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Abstract—Researchers generally look for specific files within
Android application packages (APKs) during their analysis,
focusing on common files such as Dalvik bytecode or the Android
manifest. However, Android apps are complex archive files
containing various types of files. Failing to account for all files
during analyses can compromise end-user security, and despite
the wealth of existing techniques to analyze Android apps, only
a few studies explore the diversity of files within apps.

To bridge this gap, we propose the first large-scale empirical
study that dissects the content of Android apps from Google
Play. In our study, we explore the different file types and their
usage trends. We enhance our analysis by exploring compressed
files and the files they contain. We finally investigate to which
extent developers use disguised files, i.e., files whose extension is
conventionally associated with a file type different than its own
(e.g., a Dalvik dex file with the extension “.png”), and study if they
are a hint of maliciousness. OQur results show that: @ Android
apps comprise diverse file types, with over 15 000 distinct file
extensions and more than 1000 unique file types found in our
dataset containing over 400 000 APKs; and ® we found many
cases where developers use a wrong relation between the file type
and its extension to load malicious code at runtime.

I. INTRODUCTION

Android apps are not only made of bytecode and XML
files. They are complex archive files, which, beyond the
bytecode and XML files, contain files of various types such as
pictures, binaries, text files, code in other languages, scripts,
compressed files, etc. Some APKs even come with files that
are split into several parts or with code hidden in non-
obvious file types, such as pictures [1], [2], [3]. While there
might be various reasons for app developers to make such
implementation decisions, they can hinder maintenance and
even analyses. For example, failing to account for all files
leads to incomplete analyses by state-of-the art tools [4], [5],
[6], [7], [8], [9], [10], which in turn can threaten security.

The research literature contains various works aiming at ex-
tracting information from Android apps. For instance, in [11],
[12], [13], [14], the authors have studied features extracted
from the market where the app was published (e.g., their
popularity, their description, etc.). In [15], [16], [17], [18],
[19], the authors rather extract features directly from apps
to find markers of maliciousness. However, the extent to
which existing Android app analysis techniques overlook or
exclude various types of files and the proportion of these
overlooked files that should be considered critical is unknown.
Even more surprising, the composition of Android apps, i.e.,
what are the common and uncommon files contained in a

given app, is unknown. To bridge this knowledge gap, we
propose a large-scale empirical study that aims at dissecting
the content of apps from Google Play to understand them.
We go beyond surface-level analysis by exploring insights that
were previously unexplored. Our empirical study investigates
the composition of apps and inconsistencies between files and
their types, which must be considered during analysis since
they are signs of maliciousness.

Our study is carried out in three main steps, toward provid-
ing a comprehensive view of the composition of APKs:

1) First, we provide a large-scale study of the composition

of apps and collect data on the files inside APKs.

2) Second, we present the first study focusing on files
embedded within APKSs, specifically examining files con-
tained within compressed archives inside APKs.

3) Lastly, we study files whose type and extension are
inconsistent and measure their impact on maliciousness
in APKs.

Some of the most significant insights of our study are: @ a
large diversity of file types within Android apps with over
1000 unique file types; ® an even larger diversity of file
extensions within Android apps with over 15000 unique file
extensions; ® the extended usage of custom file extensions
by developers found in over 10% of Android apps; @ a
non-negligible number of APKs are embedded with other
APKs and almost 10% of APKs contain compressed files; @
the knowledge that some developers use inoffensive looking
extensions to hide the true nature of their files; and ® we
identified two indicators of maliciousness: files containing
code with unconventional extension (e.g., native code in a
“.png” file), and an APK embedded within another APK.

Our investigations serve researchers by uncovering new
knowledge about app composition and trends in app devel-
opment practices. The findings will provide researchers with
a foundation for future studies in the domain of Android app
analysis. Overall, we contribute to the research community
by proposing the first study that dissects Android apps to
understand their composition at a large scale.

The main findings of our study indicate that analysis of
Android apps (automated or manual) must not be restricted to
analyzing DEX and Android Manifest files. Indeed, our study
shows that Android apps are made of a wealth of different files,
including code, that must be accounted for during analysis.

We release our artifacts, as well as additional data at:
https://github.com/Trustworthy-Software/DissectingAPKs


https://github.com/Trustworthy-Software/DissectingAPKs

II. BACKGROUND

The type of a file is often characterized by its file extension.
For instance, the file “foo.txt” is assumed to be a text file
(because of the extension “.txt”). However, a file extension
can be manipulated arbitrarily by developers. To get more
reliable results related to the types of files, one can rely on
the python-magic interface, which depends on the libmagic file
type identification Python library [20]. Given a file as input,
the command magic.detect_from_content () returns
the MIME type, the magic type, and the encoding of the file.

MIME type [21], also referred to as Multipurpose Internet
Mail Extensions, serves to indicate the format and character-
istics of files. These MIME types are composed of a type and
subtype, separated by a slash (e.g., “image/png”). The type
indicates the broad file category, such as image or audio, while
the subtype specifies the exact file type.

Magic type refers to a file type given by the Python magic
library [20]. Concretely, this library retrieves the file magic
number [22], which is a value embedded in files (often at the
beginning). This magic number is then used to identify the
type of the file. This is a line from the “etc/magic” file, used
by the magic library to identify files:
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Encoding [23] defines how the file characters are repre-
sented. It determines the characters we can read or write from
the file.

Additionally, we introduce two novel definitions that allow
us to summarize the unique characteristics met by some of the
files found in our dataset. These particular files will be studied
in depth during the last step of our study.

Discrepant files represent files whose extension is not
related to any file type (e.g., an image file using the exten-
sion “.mypng”). Developers might modify the extension to
customize it. While not purposefully malicious, this behavior
can lead to files being overlooked by analyzers.

Disguised files are files whose extension is conventionally
associated with a file type different than its own (e.g., a Dalvik
dex file with the extension “.png”). A malicious developer
could modify the extension to make a file look harmless
and hide it within an app. If the file is missed during the
static analysis, it can introduce unknown code on any device
downloading the app.

III. COMPOSITION OF ANDROID APPS

Android apps are complex archive files containing a huge
diversity of files (e.g., XML files, code files, binaries, media
files, etc.). This diversity has never been studied in the litera-
ture. This section bridges this gap by proposing the first large-
scale empirical study on the composition of Android apps.

A. Empirical Setup

First, we detail the process for building our dataset, depicted
in Figure 1. In the following, we give the details for each step.

: Step 1: :
: Data Collection :
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Fig. 1: Dataset Evolution (GP: Google Play).

Step 1: Data Collection. Our empirical study relies on the
AndroZoo repository [24], a dataset of Android apps central
to our research. We have considered the entire dataset as of
October 2023, i.e., 22512965 APK files (the standard file
format to distribute Android apps). Note that an app, identified
through its unique package name (e.g., com.example.MyApp),
may be associated with several APK files, reflecting the
existence of multiple versions of the app within AndroZoo.
To disambiguate, we will refer specifically to APK files in
this paper.

Since one of our goals is to study trends in app composition,
it is essential to establish the time frame in which the apps
were developed. Note that we did not rely on the “dex_date”
metadata provided by AndroZoo since it is unreliable. For
instance, in October 2023: 8 679 512 apps have their dex date
set to 1980, 6 780599 have it set to 1981, etc. Therefore, we
decided to complement the metadata provided by AndroZoo
by adding a new field that we named sdk. The idea is that since
the SDKs are linked to Android versions, we get a sufficient
and reliable approximation of when the app has been released.
We retrieved the sdk information of each APK by inspecting
its “AndroidManifest.xml” file. More specifically, we consider
the field targetSdkVersion, which is present in 93.2% of APKs.
In cases where the targetSdkVersion was null, we used the
platformBuildVersionCode field since they represent the same
value. Eventually, we collected SDK information for 94% of
the apps. The remaining 6% have no information regarding
the SDK version.

For each APK, in addition to the sdk field, we collected

the following information from the metadata: SHA-256 hash,
VirusTotal score, package name, app version, APK size, Dalvik
bytecode size, markets, SDK, and permissions.
Step 2: Google Play, Deduplication and File Information
Collection. First, we only retain APKs from the Google Play
Store. The dataset is left with 19614 016 APKSs after applying
this filter. Second, we deduplicate apps, i.e., we only retain
the latest version of a given app (i.e., among APK files with
identical package names, we only keep the most recent APK).
The dataset is left with 8433849 APKs after applying this
filter.

For each of the 8433849 APKs in our dataset, we aug-
mented their metadata with additional information. Specifi-
cally, for each file inside any APK associated to an app, we
extracted the following information: @ the file encoding; @
the MIME type; ® the magic type; @ the file extension; and



® whether the file is compressed or within a compressed file.

Note that inside APK files (an APK file is just an

archive file containing multiple files), one can find other
archive/compressed files. We took that into account in our
analysis and for every compressed file detected in an APK,
the file is decompressed, and its content is considered in our
study. To identify compressed files without relying on their
extensions, we attempted to decompress all files using the
Zipfile library [25] and flagged those that were decompressed
successfully as compressed.
Step 3: Sampling. Our initial dataset, from AndroZoo, has a
very long tail distribution (timewise). To reduce biases, we
devise a sampling procedure that ensures that we consider
representative APKs across the Android timeline: we aim for
the same number of APKs per relevant SDK version.

Our sampling procedure was the following: @ In our dataset,
the SDK that contains the most APKs is SDK 30, with
1152062 APKs. A representative sample (with 99% confi-
dence level and 1% margin of error) for 1152062, is 16 405.
Therefore, we decided to collect at least 16405 APKs from
each SDK to achieve a representative and distributed sample.
@ Sample process: As seen in Figure 2, SDKs from version
8 to 33 (except SDK version 9) are above this threshold (i.e.,
16405 APKs). We then randomly selected 16405 APKs per
SDK version whose number of APKs is above the threshold
(25 SDK versions). As a result, an evenly distributed dataset
of 410125 APKs was generated over 25 SDK versions (i.e.,
16405 APKs x 25 SDKs = 410125 APKSs). These 25 SDKs
cover a large timeline from 2010 to 2023. Our evolution
study leverages SDK versions to associate with the timeline
of Android APKs.
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Fig. 2: Top 35 SDKs.

B. Research Questions

Section III answers the following research questions:

RQ1: What is the distribution of files in terms of numbers
and types in APKs?

RQ2: How did the distribution of file types and sizes
within APKs evolve over time?

C. Empirical Findings

This section presents an analysis of various aspects related
to the composition and properties of all APKs in our dataset.

RQ1: APK Number of Files and their Diversity:

Overall Statistics on Files. Overall, we extracted 271 155 026
files from the 410125 APKs of our dataset (661 files on
average per APK and a median of 485 files). Table I presents
statistics on the types of the files. Overall, nine different
encoding types were found. However, the dataset contains
many more MIME types (234), Magic types (1099), and more
than 15000 different extensions (15 349).

TABLE I: Number of Unique File Type Identifiers.

Field | Encoding
Count | 9

MIME type
234

Extension
15349

Magic type
1099

Table II shows the number of files per encoding in our
dataset. The binary encoding is, by far, the most common
encoding in our dataset with more than 240 million files.
Additionally, the presence value indicates the percentage of
APKs from our dataset which contain at least a file with said
encoding, finding binary files in every single app from our
dataset of 410125 APKs. Tables III and IV show the top
20 most common MIME types and Magic types, respectively,
while Table V shows the top 40 most used extensions in our
dataset. First, these tables show that the most prevalent file
type in our dataset is PNG files (i.e., pictures). Second, we can
see that though the second most prevalent file type is XML
from the Magic type and extension, the second most used
MIME type is “application/octet-stream”. This is explained
since most XML files in Android apps are compiled XML
files (e.g., the AndroidManifest.xml file which is present in
every single app). These tables also show that “.dex” files
are not the only code files. For instance, there is a larger
number of “js” and “.class” files. We also find a large number
(1124 050) of “.s0” extensions, which represent binary files.
Eventually, note that we count 587062 “Dalvik Dex files”,
indicating that there is not only one single dex file in Android
apps. These numbers show @ the high diversity of types
of files in APKs, and @ code in APKSs is not restricted to
DEX files. Our investigations demonstrate the need for more
comprehensive static analyses that account for all code files
present in apps.

RQ1 answer: We find that: @ APKs tend to be composed
of a large number of files, with over 600 files per APK
on average; and @ there is a large diversity of file types
in APKs, with over 15000 unique file extensions in our
dataset associated with over 1000 different magic types.

TABLE II: Encodings.

Encoding Count Presence Encoding | Count Presence
binary 241972123 100% utf-16le 34473 0.3%
us-ascii 24354131 99% utf-16be 6187 0.05%
utf-8 4636 896 35% ebedic 2296 0.2%
is0-8859-1 104384 6% utf-32le 6 0.001%
unknown-8bit 44530 1%

Total Count | 271155026



TABLE III: Top 20 MIME Types (app: application).

MIME type Count Presence MIME type Count Presence
image/png 119838955 99% image/x-tga 1296 018 52%
app/octet-stream 106 268 807 100% app/x-sharedlib | 1132056 29%
text/plain 18905 627 99% image/webp 1019330 2%
image/jpeg 4601195 46% font/sfnt 896 739 33%
app/x-java-applet 3166 796 8% app/x-dosexec 497721 6%
image/svg+xml 3030236 8% image/gif 438465 20%
text/html 2576405 33% text/x-java 408 635 6%
app/json 1945881 25% text/x-c 348 334 5%
text/xml 1553837 31% audio/ogg 340190 7%
audio/mpeg 1367471 14% app/zip 194 845 7%
TABLE IV: Top 20 Magic Types.
Magic type Count Presence Magic type Count Presence
PNG image 119838955 99% JSON 1945881 25%
Android binary XML 85454 543 99% XML document 1562397 31%
data 15813819 100% Targa image 1296011 52%
ASCII text 15528419 99% RIFF 1171281 8%
JPEG image 4601195 46% TrueType Font 896 739 33%
Java serialization 3695805 2% ELF 32-bit shared 830541 29%
compiled Java class 3166 796 8% Audio file ID3 768 541 11%
SVG image 3019743 8% MPEG ADTS 626 404 8%
HTML document 2576 394 33% Dalvik dex file 587062 99%
UTF-8 Unicode text 2223638 21% SGML document 586 379 24%
TABLE V: Top 40 Extensions.
Ex i Count Presence Ex Count Presence
.png 120035 855 99% dil 527728 5%
xml 88079179 99% kotlin_module | 485577 8%
none 11717336 44% .gif 432944 20%
Js 5343040 21% kotlin_builtins | 431258 15%
jpg 4283785 44% .mf 426 666 98%
.version 4151057 25% .arsc 412112 99%
.properties 3656 582 49% .sf 407196 98%
svg 3037053 8% TIsa 399061 96%
.class 3036 890 1% xsb 342235 0.03%
kotlin_metadata 2771817 2% Jjava 335800 2%
html 2727683 32% .ogg 328717 T%
txt 1965585 30% .map 212431 4%
json 1633817 24% .mod 201061 1%
.mp3 1435960 14% lua 190 052 0.2%
.s0 1124050 28% .resource 184838 4%
.webp 1024007 2% .bin 176 040 12%
atf 889255 33% .5Cs8 173336 1%
.res 787994 0.5% .zip 169 454 5%
.css 664 185 17% .plist 159721 1%
.dex 586 548 99% .dat 158 829 6%

RQ2: APK Size and Composition Evolution:

Size Evolution. Figure 3 shows the size evolution of APK
files across all the SDK versions from our dataset. The figure
shows an upward trend, signifying bigger apps. This does
not necessarily mean more code since apps are also made
of different resources, such as pictures and videos. However,
Figure 4 shows that there is also an upward trend in the size
of DEX files (Dalvik bytecode) inside APKs, which means
that developers use more and more code in their apps.
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File Distribution and Evolution. Figure 5 highlights the
increasing number of files found within APKs for each SDK
release. This upward trend could be linked to new techniques
adopted in development, such as the usage of new and bigger
libraries, as well as the increasing complexity of Android apps.

Figure 6 underscore the importance of the “binary” en-
coding in the composition of Android apps. This conclusion
is expected given that “.dex” files, compiled “.xml” files,
and “.so” files are “binary” files. Additionally, it is worth
mentioning the sudden raise in the number of “us-ascii” files
since SDK version 26.
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Figure 7 shows the distribution of the number of files per
APK for each MIME type, of which the median is not 0.
Results indicate that a high usage of pictures in apps that
can be attributed to the usage of images as icons, buttons,



and other graphical elements. The results also show that apps
mainly comprise images and binary files (octet-stream files).
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Fig. 7: MIME Type Count Distribution.

Figure 8 shows the evolution of the median number of files
for the top 5 magic types in our dataset. We note: @ a steady
rise of the number of Android binary XML; and @ a downward
trend in the number of PNGs (for the recent SDK versions).

data

Android binary XML
ASCII text

PNG image data
400 Dalvik dex file

300

200

Median number of files

100

8‘10‘12‘14‘16‘18‘20‘22‘24‘26‘28‘30‘32‘
9 11 13 15 17 19 21 23 25 27 29 31 33
SDK

Fig. 8: Magic Type Median Evolution.

We computed a similar plot for the top 5 extensions in our
dataset, but we omitted it for space reasons. Note that the
results are similar to the results from Figure 8 (the plot can
be found here [26]).

RQ2 answer: @ Over time, the size of APK files is
growing steadily, as well as the number of files found
within them; ® APKs are mostly composed of binary
files (i.e., “code”, images, etc.), whose numbers and sizes
are also increasing over time; and ® The variety of file
types evolves differently over time.

IV. CAN YOU FIND EVEN MORE FILES INSIDE APKS?

Our empirical findings of the file types described in the
previous section revealed the presence of files that consist of
other embedded files. More specifically, these are compressed
files (e.g., zip files) that encapsulate files within them. To en-
sure the comprehensiveness of our analysis, we must consider
them in our study.

A. Empirical Setup

In this section, we rely on the dataset used in the previous
section, i.e., 410125 APKs distributed equally over 25 SDKs.

To identify a file as a compressed file, we rely on a simple
heuristic: we define a compressed file as a file that can be
successfully decompressed with the Zipfile library [25].

B. Research Questions
Section IV aims to answer the following RQ:
RQ3: To what extent do APKs contain compressed files?

C. Empirical Findings

Table VI shows statistics about compressed files found in
our dataset. The first line reports the number of Compressed
files we found, i.e., 223370 in 35462 apps. The second line
reports the number of APKs that we found inside another
APKs (an APK is a compressed file, a ZIP file more precisely).
Finally, the last line reports the number of files that we found
in the compressed files once the files are decompressed. The
Count column is the number of these files we found in our
dataset. The Presence column is the number of APKs in our
dataset in which we found these files.

TABLE VI: Statistics about Compressed Files.

Count Presence
#Compressed files within APKs 223370 8.65% (35 462)
#APKs within APKs 2889 0.37% (1509)
#Files within compressed files 6415488  8.58% (35199)

Our empirical results reveal the following: @ roughly 9%
(35462) of the APKs of our dataset contain compressed files,
highlighting the common adoption of compression techniques
in Android apps; ® Over 6 million files have been newly
discovered within the compressed files; and ® 1509 APKs
contain another APK. This practice is especially concerning
as it could provide a pathway for malicious actors to introduce
unverified or harmful software onto users’ devices.

To further investigate the first two findings, we computed
Table VII and Table VIII. Table VII shows the top 20 most
frequently used extensions of compressed files. It is not a
big surprise that the “.zip” extension is the most used. It is,
however, of particular interest that “jar” and “.apk” are the
second and sixth most common extensions. This presence can
be attributed to their roles in Android apps. Indeed, both could
be used to trigger code that is often not analyzed by existing
static analyzers.

TABLE VII: Top 20 Compressed.

Extension Count Presence Extension | Count Presence

.Zip 164680 5% (22832) .mpkg 972 0.03% (108)
jar 17770 1% (4881) .mcaddon 712 0.05% (199)
.Xms 7806 0.001% (6) .amr 542 0.1% (404)
.thmx 6283 0.1% (496) .mcpack 506 0.03% (142)
dil 3743 0.06% (256) .mp3 498 0.07% (280)
.apk 2889 0.4% (1509) ZW 432 0.008% (31)
.dat 2798 0.3% (1133) .efa 415 0.0005% (2)
.80 2550 0.4% (1487) .gtl 405 0.0007% (3)
.bn 1326 0.0005% (2) Jet 397 0.04% (164)
.epub 1142 0.09% (389) cs 393 0.001% (4)

Table VIII shows the top 20 most used extensions of files
found inside compressed files. Most of the files represent Java
classes, pictures, and text data.

Since an APK can theoretically be extracted from another
APK and installed on a given device, we decided to further
investigate this mechanism since it could be used by malicious
actors. To do so, we relied on VirusTotal [27], an online



TABLE VIII: Top 20 Within Compressed.

Extension Count Presence Extension Count Presence
class 3008136  1.00% (4087) Tua 41989  0.03% (114)
.png 1460133  5.23% (21466) .Svg 27308  0.16% (660)
xml 234998 1.51% (6207) sig 26559  0.003% (13)
json 195 666 0.56% (2309) .dat 24796  0.59% (2433)
Js 179795 0.88% (3600) .css 19976  0.91% (3749)
.html 162081 2.77% (11 374) .mf 19439  1.87% (7651)
none 136 966 2.13% (8749) Jjava 18724 0.10% (422)
Jpg 125016 0.96% (3948) .webp 18130 0.01% (47)
Ltxt 115201 1.08% (4444) .ogg 17542 0.09% (370)
.mp3 98874 0.13% (539) (diff 17303  0.006% (25)

platform that analyzes files and URLs using more than 70
antiviruses. More specifically, we compute a VirusTotal score
for each of the 1509 APK that contain another APK. This
VirusTotal score is the number of antivirus from VirusTotal
that flag the APK as malware. Note that different VirusTotal
scores can be used as thresholds to flag an APK as malicious.
The minimum threshold is 1, indicating that as soon as
a single antivirus identifies the APK as malware, we will
determine it as malicious. This approach can lead to many
false positives since the conclusions from a single antivirus can
be mistaken. In the literature, 5 or 10 antiviruses are usually
used as thresholds, making the results more reliable (the more
antiviruses flag an app, the more said app can be considered
malicious).

Figure 9 reports the VirusTotal score related to the 1509
APKs containing APK(s). Results indicate that 69 APKs
(4,57%)—out of the 1509 APKs that contain another APK(s)—
are flagged by at least 10 antivirus from VirusTotal. In
perspective to the number of APKs from our initial dataset
that have a VirusTotal score higher or equal to 10, i.e., 68 221
out of 8433849 (0,8%), we can conclude that an APK inside
another APK is a sign of maliciousness.
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Fig. 9: VT Score of APKs Containing APK(s).

RQ3 answer: @ Almost 10% of the analyzed APKs
contain compressed files; and & APKs that contains
another APK is a sign of maliciousness.

V. DISGUISED FILES

Previously, we analyzed the composition of APKs in terms
of quantity. In this section, we examine file consistency by
verifying whether the extensions match their actual types (e.g.,

confirming if a .png file is a PNG image). Indeed, file exten-
sions are widely used by analysts and static analyzers [28],
[29] to identify files and include them in the analysis'. Never-
theless, these extensions are easily manipulable, potentially
leading to incomplete analyses. These incomplete analyses
might be overlooking potential threats hidden inside Android
apps. Previous works [1], [2], [3] have indeed shown that some
malware hides their malicious code in picture resources in
Android apps. However, malicious code could be hidden in
any file [30] within an app, and any file can be disguised as
another file. This section presents the first large-scale empirical
study to define and find within Android apps both discrepant
files (i.e., files whose extension is not related to any file type,
e.g., an image file using the extension “.mypng”) and disguised
files (i.e., files whose extension is related to a file type different
than its own, e.g., a Dalvik dex file with the extension “.png”).
Using these findings, we study the effect these files cause on an
APK’s maliciousness, their plausible security implications on
Android devices, and whether this practice should be allowed
during the development of Android apps.

A. Empirical Setup

In this section, we rely on two of the datasets defined in
Section III, specifically on the distributed dataset (410125
APKs) and the filtered dataset (8433849 APKs). The dis-
tributed dataset will allow us to draw conclusions from the
trends followed by discrepant and disguised files. Meanwhile,
the filtered dataset provides a larger number of APKs and files
from Google Play to study.

To reveal discrepant and disguised files, one has to under-
stand the relation between the extension, the MIME type,
the encoding, and the magic type of a given file. To the
best of our knowledge, no existing list maps these three
pieces of information together (although there exist some
non-comprehensive maps®> which link some MIME types to
their extension [31], [32]). Hence, we decided to create
this mapping with our dataset. The final goal is to have a
mapping informing us that, for instance, a file with the “.dex”
extension will always be associated to the encoding “binary”,
the MIME type “application/octet-stream”, and the magic type
“Dalvik dex file”. With this map, it is straightforward to detect
inconsistencies between the file extension and the file type.

1) Mapping Construction: As a starting point for the map-
ping, we use the distributed dataset obtained in Section III.
We define the notion of relation, which associates a triplet
(encoding, MIME type, magic type) to an extension. Table IX
presents an example of a relation.

TABLE IX: Structure of a Relation.

Type :
Encoding MIME Type Magic Type Extension
binary | application/octet-stream | Dalvik dex file | .dex

I'Soot initially relies on the method getA11DexFilesInDirectory ()
to locate all Dalvik dex files using the “.dex” extension

2Both maps are missing one of the key extensions of Android apps, i.e.,
“.dex”, highlighting their limitations
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Then, for each file of each APK, we compute the relation,
i.e., we collect its MIME type, its extension, its encoding, and
its Magic type, and eventually aggregate the results. We obtain
the map illustrated in Figure 10. We can see for example, that
the triplet (binary|image/png| PNG image data) is associated
with 119497080 “.png” files, 64 788 “.jpg” files, etc. Overall,
this triplet is associated with 1116 extensions (“.bimg” being
the less common). Overall, our map contains 1465 triplets, and
12744 unique extensions. On average, a triplet is associated
with 16 extensions (median equals 2). The maximum number
of extensions for a given triplet is 3616.

a )

"binary|application/octet-stream |Dalvik dex file": {
".dex": 586227,

1:

2: ".dx": 740,
8: ".odex": 1
},
"binary|application/octet-stream|Android binary XML": {
1: ".xml": 85430243,
2: ".java": 5,
38: ".notused": 1
"binary]applicatmn/pdf\PDF document™: {
1: ".pdf': 30163,
2: ".ai": 171,
18: I":(';bmag": 1
}
"binaryilmage/png\PNG image data": {
1: "png": 119497080,
2: “ipg": 64788
3: jpeg": 4721,
1116: ".bimg": 6
,
"us-ascii|text/plain|Python script": {
1: "opy": 2249,
2: ".html": 44,

10: ".test: 4

+
k cee Joined Relations

Fig. 10: An Extract of the Relation Map.

As seen in Figure 10, in many cases, like for
“binary|image/png|PNG image data”, the number of associated
extensions is extensive (1116 in this case). Achieving accurate
mapping where only the proper extensions are associated with
its types would require a huge manual effort, which falls out
of the scope of this study. As a result, we opted to manually
select only a limited subset of keys, trying to cover the overall
diversity of types, and the author manually filtered them?.
This results in the map illustrated in Figure 11. This map
has the same structure as the one from “Joined Relations”
(i.e., Figure 10) but, with a more limited number of keys
and associated values. Our filtered relations map contains
63 triplets and 100 unique extensions. On average, a triplet
is associated with 2 extensions. The maximum number of
extensions for a given triplet is 18.

Disclaimer: our goal is not to yield a comprehensive
mapping (triplet, extension), which would require extensive
work and is out of this paper’s scope. Our goal is to
propose a mapping that is “good enough” to draw valuable
conclusions.

2) Flag Process: To flag a file f as unknown, non-
disguised, discrepant, or disguised, we collect f’s MIME type,

3FileInfo complemented with Google searches were used during the manual
check process

~

"binary|application/octet-stream|Dalvik dex file": {
" 586227

1: .dex":
"l;inary\application/octet—stream|Android binary XML": {
1: ".xml": 85430243,
2: ".tmx": 379,
3: ".axml": 800
},
"binary|application/pdf|PDF document": {
1: ".pdf": 30163,
2: ".ai": 171
"l':rinarylimage/pnglPNG image data": {
1: ".png": 119497080,
2: ".jpg": 64788
3: ".jpeg": 4721,
18: "pat": 200
}

,
"us-ascii|text/plain|Python script": {

1: ".py": 2249
-
\ Filtered Relations J

Fig. 11: Extract of the Mapping Relations after Manual
Filtering.

Ginary | application/octet-stream | MacBinary | .assets" ( Unknown )

"binary | application/octet-stream | Dalvik dex file | .dex" (Non-disguised)

C Discrepant )

binary | application/octet-stream | Dalvik dex file | .png" ( Disguised )

"binary | image/png | PNG image data | .mypng"

() [(2)

Fig. 12: Examples of Flagged Files.

encoding, magic type, and extension. Then, we build f’s triplet
(that we also called “type”) and compare it with our previously
built mapping. There are four possible outcomes: @ Unknown:
if the type (i.e., the triplet) is not present in the map, we cannot
label the relation as disguised or non-disguised due to the lack
of information; @ Non-disguised: if we find the type in the
map, and the extension matches any of the extensions linked
to said type. ® Discrepant: if the type is present in the map,
and the extension is not present in said map; and @ Disguised:
if the type is present in the map, the extension does not match
any of the extensions linked to said type, and the extension
is present under a different type in said map. An example for
every outcome can be seen in Figure 12.

Finally, we performed additional checks on the identified
disguised files. In particular, we check if these files can pose
security issues since their extension is inconsistent with their
triplet type. To perform these checks, we rely on @ static
analysis; @ dynamic analysis; @ ChatGPT, and ® manual
analysis.

B. Research Questions
Section V aims to answer the following RQs:
RQ4: To what extent are discrepant and disguised files
prevalent in APKs?

RQS5: To what extent do discrepant or disguised files hint
at maliciousness?

C. Empirical Findings

This section presents an analysis of the flagged files found
in our filtered dataset, containing 8 433 849 APKs (containing
6842234 526 files).
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TABLE X: Statistics of the Files Flagged during our Study
(VT: VirusTotal).

- Presence if VT Score

Flag Count Presence S—=>3 S=10
Total 6842234526 8433849 (100%) | 175871 2%) 68221 (0.8%)
Unknown 1286118871 8430112 (100%) | 175727 (2%) 68154 (0.8%)
Non-disguised 5553004470 8430112 (100%) | 175727 (2%) 68154 (0.8%)
Discrepant 2665238 1075775 (13%) 14935 (1%) 4935 (0.5%)
Disguised 445947 48835 (0.6%) 3108 (6%) 1994 (4%)
Disguised SO 2810 1638 (0.02%) 1185 (72%) 986 (60%)
Disguised DEX 99 99 (0.001%) 12 (12%) 6 (6%)

RQ4: Discrepant and Disguised Files Frequency:
Unknown Files. As seen in Table X, we encounter “Un-
known” files in every APK within our filtered dataset. Indeed,
on average, they represent almost 20% of all files found
inside APKs. These files—not only—result from an incomplete
mapping during our manual filtration step. We are purposefully
ignoring the rest of the types by only keeping a handful of
types with their corresponding extensions. The nature of these
files is unknown in our study, so we cannot infer any intention
from these files.

Non-Disguised Files. These files represent the files we are
confident that are “Non-Disguised”. Indeed, since the map was
filtered manually, all associations between type and extension
found in it have been reviewed. As expected, Table X shows
that most files inside APKs are “Non-Disguised”; in fact, over
80% of all files have a correct relation between their type and
extension, i.e., they are consistent.

Discrepant Files. Table X shows that “Discrepant” files, while
not present in every APK, are still numerous. Also, as depicted
by Figure 13, while in general, the number of ‘“Discrepant”
files have remained horizontal on early SDK versions —except
for some peaks which are due to a limited number of APKs
which contain a large number of discrepant files—, we can
observe a clear and steep upward trend on the last SDKs. This
trend could be given by developers using custom extensions
during development. Nevertheless, this practice can lead to
unsafe apps since static analyzers might overlook these files.

Disguised Files. As seen in Table X, the number of disguised
files is limited, especially compared to the total number of
files. Nevertheless, while they are few and only present in a
small subset of APKs, they are worth investigating. Indeed,
a “Disguised” file represent a file whose extension belongs
within a different file type; therefore, the developer who
modified said extension did it to hide the real nature of
the file and to make it look like something else entirely
different. While we do not know the reason why the developer
intentionally changed the extension of the file, we hypothesize
that some potential explanations are to either protect her code
or to hide malicious behavior. We will check whether disguised
files are related to maliciousness in the next RQ.

Figure 14 represents the number of “Disguised” files per
SDK. We found “Disguised” files in all SDKs of our dataset.
Additionally, we can observe a slight upward trend on the last
SDKs, similar to the one for “Discrepant” files, although not
as pronounced.
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Fig. 13: Number of Discrepant Files Evolution.
2000
1750
9 1500
z
w1250
o
T 1000
E 70
=2
500
250
i ‘10 ‘12 ‘14‘ 16‘ 13‘ 20‘ 22‘ 24 ‘26 ‘zs ‘30 ‘32‘
13 15 21 23 25 27 29 31 33
SDK
Fig. 14: Number of Disguised Files Evolution.

RQ4 answer: Our results show that: @ Over 10% of
APKs of our dataset contain files with an extension unre-
lated to any file type, suggesting that such discrepancies
are a fairly common practice; @ the number of discrepant
files grew drastically over the last SDK versions; and
® in our dataset, we discovered that over 400000 files
have extensions that are not conventionally associated
with their real file types.

RQ5: Discrepant and Disguised Files Malicious Impact:
Effect of Flagged Files on Maliciousness. The right part of
Table X presents the VirusTotal score of the APKs containing
the files. We can see that among all APKs analyzed, 68 221
(0,8%) have a VirusTotal score higher or equal to 10. This
ratio is similar when an APK contains a discrepant file (0,5%).
However, the percentage of APKs that are flagged by Virus-
Total when containing disguised files is significantly higher
(4%). Additionally, this percentage further increases when the
disguised file has an extension “.dex” or “.so” to reach 6%
and 60%, respectively. This result shows that disguised files
are “a sign” of maliciousness. Especially for native (.so) and
DEX code, which can be used by attackers to load malicious
code surreptitiously.

Disguised DEX files*. Based on the results that we obtained
from Table X, we focused on trying to further assess whether
the presence of disguised DEX files is a sign of maliciousness.

4We define a disguised DEX file as a disguised file with the type
“binary|application/octet-stream|Dalvik dex file” but associated with an ex-
tension different from ”.dex” (e.g., a DEX file with a ”.png” extension).



This would support our claim that, indeed, analysts and
static analysis tools must be wary of disguised files as they
might be hiding malicious intents. To determine the effect on
maliciousness of said disguised DEX files we followed four
separate approaches.

Initially, we focused on static and dynamic analysis to
answer our RQ.

@ Static analysis: Our idea was to rely on Soot [28]
and FlowDroid [29], two static analyzers for Android apps,
to detect data leaks. We first checked if both tools handle
disguised DEX files. We found that they do take into account
the disguised DEX files (according to their documentation and
source code). However, we tried a small experiment: we used
Soot and FlowDroid to compute the call graphs of the APKs
with and without the disguised DEX files. The results indicate
that these disguised DEX files do not have any impact on the
call graph, i.e., not a single method from disguised DEX files
was included in the call graph. We make the hypothesis that
malicious developers rely on mechanisms that hinder static
analysis tools to reach the disguised code, such as dynamic
class loading, which Soot and FlowDroid do not handle.

® Dynamic analysis: given our previous hypothesis that dis-
guised DEX files could be dynamically loaded at runtime, we
executed the APKs and observed their runtime behavior. To do
so, we relied on AndroLog [33], an Android instrumentation
tool that adds log statements into app code (even in disguised
files). Then, we exercised the APKs with Monkey [34] for
5 minutes. Our goal was to observe if disguised files code
would trigger any malicious payload. Unfortunately, given the
pseudo-random nature of Monkey, we could not observe any
instance where the disguised code was triggered.

Since our two attempts, one with static analysis and one
with dynamic analysis, were inconclusive, we decided to in-
vestigate further by relying on ChatGPT and manual analysis.

® ChatGPT [35]: we used jadx [36] to decompile the
disguised DEX files and obtain their source code (i.e., Java
files). We provided these Java files to ChatGPT to determine if
any behavior within them is potentially malicious. According
to ChatGPT-40, over 40% of the decompiled Java files are
possibly malicious.

® Manual analysis: We used jadx to manually inspect the
source code of the dex files. We searched for the disguised
DEX file name in the APK source code to find if the APK
dynamically loaded the disguised file. Given the tedious nature
of the manual analysis, we only manually analyzed a subset
of 5 APKs that contain disguised DEX files. After manual
inspection, we found the pieces of code that dynamically load
the disguised DEX files. Table XI shows an extract of our
findings: the first column is the name of the disguised file
found in the APK, the second column is the piece of code
loading it dynamically. We can see in Table XI how the
dynamic load is done with completely different methodologies

SThe prompt given to ChatGPT was: “I will provide Java source code.
You have to analyze it and answer a series of questions. First, you need to
determine if the source code might be potentially malicious.”

for each “disguised” file, making it hard to identify as a unique
pattern in Android source code.

We further inspected the 5 disguised DEX files (first column
of Table XI) to manually look for malicious code within their
Java files. We found suspicious pieces of code and decided
to use VirusTotal [27] and ChatGPT [35] to confirm our
suspicions. The VT score was 0 for 4 out of the 5 disguised
DEX files. The remaining disguised DEX file had a VT score
of 1. Therefore, VirusTotal did not find obvious signs of
maliciousness inside these disguised DEX files. Nevertheless,
according to ChatGPT, the pieces of code found in 4 disguised
DEX files (the first 4 in Table XI) where potentially malicious
given a series of properties found in the code, such as, dynamic
URL fetching, dynamic content loading, enabling/disabling
app components without consent, and manipulating Android
framework components. The code from the last disguised
DEX file was used to define a custom configuration during
debugging tasks.

RQ5 answer: Our results show that: @ discrepant files
have no effect on VirusTotal score; @ there is a link
between the presence of disguised files in an APK and
the probability of said APK being malicious; & this link
is even more visible for disguised files which should have
a “.dex” or “.s0” extension; and @ ChatGPT and manual
analysis support these results by identifying malicious
intent within disguised DEX files.

VI1. THREATS TO VALIDITY

Magic Library. The magic library used in our study might
not return precise magic types for some files. Ambiguity in
file identification could also affect the study’s reliability. To
overcome this threat, we used a recent and stable version of
Magic library.

Manual Mapping. The mapping used to flag the different files
found within the APKs was manually built. Therefore, there
are some inherent limitations. A complete mapping would
remove unknown files since all types should be mapped. These
unknown files would become non-disguised, discrepant, or
disguised. Some discrepant files might also become disguised
if their extensions appear under newly included types. As
mentioned in our paper, building a complete mapping is out
of the scope of our research.

Compressed Files. The Zipfile library used to search for
compressed files does not support all compression algorithms.
Therefore, we might have missed compressed files in our
study. This threat is mitigated since discovering more com-
pressed files would exacerbate our results on the fact that
static analysis should not only account for DEX and Android
Manifest files.

VII. RELATED WORK

This section provides an overview of previous work related
to our study.
Static Analysis. Static analysis is key in ensuring the security
of Android apps, permitting an in-depth examination of code



TABLE XI: Dynamic Load of Disguised DEX Files (Package Name of their APKs in Footnotes).

Disguised file Dynamic load

s) Trigger

yui.gif? Class loadClass Sport.Companio

n.pathl (getAssets () .open("yui.gif"))...);

onCreate ()

private static String g = " > ;
f = new File(this.a.getDir ("dex", 0), g);

FileOutputStream fileOutputStream
while (true){
int read = open.read();

back.png”?

InputStream open = this.a.getApplicationContext ().getAssets()
new FileOutputStream(f);
fileOutputStream.write (bArr, 0, read);

Class loadClass = new DexClassLoader (f.getAbsolutePath(), ...);

.open(g) ;

onResume ()

InputStream open = context.getAss
while (true){
int read = open.read();
byteArrayOutputStream.write (read);

ets ()

ares.ttf®

instance = (DynamicInvoker

.open("ares.ttf");

ByteBuffer wrap = ByteBuffer.wrap (byteArrayOutputStream.toByteArray());
new InMemoryDexClassLoader (wrap,

onPostResume ()

File.separator + "libclasses.so";
J File dexfile = new File (dexpath);

File dest = new File (baseDir,
copyFileUsingFileStreams (dexfile, dest);
DexFile result = DexFile.loadDex (dest.ge

libclasses.so

String dexpath = context.getApplicationInfo().nativelibraryDir +

"shell.dex");

olutePath(), ...);

attachBaseContext ()

private static final String dexl = "ui
uio.sof
DexFile dexFile = new DexFile (dexl12);

File dexl2 = new File(context.getDir ("dex_support"”, 0)

+ dexl); attachBaseContext ()

“com.christopherbarrett.wildmustanggallop

without its execution. Many works have been designed and
presented to account more than the Dalvik bytecode in An-
droid apps. For instance, FlowDroid [29], which offers precise
taint analysis, also reads side files such as resources and the
AndroidManifest. Several works have been presented to also
account for the binary code present in the “lib” folder in
Android apps. For instance, DroidNative [37], IN-SAF [38],
NDroid [39], and JuCify [40] account for native code to
allow more comprehensive static analysis. Several works have
also developed techniques to improve static analysis via the
introduction of JavaScript code [41], [42]. More recently,
ReuNify [43] was presented as a static analysis solution to
account for the React Native framework.

Compared to these works, our study provides a comprehen-

sive view of all types of files present in APKs. Static analyzers
should extend their analysis by taking into account the various
types of files our study highlights.
Android app comprehension. Android app comprehension
is an extensive field with significant contributions from state-
of-the-art research. Some of these papers focus on studying
apps using the attributes obtained from the market [11], [12],
[13], [14]. Meanwhile, many state-of-the-art papers [15], [16],
[17], [18], [19] analyze the composition of Android apps while
trying to find clear markers of maliciousness. Additionally,
some papers [44], [45] study the structure of Android apps to
gain insights into them.

Our paper introduces a novel perspective in the study of
Android app composition by focusing on the attributes (e.g.,
type, extension, etc.) of the files found in Android apps.
Disguised files. The practice of disguising malicious files as
seemingly harmless by deliberately modifying their extensions
has been a subject of extensive study. Numerous state-of-the-
art papers [46], [47], [48] shed light on the prevalence of these
disguised files, especially as email attachments. Moreover,
some papers offer innovative solutions to address the issue

Pnet.wallpapersmobile.foryouthebotsquadpuzzlebattles
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beyond email attachments. For instance, BrowserGuard [49]
is designed to safeguard users from drive-by-downloads dis-
guised files, providing an extra layer of protection in web secu-
rity. Malicious actors also rely on steganography (a technique
where additional data is concealed within the original one)
to introduce malicious code through apparently inoffensive
files [1], [2], [3], [30].

We introduce an innovative approach to identify disguised
files in Android apps.
Compressed files. The paper by Yan et al. [50] delves into the
method employed by malicious actors who utilize packers to
evade antivirus detection. This technique, involving the con-
cealment of malware within compressed files, has drawn the
attention of several state-of-the-art papers [51], [52], [53], [54],
which explore the challenges associated with this practice.

We investigate the prevalence of compressed files in An-
droid apps.

VIII. CONCLUSION

We conducted an empirical study to dissect and understand
the composition of Android apps. Our experimental results
indicate that Android apps are made of a wealth of different
types of files, that developers use many unconventional ex-
tensions for their files, and that APKs can contain compressed
files, even including other APKs. Finally, our study shows that
several file extensions are not consistent with their type, and
this fact is an indicator of maliciousness.
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