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Abstract
Constructing precise and sound call graphs is fundamental for effec-
tive static analysis, yet it remains a significant challenge in today’s
software. Traditionally, researchers have developed sophisticated
algorithms to address this issue, often resulting in increased com-
putational costs. But what if we could provide a simple, cost-effective
way to improve call graphs drastically?

This paper introduces a simple method to largely enhance static
call graphs almost for free, i.e., with 5 min of dynamic analysis and
low overhead. Our approach improves the soundness of call graphs,
thereby benefiting any downstream static analyses based on call
graphs, such as data flow analysis. We demonstrate the efficacy
of our method on Android apps by integrating it with FlowDroid,
the leading static analysis tool for Android apps. Additionally, we
outline future directions for achieving even more accurate and
sound call graphs in static analysis.

1 Introduction
Call graphs are fundamental structures in static analysis. They rep-
resent the calling relationships between procedures or methods
within a program. They are primarily used to understand program
behaviors in interprocedural contexts, e.g., with interprocedural
data flow analyses. Over the years, researchers have put huge ef-
forts into improving call graph construction techniques to handle
the complexities of modern programming practices. For instance,
techniques have been introduced to address challenges posed by
reflection [1–5], dynamic loading, callbacks, inter-component com-
munications [6–9], threading, native code integration [10, 11], etc.
These mechanisms, while powerful for developers, introduce dy-
namic and implicit calling relationships that are difficult to capture
accurately with traditional static analysis methods.

However, these advanced techniques come with significant com-
putational costs. As the complexity of software increases, the re-
sources required to calculate the sound call graphs increase drasti-
cally [12]. Despite these efforts, recent studies [12, 13], indicate that
the soundness of call graphs is still of low quality, i.e., they miss
many edges. For example, in [12], the authors recently showed that
at least 40% of the methods are missed in call graphs built with the
biggest overapproximation (i.e., CHA [14]). This is mainly due to
the inherent difficulties in accounting for implicit calls, libraries,
frameworks, constructor methods, or other language-specific fea-
tures (e.g., reflection and dynamic loading). This leads to incomplete

static analyses. Addressing these challenges not only requires sig-
nificant research effort but also highlights the computational costs,
making analyses impractical for large software systems.

This paper presents a radical new idea that offers a straight-
forward and efficient solution to improve call graph construction
almost for free. Our approach is unique in that it requires minimal
computational resources –only about 5 minutes–making it practical
and cost-effective and does not necessitate extensive computational
power or complex algorithms.

Our approach is straightforward and consists of two main steps:
❶ compute a dynamic call graph: we generate a dynamic call graph
by instrumenting a given app and collecting runtime data during
execution; ❷ enhance the static call graph: we extract entry points
from the dynamic call graph and incorporate them into the static
call graph construction algorithm as additional entry points.

Hybrid analysis, i.e., the integration of dynamic and static analy-
sis, is already known, well described by Ernst et al. [15]. While some
techniques have adopted hybrid analysis, these efforts typically fo-
cus on specific use cases, such as vulnerability detection [16–19]
(i.e., at the analysis level) or addressing limited mechanisms, such
as reflection [20] (i.e., at the model level). In contrast, the novelty of
our approach lies in leveraging dynamic analysis to identify new
entry points for call graphs to improve the overall quality of the call
graph in general, i.e., not specific mechanisms.

We demonstrate the efficiency of our novel idea through evalua-
tion of real-world Android apps–highly event-driven software sys-
tems. Our results show significant improvements in the soundness
of call graphs with only 5 min of dynamic analysis. The advance-
ment brought by our technique not only benefits static analysis, but
also has broader implications for software engineering practices
that rely on program behavior (e.g., learning practices). Although
our idea marks a step forward, we acknowledge the need to go
further. Future work needs to focus on refining our method to ad-
dress the remaining challenges posed by: ① dynamic analysis; and
② implicit program behaviors, i.e., connecting discontinuities.
Artifacts. We make all our artifacts available: https://anonymous.
4open.science/r/Improving-Call-Graph-With-Runtime-Information-
E6EA

The remainder of the paper is as follows. First, in Section 2, we
describe the problem of call graph construction in general. Then,
we provide our novel idea to improve call graphs in Section 3. In
section 4, we propose a first proof of concept of our technique.
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Section 5 describe our empirical setup, and Section 6 describe our
preliminary results. Eventually, we provide future research direc-
tions in Section 7 and conclude in Section 8.

2 Problems with Call Graph Construction
Call graph construction algorithms require explicit entry points to
start building a call graph. Traditional software has a clear starting
point, i.e., a main method, from which a call graph can be built.
However, modern software that is event-driven, such as mobile
apps, web apps, or GUI programs, poses challenges to call graph
construction algorithms. Indeed, these programs do not have single
entry points, which hinders sound call graph construction. Let us
explain: ❶ In event-drive software, the flow of execution is deter-
mined by events (e.g., user inputs such as clicks, swipes, etc., or
sensors) rather than a sequential main program flow. There is no
single entry point like a main method. Instead, multiple event han-
dlers or callbacks serve as potential starting points for execution
(e.g., when a user clicks on a button, this would trigger and start a
new action that is not in the main execution flow); ❷ Many meth-
ods, particularly event handlers, are not explicitly called within
software code. Instead, they are invoked by libraries, frameworks,
or runtime environment in response to specific events. These im-
plicit invocations mean that static analysis tools may miss these
methods, as they do not appear in the software code under anal-
ysis; ❸ Event handler methods act as entry points in call graphs.
However, since their invocation is managed externally, they are not
visible in the software code. Hence, identifying these entry points
requires understanding the interaction of software with libraries,
frameworks, or the runtime environment, which is challenging be-
cause it is computationally expensive; ❹ Some of these mechanisms
are already known to the community. However, due to the lack
of comprehensive documentation, and with frequent updates and
variations across versions, it is challenging to keep comprehensive
lists of these mechanisms up to date.

Let us now consider an example of such a mechanism in Java
with the Spring framework [21]. With Spring, methods can be
invoked implicitly through annotations such as @PostConstruct.
These methods are called directly by the framework during specific
phases of the software, lifecycle, without any explicit invocation
in the software code itself. Listing 1 depicts a code example of this
mechanism.

1 @Component
2 public class ComplexService {
3 public ComplexService() { /* constructor */ }
4 @PostConstruct
5 public void init() { /* do something */ }
6 }

Listing 1: An example of an implicit mechanism with the
Spring Java framework

In this example, the @Component annotation (line 1) tells Spring
to detect this class and create a bean instance [21]. When the bean is
instantiated, the constructor (line 3) is called. The @PostConstruct
annotation (line 4) marks the init() method (line 5) to be called
implicitly by the Spring framework. There is no explicit call to init()

in the software code, i.e., the developer never calls this method in
its code. This means the control flow leading to init() is not
visible in the software code. Therefore, traditional call graph
construction algorithms, whichwill not see a call to init(), will not
include this method in the call graph and might miss a substantial
amount of code, which makes the final call graph unsound and
leads to incomplete static analysis.

3 Proposed Idea to Improve Call Graphs
Our idea lies in dynamic analysis. We aim to improve static call
graphs with data collected during dynamic analysis. Dynamic anal-
ysis observes a software behavior and captures precise information,
such as methods invocations, including those that are difficult to
detect statically. Indeed, if an event handler, a callback, or any other
implicit mechanism is called (which static analysis might miss), it
is observed during a dynamic analysis.

Our approach is therefore straightforward: we aim to collect
runtime data to construct a dynamic call graph, which represents the
calling relationships between methods that happened at runtime,
i.e., it is highly precise.

Figure 1: Example of how static call graph is improved. Blue
nodes are static call graph nodes, the dotted node is the entry
point. Red nodes are dynamic call graph entry points. Green
nodes are new static nodes discovered thanks to the dynami-
cally discovered entry points

Eventually, given a dynamic call graph, we can easily identify
its entry points, i.e., the root nodes of this dynamic call graph. The
set of entry points includes –provided they have been executed–
implicit mechanisms since they were never called by the software
itself but by, e.g., an external framework. As a result, improving
static call graph construction with these entry points becomes
straightforward since they can easily be integrated into the call
graph construction algorithm as additional entry points, as shown
in Figure 1: this is the core of our novel idea.

4 Proof of Concept
In this paper, we aim to demonstrate our novel idea with a first proof
of concept. Our proof of concept focuses on the Android ecosystem
as a use case given its highly event-driven nature. Nonetheless,
the underlying concept is broadly applicable to any software sys-
tem. This section describes how we achieved Android call graph
improvement with our technique. We remind that our technique
lies in two main steps: ① a dynamic analysis to build a dynamic
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call graph; and ② the dynamic call graph is used to improve the
static call graph.

4.1 Dynamic Analysis
To obtain the dynamic call graph of a given app, we used AppRun-
ner [22], which instruments the target app to send call graph events.
The host computer establishes a network connection with the app
and receives the call graph events. AppRunner uses the call graph
events to build a shadow stack for each thread, mimicking the
Dalvik stack in the target app. Note that since AppRunner instru-
ments the app code, these shadow stacks only contain app code, due
to the Dalvik system code not being instrumentable. AppRunner
utilizes the shadow stacks to build a dynamic call graph. Finally,
we output the dynamic call graph as JSON files, with a separate
entry for each edge. Each entry identifies the caller statement and
the encompassing method as well as the callee method signature.
We modified AppRunner to compute and output a set of “active
components” for each entry. This set contains Android components
that were active during that call. When the dynamic stack trace of
the corresponding thread contains a callback method of an Android
component, we consider this component active. Note that AppRun-
ner links threads together, i.e., when UI thread calls Thread.start,
the spawned thread will be linked to UI thread.

Figure 2: Stackframes of the UI thread and a spawned thread.
AppRunner combines the threads using a thread edge.

As an example, consider Figure 2. Assume that we want to insert
the edge from OtherThread.run to OtherThread.doRunCode into
the dynamic callgraph. In order to determine the active component,
we traverse the dynamic stack backward until we reach the entry
point of the thread. Since the OtherThread.run method is not a
component callback, we follow the thread edge created by AppRun-
ner to the UI thread. When starting a thread, AppRunner creates a
snapshot of the dynamic stack trace at the thread starting location,
in this case, virtualinvoke thr.start() in the startThread
method. We then follow the dynamic stack of the UI thread in the
same fashion as the created thread. This time, we encounter the
MainActivity.onCreate callback. Thus, MainActivity is the ac-
tive component for this edge. Note that there could be other compo-
nents that call MainActivity.startThread or create thread that
runs OtherThread.run. In this case, these other components would
also be considered active components, which is why we collect a
set of active components. Note that this algorithm does not always
lead to an active component. For example, when the user taps on
a button, the UI thread has no application code stack trace prior
to the onClick handler. In these cases, we consider the currently
visible activity as the active component.

4.2 Static Analysis
In this work, we modified the state-of-the-art static analysis tool
FlowDroid [23] with runtime execution data. We have modified
FlowDroid to take runtime data into account by adding an engine
that loads dynamic call graphs, which are provided as JSON files
generated from the previous dynamic analysis phase. This engine
not only parses the dynamic call graph data but also computes the
entry points and establishes a mapping between each entry point
and its corresponding Android component. For each entry point
identified in the dynamic call graph, we applied the following strat-
egy: ① For entry points that are attached to a component—such
as an Activity or Service—we insert a call to the corresponding
method within the dummy main method of that component (Flow-
Droid internally constructs these dummymain methods to simulate
the lifecycle and callback methods of Android components); and
② For entry points not associated with any specific component,
we add calls to these methods in the dummy main method of the
application itself. After integrating the dynamic entry points, we
execute FlowDroid’s call graph construction algorithm, which relies
on Soot [24] and the SPARK [25] algorithm (the default call graph
construction algorithm for FlowDroid).

5 Empirical Setup
This section describes the setup of our experiments.
Dataset. For our experiments, we relied on a dataset of 100 apps
from 2024 randomly collected from the AndroZoo repository [26].
Experiment Setup. We ran all of our experiments on a server ma-
chine with 144 Intel Xeon Gold 6154 CPU cores and 3 TB of physical
memory. Note that we limited thememory for the used JVMs, which
is described respectively for dynamic and static analysis below.
Dynamic Analysis. For each app of our dataset, we ran Mon-
key [27] on a Samsung XCover Pro with Android 13 for 5 min. We
used AppRunner to collect the dynamic call graph data. AppRunner
utilizes OpenJDK 22, and we specified a maximum heap size of 500
GiB. Note: our study does not aim to reach high code coverage dur-
ing code execution, rather we show that simple dynamic analysis
can lead to substantial static call graph improvement. Nevertheless,
① recent studies show that though more sophisticated approaches
exist, Monkey still achieves the best coverage performace [28, 29];
and ② it has also recently be shown that after 5 min, the proportion
of code covered using Monkey reaches a “plateau” [29].
Static Analysis. For each app of our dataset, we have run Flow-
Droid with and without the dynamic call graph improvement to
compare the call graphs together. We used OpenJDK 19 and limited
the maximum memory size to 50 GiB.

6 Preliminary Results
This section presents the results of our empirical study.
Apps successfully analyzed. First, we note that from the 100 ran-
dom apps, we were able to extract 78 dynamic call graphs. 12 apps
were split APKs, meaning the code and resources are distributed
among multiple APK files. Currently, AppRunner does not support
such split app yet. In one case, the app used the Jiagu packer. In 7
cases, the original app was broken prior to any modification. In two
apps, we encountered an error with the Soot framework (which
FlowDroid relies on).
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Call graph comparison of 78 random apps. The average and
median numbers of nodes in the call graph computed by FlowDroid
without the dynamic call graph data are, respectively, 50 626 and
25 899. Concerning the call graph generated by FlowDroid with
dynamic call graph data, the numbers are, respectively, 65 534 and
46 307. This result shows the improvement in the number of nodes
covered thanks to the dynamic data, i.e., up to 15 000 more nodes
on average, as shown by Table 1. We remind that the nodes added
as entry points to the static call graph are of the highest degree of
precision since they were collected dynamically.

Table 1: Comparison of call graph size with and without
runtime data (RD = Runtime Data, RT = Run Time)

Average # of nodes Median # of nodes Average RT Median RT
Without RD 50 626 25 899 367s 123s
With RD 65 534 46 307 444s 189s

Figure 3 shows the distribution of the number of nodes in the
call graphs generated by FlowDroid with and without runtime data
on the 100 random apps.

0 20000 40000 60000 80000 100000 120000 140000 160000
Call Graph Size

With DC

Without DC

Figure 3: Distribution of the number of nodes in the call
graphs generated by FlowDroid with and without runtime
data on the 100 random apps (DC = Dynamic Call Graph)

Overhead. But, does our technique bring too much static com-
putation overhead? We have measured the time taken to improve
call graphs for each app with and without the runtime data. The
distribution of the time taken to compute call graphs is shown
in Figure 4. The average time taken without runtime data is 367
seconds, and this increases to 444 seconds when runtime data is
included. The median times are 123 seconds without runtime data
and 189 seconds with it. This indicates that on average, only an
additional 77 seconds are needed to improve and augment the call
graph by up to 15 000 nodes through the static analysis, i.e., this
does not include the 5 minutes required for dynamic analysis.

0 200 400 600 800 1000 1200
Time Elapsed (seconds)

With DC

Without DC

Figure 4: Distribution of the number of seconds needed to
run the call graph construction algorithm on the 100 random
apps. (DC = Dynamic Call Graph)

Data Flow Analysis. Additionally, we have run FlowDroid with
the default configuration and the default list of sources and sinks
on the 78 apps without and with the runtime data. Without the

runtime data, FlowDroid could find 105 data flows, whereas with
the runtime data it could find 152 data flows. These results indicate
that improving call graphs also improves downstream analysis,
which can then analyze more relevant code that was previously
overlooked (soundness improved at the model level). We manually
checked 10 data flows that were not reported without the runtime
data and confirm that they are true positive, i.e., there is a path in
the code from the source to the sink.

7 Future Plans
This section outlines the work we plan to do to turn our first proof
of concept into a better and more sophisticated approach. Our plan
spans over 8 major research directions:

(1) We first plan to conduct larger experiments, i.e., with more apps
to better highlight the improvement at a large scale.

(2) We also intend to measure the improvement in terms of–not
only call graph–data flow improvement, i.e., can our technique
provide more and better data flows (to, e.g., detect data leaks).

(3) We plan to investigate the quality of the edges that are added
in the static call graph thanks to the runtime data, i.e., are they
true-positives or false-positives?

(4) We also plan to improve FlowDroid by developing an all-in-
one solution that integrates a dynamic analysis phase—such as
a five-minute execution—and automatically incorporates the
resulting dynamic call graph into the static analysis.

(5) We intend to explore methods for better linking between compo-
nents at the method level. For instance, an entry point collected
from dynamic analysis that originates from an external frame-
work might be connected to another method, from which it
was called. For instance, the connection between the start()
and run() methods (from the Thread class), where run() is
considered an entry point in the dynamic call graph since it is
triggered by Java itself and not in the client code. To enhance
data flow analysis, we need to find solutions that accurately
represent these method connections within the call graph.

(6) We plan to conduct an analysis by merging the static and dy-
namic call graphs directly instead of only considering entry
points and let the call graph construction algorithm to build the
graph. Then we would compare the results with those obtained
from our current proof of concept.

(7) We aim to compare our methodology using different call graph
construction algorithms. Indeed, our current approach relies on
SPARK, we are interested in evaluating other algorithms such
as CHA, RTA, or VTA.

(8) We plan to generalize our approach to other programming lan-
guages and environments, such as Java EE.

8 Conclusion
In this paper, we have presented a radical new idea offering a
straightforward and cost-effective solution to drastically improve
the soundness of call graphs. Our preliminary results indicate that
this technique improves call graphs and can be further refined to
offer even better call graphs to static program analysis tools.
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9 Data Availability
To promote transparency and facilitate reproducibility, our arti-
facts are publicly available: https://anonymous.4open.science/r/
Improving-Call-Graph-With-Runtime-Information-E6EA
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