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Audio classification systems, powered by deep neural networks (DNNs), are integral to various applications
that impact daily lives, like voice-activated assistants. Ensuring the accuracy of these systems is crucial since
inaccuracies can lead to significant security issues and user mistrust. However, testing audio classifiers presents
a significant challenge: the high manual labeling cost for annotating audio test inputs. Test input prioritization
has emerged as a promising approach to mitigate this labeling cost issue. It prioritizes potentially misclassified
tests, allowing for the early labeling of such critical inputs and making debugging more efficient. However,
when applying existing test prioritization methods to audio-type test inputs, there are some limitations: 1)
Coverage-based methods are less effective and efficient than confidence-based methods. 2) Confidence-based
methods rely only on prediction probability vectors, ignoring the unique characteristics of audio-type data. 3)
Mutation-based methods lack designed mutation operations for audio data, making them unsuitable for audio-
type test inputs. To overcome these challenges, we propose AudioTest, a novel test prioritization approach
specifically designed for audio-type test inputs. The core premise is that tests closer to misclassified samples are
more likely to be misclassified. Based on the special characteristics of audio-type data, AudioTest generates
four types of features: time-domain features, frequency-domain features, perceptual features, and output
features. For each test, AudioTest concatenates its four types of features into a feature vector and applies
a carefully designed feature transformation strategy to bring misclassified tests closer in space. AudioTest
leverages a trained model to predict the probability of misclassification of each test based on its transformed
vectors and ranks all the tests accordingly. We evaluate the performance of AudioTest utilizing 96 subjects,
encompassing natural and noisy datasets. We employed two classical metrics, Percentage of Fault Detection
(PFD) and Average Percentage of Fault Detected (APFD), for our evaluation. The results demonstrate that
AudioTest outperforms all the compared test prioritization approaches in terms of both PFD and APFD. The
average improvement of AudioTest compared to the baseline test prioritization methods ranges from 12.63%
to 54.58% on natural datasets and from 12.71% to 40.48% on noisy datasets.
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1 Introduction

Audio classification [30] has emerged as a critical research area within the deep learning field, which
enables the categorization of audio signals into predefined classes. It plays a crucial role in various
applications that impact our daily lives. For example, some modern electric vehicles integrate voice
recognition to enable essential functionalities such as unlocking doors or lowering windows in
response to users’ voice commands [25]. Moreover, some software applications leverage voice
recognition for identity verification and access control, such as the WeChat Voiceprint Lock [48].

Ensuring the accuracy and reliability of audio classifiers is crucial because it can directly impact
their effectiveness in various fields and thus affect user trust. For example, in the field of mobile
devices [37], inaccurate voice recognition can lead to severe consequences. If a smartphone’s
voice-activated system mistakenly identifies an unauthorized user as an authorized one, it could
result in unauthorized access to sensitive personal information. Moreover, an unauthorized user
could make unauthorized purchases or transfer funds, severely damaging the owner’s financial
security.
Testing is typically considered a fundamental practice for ensuring the quality of DNN-based

systems [19]. However, there is a significant challenge in testing audio classifiers: labeling audio-
type test inputs to verify the correctness of predictions can be costly [75]. This challenge mainly
arises from the following factors: 1) manual annotation is still the mainstream method [19]; 2) test
sets can be large-scale, increasing labeling efforts; 3) domain-specific knowledge can be required
for labelling audio-type test inputs. For example, in the health monitoring field [57], labeling audio
data can require medical expertise. When labeling heart murmurs, regular annotators may not
be capable of performing these tasks, and it can rely on experts with a medical background for
annotation, which further increases the labeling cost.
To address the labelling cost problem, one intuitive solution in the field of DNN testing is to

identify and prioritize tests that are more likely to reveal system errors (i.e., inputs that are more
likely to be misclassified by the model). This is also known as test prioritization [19, 75, 77]. By
identifying such bug-revealing test cases early, testers/developers can label these informative tests
sooner to debug and repair the DNN system more efficiently.
In the literature [19, 75, 77], several DNN-oriented test prioritization approaches have been

proposed, which can be broadly classified into coverage-based [14, 49, 60, 78], confidence-based [19,
77], and mutation-based approaches [44, 75]. Coverage-based methods, such as CTM [80], adapt
traditional software testing techniques to the specific requirements of DNN testing. These methods
focus on maximizing the coverage of the DNN’s decision logic. Confidence-based approaches
leverage the DNN model’s prediction confidence for each test input for test prioritization. These
methods consider that test samples for which the model’s predictions are more uncertain are more
likely to be misclassified by themodel. For example, DeepGini [19] utilizes Gini Scores for measuring
the uncertainty of the model’s predictions on tests and leverages this uncertainty to determine
the probability of a test being misclassified by the DNN model. Mutation-based approaches utilize
mutation analysis to identify potentially misclassified DNN tests. For example, PRIMA [75] and
NodeRank [44] proposed new mutation operators, including model and input mutation operators,
and utilized mutation testing for test prioritization.

The aforementioned prioritization approaches have the following advantages: 1) Coverage-based
approaches aim to maximize coverage metrics, such as neuron activation or path coverage, to
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explore diverse behaviors of the DNN model. 2) Confidence-based methods, such as DeepGini,
are computationally efficient. 3) Mutation-based approaches have been proven effective in test
prioritization. However, when applying the aforementioned approaches to audio-type test cases for
test prioritization, they have the following limitations:
• Coverage-based test prioritization methods have been demonstrated to be less effective and
efficient compared to confidence-based methods.

• Confidence-based methods prioritize test inputs solely based on the prediction probability vectors
of the DNN model without taking into account the unique characteristics of audio-type test data.
For example, given a test set 𝑇 and a model𝑀 to be evaluated, confidence-based methods rely
solely on the prediction probability vectors generated by𝑀 for each 𝑡 ∈ 𝑇 . For each test input
𝑡 , the model𝑀 produces a probability vector, 𝑃𝑀 (𝑡) = {𝑝1, 𝑝2, . . . , 𝑝𝑛}, where 𝑝𝑖 represents the
probability that model𝑀 predicts 𝑡 belongs to the 𝑖-th class. However, these methods utilize only
this probability vector 𝑃𝑀 (𝑡) for test prioritization and do not consider the unique characteristics
of audio test data when prioritizing tests.

• The mutation-based test prioritization approaches have not designed mutation operations for
audio-type data. Therefore, they are not suitable for audio-type test inputs. Specifically, mutation-
based approaches propose mutation operators mainly for images, text, or predefined features. For
example, shuffling selected characters to generate mutations for text or changing the colors of
selected pixels to create mutations for images. However, these mutation operators cannot be di-
rectly adapted to audio data, making mutation-based approaches unsuitable for test prioritization
on audio data.
In this paper, we propose AudioTest, a novel test prioritization approach specifically designed for

audio-type test cases. The core premise of the AudioTest method is that tests closer to misclassified
samples are more likely to be misclassified. AudioTest extracts the following four types of features
based on the characteristics of audio-type data for test prioritization. The generated four features
contribute to solving the limitations of existing test prioritization approaches. Specifically, these
features: 1) extract the information of the audio test set itself, overcoming the shortcomings
of confidence-based methods, which ignore the dataset information of the test set; 2) enhance
effectiveness, addressing the low effectiveness of coverage-based approaches; and 3) are specifically
tailored for audio datasets, addressing the limitations of mutation-based methods: these methods
are designed specifically for images/text/predefined features and are not suitable for audio data.
• Time-Domain Features (TD) TD is extracted from the time-domain representation of audio,
including time duration, zero-crossing rate, short-time energy, and amplitude. TD can provide
key information about the basic characteristics of the audio signal.

• Frequency-Domain Features (FD) FD is extracted from the frequency representation of audio,
including spectral centroid, spectral bandwidth, spectral contrast, and spectral flatness. FD can
reflect the spectral characteristics of the audio signal.

• Perceptual Features (PF) PF reflects the human auditory system’s perception of audio, including
mel-frequency cepstral coefficients, pitch, and harmonic-to-noise ratio. These features reflect
subjective perception.

• Output Features (OF) OF captures the model’s prediction for an audio test input.
Specifically, AudioTest leverages the four types of features to rank test inputs through the

following four steps: 1) Feature Generation For each test in the test set, AudioTest first generates
its four types of features. 2) Feature Concatenation For each test, AudioTest concatenates all its
four types of features to construct a feature vector. 3) Feature TransformationAudioTest applies
a tree-based model to transform the feature vector of each test, which is inspired by the work of
He et al. [27]. After transformation, misclassified tests cluster more closely together, and correctly
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classified tests also cluster more closely. This allows the classification model used by AudioTest
to better distinguish misclassified and correctly classified tests, thereby achieving more effective
test prioritization. 4) Ranking AudioTest utilizes a trained model to predict the misclassification
probability of each test based on its transformed feature vector. Finally, AudioTest ranks all tests
in the test set based on their misclassification probabilities.
AudioTest successfully addresses the limitations of existing test prioritization approaches: 1)

To overcome the relatively low effectiveness of coverage-based approaches, AudioTest leverages
the unique characteristics of audio data to perform test prioritization, achieving high effectiveness
and outperforming all the compared test prioritization approaches. 2) To address the limitation of
confidence-based approaches in ignoring the crucial information inherent in the audio test set itself,
AudioTest integrates the audio test set information by generating audio-specific features (i.e.,
time-domain features, frequency-domain features, and perceptual features). AudioTest combines
these three dataset-specific features with output features (derived from the model’s prediction
probability vector) to achieve effective test prioritization. 3) To overcome the limitations of mutation-
based methods, where mutation operators are not designed for audio data, AudioTest’s feature
generation methods are specifically designed for audio data, enabling test prioritization tailored
specifically for audio datasets. Compared to the existing test prioritization approaches, AudioTest
has the following novelty:
• Feature generation specifically for audio-type test inputs AudioTest specifically extracts
and leverages features unique to audio-type data, which is not commonly addressed in traditional
DNN test prioritization methods.

• Feature transformation strategy AudioTest employs a feature transformation method that
enhances AudioTest’s classification model to better classify misclassified and correctly classified
test inputs, thereby improving the effectiveness of test prioritization.

• Novel and confirmed premise for test prioritization AudioTest is founded on a novel
premise that tests closer to misclassified samples are more likely to be misclassified, which is
confirmed in our designed preliminary study (cf. Section 3.1).
AudioTest can be utilized in various audio contexts. For example, in a health monitoring system,

DNN models are utilized to predict health conditions based on audio signals such as heartbeats,
breathing, and coughs. Incorrect predictions can lead to significant issues. For instance, if the system
mistakenly identifies an abnormal heartbeat as normal, it can fail to alert healthcare providers,
resulting in undiagnosed health conditions and delayed treatment. In this context, AudioTest can
be used to identify and prioritize audio samples that are more likely to be misclassified by the
model. These potentially misclassified samples can be prioritized for manual checks, reducing the
instances of delayed treatment and allowing patients to receive more timely care.
We evaluate AudioTest’s performance utilizing 96 subjects (i.e., paired audio-type datasets

and DNN models). The evaluation includes both natural and noisy datasets. The selected datasets
and models for evaluation are widely used in the field of audio classifiers [8, 20, 83]. We utilized
two classical evaluation metrics, Percentage of Fault Detection (PFD) and Average Percentage of
Fault Detected (APFD), to evaluate AudioTest. These metrics are widely adopted to assess the
effectiveness of test prioritization [19, 77]. The experimental results demonstrate that AudioTest
outperforms all the compared test prioritization approaches in terms of both PFD and APFD. The
average improvement of AudioTest over the baseline prioritization methods ranges from 12.63%
to 54.58% on natural datasets and from 12.71% to 40.48% on noisy datasets. We publish our dataset,
results, and tools to the community on Zenodo1. To sum up, our work has the following major
contributions:
1https://zenodo.org/records/13961855

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA032. Publication date: July 2025.

https://zenodo.org/records/13961855


AudioTest: Prioritizing Audio Test Cases ISSTA032:5

• Approach.We propose AudioTest, a novel test prioritization approach specifically designed
for audio-type test cases.

• Study. We evaluate AudioTest utilizing 96 subjects involving natural and noisy test inputs. We
compare AudioTest with several existing DNN test prioritization approaches. Our experimental
results demonstrate the effectiveness of AudioTest.

• Performance Analysis. We evaluate the contributions of different types of features to Au-
dioTest’s effectiveness through a carefully designed ablation study. Additionally, we explore to
what extent the variation of parameter settings impacts AudioTest’s effectiveness to evaluate
its stability.
The rest of this paper is organized as follows. Section 2 introduces the background on deep

learning for audio classification and test prioritization techniques. Section 3 presents the specific
methodology of AudioTest. Section 4 exhibits the design of our study. Section 5 presents the
experimental results and analysis. Section 6 discusses the potential threats to the validity of
AudioTest, and Section 7 reviews the related work. Finally, Section 8 concludes the paper.

2 Background

2.1 Deep Learning for Audio Classification

Audio classification [30] analyzes audio signals, assigning them to categories based on features.
In the literature, Kong et al. [42] proposed PANN, a pre-trained audio neural network trained on
the large-scale AudioSet dataset [23]. PANN employs a variety of convolutional neural network
(CNN) architectures, which combine raw waveform and log-mel spectrogram inputs to capture
rich time-frequency representations. These models efficiently extract hierarchical audio features
from input spectrograms. Desplanques et al.[12] proposed ECAPA-TDNN, an advanced speaker
verification model that builds upon the x-vector framework [67]. The model processes audio data
by extracting Mel-Frequency Cepstral Coefficients as input features. The generated embeddings
are fed into fully connected layers that map the representations into class probabilities. Martinez
et al. [52] developed a speech intelligibility model that processes audio by leveraging automatic
speech recognition (ASR) techniques. The model extracts phoneme probabilities using a Time Delay
Neural Network architecture, which is specifically designed to capture temporal dependencies in
speech signals. Wang et al. [74] proposed CAM++, an efficient speaker verification network for
audio classification. CAM++ processes input spectrograms using a front-end convolution module
to extract time-frequency features and pass them through a densely connected TDNN backbone to
capture temporal patterns. Chen et al. [8] proposed ERes2Net, a speaker verification framework
designed to leverage both local and global feature fusion. By augmenting the original Res2Net
architecture, ERes2Net integrates an Attentional Feature Fusion (AFF) mechanism to dynamically
emphasize significant features.

2.2 Test Input Prioritization for DNNs

Test prioritization is crucial in software testing [4, 45, 58, 71, 72, 80, 81] for determining the
optimal order of unlabelled tests. In DNN testing [9, 19, 75], test prioritization strategies fall into
three main categories: coverage-based [80], confidence-based [19, 77], and mutation-based [75]
approaches. Coverage-based methods, such as CTM [80], focus on maximizing the coverage of the
DNN’s decision logic. Confidence-based methods prioritize tests based on the DNN’s uncertainty,
with approaches such as DeepGini [19], Vanilla Softmax, PCS, and Entropy [77] showing high
effectiveness. Mutation-based approaches, such as PRIMA [75], use mutation analysis for test
prioritization. In addition to the aforementioned three types of test prioritization methods, there
are also methods that leverage a combination of these categories. For example, Wei et al. proposed
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Fig. 1. Workflow of testing audio systems

EFFIMAP [76], an efficient test prioritization method that integrates both the coverage-based
principle and mutation analysis. First, EFFIMAP generates model mutants, and leverages execution
traces to predict whether a test case can kill a mutant. Then, the EFFIMAP method evaluates the
effectiveness of test cases comprehensively through a metric called killing coverage, which refers
to the proportion of mutants killed by a test case. EFFIMAP prioritizes tests based on this killing
coverage. However, when applying the aforementioned approaches to audio-type tests, several
limitations have emerged. Coverage-based methods have been shown to perform less efficiently
and effectively compared to confidence-based approaches. Confidence-based methods rely solely
on the prediction probability vectors output by the DNN model to perform test prioritization.
These approaches do not take into account the crucial information of the audio test set itself
for test prioritization. Furthermore, mutation-based test prioritization approaches propose new
mutation operators for test prioritization, and these operators are mostly designed for images,
text, or predefined features. Such operators cannot be directly applied to audio data. As a result,
mutation-based approaches are not suitable for test prioritization in audio datasets. In this paper, we
propose AudioTest, a test prioritization approach specifically designed for audio-type tests. Figure 1
illustrates its fundamental workflow for testing audio classification systems. First, AudioTest
extracts features from the input training set. Based on the extracted features, AudioTest trains
a ranking model that predicts the probability of a test being misclassified based on its feature
representation. Once the ranking model is trained, it evaluates a given test set by calculating the
misclassification score for each test. This enables AudioTest to rank all tests. Developers can then
focus more on labeling the potentially misclassified tests.

3 Approach

3.1 Preliminary Study

The key premise of AudioTest is that tests closer to misclassified samples are more likely to be

misclassified. To the best of our knowledge, we are the first to propose this premise, and no prior
work has proposed this premise or proposed an assumption requiring validation. We conducted a
carefully designed preliminary study to validate the proposed premise.
Experimental DesignWe first calculated the number of misclassified tests among the nearest 𝑛
tests surrounding each misclassified test and took the average. Then, we calculated the number of
misclassified tests surrounding each correctly classified test and took the average. We visualized
the experimental results (cf. Figure 2) to support the premise. Specifically, Formula 1 calculates the
average number of misclassified tests among the nearest 𝑛 tests (𝑛 = 30, 40, 50, . . . , 150) surrounding
each misclassified sample. For example, if 𝑛 = 100, it means that we calculated the average number
of misclassified tests among 100 tests surrounding a misclassified sample.

𝑀̄ =
1
𝑁

𝑁∑︁
𝑖=1

𝑀𝑖 (1)
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where 𝑁 refers to the total number of misclassified samples.𝑀𝑖 represents the number of misclassi-
fied samples around the 𝑖-th misclassified sample.
Moreover, Formula 2 calculates the average number of misclassified tests among the nearest 𝑛

tests surrounding each correctly classified sample.

𝐶 =
1
𝐾

𝐾∑︁
𝑖=1

𝑀𝑖 (2)

where 𝐾 refers to the total number of correctly classified samples. 𝑀𝑖 represents the number of
misclassified samples around the 𝑖-th correctly classified sample.

Our preliminary study was conducted using datasets that are commonly employed in the field of
audio classification (cf. Section 4.2.1). These datasets were extensively used in academic research [21,
22, 26, 28, 47, 65]. Moreover, these datasets have attracted significant attention from researchers
and engineers for in-depth analysis on the widely recognized data science competition platform
Kaggle [38]. Moreover, to ensure the quality of the collected data, we conducted a manual review
of the integrity and quality of each dataset, ensuring the links were correct and the content
was accurate. Additionally, we verified the actual usage of these datasets within the research
community, confirming that they have been extensively utilized by researchers. Through this, we
aim to guarantee the accuracy of the data as well as ensure its reliability and broad recognition in
both academic and practical applications.
Results and findings Figure 2 shows the results of the preliminary study. The X-axis represents
selecting 𝑛 tests closest to the original test. The Y-axis represents the number of misclassified tests
among the 𝑛 tests closest to the original test. The red curve represents the average number of
misclassified tests around amisclassified sample when selecting the𝑛 tests closest to the original test.
The black curve represents the average number of misclassified tests around a correctly classified
sample. From Figure 2, we see that the red curve (representing the number of misclassified tests
around a misclassified sample) consistently lies above the black curve (representing the number
of misclassified tests around a correctly classified sample), and this trend remains consistent
across different neighborhood sizes 𝑁 . This indicates that the density of misclassified tests around
misclassified samples is higher than that around correctly classified samples, suggesting that
misclassified tests are more likely to cluster. This observation forms the basis of AudioTest’s
premise: tests closer to misclassified samples are more likely to be misclassified.
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Fig. 2. Average number of misclassified tests around a misclassified/correctly classified sample

3.2 Overview

Figure 3 shows AudioTest’s workflow. It takes an audio test set 𝑇 and a model 𝑀 as input, and
outputs a sorted test set 𝑇 ′ with samples more likely to be misclassified prioritized at the top.
Details of each step are presented in Sections 3.3 to 3.6.
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Fig. 3. Overview of AudioTest

❶ Step1: Feature Extraction For each test sample 𝑡 in the test set 𝑇 , AudioTest utilizes the tool
Librosa [53] (a Python library for audio analysis) to process the audio data and extract features.

❷ Step2: Feature Concatenation Next, AudioTest concatenates the extracted features for each
test 𝑡 . After concatenation, each test 𝑡 has a corresponding feature vector, denoted as 𝑉𝑡 , in the
format [value 1, value 2, ..., value n].

❸ Step3: Feature Transformation For each test 𝑡 ’s feature vector𝑉𝑡 , AudioTest performs feature
transformation. Specifically, AudioTest uses 𝑁 decision trees to transform𝑉𝑡 to a new vector𝑉 ′

𝑡 .
The objective is to enhance the classification model used by AudioTest in its ability to classify
misclassified samples and correctly classified samples, thereby enhancing the effectiveness of
test prioritization.

❹ Step4: Ranking We trained a classification model. By inputting the transformed feature vector
of each test 𝑡 ∈ 𝑇 into the classification model, we extracted an intermediate result (a probability
value). This probability value indicates the probability of a test being misclassified by the model.
AudioTest ranked all the tests based on this probability value and output the sorted test set 𝑇 ′.
The ranking process in the context of audio classification contributes to two main aspects: im-

proving the efficiency of model debugging and enhancing the audio classification model. Specifically,
1) After ranking, tests with a higher probability of being misclassified are prioritized higher. These
tests are more likely to reveal potential faults in the audio classification model. By prioritizing
such tests, developers and testers can focus more on these fault-revealing tests and ensure early
diagnosis, thereby improving debugging efficiency. 2) These fault-revealing tests can be used to
retrain the audio classification model to improve its performance. Existing studies have proven
that such a retraining strategy is effective in enhancing the DNN models [19].

3.3 Step1: Feature Extraction

In the first step, for each test 𝑡 ∈ 𝑇 , AudioTest employs Librosa [53], a widely-used Python library
for audio analysis, to extract features from the test (an audio). These features provide a detailed
representation of the audio signals. For each test 𝑡 ∈ 𝑇 , we extracted four different types of features:
• Time-Domain Features (TD) Time-domain features are extracted directly from the time-domain
representation of an audio-type test input, which can include time duration, zero-crossing rate,
short-time energy, and amplitude. Time duration is the total length of the audio. The zero-crossing
rate reflects the number of times the audio crosses the zero axis, also referred to as the frequency
of the signal. Short-time energy is the energy of the audio signal calculated over a short time
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window. Amplitude represents the strength of the signal. Time-domain features can provide key
information about the basic characteristics of the audio signal.

• Frequency-Domain Features (FD) Frequency-domain features are extracted from the frequency
representation of the audio signal. These features provide important information about the signal’s
frequency content and distribution. FD include spectral centroid, spectral bandwidth, spectral
contrast, and spectral flatness, which reflect the center position of the spectrum, the width of the
distribution, the contrast between different frequency bands, and the flatness of the spectrum,
respectively. These features can reflect the spectral characteristics of the audio signal.

• Perceptual Features (PF) Perceptual features reflect the subjective perception of audio by the
human auditory system. They include four crucial aspects: 1) Mel-Frequency Cepstral Coefficients,
reflecting human sound perception; 2) Chromagram, representing the energy distribution of the
twelve semitones for analysis; 3) Pitch, reflecting the fundamental frequency; and 4) Harmonic-
to-Noise Ratio, measuring the ratio of harmonic to noise components in the signal. Perceptual
features can reflect the subjective perception of sound by the human auditory system.

• Output Features (OF) Output features capture the model’s prediction information for an audio-
type test input. To obtain the output features of a test, we input it into the target model, and the
model will output a probability vector representing the probabilities of the test belonging to each
class. Here, "each class" refers to the predefined labels that the model is trained to classify a test
input into. For example, in the audio dataset UrbanSound [65] used in our study, class examples
include: "air conditioner", "car horn", and "children playing".

3.4 Step2: Feature Concatenation

For each test 𝑡 ∈ 𝑇 , AudioTest concatenates all four types of features to generate a feature vector,
denoted as 𝑉𝑡 . The format of 𝑉𝑡 is: [TD, FD, PF, OF], which refers to the four types of features
respectively. The size of 𝑉𝑡 ranges from 191 to 231 dimensions. Specifically, the TD, FD, and PF
features have sizes of 4, 50, and 135 dimensions, respectively, while the OF features range from 2 to
41 dimensions (The dimensions of OF vary because the output dimensions differ across different
datasets). We added a specific example to illustrate the extracted features: TD: [𝑡1, 𝑡2, . . . , 𝑡𝑖 ]; FD:
[𝑓1, 𝑓2, . . . , 𝑓𝑗 ]; PF: [𝑝1, 𝑝2, . . . , 𝑝𝑘 ]; OF: [𝑜1, 𝑜2, . . . , 𝑜𝑚]. After feature concatenation, the combined
vector is:

[𝑡1, 𝑡2, . . . , 𝑡𝑖 , 𝑓1, 𝑓2, . . . , 𝑓𝑗 , 𝑝1, 𝑝2, . . . , 𝑝𝑘 , 𝑜1, 𝑜2, . . . , 𝑜𝑚]
where each element corresponds to a specific value. Here, 𝑖 , 𝑗 , 𝑘 , and𝑚 represent the dimensions
of TD, FD, PF, and OF, respectively.

3.5 Step3: Feature Transformation

Objective. In the third step, for each test input 𝑡 ∈ 𝑇 , we transform its original feature vector 𝑉𝑡
into 𝑉 ′

𝑡 using a feature transformation strategy. The objective of this transformation is to make the
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transformed features more useful for implementing AudioTest’s premise for test prioritization:
tests closer to misclassified samples are more likely to be misclassified. Specifically, In Section 3.1,
we validated this premise. As shown in Figure 2, the red curve represents the average number
of misclassified tests around a misclassified sample, while the black curve represents the average
number of misclassified tests around correctly classified samples. The gap between the two curves
confirms that misclassified samples tend to cluster together, thereby validating the premise.
Approach. Our feature transformation is based on the decision tree algorithm [64].
Decision tree algorithm. Decision trees are a fundamental ML approach commonly used for clas-
sification tasks. The model constructs a tree structure that recursively divides the dataset based on
feature values. Each node in the tree represents a decision rule, while the branches indicate possible
outcomes of these decisions. Once a decision tree is trained, when a sample is given, the prediction
process begins at the root node. The model compares the sample’s feature values with the decision
rules at each node and continues down the tree until reaching a leaf node, where the predicted value
is generated. We adopted the decision tree algorithm for feature transformation because it helps
bring misclassified tests closer in the feature space. This is achieved by the tree model grouping
similar samples into adjacent leaf nodes. Consequently, misclassified tests are clustered together in
the feature space, making them spatially closer. Through this approach, the classification model
employed by AudioTest can more effectively differentiate between misclassified and correctly
classified tests, thereby improving the effectiveness of test prioritization.
Feature transformation workflow. Given a test input 𝑡 , we obtained its feature vector in the
previous step. To perform feature transformation on this feature vector, we first constructed 𝑁 trees,
each containing three types of nodes: root nodes, intermediate nodes, and leaf nodes. The root and
intermediate nodes contain two pieces of information: the vector index used for decision-making
and the threshold value. The leaf nodes contain one piece of information, which is the leaf node
ID (numeric value). Suppose we place the test vector 𝑡 into the first tree of the 𝑁 decision trees.
Given the feature vector of 𝑡 , denoted as 𝑉𝑡 = {𝑣0, 𝑣1, . . . , 𝑣𝑛}, the tree makes decisions starting
from the root node. If the element of 𝑉𝑡 that corresponds to the root node is less than the root
node’s threshold, the vector falls into the left intermediate node; otherwise, it falls into the right
intermediate node. It is important to note that which element of 𝑉𝑡 corresponds to which node in
the tree, as well as the value of the thresholds, is determined by the decision tree itself during the
learning process. After reaching the first intermediate node, the decision tree checks whether the
value of the element of 𝑉𝑡 that corresponds to the first intermediate node is less than the node’s
threshold. If it is, the vector falls into the left node; otherwise, it falls into the right node. This
decision-making process continues until the test input 𝑡 reaches a leaf node. We then record the
leaf node ID as 𝐼𝐷1, where the 1 represents the first tree. Since we have constructed 𝑁 trees, the
test input 𝑡 can obtain 𝑁 leaf node IDs. Therefore, the new feature vector for 𝑡 is recorded as
{𝐼𝐷1, 𝐼𝐷2, . . . , 𝐼𝐷𝑁 }, where 𝐼𝐷𝑛 represents the leaf node ID in which test 𝑡 falls in the 𝑛-th tree.
Underlying principle. Utilizing the aforementioned feature transformation approach for test
prioritization is inspired by the work of He et al. [27], which demonstrated that feature transforma-
tion can effectively improve the performance of classification algorithms. Specifically, our feature
transformation strategy can enhance the classification model used by AudioTest in improving its
ability to classify misclassified and correctly classified samples. After feature transformation, tests
that are more likely to be misclassified are clustered closer to each other, thereby also facilitating
our premise for test prioritization, which is that tests closer to misclassified samples are more likely

to be misclassified. Figure 4 shows the spatial distribution of the tests after feature transformation
(visualized using t-SNE [73]). Each point represents a test. Yellow points indicate misclassified tests,
while purple points indicate correctly classified tests. In Figure 4, the yellow points tend to cluster
towards the left side of the figure, and the purple points tend to cluster towards the right side. There
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is a tendency for yellow points to be surrounded by more yellow points and purple points to be
surrounded by more purple points. This intuitively demonstrates that after feature transformation,
tests misclassified by the model are more likely to be surrounded by other misclassified tests.
The reason why feature transformation works lies in that it makes misclassified tests more

clustered. Specifically, feature transformation allows similar samples (misclassified tests) to fall
into adjacent leaf nodes on the decision tree, making them more clustered in the space. This could
contribute to AudioTest’s ability to better leverage the premise (i.e., tests close to misclassified
samples are more likely to be misclassified) for test prioritization. To provide a more intuitive
illustration of the effects of feature transformation, in Figure 2, we present, before and after feature
transformation, the average number of misclassified tests around each misclassified test. Specifically,
in Figure 2, the X-axis represents the n tests that are closest to the original test, while the Y-axis
represents the number of misclassified tests among these n tests. The red curve indicates, among
the n closest tests to a misclassified sample, the average number of misclassified tests. The green
curve represents, after feature transformation, the average number of misclassified tests. In Figure 2,
we see that the green line consistently stays above the red line. This exhibits that after feature
transformation, the number of misclassified tests surrounding a misclassified sample increases. In
other words, the feature transformation process makes the misclassified samples more clustered,
which could contribute to AudioTest’s ability to better leverage the premise (i.e., tests close to
misclassified samples are more likely to be misclassified) to perform test prioritization.

3.6 Step4: Ranking

Building on the three steps (i.e., feature extraction, feature concatenation, and feature transforma-
tion) described above, AudioTest generates a final vector 𝑉 ′

𝑡𝑖
for each test 𝑡𝑖 ∈ 𝑇 . Subsequently, a

ranking model was trained to predict the misclassification probability of each test 𝑡𝑖 based on its
vector 𝑉 ′

𝑡𝑖
. The process of training and constructing the ranking model is detailed below.

Model Training Given an audio classification model 𝑀 and a dataset 𝐴, the dataset is initially
divided into two partitions: a training set 𝑅 and a test set 𝑇 , following a 7:3 ratio [56]. The test set
𝑇 is reserved for evaluating the performance of AudioTest and remains unchanged throughout
the training process. From the training set 𝑅, we construct a new training set 𝑅′: 1) we performed
feature extraction, feature concatenation, and feature transformation (cf. Sections 3.3 to 3.5) on
each sample in the original training set 𝑅, generating new feature vectors for each sample. These
feature vectors form the training features of the new training set 𝑅′. 2) Each sample in 𝑅 was labeled
based on the following rule: misclassified tests were labeled as 1, and correctly classified tests were
labeled as 0. These labels serve as the label set for the new training set 𝑅′. Finally, the ranking
model was trained using the newly constructed training set 𝑅′.
Model adjustment The original ranking model is a binary classification model. Once the ranking
model is trained, we make adjustments to it so that it outputs the misclassification probability (an
intermediate value) of a given test instead of the test’s label. This probability value is utilized for
ranking. A higher probability value indicates that the test is more likely to be misclassified.
Evaluation MetricsWe evaluated the accuracy of the ranking model across three datasets. On the
Actor dataset, the accuracy ranges from 71.9% to 81.4%. For the FSD dataset, it ranges from 79.7% to
87.3%, while for the UrbanSound dataset, the accuracy falls between 85.4% and 91.5%.

4 Study Design

4.1 ResearchQuestions

In the following, we present the research questions of this study. They are organized into the
following four aspects:
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Table 1. Audio classification datasets and models

ID Dataset Model Type

1 Actor CAMPPlus Natural, Brown, Gaussian, White
2 Actor EcapaTdnn Natural, Brown, Gaussian, White
3 Actor ERes2Net Natural, Brown, Gaussian, White
4 Actor PANNS Natural, Brown, Gaussian, White
5 Actor ResNetSE Natural, Brown, Gaussian, White
6 Actor TDNN Natural, Brown, Gaussian, White
7 UrbanSound CAMPPlus Natural, Brown, Gaussian, White
8 UrbanSound EcapaTdnn Natural, Brown, Gaussian, White
9 UrbanSound ERes2Net Natural, Brown, Gaussian, White
10 UrbanSound PANNS Natural, Brown, Gaussian, White
11 UrbanSound ResNetSE Natural, Brown, Gaussian, White
12 UrbanSound TDNN Natural, Brown, Gaussian, White
13 FSD CAMPPlus Natural, Brown, Gaussian, White,Impulse,Sawtooth, Sine, Triangle
14 FSD EcapaTdnn Natural, Brown, Gaussian, White,Impulse,Sawtooth, Sine, Triangle
15 FSD ERes2Net Natural, Brown, Gaussian, White,Impulse,Sawtooth, Sine, Triangle
16 FSD PANNS Natural, Brown, Gaussian, White,Impulse,Sawtooth, Sine, Triangle
17 FSD ResNetSE Natural, Brown, Gaussian, White,Impulse,Sawtooth, Sine, Triangle
18 FSD TDNN Natural, Brown, Gaussian, White,Impulse,Sawtooth, Sine, Triangle

• RQ1: How effective and efficient is AudioTest in prioritizing audio-type test inputs?

We compared the effectiveness of AudioTest with other test prioritization methods. We evalu-
ated the performance of AudioTest from three perspectives. 1) Effectiveness.We evaluated
AudioTest using 18 audio-type subjects, detailed in Table 1. 2) Statistical analysis. Due to the
randomness in model training, we conducted a statistical analysis by repeating all experiments
30 times [2] and reporting the average results. We calculated the p-value and effect size to demon-
strate the statistical significance of our experimental results. First, we utilized the Mann-Whitney
U test [54] to compute the p-value of the repeated experimental results. Second, we use Cliff’s
Delta 𝑑 [31] to measure the effect size.

• RQ2: How effective is AudioTest in prioritizing noisy audio tests?

We compared the effectiveness of AudioTest and other test prioritization methods on noisy
datasets generated by seven different noise generation techniques. We utilized seven noise
generation techniques (Section 4.3) to generate noisy test sets. On these noisy test sets, we
evaluated AudioTest and other test prioritization methods.

• RQ3: Do each type of features contribute to the effectiveness of AudioTest?

In AudioTest, for an audio-type test, we generated four types of features for test prioritization.
In this research question, we conducted an ablation study to demonstrate that each type of
features contributes to AudioTest. The original AudioTest has four types of features for test
prioritization. In the ablation study, we removed one feature at a time and observed whether the
effectiveness decreased.

• RQ4: How do main parameters in AudioTest impact its effectiveness?

We investigate the influence of the main parameters (i.e., dimension, max_depth, and colsam-

ple_bynode) on the effectiveness of AudioTest to verify whether its effectiveness can remain
stable when the main parameters change. We changed the value of these parameters and observed
the impact on the effectiveness of AudioTest.

4.2 Models and Datasets

We evaluated AudioTest on different types of audio-type test inputs, including natural audio tests
and noisy audio tests. In total, we built 96 subjects.

4.2.1 Audio Datasets. We utilized three datasets for evaluation. We adopted these audio datasets
because they are widely used in the field of audio classification. On one hand, these datasets have
been extensively utilized in academia in recent years [21, 22, 26, 28, 47, 65]. On the other hand,
on the renowned data science competition platform Kaggle [38], these datasets have garnered
significant attention from researchers and engineers for in-depth studies.
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• UrbanSound [65] The UrbanSound dataset is utilized for urban sound classification. It includes
8,732 sound excerpts categorized into 10 classes, such as air conditioner and children playing.

• FSD [21] FSD is an audio dataset containing 11,073 audio files classified into 41 classes from the
AudioSet Ontology. Examples of the labels are: Applause, Electric piano, Fireworks, and Flute.

• Actor [47] The Actor dataset is used for audio emotion classification tasks. It contains 1,440 files
from 24 actors. The dataset classifies emotions into different types and intensities.

4.2.2 DNN Models. We utilize six audio classification model to evaluate AudioTest: CAMP-
Plus [74], EcpaTdnn [12], ERes2Net [8], PANNs [42], ResNetSE [32], and TDNN [52]. A detailed
description of these models can be found in Section 2.1. We selected these DNN models to evaluate
AudioTest because they have been widely utilized in related literature [8, 11, 74, 83]. Moreover,
these models demonstrate diversity and support various types of audio classification scenarios,
which could contribute to validating the generalizability of AudioTest across different scenarios.

4.3 Noise Generation Techniques

We used Pydub [35] to add seven types of noise to the original datasets to construct noisy datasets.
• White NoiseWhite noise is a type of noise that has equal power across all frequencies.
• Brown Noise Brown noise is a type of noise whose power spectral density is inversely propor-
tional to the square of the frequency. Brown noise is commonly used to simulate natural sounds
such as ocean waves and wind.

• Impulse Noise Impulse noise consists of short bursts of high-intensity signals. It is mainly used
to simulate situations such as electromagnetic interference or mechanical impacts.

• Sine Wave Synthesized Noise Sine wave synthesized noise combines multiple sine waves of
different frequencies and amplitudes. It is mainly used to simulate complex acoustic environments
for applications such as audio testing.

• Triangle Wave Synthesized Noise Triangle Wave Synthesized Noise is generated using a
triangle wave. A triangular wave is a periodic waveform similar to an isosceles triangle, which is
characterized by linear rise and fall.

• Sawtooth Wave Synthesized Noise Sawtooth wave synthesized noise is generated using a
sawtooth waveform. It is typically used to create aggressive sound effects.

• Gaussian Noise Gaussian noise is a common type of random noise, with its amplitude distribu-
tion following a Gaussian distribution. Gaussian noise can effectively represent various random
noises found in nature.

4.4 Measurements

We employed two classical metrics, Average Percentage of Fault Detection (APFD) and Percentage
of Fault Detected (PFD), for evaluation. These metrics were selected due to their widespread
recognition in the field of test prioritization [19, 77, 80]. Influential studies, such as DeepGini (ISSTA
2020) [19] and a replicability study on test prioritization (ISSTA 2022) [77], have demonstrated their
relevance and effectiveness as benchmarks for evaluating test prioritization techniques.
(1) APFD is a widely-adopted metric for assessing the effectiveness of test prioritization methods
(cf. Formula 3). A higher APFD value indicates faster detection of misclassifications.

APFD = 1 −
∑𝑘
𝑖=1 𝑜𝑖

𝑘𝑛
+ 1

2𝑛
(3)

where 𝑛 denotes the number of tests in the test set, 𝑘 represents the number of misclassified
inputs, and 𝑜𝑖 is the index of the 𝑖-th misclassified test within the prioritized test set. Following
prior work [19], we normalize the APFD values to the range [0, 1].
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(2) PFD calculates the proportion of detected misclassified tests among all misclassified tests, as
presented in Formula 4. In our experiments, we calculated the PFD values when prioritizing the
top 10%, 20%, 30%, 40%, 50%, and 60% of test inputs, respectively.

𝑃𝐹𝐷 =
#𝑀𝑑𝑒𝑡𝑒𝑐𝑡

#𝑀
(4)

where #𝑀𝑑𝑒𝑡𝑒𝑐𝑡 refers to the number of detected misclassified test inputs. #𝑀 denotes the total
number of misclassified tests in the test set.

4.5 Compared Approaches

We compare AudioTest with five test prioritization approaches collected from the literature [19,
77]: DeepGini [19], VanillaSM [77], Prediction-Confidence Score [77], Entropy [77], and Random
Selection [17]. We selected these compared approaches because: 1) these methods can all be applied
to test prioritization in audio classification scenarios, and 2) the performance of these methods has
been validated in existing studies [19, 77].
• DeepGini [19] DeepGini prioritizes tests based on the model’s prediction uncertainty for the
tests (cf. Formula 5). Tests with higher uncertainty are considered more likely to be misclassified.

𝐺 (𝑡) = 1 −
𝑁∑︁
𝑖=1

(𝑝𝑖 (𝑡))2 (5)

where 𝑝𝑖 (𝑡) denotes the probability that the model predicts the test 𝑡 belongs to class 𝑖 . 𝑁 denotes
the total number of classes predicted by the model.

• Prediction-Confidence Score (PCS) [77] PCS computes the model’s prediction confidence for
each test by calculating the difference between the probabilities of the model’s top two predictions
for a given input 𝑡 . A smaller PCS value indicates a higher likelihood of misclassification.

• VanillaSM [77] VanillaSM measures the difference between the model’s highest predicted prob-
ability for a test and 1. A larger VanillaSM value indicates a higher misclassification probability.

• Entropy [77] Entropy measures the entropy of the model’s softmax likelihood for a test. A test
with high entropy values is considered more likely to be misclassified.

• Random selection [17] Utilizing random selection, the execution order of test inputs is ran-
domized.

4.6 Implementation and Configuration

We implemented AudioTest in Python 3.8.19, utilizing the PyTorch 1.13.1 framework [59] and
XGBoost 2.1.0 [7] for the ranking model. In the feature transformation process, we used 100 trees
to enhance the original feature vector of each test (the size of the transformed vector for each test
is 100). We conduct the experiments on a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA Tesla
V100 16G SXM2 GPU. For data analysis, we utilized a MacBook Pro laptop running macOS Sonoma
14.3, equipped with an Intel Core i9 CPU and 64 GB of RAM. Additionally, we integrated existing
implementations of the compared methods [19, 77] into our experimental pipeline.

5 Experimental Results and Analysis

5.1 RQ1: Effectiveness and Efficiency of AudioTest on Natural Test Inputs

Objectives: We evaluate the effectiveness and efficiency of AudioTest, comparing it with various
existing test prioritization approaches. Our investigation is conducted through two sub-questions:
• RQ-1.1 How effective is AudioTest in prioritizing audio test inputs?
• RQ-1.2 How efficient is AudioTest?
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Table 2. Effectiveness comparison on natural data (APFD) with best results highlighted in gray

Approach

Data Model Random DeepGini Entropy PCS VanillaSM AudioTest

CAMPPlus 0.536 0.585 0.585 0.585 0.585 0.734
EcapaTdnn 0.496 0.645 0.645 0.645 0.645 0.734
ERes2Net 0.506 0.629 0.629 0.629 0.629 0.729
PANNS 0.507 0.589 0.589 0.589 0.589 0.739
ResNetSE 0.519 0.628 0.628 0.628 0.628 0.707

Actor

TDNN 0.522 0.626 0.626 0.626 0.626 0.729

CAMPPlus 0.488 0.722 0.711 0.727 0.726 0.786
EcapaTdnn 0.507 0.746 0.737 0.741 0.746 0.797
ERes2Net 0.493 0.672 0.665 0.673 0.674 0.739
PANNS 0.507 0.720 0.714 0.716 0.722 0.765
ResNetSE 0.503 0.705 0.696 0.707 0.709 0.764

FSD

TDNN 0.498 0.699 0.691 0.698 0.701 0.742

CAMPPlus 0.498 0.736 0.735 0.729 0.734 0.829
EcapaTdnn 0.486 0.734 0.731 0.736 0.737 0.822
ERes2Net 0.466 0.732 0.732 0.725 0.731 0.842
PANNS 0.510 0.744 0.737 0.746 0.748 0.838
ResNetSE 0.496 0.710 0.707 0.706 0.710 0.841

UrbanSound

TDNN 0.509 0.758 0.755 0.756 0.759 0.845

Table 3. Overall comparison results across all natural subjects (APFD)

Approach # Best cases Average APFD Improvement (%)

Random 0 0.502 54.58
DeepGini 0 0.687 12.95
Entropy 0 0.684 13.45
PCS 0 0.686 13.12
VanillaSM 0 0.689 12.63
AudioTest 18 0.776 -

Table 4. Statistical analysis on natural datasets

Random DeepGini Entropy PCS VanillaSM

p-value 3.12 × 10−8 1.21 × 10−6 6.33 × 10−7 4.87 × 10−7 1.46 × 10−7

effect size 1.0 0.877 0.901 0.911 0.952

Table 5. Effectiveness comparison on natural tests (PFD)

Approach 10% 20% 30% 40% 50% 60%

Random 0.104 0.201 0.302 0.401 0.502 0.605
DeepGini 0.207 0.383 0.548 0.679 0.785 0.866
Entropy 0.205 0.376 0.540 0.669 0.777 0.863
PCS 0.201 0.379 0.549 0.678 0.783 0.865
VanillaSM 0.207 0.385 0.551 0.681 0.784 0.865
AudioTest 0.301 0.548 0.728 0.839 0.905 0.942

Results:We present the experimental results of RQ1.1 as follows:
Effectiveness of AudioTest Table 2 compares AudioTest with other test prioritization methods
using the APFD metric across natural subjects. The best-performing approach for each case is
highlighted in grey. We see that AudioTest performs the best across all cases. Table 3 further
shows the average APFD value for AudioTest and its relative improvement compared to the
comparative methods. We see that AudioTest achieves an average APFD of 0.776, with an average
improvement of 12.63%∼54.58% over the comparative methods. Table 5 compared AudioTest
with existing approaches using the PFD metric. In Table 5, the columns labeled "10%, 20%, 30%,
..." represent the proportion of tests executed. For example, "10%" shows the PFD values of each
test prioritization approach when the top 10% of the tests are executed. In other words, it reflects
the ratio of misclassified tests detected by each prioritization method after executing 10% of the
entire test set. We see that, across different proportions of prioritized tests, AudioTest consistently
outperforms all the compared methods. Additionally, we see that in the binary classification dataset
Actor, all uncertainty-based methods have the same APFD results. We explain the reasons below.
First, in binary classification, when a model predicts (0.5, 0.5) for a test input, it indicates that the
prediction is most uncertain [19]. Therefore, the uncertainty of a test 𝑡 with prediction (𝑝, 1 − 𝑝)
depends solely on 𝑝 , with values closer to 0.5 considered more uncertain. Consequently, regardless
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Table 6. Time cost of AudioTest and the compared test prioritization approaches

Time cost

Approach

AudioTest Random DeepGini Entropy PCS VanillaSM

Feature generation 4.9 min(8 threads) 2.4 min(16 threads) 1.2 min(32 threads) - - - - -
Ranking model training 16 s 16 s 16 s - - - - -

Prediction <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s

of the uncertainty-based method used, the final ranking depends only on the value of 𝑝 for each
test. As a result, all uncertainty-based approaches produce the same ranking outcomes for a given
test set, leading to identical APFD.
Statistical Analysis The results of the statistical analysis are presented in Table 4. We see that
all the p-values between AudioTest and the compared approaches are less than 10−5. According
to prior work [51], which considers a p-value less than 10−5 to indicate a statistically significant
difference between two data sets, we conclude that the improvement of AudioTest compared to
existing approaches is statistically significant. Moreover, the effect size between AudioTest and
each test prioritization approach is greater than 0.33. According to Cliff’s Delta’s approach [31], an
effect size greater than 0.33 indicates a “large" difference between the two datasets. Therefore, we
consider that AudioTest demonstrates a “large” improvement compared to existing approaches.

Answer to RQ1.1:On natural datasets, AudioTest outperforms all the compared test prioritization

methods across all subjects, with an average improvement of 12.63%∼54.58%.

Table 6 presents the results for RQ1.2, which assess the efficiency of AudioTest. In our experiments,
the feature generation process of AudioTest leverages multithreading to enhance efficiency.
Specifically, the audio dataset is divided into equal-sized chunks, which are processed concurrently
using multiple threads. The table exhibits the time required for feature generation with 8, 16, and 32
threads, respectively. Table 6 shows that the total runtime of AudioTest includes feature generation,
model training, and prediction. When using 32 threads, the total runtime is approximately 1.5
minutes. With 16 threads, the runtime increases to 2.7 minutes. Finally, with 8 threads, the runtime
reaches around 5.2 minutes. Although the total runtime of AudioTest is higher than that of the
compared methods, AudioTest achieves an accuracy improvement of 12.63%∼54.58%. Considering
the trade-off between effectiveness and efficiency, AudioTest remains a practical option.

Answer to RQ1.2: The total runtime of AudioTest is around 1.5 minutes when using 32 threads,

increasing to 2.7 minutes with 16 threads, and around 5.2 minutes with 8 threads. Considering the

trade-off between effectiveness and efficiency, AudioTest remains a practical option.

5.2 RQ2: Effectiveness of AudioTest on Noisy Test Inputs

Objectives:We evaluate AudioTest and the compared methods on noisy datasets.
Results: The experimental results of RQ2 are shown in Tables 7, 8, 9, 10, and 11. Table 7 compares
the effectiveness of AudioTest and existing test prioritization methods on noisy datasets, showing
that AudioTest consistently outperforms all other methods across different noise generation
techniques. Table 8 details AudioTest’s average effectiveness on noisy data and its improvement
over other methods. The average APFD of AudioTest is 0.701, with an average improvement
of 12.71% to 40.48% compared to other approaches. Table 9 presents the results of the statistical
analysis on noisy datasets. We see that all the p-values between AudioTest and the compared
approaches are less than 10−5, which indicates that the improvement of AudioTest over existing
approaches is statistically significant. Table 10 presents a comparison of AudioTest and existing
methods using the PFD metric. The columns labeled "10%, 20%, 30%, 40%" in the table indicate the
proportion of tests executed. The results demonstrate that AudioTest consistently outperforms the
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Table 7. Effectiveness comparison on noisy data (APFD) with best results highlighted in gray

ApproachNoise

Technique

Model Random DeepGini Entropy PCS VanillaSM AudioTest

CAMPPlus 0.512 0.622 0.621 0.621 0.622 0.732
EcapaTdnn 0.498 0.666 0.664 0.664 0.667 0.743
ERes2Net 0.495 0.623 0.622 0.621 0.623 0.703
PANNS 0.507 0.633 0.630 0.631 0.633 0.739
ResNetSE 0.499 0.635 0.632 0.633 0.635 0.733

Brown

TDNN 0.496 0.641 0.638 0.642 0.642 0.729

CAMPPlus 0.501 0.597 0.597 0.596 0.598 0.701
EcapaTdnn 0.506 0.582 0.581 0.579 0.582 0.703
ERes2Net 0.515 0.585 0.586 0.579 0.584 0.705
PANNS 0.502 0.607 0.606 0.605 0.608 0.712
ResNetSE 0.506 0.629 0.626 0.628 0.629 0.715

Gaussian

TDNN 0.506 0.621 0.618 0.619 0.620 0.698

CAMPPlus 0.499 0.592 0.592 0.584 0.591 0.635
EcapaTdnn 0.498 0.587 0.583 0.586 0.588 0.641
ERes2Net 0.498 0.565 0.566 0.557 0.563 0.612
PANNS 0.502 0.597 0.596 0.593 0.598 0.637
ResNetSE 0.499 0.592 0.589 0.586 0.592 0.646

Impulse

TDNN 0.504 0.567 0.566 0.562 0.567 0.621

CAMPPlus 0.496 0.571 0.565 0.568 0.571 0.647
EcapaTdnn 0.495 0.619 0.609 0.623 0.623 0.703
ERes2Net 0.497 0.574 0.570 0.572 0.575 0.627
PANNS 0.497 0.591 0.583 0.597 0.596 0.649
ResNetSE 0.498 0.588 0.584 0.585 0.589 0.665

Sawtooth

TDNN 0.498 0.609 0.605 0.609 0.611 0.679

CAMPPlus 0.499 0.712 0.701 0.714 0.715 0.781
EcapaTdnn 0.488 0.727 0.720 0.726 0.729 0.778
ERes2Net 0.502 0.649 0.641 0.653 0.653 0.722
PANNS 0.491 0.718 0.711 0.717 0.721 0.751
ResNetSE 0.504 0.672 0.664 0.673 0.675 0.751

Sine

TDNN 0.492 0.678 0.668 0.681 0.682 0.726

CAMPPlus 0.501 0.668 0.659 0.667 0.671 0.741
EcapaTdnn 0.507 0.701 0.691 0.701 0.703 0.765
ERes2Net 0.498 0.609 0.601 0.612 0.612 0.692
PANNS 0.496 0.647 0.643 0.647 0.651 0.710
ResNetSE 0.494 0.643 0.636 0.642 0.645 0.711

Triangle

TDNN 0.509 0.675 0.666 0.678 0.679 0.729

CAMPPlus 0.492 0.567 0.568 0.564 0.567 0.687
EcapaTdnn 0.496 0.589 0.585 0.588 0.590 0.694
ERes2Net 0.501 0.542 0.543 0.537 0.541 0.695
PANNS 0.498 0.588 0.587 0.586 0.588 0.691
ResNetSE 0.501 0.586 0.585 0.585 0.587 0.696

White

TDNN 0.491 0.618 0.615 0.619 0.619 0.693

Table 8. Overall comparison results across all noisy subjects (APFD)

Approach # Best cases Average APFD Improvement (%)

Random 0 0.499 40.48
DeepGini 0 0.621 12.88
Entropy 0 0.617 13.61
PCS 0 0.619 13.24
VanillaSM 0 0.622 12.71
AudioTest 78 0.701 -

Table 9. Statistical analysis on noisy datasets

Random DeepGini Entropy PCS VanillaSM

p-value 2.14 × 10−8 4.69 × 10−6 9.32 × 10−7 1.99 × 10−6 1.54 × 10−6

effect size 1.0 0.828 0.887 0.859 0.868

Table 10. Effectiveness comparison on noisy data (PFD)

# Best cases in PFD Average PFD

Approach 10% 20% 30% 40% 10% 20% 30% 40%

Random 0 0 0 0 0.099 0.199 0.300 0.399
DeepGini 0 0 0 0 0.156 0.299 0.431 0.552
Entropy 0 0 0 0 0.154 0.294 0.426 0.547
PCS 0 0 0 0 0.151 0.296 0.429 0.551
VanillaSM 0 0 0 0 0.157 0.301 0.433 0.554
AudioTest 78 78 78 78 0.205 0.393 0.563 0.706

existing methods across different proportions of tests executed. Table 11 presents the experimental
results on mixed noisy datasets. In Table 11, we see that, on mixed noisy datasets, AudioTest
achieves the highest effectiveness compared to other approaches.
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Table 11. Effectiveness comparison on mixed noisy data

Approach

Mixed Noisy Dataset Random DeepGini Entropy PCS VanillaSM AudioTest

Brown-Gaussian 0.503 0.619 0.618 0.618 0.621 0.717
Gaussian-Impulse 0.503 0.593 0.592 0.589 0.593 0.668
Impulse-Sawtooth 0.498 0.587 0.584 0.585 0.588 0.646
Sawtooth-Sine 0.501 0.642 0.635 0.643 0.645 0.706
Sine-Triangle 0.498 0.674 0.665 0.675 0.678 0.738
Triangle-White 0.499 0.619 0.614 0.618 0.621 0.708
Brown-Gaussian-Impulse 0.502 0.607 0.606 0.604 0.607 0.689
Gaussian-Impulse-Sawtooth 0.501 0.592 0.590 0.590 0.593 0.667
Impulse-Sawtooth-Sine 0.497 0.622 0.617 0.621 0.624 0.681
Sawtooth-Sine-Triangle 0.502 0.647 0.639 0.648 0.651 0.712
Sine-Triangle-White 0.499 0.643 0.638 0.643 0.646 0.722
Brown-Gaussian-Impulse-Sawtooth 0.501 0.603 0.603 0.601 0.604 0.682
Gaussian-Impulse-Sawtooth-Sine 0.499 0.617 0.613 0.616 0.619 0.687
Impulse-Sawtooth-Sine-Triangle 0.498 0.631 0.625 0.631 0.633 0.692
Sawtooth-Sine-Triangle-White 0.497 0.630 0.624 0.631 0.635 0.707

Table 12. Ablation study for feature contribution analysis

Dataset

Approach Actor FSD UrbanSound Average

AudioTest w/o TD 0.702 0.748 0.797 0.749
AudioTest w/o FD 0.697 0.745 0.795 0.746
AudioTest w/o PF 0.691 0.742 0.785 0.739
AudioTest w/o OF 0.683 0.665 0.764 0.704
AudioTest 0.729 0.766 0.836 0.776

Answer to RQ2: On noisy datasets, AudioTest outperforms the compared test prioritization

approaches, with an average improvement of 12.71%∼40.48%.

5.3 RQ3: Feature Contribution Analysis

Objectives: We investigate whether each type of feature contributes to AudioTest’s effectiveness.

Table 13. Statistical Analysis of Feature Contribution for AudioTest

AudioTest w/o TD AudioTest w/o FD AudioTest w/o PF AudioTest w/o OF

p-value 6.71 × 10−6 7.54 × 10−6 9.53 × 10−6 8.31 × 10−7

effect size 0.814 0.809 0.801 0.892

Results: Table 12 presents the ablation study results. ‘W/o’ means ‘without,’ so ‘AudioTest w/o
TD’ refers to AudioTest without Time-Domain Features. We see that the original AudioTest is
the most effective for each dataset. Removing any feature type reduces effectiveness. AudioTest’s
average effectiveness is 0.776 across all subjects. Removing OF decreases APFD by 0.072, PF by 0.037,
FD by 0.03, and TD by 0.027. These results indicate that each feature type contributes to AudioTest.
Table 13 presents the results of the statistical analysis of feature contribution for AudioTest. We
see that all the p-values between AudioTest and AudioTest removing one type of feature are
less than 10−5. This indicates that removing any type of feature leads to a statistically significant
decrease in AudioTest’s effectiveness, demonstrating the contribution of each feature.

Answer to RQ3: Each type of features generated by AudioTest contributes to its effectiveness.

5.4 RQ4: Impact of Main Parameters on AudioTest

Objectives: We investigate to what extent the effectiveness of AudioTest is affected when
the main parameters fluctuate. We focused on three parameters in AudioTest: max_depth (the
maximum depth of each tree), colsample_bytree (the feature column sampling ratio when con-
structing each tree), and dimension (the size of features after transformation). Specifically, the
parameter max_depth determines the complexity of the decision trees built by the model. The
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colsample_bytree parameter specifies the proportion of features to be randomly sampled for training
each tree. The dimension controls the size of each test’s feature vector after feature transformation.
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Fig. 5. Impact of main parameters in AudioTest

Results: Figure 5 illustrates the variation in the effectiveness of AudioTest when the values of
the main parameters change. We see that as the parameters vary, the effectiveness of AudioTest
remains stable, with the effectiveness variation range being less than 0.02. Specifically, the parame-
ters evaluated include: Dimension: ranging from 8 to 1024,Max Depth: ranging from 3 to 10, and
Colsample Bynode: ranging from 0.3 to 1.0. These results demonstrate that 1) AudioTest exhibits
stable performance across a wide range of parameter settings, and 2) AudioTest consistently
outperforms other test prioritization methods across different parameter settings.

Answer to RQ4: AudioTest performs stably under different parameter settings. AudioTest

consistently outperforms other test prioritization methods across various parameter settings.

6 Threats to Validity

Internal Threats to Validity. Internal threats to validity mainly come from implementing the test
prioritization approaches used for comparison. To mitigate it, we used the original implementations
of the test prioritization approaches from their authors to minimize biases. Another threat arises
from potential randomness in model training. To address this, we repeated all experiments 30
times [2], reported the average results, and conducted a statistical analysis. Another threat arises
from the features generated within AudioTest. Specifically, whether the generated features can
effectively capture the constructs they are intended to represent. To mitigate it, the selected features
are drawn from established studies [1, 16, 18, 36, 41] in audio classification. In particular, time-
domain and frequency-domain features were chosen to represent the physical properties of audio
signals, while perceptual features were included to capture subjective human auditory perception.
Output features were incorporated to provide insights into the model’s prediction behavior.
External Threats to Validity. External threats primarily arise from the utilized audio datasets
and models for evaluation. To mitigate it, we adopted different types of subjects, including both
natural and noisy data, and applied seven different noise generation techniques for generating
noisy tests. In total, we constructed 96 subjects for evaluation.

7 Related Work

7.1 Test Prioritization Techniques

To solve the labeling-cost problem, several works on DNN test prioritization have been proposed [10,
19, 44, 68, 75, 77]. Feng et al. [19] proposed DeepGini, which leverages model prediction confidence
for prioritization. Weiss et al. [77] empirically investigated several existing DNN test prioritization
methods, finding that some simple uncertainty-based approaches such as Vanilla Softmax perform
equally well as DeepGini. Wang et al. [75] proposed PRIMA, which performed prioritization based
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on intelligent mutation analysis. In traditional software testing [5, 13, 29, 55], Henard et al. [29]
examined white-box and black-box prioritization techniques, finding that the differences between
these approaches are small. Chen et al. [5] introduced LET, which utilizes a learning process to
identify relevant program features and assess the bug-revealing potential of new tests. Shin et

al. [66] proposed a diversity-aware mutation adequacy criterion for prioritization.

7.2 Deep Neural Network Testing

Besides test prioritization, DNN testing [3, 33, 34, 61–63, 69, 70, 84] also contains several other crucial
aspects, such as test selection [6, 24, 43, 46, 79, 82] and adequacy measurement [15, 40, 49, 50, 60].
For test selection, Li et al. [46] proposed CES, which minimizes the cross-entropy between the
selected set and the original set. Chen et al. [6] proposed PACE, which clusters all the tests and uses
the MMD-critic algorithm [39] to perform prototype selection within each cluster. For adequacy
measurement [15, 40, 49, 50, 60], Pei et al. [60] introduced neuron coverage to determine how well
a test set covers the logic of a DNN model. Ma et al. [49] proposed DeepGauge, a set of coverage
criteria to measure DNN test adequacy. Kim et al. [40] introduced surprise (i.e., the difference in
the DL system’s behavior between test and training data) to measure test input effectiveness.

8 Conclusion

To address the labeling cost issue for audio-type test inputs, we proposed AudioTest, a novel test
prioritization approach specifically designed for audio test cases. The premise of AudioTest is
that tests closer to misclassified samples are more likely to be misclassified. Following this premise,
AudioTest generated four types of features based on the unique characteristics of audio data: time-
domain, frequency-domain, perceptual, and output features. Then, utilizing a carefully designed
feature transformation approach, AudioTest transforms the extracted features of all tests to bring
misclassified tests closer in space, thereby ensuring the classification model utilized by AudioTest
can better distinguish misclassified tests and correctly classified tests. Finally, AudioTest utilized a
trainedmodel to predict themisclassification probability of each test based on its transformed feature
vector. AudioTest ranked all the tests based on their misclassification probability. We evaluated
AudioTest based on 96 subjects, encompassing both natural and noisy datasets. The experimental
results demonstrated that AudioTest outperforms all the compared methods, with an improvement
of 12.63%∼54.58% on natural datasets and 12.71%∼40.48% on noisy datasets. Future work could
focus on utilizing the tests selected by AudioTest to further fine-tune audio classification models
and enhance their performance. Specifically, the community could explore the following research
directions: 1) Investigating the effectiveness of AudioTest to enhance the performance of audio
classification models through retraining. 2) Evaluating how to utilize potentially misclassified
inputs to fine-tune the audio classification model, with the aim of enhancing its performance.

9 Data Availability

Our code and experiment data are made publicly available on Zenodo:
https://zenodo.org/records/13961855
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