering (ISSRE). IEEE,
2020, pp. 253–264.

[18] S. Feng and C. Chen, “Prompting is all you need: Automated android bug replay
with large language models,” in Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, 2024, pp. 1–13.

[19] Z. Liu, C. Chen, J. Wang, M. Chen, B. Wu, X. Che, D.Wang, and Q.Wang, “Make
LLM a testing expert: Bringing human-like interaction to mobile gui testing via
functionality-aware decisions,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1–13.

[20] Y. Huang, J. Wang, Z. Liu, Y. Wang, S. Wang, C. Chen, Y. Hu, and Q. Wang,
“Crashtranslator: Automatically reproducing mobile application crashes directly
from stack trace,” in Proceedings of the 46th IEEE/ACM International Conference
on Software Engineering, 2024, pp. 1–13.

[21] W. Zhao, J. Wu, and Z. Meng, “Apppoet: Large language model based an-
droid malware detection via multi-view prompt engineering,” arXiv preprint
arXiv:2404.18816, 2024.

[22] H. Li, Y. Hao, Y. Zhai, and Z. Qian, “Enhancing static analysis for practical bug
detection: An LLM-integrated approach,” Proceedings of the ACM on Programming
Languages, vol. 8, no. OOPSLA1, pp. 474–499, 2024.

[23] Y. Sun, D. Wu, Y. Xue, H. Liu, H. Wang, Z. Xu, X. Xie, and Y. Liu, “Gptscan:
Detecting logic vulnerabilities in smart contracts by combining gpt with program
analysis,” in Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering, 2024, pp. 1–13.

[24] A. Khare, S. Dutta, Z. Li, A. Solko-Breslin, R. Alur, andM. Naik, “Understanding
the effectiveness of large language models in detecting security vulnerabilities,”
arXiv preprint arXiv:2311.16169, 2023.

[25] K. Pei, D. Bieber, K. Shi, C. Sutton, and P. Yin, “Can large language models reason
about program invariants?” in International Conference on Machine Learning.
PMLR, 2023, pp. 27 496–27 520.

[26] W. Ma, S. Liu, Z. Lin, W. Wang, Q. Hu, Y. Liu, C. Zhang, L. Nie, L. Li, and Y. Liu,
“Lms: Understanding code syntax and semantics for code analysis,” arXiv preprint
arXiv:2305.12138, 2023.

[27] W. Sun, C. Fang, Y. You, Y. Miao, Y. Liu, Y. Li, G. Deng, S. Huang, Y. Chen, Q. Zhang
et al., “Automatic code summarization via chatgpt: How far arewe?” arXiv preprint
arXiv:2305.12865, 2023.

[28] A. P. S. Venkatesh, S. Sabu, A. M. Mir, S. Reis, and E. Bodden, “The emergence of
large language models in static analysis: A first look through micro-benchmarks,”
in Proceedings of the 2024 IEEE/ACMFirst International Conference onAI Foundation
Models and Software Engineering, 2024, pp. 35–39.

[29] Google, “Dalvik bytecode forma,” 2024. [Online]. Available:
https://source.android.com/docs/core/runtime/dalvik-bytecode

[30] M. Alecci, “App compliance llm (github repository).” [Online]. Available:
https://github.com/Trustworthy-Software/AppComplianceLLM

[31] ——, “App compliance llm (zenodo resource).” [Online]. Available:
https://zenodo.org/records/15168296

[32] CMS Law, “Gdpr enforcement tracker,” 2024, accessed: 2024-11-04. [Online].
Available: https://www.enforcementtracker.com/

[33] “Apktool,” https://apktool.org/, accessed: 2024-10-04.
[34] J. Samhi, T. F. Bissyandé, and J. Klein, “Androlibzoo: A reliable dataset of libraries

based on software dependency analysis,” in 2024 IEEE/ACM 21st International
Conference on Mining Software Repositories (MSR). IEEE, 2024, pp. 32–36.

[35] “Ollama,” https://ollama.com/, accessed: 2024-10-04.
[36] Ollama, “Ollama: A command-line interface for ai models,” https:

//github.com/ollama/ollama, accessed: 2024-10-04.
[37] M. AI, “Llama 3.1 8b,” https://huggingface.co/meta-llama/Llama-3.1-8B, 2024,

accessed: 2024-10-10.
[38] NVIDIA, “Dgx station system architecturewhitepaper,” 2024, accessed: 2024-10-10.

[Online]. Available: https://www.nvidia.com/en-gb/data-center/resources/dgx-
station-system-architecture-whitepaper/

[39] C. Negri-Ribalta and M. L.-P. C. Salinesi, “Understanding the gdpr from a
requirements engineering perspective — a systematic mapping study on
regulatory data protection requirements,” Requir. Eng., pp. 1–27, 2024.

[40] Google, “Firebase,” 2024, accessed: 2024-11-12. [Online]. Available:
https://firebase.google.com/

[41] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas,
F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux,
P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed, “Mistral 7b,”
2023. [Online]. Available: https://arxiv.org/abs/2310.06825

[42] OpenAI, “Gpt-4 technical report,” 2024. [Online]. Available:
https://arxiv.org/abs/2303.08774

[43] ——, “Gpt-4o system card,” 2024. [Online]. Available: https:
//arxiv.org/abs/2410.21276

[44] J. Gao, L. Li, T. F. Bissyandé, and J. Klein, “On the evolution of mobile app
complexity,” in 2019 24th international conference on engineering of complex
computer systems (ICECCS). IEEE, 2019, pp. 200–209.

[45] C. Patsakis, F. Casino, and N. Lykousas, “Assessing LLMs in malicious code
deobfuscation of real-world malware campaigns,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.19715

[46] A. Swindle, D. McNealy, G. Krishnan, and R. Ramyaa, “Evaluation of large
language models on code obfuscation (student abstract),” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, no. 21, 2024, pp. 23 664–23 666.

5

https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://data.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1145/3569936
https://source.android.com/docs/core/runtime/dalvik-bytecode
https://github.com/Trustworthy-Software/AppComplianceLLM
https://zenodo.org/records/15168296
https://www.enforcementtracker.com/
https://apktool.org/
https://ollama.com/
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://huggingface.co/meta-llama/Llama-3.1-8B
https://www.nvidia.com/en-gb/data-center/resources/dgx-station-system-architecture-whitepaper/
https://www.nvidia.com/en-gb/data-center/resources/dgx-station-system-architecture-whitepaper/
https://firebase.google.com/
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2404.19715

	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Implementation

	4 Preliminary Experiments
	4.1 Requirement
	4.2 Apps Under Analysis.
	4.3 Preliminary Results
	4.4 Discussion

	5 Conclusions and Research Outlook
	Acknowledgments
	References

