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An implicit call is a mechanism that triggers the execution of a method𝑚 without a direct call to𝑚 in the code being analyzed. For

instance, in Android apps the Thread.start() method implicitly executes the Thread.run() method. These implicit calls can be con-

ditionally triggered by programmer-specified constraints that are evaluated at run time. For instance, the JobScheduler.schedule()

method can be called to implicitly execute the JobService.onStartJob() method only if the device’s battery is charging. Such

conditional implicit calls can effectively disguise logic bombs, posing significant challenges for both static and dynamic software

analyses. Conservative static analysis may produce false-positive alerts due to over-approximation, while less conservative approaches

might overlook potential covert behaviors, a serious concern in security analysis. Dynamic analysis may fail to generate the specific

inputs required to activate these implicit call targets. To address these challenges, we introduce Archer, a tool designed to resolve

conditional implicit calls and extract the constraints triggering execution control transfer. Our evaluation reveals that ① implicit calls

are prevalent in Android apps; ② Archer enhances app models’ soundness beyond existing static analysis methods; and ③ Archer

successfully infers constraint values, enabling dynamic analyzers to detect (i.e., thanks to better code coverage) and assess conditionally

triggered implicit calls.

CCS Concepts: • Security and privacy → Software security engineering.

Additional Key Words and Phrases: Static Analysis, Android Security, Data Leaks

1 INTRODUCTION

Security and privacy in the Android ecosystem is of critical importance, because Android dominates the mobile market in

number of devices [31] and number of apps [33]. Previous research has investigated static analysis [5, 17, 18, 34, 36, 51],

dynamic analysis [43, 59, 68], and hybrid analysis [15, 63] of Android apps. However, malware developers evade

analyzers via multiple mechanisms such as implicit calls [32] and trigger-based behavior [19, 49, 51, 54]. An implicit

call triggers the execution of a method without a direct call in the code being analyzed, challenging static analyzers. For

example, Android life-cycle methods like Activity.onCreate(), are never called explicitly in app code. A logic bomb

triggers the execution of malicious code under certain circumstances, challenging dynamic analyzers. For instance, A

time-related logic bomb (i.e., a time bomb) would trigger the malicious code at a given date or after a certain delay.

Static analysis works by constructing a model of code and then analyzing the model. The model must reflect all

possible behaviors of the code, or else the analysis is unsound, which is unacceptable for security analysis, verification,

compiler optimizations, and other contexts. On the other hand, overconservatism can result in an excess of false positive

alerts. Static analysis tools typically rely on control flow graphs [1] and call graphs [46]. A dataflow analysis typically

starts at an entrypoint method and propagates dataflow values along the control flow graph. When a method call is

encountered, the analysis continues to other methods, using the potential target methods computed by the call graph.

Call graph construction algorithms such as CHA [16], RTA [6], VTA [56], Andersen [3], Steensgaard [53], SPARK [35],

etc. do not natively resolve implicit calls. Therefore, static analysis tools that rely on these algorithms are unsound
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if developers do not add ad-hoc edges: they overlook parts of the code that must be visited to ensure comprehensive

analysis.

The Android framework also enables developers to explicitly constrain or gate the execution of implicit calls without

traditional conditional statements (e.g., if statements). For instance, the JobService.onStartJob() method, which

is called implicitly using method JobScheduler.schedule(), can be constrained to be executed only if the device

battery is charging, or if the device is connected to a cellular network, etc. This is controlled by APIs of the Android

framework such as JobInfo.Builder.setRequiresCharging(true) and JobInfo.Builder.setRequiredNetwork-

Type(4). These constraints, which malicious developers can use to trigger logic bombs, challenge dynamic analyzers,

which would not execute the code targeted by these implicit calls if the constraints are not met at run time.

Previous research has made static analysis of Android apps more sound by identifying several implicit call mechanisms

and proposing approaches to account for them. Implicit calls addressed in the literature include life-cycle methods [4],

reflection [7, 37], callbacks [11], inter-component communication (ICC) [36], threading [4], etc. If a static analysis

overlooks some implicit call mechanisms, it remains unsound and admits, for example, security vulnerabilities. Previous

research also contributed to logic bomb detection in Android apps by devising static analysis and AI techniques [19, 51,

54]. However, these works are limited to detecting potential trigger-based malicious behavior and do not extract the

condition under which the logic bombs are triggered. If a dynamic analysis does not execute the dormant code, the

malicious code remains undetected.

We have identified a new type of implicit calls that were not previously reported in the literature: conditional implicit

calls (CI calls) that can be explicitly constrained in their execution (with a conditional or a temporal trigger). Our work

makes two main contributions. (1) First, we improve the soundness and precision of call graphs: (1.1) we improve

soundness by adding new edges from implicit calls that were previously unknown, and (1.2) we improve precision

by resolving the targets of these implicit calls. (2) Second, we extract the constraints that need to be met to execute

conditional implicit calls. It is important to account for these mechanisms in Android app static analysis, since attackers

can use these techniques as logic bombs [19, 51] (e.g., with time constraints) to evade static and dynamic analysis and

enter the Google Play store [10, 32].

The outcome of our research can directly impact the security and privacy of apps’ users. Indeed, logic bombs

pose serious threats to data integrity and confidentiality, making their detection paramount for protecting users from

unauthorized access and privacy breaches. By focusing on CI calls, our work improves Android apps’ static models and

allows for reaching these hidden threats which directly contributes to making the mobile ecosystem safer for endusers.

Our approach differs from previous approaches for handling implicit calls. FlowDroid adds a dummy main method

with calls to every entrypoint, such as lifecycle methods and callbacks. The new framework calls we have identified

could be treated as new entrypoints, but our approach of resolving the call targets leads to much better precision. String

analysis of class/method names and of intents’ content help with reflective calls and inter-component communication,

but they are not effective for CI calls, which do not depend on the values of strings. Therefore, we developed a different

approach to accurately model and analyze CI calls in Android apps.

The contributions of this paper are:

• A systematic search of the Android framework for implicit calls that can be triggered conditionally.

• An empirical study showing that CI calls are common.

• A novel approach to handle conditional implicit calls. It ① helps static analyzers by improving soundness and precision

of the call graph, and ② extracts the constraints that need to be met in order to execute CI calls.

• An open-source implementation named Archer.
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Listing 1 Code illustrating a conditional implicit call.

1 public class MainActivity extends Activity {
2 public static String secret;
3 @Override
4 protected void onCreate(Bundle b) {
5 super.onCreate(b);
6 secret = getSecret();
7 Constraints cs = new Constraints.Builder()
8 .setRequiredNetworkType(NetworkType.CONNECTED)
9 .setRequiresCharging(true).build();
10 OneTimeWorkRequest wr =
11 new OneTimeWorkRequest.Builder(MyWorker.class)
12 .setConstraints(cs).build();
13 WorkManager.getInstance(this).enqueue(wr);
14 }
15 private String getSecret() { /** code **/ }
16 }
17 public class MyWorker extends Worker {
18 public MyWorker(Context c, WorkerParameters w) {
19 super(c, w);
20 }
21 @Override
22 public Result doWork() {
23 String secret = MainActivity.secret;
24 leak(secret);
25 return null;
26 }
27 }

• A new benchmark that includes CI calls, enabling more comprehensive empirical evaluations.

• Experiments showing that Archer: ① enhances the call graph of Android apps, ② outperforms existing static analyzers,

③ extracts the conditions needed to trigger CI calls with high precision, and ④ allows dynamic analyzers to improve

their code coverage.

• Our implementation, experimental scripts, and data are available at:

https://github.com/JordanSamhi/Archer

https://doi.org/10.5281/zenodo.10474310

2 MOTIVATION & BACKGROUND

This section motivates our work and presents relevant background for our work.

2.1 A Motivating Example

Listing 1 shows an example of a data leak in an Android app that uses a CI call. This example illustrates the threat

model for our study. We explain why this data leak would not be detected by state-of-the-art static data leak detectors

such as FlowDroid, and why dynamic analyzers might not detect it.

On line 6, a sensitive datum is stored into field MainActivity.secret. The call to getSecret() is explicit, i.e.,

the call site is directly connected to the getSecret() method implementation. Lines 7–9 build a Constraints object

requiring that the network is connected and the device is charging. The method calls setRequiredNetworkType()

and setRequiresCharging() set the conditions that need to be met to trigger the CI call. Then, lines 10–12 show the

construction of a setOneTimeWorkRequest object that points to class MyWorker and is fed with the constraints object.

On line 13, a WorkManager instance calls the enqueue() method with the work request as a parameter. After the call to

enqueue(), method MyWorker.doWork() (lines 22–26) will be executed if the conditions set by the constraints are met.

Note that no if statement is used to condition the execution of the implicit call.
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If a static analysis overlooks the relationship between the enqueue() and doWork() methods and does not analyze

the doWork() method, the analysis is unsound. This would result in missing the data leak in listing 1.

A dynamic analysis may also miss the data leak in Listing 1. This is because several conditions must be met in order

to trigger the leak, such as the device being connected and charging. If these conditions are not met, the leak will not be

identified. This behavior can easily be exploited by attackers to trigger logic bombs.

This concrete scenario illustrates the limitations of existing literature, i.e., these implicit mechanisms are not handled

by existing static analyzers and we are the first to extract their constraints to improve dynamic analysis coverage. This

paper addresses these problems by: ① augmenting call graphs with CI calls to plug a soundness hole; and ② extracting

the potential conditions that must be met to execute the code for dynamic analyzers in order to improve their code

coverage. We implemented these in a prototype called Archer, and section 5 evaluates the benefit of our approach.

2.2 Background and Definitions

This section introduces concepts and terminology used throughout the paper.

Explicit call of a method𝑚 is a method call directly referring to𝑚 in the code under analysis. For instance, on line 6

of listing 1, the method call getSecret() directly refers to method getSecret.

Implicit call of a method𝑚 triggers the execution of𝑚 without a direct call to𝑚 in the code under analysis. For

instance, in listing 1, enqueue() implicitly calls doWork(), though there is no direct call to method doWork() in the

app. Note that implicit calls exist because static analyzers are app-focused and do not, for scaling issues, analyze the

Android framework, in which the entire call chain would appear and make implicit calls explicit.

Executor classes and methods trigger implicit calls. In line 13 of listing 1, class WorkManager is an executor class and

method enqueue() is an executor method.

Executee. After calling an executor method, an executee method will be executed; its class is an executee class. In

listing 1, MyWorker is an executee class. On line 22, doWork() is an executee method. Note that, in Android apps, some

methods that we refer to as “executee” in the context of this study can be triggered without an “executor” method. For

instance, a Runnable can be executed via a standard mechanism like Thread thread = new Thread(myRunnable);

thread.start(); which is not related to conditional implicit calls. In this study, this is out of scope as we only focus

on executors that can trigger code under specific circumstances.

Helper classes and methods participate in the implicit method call mechanism, but are not executors or executees. In

listing 1, the Constraints class on line 7 is a helper class. Examples of helper methods are setRequiredNetworkType

() and setRequiresCharging () on lines 8–9.

Condition or constraint. In the context of this paper, a condition or constraint is a property or expression that must

be satisfied in order to execute an implicit call. For instance, in Listing 1, lines 8–9 set two conditions for the execution

of the implicit call that occurs at line 13: the device must be connected to a network, and the device must be charging. If

the conditions are not met at run time, method doWork() will not be triggered.

Conditional implicit call (CI Call) is an implicit call that can be triggered conditionally without traditional conditional

statements (e.g., if statements) in the app under analysis.

Resolve. In the context of this paper, resolving CI calls means identifying the potential targets of these calls.

3 COLLECTING METHODS ENABLING CONDITIONAL IMPLICIT CALLS

Our work provides the first in-depth list of methods enabling CI calls in the Android ecosystem, together with the

methods that constrain their execution. We followed the same principled and structured methodology from previous
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research in this area [30, 38, 62]. This section explains it, showing how we identified the mechanisms enabling CI calls

in Android. Note that, in this study, we have focused on Android API level 30, though the process described can be

applied to any Android version.

3.1 Class collection

We collected classes that provide CI call mechanisms from various sources.

Community. We asked on Stack Overflow [47] for mechanisms that trigger code under given circumstances. We

received one answer pointing us to the WorkManager class. We then performed a snowball analysis to find similar

mechanisms [38]. This involved carefully reading the web page [26] associated with the WorkManager class to collect

the classes involved in this mechanism, and following any hyperlinks that could lead us to similar mechanisms and

repeating the process. This process revealed 12 classes: 2 executor classes, 2 executee classes, and 8 helper classes.

Classes analysis.We looked for job-like mechanisms. We manually examined the 493 classes whose name contains one

of the following strings in the Android source code (API 30): “trigger”, “schedul”, “criter”, “execute”, “delay”,

“work”, “job”, “time”. Here, “schedul” has been devised to match “schedule”, “scheduler”, “scheduling”, etc., and “criter”

has been devised to match words related to “criteria”, which could hint at condition criteria.

We found 27 classes related to triggering code execution: 19 executors, 6 executees, and 2 helpers. 4 of these classes

overlap with those identified through our community analysis, bringing the total number of classes of interest to 35

(i.e., 12 + 27 − 4).

Methods analysis. We searched for ways to trigger code under time-related circumstances (temporal constraints) by

manually examining the 791 methods in the Android framework that have a formal parameter whose name contains

one of the following strings:

“milli”, “second”, “minute”, “hour”, “delay”, “nano”, “time”

This analysis yielded a single new executor class, increasing the number of classes of interest to 36 (i.e., 35 + 1).

Documentation analysis.We read through the online Android guides [20] to identify mechanisms discussed in the

documentation. We found 5 pages [21–25] discussing implicit call mechanisms, but all of these referred to classes and

methods we had already collected.

In total, we collected 21 executor classes, 7 executee classes, and 8 helper classes.

3.2 Method collection

An analysis tool needs to work at the method level to improve its models and discover implicitly executed code.

To do this, we carefully studied the documentation of the classes we collected and how they can be used to trig-

ger CI calls. We found 60 executor methods, 6 executee methods, and 25 helper methods. These are unique method

signatures, i.e., method families possibly consisting of multiple overriding implementations. We identified 7 exe-

cute classes but only 6 executee methods. because one method, Runnable.run(), is used by two executee classes:

java.util.concurrent.RunnableScheduledFuture and java.lang.Runnable.

Based on the documentation, we manually produced a list of executor–executee method pairs to improve static

analyzers and a list of helper methods to extract the conditions under which implicit calls might occur. Table 1 shows the

types of constraints that executor classes can use to trigger executees with the help of helper methods. Most executors

allow setting time-related constraints, such as specifying a delay before executing an executee or a period for executing

an executee. These mechanisms, which we call temporal triggers, can serve as the basis for time bombs, which trigger
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Constraints

Temporal Persistent Sound Device states

Network Battery Charging Idle Storage

Executor class Delay Periodic Persistent Sound status type level status status level

Timer ✓ ✓

SoundTriggerDetector ✓

WorkManager ✓ ✓ ✓ ✓ ✓ ✓ ✓

JobSchedulerShellCommand ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JobScheduler ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JobSchedulerImpl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JobSchedulerService ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

JobServiceContext ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CompletableFuture ✓ ✓

ExecutorCompletionService

Executor

HandlerExecutor

SynchronousExecutor

RepeatableExecutor ✓ ✓

RepeatableExecutorImpl ✓ ✓

DelayableExecutor ✓ ✓

ExecutorImpl ✓ ✓

ExecutorService ✓ ✓

ScheduledExecutorService ✓ ✓

ScheduledThreadPoolExecutor ✓ ✓

AbstractExecutorService

Table 1. Constraints that can be set on executor classes to trigger conditional implicit calls.

malicious code at a specific time. We consider these temporal constraints as a specific subset of the general constraints

we found. One executor, the SoundTriggerDetector, can trigger code based on the sound detected by the device. Six

executors allow to set constraints depending on device states: ① the status of the network, i.e., connected or not; ② the

type of the network, cellular or Wi-Fi; ③ the battery level, i.e., low or not; ④ the charging status, i.e., in charge or not;

⑤ the idle status, i.e., currently idle or not; and ⑥ the storage level, i.e., low or not.

Creating these pairs — that is, resolving the executors — improves precision of the call graph, compared to treating

each executee as an unrestricted entrypoint. As new API methods are added to Android, our methodology can be rerun

or extended to expand Archer’s current mapping.

Our mapping of executors-to-executees makes static analysis of Android apps more sound by introducing links in the

app’s call graph that were previously nonexistent.

4 APPROACH

Archer is a tool that improves the accuracy of static and dynamic Android analyzers by accounting for conditional

implicit calls and extracting the conditions necessary for their execution, thus effective against logic bombs. Archer is

implemented using Soot [38] and FlowDroid [4]. Figure 1 gives its architecture.

This section describes two interprocedural analyses. In section 4.2, executor methods are linked to the executee

methods they may trigger. In section 4.3, conditional implicit calls are associated with conditions under which they are

triggered or ignored. Each of these analyses is formalized in the Inter-procedural Finite Distributive Subset (IFDS) [45]

framework.
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Fig. 1. Overview of our approach to resolving implicit calls and constraints. “Doc.” stands for “Documentation”.

4.1 IFDS framework

The IFDS framework solves context-sensitive interprocedural dataflow problems. It tracks dataflow through a program’s

control flow graph, even when the dataflow crosses procedure boundaries. The IFDS framework relies on an exploded

super graph in which nodes represent abstract dataflow values (from the abstract domain)) at given program statements,

and edges represent transfer function behavior.

A node 𝑛 is a tuple ⟨𝑠, 𝑑⟩ where 𝑠 is a program statement and 𝑑 is a dataflow value from the abstract domain. If a given

node 𝑛 = ⟨𝑠, 𝑑⟩ is reachable from the initial node 𝑛0 = ⟨𝑠0, 0⟩, it means the dataflow value 𝑑 holds before statement 𝑠 .

Here, 0 represents a dummy dataflow value (i.e., it is not in the abstract domain) that always hold, it is used to represent

the initial node in the exploded super graph.

Transfer functions can be of four kinds (depicted in Figure 2 of [9]):

(1) Normal edges: model dataflow from a statement that does not contain a procedure call to its successors.

(2) Call edges: model dataflow from call sites to callee methods.

(3) Return edges: model dataflow from return statements to call site receivers.

(4) Call-to-return edges: model intra-procedural dataflow from a statement containing a method call to its successors.

4.2 Resolving the targets of implicit calls

This work proposes a novel approach for resolving the propagation of class literal information to wrapper objects

used as arguments to executor methods. A key difference from ordinary constant propagation or dataflow propagation

analysis is that our analysis tracks class literals transitively reachable from a reference, rather than only those literals

that might be the value of a particular variable. We demonstrate Algorithm 1, which makes our solution concrete, using

the WorkManager example from Listing 1.

Call graph construction computes, for each call site, the potential targets or procedure implementations that may be

invoked at run time. For object-oriented dispatch, this determines which overriding method implementations might be

executed. This can be done using type-based or points-to analysis [53].

For certain implicit calls, the points-to information can identify the potential target of the implicit call. For instance,

the CompletableFuture.runAsync()method accepts a Runnable reference as an argument. The points-to set indicates

which potential classes the reference might contain. Together with the executor–executee mapping of section 3, an

analysis can deduce which run() method will be triggered.

In other cases, the points-to information is not sufficient. For example, in Listing 1, the points-to set for the variable

wr is of no use in determining the executee for the call to the enqueue() method on line 13 with wr as the argument.

Indeed, a variable of type WorkRequest used as a parameter in the enqueue() method will have a points-to set that

indicates which particular implementation of a given WorkRequest is targeted by the variable, but it does not specify
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which executee will be triggered after the call to the enqueue() method. This is because the WorkRequest encapsulates

a reference to a worker class via class literals, rendering the points-to set ineffective in this context. Standard static

analyzers overlook the connection between the enqueue() method and the implementation of the doWork() method

(lines 24–27), so the leak cannot be detected. The same mechanism is used by the Android JobScheduler class, which

relies on JobInfo objects wrapping ComponentName objects, which in turn wrap class literals. The following explains

how Archer resolves the potential targets of these wrapper objects.

Algorithm 1 Transitively-reachable class literal analysis. The output of the algorithm is a set of edges representing

how data flows through the program. An edge ⟨𝑛𝑖 , 𝑑𝑖 ⟩ → ⟨𝑛𝑖+1, 𝑑𝑖+1⟩ means that dataflow value 𝑑𝑖+1 ∈ P(𝐶) is in the

mapping 𝑆 after statement 𝑛𝑖+1 if and only if dataflow value 𝑑𝑖 is in the mapping 𝑆 after statement 𝑛𝑖 . For brevity, this

algorithm omits details of standard call transfer functions such as formal/actual parameters mapping.

1: pathEdges := {⟨𝑆0, 0⟩ → ⟨𝑆0, 0⟩} // stores edges in the exploded super graph. An edge represents the effect of the dataflow functions and is used by

the graph reachability algorithm to check what dataflow values were computed.

2: workList := {⟨𝑆0, 0⟩ → ⟨𝑆0, 0⟩} // temporarily stores edges

3: callToReceiver := . . . // a set of methods that we manually determined to propagate dataflow values held by caller object to the variable receiving the

returned value of the method call (e.g., 𝑎 = 𝑏.𝑓 ( ) would propagate any dataflow value held by 𝑏 to 𝑎)

4: callToBase := . . . // a set of methods taking class literals as parameter that we manually determined to generate new dataflow values for caller objects

(e.g., 𝑎.𝑓 (𝑐 ) would generate a new dataflow value 𝑎 ↦→ {𝑐 })
5: procedure Propagate(𝑛1, 𝑑1, 𝑛2, 𝑑2) // propagates dataflow values to the successor statements of a statement to which a flow function has just been

applied

6: for 𝑠 ∈ succ (𝑛2 ) do
7: edge := ⟨𝑛1, 𝑑1 ⟩ → ⟨𝑠,𝑑2 ⟩
8: if edge ∉ pathEdges then
9: Insert edge in pathEdges
10: Insert edge in workList
11: end if
12: end for
13: end procedure
14: procedure IFDS( ) // implements transfer functions

15: while workList ≠ ∅ do
16: Select an edge ⟨𝑛𝑥 , 𝑑𝑥 ⟩ → ⟨𝑛𝑦 , 𝑑𝑦 ⟩ from workList
17: switch 𝑛𝑦 do
18: case 𝑛𝑦 is an assignment 𝑎 = 𝑏

19: if 𝑏 is a class literal then
20: Propagate(𝑛𝑥 , 𝑑𝑥 , 𝑛𝑦 , 𝑎 ↦→ {𝑏})
21: else if 𝑑𝑦 is 𝑏 ↦→ 𝑋 then
22: propagate(𝑛𝑥 , 𝑑𝑥 , 𝑛𝑦 , 𝑎 ↦→ 𝑋 )

23: end if
24: case 𝑛𝑦 is an assignment 𝑎 = 𝑏.𝑓 ( )
25: if 𝑓 ∈ callToReceiver and 𝑑𝑦 is 𝑏 ↦→ 𝑋 then
26: propagate(𝑛𝑥 , 𝑑𝑥 , 𝑛𝑦 , 𝑎 ↦→ 𝑋 )

27: end if
28: case 𝑛𝑦 is a call statement 𝑎.𝑓 (𝑐 )
29: if 𝑓 ∈ callToBase then
30: if 𝑐 is a class literal then
31: Propagate(𝑛𝑥 , 𝑑𝑥 , 𝑛𝑦 , 𝑎 ↦→ {𝑐 })
32: else if 𝑑𝑦 is 𝑐 ↦→ 𝑋 then
33: propagate(𝑛𝑥 , 𝑑𝑥 , 𝑛𝑦 , 𝑎 ↦→ 𝑋 )

34: end if
35: end if
36: case default
37: Propagate(𝑛𝑥 , 𝑑𝑥 , 𝑛𝑦 , 𝑑𝑦 )

38: end switch
39: end while
40: end procedure

Archer propagates class literals using the IFDS framework. Each estimated value is a set of class literals in the code

of a given app, the abstract domain is the powerset of such literals P(𝐶), and the lattice is 𝐷 = (P(𝐶), ⊆). Figure 2
illustrates the abstract domain of an app with three class literals. To assign an abstract value to each variable of the

program, we use an abstract store: a mapping 𝑆 = 𝑉 ↦→ 𝐷 , where 𝑉 represents the set of variables in the app (fields are
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∅

{Worker1.class} {Worker2.class} {Worker3.class}

{Worker1.class,Worker2.class} {Worker1.class,Worker3.class} {Worker2.class,Worker3.class}

{Worker1.class,Worker2.class,Worker3.class}

Fig. 2. Powerset lattice of three class literals.

wr.<init>(MyWorker.class)

a = wr.setConstraints(...)

b = (Builder) a

c = b.build()

d = (OneTimeWorkRequest) c

WorkManager.enqueue(d)
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𝑛4

𝑛5

𝑛6

𝑒1

𝑒2

𝑒3

0 wr ↦→
{My

Worke
r .cla

ss}

𝑎 ↦→ {My
Worke

r .cla
ss}

𝑏 ↦→ {My
Worke

r .cla
ss}

𝑐 ↦→
{My

Worke
r .cla

ss}

𝑑 ↦→ {My
Worke

r .cla
ss}

(a) Propagation of class literals.

Constraints.Builder b = ...

b.setRequiresCharging(true)

Constraints c = b.build()

OneTimeWorkRequest wr = ...

wr.setConstraints(c)

WorkManager.enqueue(wr)

𝑛1

𝑛2

𝑛3

𝑛4

𝑛5

𝑛6

𝑒1

𝑒2

𝑒3

0 𝑏 ↦→ {”𝑠𝑅
𝐶”

↦→ ”𝑡𝑟
𝑢𝑒

”}

𝑐 ↦→
{”𝑠𝑅

𝐶”
↦→ ”𝑡𝑟

𝑢𝑒
”}

wr ↦→
{”𝑠𝑅

𝐶”
↦→ ”𝑡𝑟

𝑢𝑒
”}

(b) Propagation of con-
straints.

list.add(v)𝑛
𝑒

0
𝑣 ↦→

{My
Worke

r .cla
ss}

list
↦→ {My

Worke
r .cla

ss}

(c) Propagation in collections.

normal FF call-to-return FF added by Archer identity FF DF value generation DF value propagation

Fig. 3. How Archer handles call-to-return transfer function within the IFDS framework to generate and propagate dataflow values.
Shown is the Jimple representation of code from Listing 1 lines 10–13. To improve comprehensibility, the Jimple code is simplified
and the figure omits call and return transfer functions. Standard approaches would not create the red dashed edges in the exploded
supergraph. (sRC = setRequiresCharging, FF = flow function, DF = dataflow)

treated equally as variables). For instance, after line 12 of Listing 1, wr wraps a reference to MyWorker.class, so the

dataflow value for variable wr would be {MyWorker .class}.
Archer treats call-to-return transfer functions differently than standard analyses do (see cases 2 & 3 in the switch

statement of algorithm 1). A standard analysis uses the identity flow function to propagate dataflow values intra-

procedurally after a procedure call (the identity flow function is often used as a default flow function for parts of the

control flow graph where the dataflow does not change). When Archer identifies method calls that generate a new

mapping for a variable to a dataflow value in the abstract domain (e.g., construction of a new WorkRequest: 𝑛1 in

Figure 3a), or propagates dataflow values (e.g., setting the constraints to a WorkRequest: 𝑛2 in Figure 3a), it not only

propagates intra-procedural dataflow values (the job of the identity flow function), but also creates and propagates

dataflow values related to implicit calls. For example, when wr.<init>(MyWorker.class) is processed by an IFDS

solver (in general), the MyWorker.class literals are propagated in the <init> method (inter-procedurally). Archer

handles this differently by mapping the wr variable to the class literal to retain this information (intra-procedurally).

For instance, consider Figure 3a which depicts part of the code of Listing 1, transformed into Jimple [58], the internal

Soot [57] representation. Let us see how a class literal would be propagated by Algorithm 1. In node 𝑛1, in which
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the <init>(MyWorker.class) constructor is called on variable wr, a standard transfer function would not change

the dataflow value for variable wr. However, in our case, we want to know what possible class literal variable wr

might transitively refer to , possibly through fields, after node 𝑛1. Therefore, our analysis generates dataflow value

𝑤𝑟 ↦→ {MyWorker .class} after calling <init>(MyWorker.class) on variable wr (edge 𝑒1 on Figure 3a, and lines 34–38

on Algorithm 1). The same reasoning is applied for nodes 𝑛2 and 𝑛4 in which we propagate the dataflow values of

variables wr and𝑏 to variables 𝑎 and 𝑐 respectively generating the following dataflow values: 𝑎 ↦→ {MyWorker .class}, and
𝑐 ↦→ {MyWorker .class} (cf. lines 27–33 on Algorithm 1). Without doing so, at node 𝑛6, the analysis would never know

that variable 𝑑 refers to class MyWorker. This allows our analysis to know that the argument given to the enqueue()

method is of type MyWorker, hence it can correctly connect method enqueue() to method doWork() of class MyWorker

thanks to our curated mapping of executor-to-executee. The entire dataflow propagation is depicted in Figure 3a with

dotted arrows showing how the dataflow values are generated (from a class literal in the rounded rectangle in node n1)

and propagated to an executor (i.e., rounded rectangle in node n6).

Handling Collections As explained so far, our strategy would work for method WorkManager.enqueue(WorkRe-

quest wr), but not for method WorkManager.enqueue(List<WorkRequest> wrs) whose parameter is a collection

of objects. Our novel approach involves adding an extra step in the dataflow analysis, that enables the propagation

of dataflow values to collection-like objects, thus allowing to capture the information of the possible references to

which the elements of the collection point. To do this, we propagate the dataflow values held by parameters of function

calls that allow populating collection-like objects such as lists, sets, etc. Figure 3c depicts this process where in our

analysis, variable list is mapped to any dataflow values held by variable 𝑣 . This process allows Archer to know that the

collection-like argument given to the WorkManager.enqueue(List<WorkRequest> wrs) method holds a reference to

class MyWorker, hence it can correctly connect method WorkManager.enqueue(List<WorkRequest> wrs) to method

doWork() of class MyWorker. Note that in case there are multiple references in the collection, this is not an issue for

Archer. Indeed, although our approach is indeed not index-sensitive, the order in which the WorkRequests are triggered

is managed by the Android framework, hence Archer does not need to retain ordering information. As a result, any

downstream analysis need to analyze all executes referenced in the collection.

Enhancing the Call Graph. After collecting the potential targets of executor method calls, we use our previously

constructed list of executor–executee method pairs (see Section 3) to retrieve the corresponding executee method for

each potential target. For example, in the code shown in Listing 1, if enqueue() is the executor method, then doWork()

is the executee method. We then enhance the call graph with an edge from the executor method to the executee method

of the potential target class. This accurately models the implicit method calls in the analyzed Android application.

Soundness of the analysis could be achieved by identifying and adding entry points. Archer’s method of adding

specific links makes the analysis aware of the real targets, which more precisely represents the application’s run-time

behavior.

By resolving the target of CI calls, our approach refines the executor–executee links and allows for more precise static

analysis of Android apps.

4.3 Extracting constraints

A developer can set execution constraints for CI calls using API calls (e.g., setRequiresCharging (true) on line 9 in

Listing 1). As described in Section 1, this can be used to trigger logic bombs without using conventional conditional

statements such as if statements. To collect the constraints that trigger an executee method, Archer performs an
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interprocedural dataflow analysis using the IFDS framework, and the following specific configuration. Let𝑀 be the set

of methods that allow setting a constraint on the execution of an executee. Let Val be the set of values used to set the

actual constraints (e.g., the value true on line 9 of Listing 1). Then, the abstract domain is the lattice𝐷 = (P(𝑀×Val), ⊆).
The abstract store is 𝑆 = 𝑉 ↦→ 𝐷 , where𝑉 is the set of variables in the app. For instance, in Listing 1, the dataflow value

produced after analyzing line 8 for variable cs is {setRequiredNetworkType ↦→ setCONNECTED}. After analyzing line 9,
the dataflow value for variable cs is {setRequiredNetworkType ↦→ setCONNECTED, setRequiresCharging ↦→ true}.

As when resolving CI calls, Archer handles call-to-return transfer functions in a non-standard manner: Archer does

not only propagate intraprocedural dataflow values. Consider Figure 3b. To determine that certain conditions are set

for the setOneTimeWorkRequest object passed as argument to the enqueue() method (node 𝑛6), Archer propagates

the dataflow values to the Constraint.Builder object (node 𝑛2 for which Archer generates edge 𝑒1), then to the

Constraint object (node 𝑛3 for which Archer generates edge 𝑒2), and eventually to the setOneTimeWorkRequest

object (node 𝑛5 for which Archer generates edge 𝑒3). This computes the conditions that need to be satisfied for an

executor method to be executed.

By extracting the constraints that must be met to execute CI calls, our approach provides dynamic analyzers with

inputs allowing them to cover code that might not have been covered otherwise. This semi-automated approach (since

certain information depends on human identification) improves the coverage and chances to uncover malicious code

triggered under circumstances.

5 EVALUATION

This section answers the following research questions:

RQ1: How common are CI calls in Android apps? (§5.1)

RQ2: Does Archer improve static analyzers? (§5.2)

RQ2.a: What is Archer’s effect on benchmark apps?

RQ2.b: What is Archer’s effect on real-world apps?

RQ3: Does Archer enable dynamic analyzers to create inputs that trigger CI calls? (§5.3)

RQ3.a: What is Archer’s effect on benchmark apps?

RQ3.b: What is Archer’s effect on real-world apps?

Datasets: To evaluate Archer, we created two datasets:

• benchmark_dataset: We followed the methodology used for the popular DroidBench benchmark [4]: we created

16 new apps that use various executor, executee, and helper classes and methods, as well as constraints to trigger

executees under specific circumstances (see our replication package for details). We intentionally inserted data

leaks into 12 of these apps, while the remaining 4 apps were left without leaks to assess false positives. The average

size of these apps is 3.1 MB and the standard deviation is 0.05 MB.

• real_world_dataset: We randomly selected 3000 goodware and 3000 malware from AndroZoo [2] (AndroZoo

contains 24 million apps at the time of writing). An app is considered a goodware if none of the 60+ antiviruses

from VirusTotal [28] flags it. An app is considered malware if at least 5 of the 60+ antiviruses from VirusTotal flag

it. We considered apps for which the dex file date was 2020 or later (i.e., recent apps compatible with Android API

level 30). The average size and the standard deviation for malware are 32.5 MB and 31.4 MB, and for goodware it is

37.8 MB and 34.6 MB. These values are within 4% of the respective values for all of AndroZoo.
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Total Executor Executee Helper None

Goodware 3000 (100%) 576 (19%) 889 (30%) 212 (7%) 2111 (70%)

Malware 3000 (100%) 350 (12%) 447 (15%) 225 (8%) 2548 (85%)

Table 2. Number of apps that use CI calls.

# in goodware # in malware

Total 163 945 (100%) 38 609 (100%)

Runnable 149 315 (91.1%) 36 368 (94.2%)

Callable 11 855 (7.2%) 998 (2.6%)

TimerTask 2348 (1.4%) 593 (1.5%)

JobService 298 (0.2%) 636 (1.6%)

Worker 124 (0.1%) 14 (0.1%)

RunnableScheduledFuture 5 (0%) 0 (0%)

Table 3. Occurrences of executees in our real_world_dataset.

5.1 RQ1: How common are CI calls in real-world Android apps?

This section presents a quantitative analysis of CI call usage in our real_world_dataset.
Results. Table 2 gives the number of apps that utilize executors, executees, and helpers. This Table shows that a higher

proportion of goodware employs CI calls. Furthermore, executees are more commonly used than executors and helpers

in goodware and malware. There are two reasons for this. First, an executor can trigger multiple executees, and the

executees studied in this paper include the widely-used Runnable class, which is often used to initiate Threads in apps.

Second, a use of an executee might not always be related to a CI call (but note that a use of an executor is always related

to a CI call). Table 3 shows the occurrences of different executees, with Runnable by far the most frequently used in

goodware and malware.

Figure 4 shows the distribution of the numbers of occurrences of executors, executees, and helper methods in our

real_world_dataset. Goodware tends to have more executors per app, similar executees, and slightly fewer helpers.

These results are based on apps that have at least one executor, executee, or helper, respectively. Otherwise, the median

would always be 0.

Among the 576 goodware apps containing executors, 453 have executors that are reachable in the call graph generated

by the CHA call graph construction algorithm (i.e., they are directly called by a method that is in the call graph).

Additionally, 707 apps have reachable executees, and 187 have reachable helpers in the call graph. For the malware

apps, 284 have reachable executors in the call graph, 250 have reachable executees, and 222 have reachable helpers.

Among the 576 goodware apps that call executors, 441 (76.6%) rely on both temporal and conditional triggers, 55

(9.5%) rely only on conditional triggers (i.e., no temporal constraint), and 80 (13.9%) rely solely on temporal constraints.

Regarding the 350 malware that call executors, 266 (76%) rely on both temporal and conditional triggers, 22 (6.3%) rely

only on conditional triggers (i.e., no temporal constraint), and 62 (17.7%) rely solely on temporal constraints.

RQ1 answer: Conditional implicit calls can be found in 20% of Android goodware apps, and in 12% of malware.

5.2 RQ2: Archer’s effect on static analyzers

This section evaluates the performance of Archer in improving the soundness and precision of static analysis tools.

That is, Archer adds missing edges to Android apps’ call graphs and resolves CI call targets that would otherwise be left

unanalyzed.
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Fig. 4. Distribution of the number of occurrences of executors, executees, and helpers in our real_world_dataset, excluding “0”
datapoints.

⃝★ = true-positive,★ = false positive, ⃝ = false negative, • = leak, ◦ = no leak

Test Case Leak T C FlowDroid IccTA RAICC Amandroid DroidSafe DroidRA Archer
WorkManager_enqueue • • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
WorkManager_enqueueUniqueWork • • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
WorkManager_enqueue1 ◦ •
TimerTask_schedule • • ⃝★ ⃝ ⃝★ ⃝ ⃝ ⃝★ ⃝★
JobScheduler_schedule • • • ⃝★ ⃝ ⃝★ ⃝ ⃝ ⃝★ ⃝★
JobScheduler_schedule1 ◦ ★ ★ ★

CompletableFuture_runAsync • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
CompletableFuture_thenRun • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
CompletableFuture_runAsync1 ◦
ExecutorCompletionService_submit • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
STPE_scheduledAtFixedRate • • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
STPE_invokeAll • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
STPE_scheduleWithFixedDelay ◦ • ★

ExecutorService_submit • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
PE_scheduleWithFixedDelay_enqueue • • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝★
SynchronousExecutor_execute • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

Overall

Count of ⃝★ , higher is better 2 0 2 0 0 2 11

Count of ★, lower is better 1 0 1 0 0 1 1

Count of ⃝, lower is better 10 12 10 12 12 10 1

Precision 𝑝 = ⃝★/(⃝★+ ★ ) 67% 0% 67% 0% 0% 67% 92%

Recall 𝑟 = ⃝★/(⃝★+ ⃝ ) 17% 0% 17% 0% 0% 17% 92%

𝐹1-score = 2𝑝𝑟/(𝑝 + 𝑟 ) 27% 0% 27% 0% 0% 27% 92%

Table 4. Data leak detection on benchmark_dataset (T = temporal trigger, C = conditional trigger).

5.2.1 RQ2.a: Archer’s effect on benchmark apps. To evaluate the effectiveness of Archer in resolving CI calls, we

compare it to state-of-the-art dataflow analyzers, as commonly performed in the literature [36, 39, 48, 50, 55, 61]. We

only include publicly-available analyzers that account for (some) implicit calls: FlowDroid [4], IccTA [36], RAICC [48],

Amandroid [61], DroidSafe [29], and DroidRA [37].

Results. Table 4 summarizes the results of this experiment. The six tools perform poorly on this dataset: they overlook CI

calls. FlowDroid (and RAICC and DroidRA, which rely on FlowDroid for taint analysis) did report three leaks (of which

one is a false positive), but these were due to specific cases that are hard-coded or over-approximated by FlowDroid. For

example, in the sample TimerTask_schedule, FlowDroid implements a hard-coded heuristic for this particular case
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Before Archer After Archer Difference
# Nodes # Edges # Nodes # Edges Added Nodes Added Edges

Goodware 8188 41 723 8471 42 425 283 (+3%) 702 (+2%)

Malware 8291 33 545 8652 34 548 361 (+4%) 1003 (+3%)

Table 5. Average number of nodes and edges per app.

0 1000 2000 3000 4000 5000

Malware Edges

Goodware Edges

Malware Nodes

Goodware Nodes

Fig. 5. Distribution of new call graph nodes and edges.

(see [5], lines 564–647). In the sample JobScheduler_schedule, the JobService executee class is an Android Service

component, and FlowDroid considers its methods inherited by Android framework classes (i.e., JobService) as potential

callbacks, leading to an over-approximation. As a result, the code in method onStartJob() of class JobService is

covered by FlowDroid. The third reported leak in sample JobScheduler_schedule1 is a false-positive result, as method

onStartJob() is not actually triggered using methods such as schedule() in this sample. Since FlowDroid models

method onStartJob() as potentially called, it incorrectly reports a leak. IccTA, Amandroid, and DroidSafe obtained

a zero score. These tools do not resolve the CI calls studied in this paper, so they do not reach and analyze the code

written in executees.

Archer performs best: its precision, recall, and 𝑓1 score are 92%. For sample JobScheduler_schedule1, no false

positive is reported because Archer does not apply FlowDroid’s over-approximation for the onStartJob() method.

Archer does issue a false positive for sample ScheduledThreadPoolExecutor_scheduleWithFixedDelay, in which

there is no leak at run time because the constraints under which the executee should be executed will never be

met. Indeed, the scheduleWithFixedDelay() method is called with the argument “−1” for the delay, and a delay value

of -1 will trigger an exception, preventing the Runnable from being executed. However, Archer does not statically

check if the constraints are realizable, resulting in an over-approximation. Archer suffers a false-negative for sample

SynchronousExecutor_execute, where the executee is triggered using reflection, which Archer does not handle.

RQ2.a answer: Archer outperforms state-of-the-art static dataflow analyzers in detecting CI calls in Android apps.

On a benchmark, Archer achieves an F1 score of 92%, while FlowDroid, RAICC, and DroidRA achieve an F1 score of

17%, and Amandroid, IccTA, and DroidSafe achieve an F1 score of 0%. This reveals Archer’s ability to detect logic

bombs in Android apps, i.e., it statically detects data leaks triggered under certain circumstances.

5.2.2 RQ2.b: Archer’s effect on real-world apps. We measured the extent to which Archer augments apps’ call graphs.

We used apps calling executor methods from our real_world_dataset, i.e., 576 goodware and 350 malware (see Table 2).

Table 5 reports the number of nodes and edges in call graphs before (i.e., FlowDroid) and after applying Archer

on our dataset. A call graph node represents a method and an edge represents the calling relationship between two

methods. There are more edges than nodes on average since a node can be the target of multiple edges. Figure 5 shows

the distribution of the number of new call graph nodes and edges introduced by Archer.

Figure 6 plots the distribution of the number of additional Jimple statements [58] reachable thanks to Archer. We

computed the number of additional statement to show that missing “nodes” in the call graph, leads to potentially
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Fig. 6. Distribution of extra reachable Jimple statements.
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Fig. 7. Distribution of the time overhead introduced by Archer to resolve CI calls (in %). The overhead is the extra time Archer needs
to resolve CI calls.

missing a substantial part of the code. The average number of extra statements that are reachable for goodware is 5260,

and the median is 499. The average number of extra statements that are reachable for malware is 6206, and the median

is 205.

These numbers indicate that static analyzers that do not model CI calls will miss a significant number of methods in

each app [39]. In both goodware and malware apps, more than 3% of nodes are added by Archer, meaning that existing

tools would overlook these methods which is unacceptable from a security point of view (note that the previously

discussed heuristic of FlowDroid in Section 5.2.1 would only help covering 3% of the edges brought by Archer in

goodware and 7% in malware). Indeed, this can be particularly problematic in the case of malware detection, as it may

allow malware to evade detection if the malicious code is hidden in a CI call and not detected by static analyzers. This

could result in the app being mistakenly considered safe and allowed into the Google Play [32].

Analysis time overhead: Archer is built on top of FlowDroid and requires additional steps to resolve CI calls. We

measured the time taken by Archer to resolve CI calls and the time that Soot/FlowDroid takes to load an app. Figure 7

shows that Archer introduces an overhead of about 20% (21 extra seconds when loading malware and 40 extra seconds

for goodware, on average). We consider the benefit of plugging soundness holes to justify this overhead.

Manual analysis To assess whether the edges added are correct and go further than recent literature [39], we

manually analyzed Archer’s output.

Among the 696 207 call graph edges (330 943 in goodware + 365 264 in malware), from an executor to an executee,

added by Archer in both goodware and malware, we randomly chose 100 edges (confidence level of 95% and confidence

interval of ± 10%). For every edge (executor → executee), we followed this process: ① we downloaded the app from

AndroZoo [2]; ② we decompiled the app using Jadx [52] to get readable source code representation of the Dalvik

bytecode embedded in the app; ③ we manually analyzed the method in which executor is called to check the argument

used to trigger it; and ④ if the argument used to trigger the executor is related to executee, we mark it as correct,

incorrect otherwise. For instance, suppose executor is enqueue(). If executee is MyWorker.doWork(), then we mark

the edge executor → executee as a true positive, otherwise a false positive. As a concrete example, consider Listing 1.

If Archer yields an edge such as WorkManager .enqueue() → MyWorker .doWork(), we manually analyze method

MainActivity.onCreate() (since enqueue() is called in MainActivity.onCreate()) and check the argument(s)

used to trigger it. In this case, the argument is wr , which holds a reference to class MyWorker (lines 12–13). Hence the

edge is marked as a true positive.
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Overall, we found that 88/100 of the edges analyzed are correct (precision 88%). All of the 12 incorrect edges were

due to the over-approximation of the SPARK [35] points-to algorithm to infer targets of CI calls (see Section 4.2). This

matter is further discussed in Section 6.

Archer’s ability to detect new leaks. Given that Archer can access a greater number of nodes, it is anticipated to

identify additional data leaks. This section checks whether Archer truly enhances the detection of data leaks in real-world

apps, a capability already demonstrated in benchmark apps. To do so, as in [39], we applied both FlowDroid before and

after Archer (with the same list of sources and sinks) on apps calling executor methods from our real_world_dataset,
i.e., 576 goodware and 350 malware (see Table 2). Archer enhanced the capability of FlowDroid, leading to the discovery

of 68 additional data leaks in the 350 malware apps and 177 additional data leaks in the 576 goodware apps. The authors

have manually checked 50 data leaks (representative sample with a confidence level of 90% and a margin of error of

10%) among the 177 additional data leaks in goodware and reported that only two were false positives (i.e., the authors

were not able to manually find the data flow path provided by Flowdroid in the given apps). Tables 6 and 7 show the

top 5 sources and sinks in the newly found data leaks thanks to Archer.

Table 6. Top 5 sources and sinks in additional leaks in malware found by Archer.

Sources

Occurrence Method

54 android.database.Cursor.getString(int)

4 android.net.wifi.WifiInfo.getSSID()

3 android.telephony.gsm.GsmCellLocation.getCid()

3 android.telephony.gsm.GsmCellLocation.getLac()

1 android.telephony.TelephonyManager.getDeviceId()

Sinks

Occurrence Method

21 android.content.IntentFilter.addAction(String)

14 android.os.Bundle.putParcelable(String,Parcelable)

10 android.content.Context.registerReceiver(BroadcastReceiver,IntentFilter)

7 android.content.Context.bindService(Intent,ServiceConnection,int)

7 android.os.Bundle.putSparseParcelableArray(String,SparseArray)

Table 7. Top 5 sources and sinks in additional leaks in goodware found by Archer.

Sources
Occurrence Method

89 android.telephony.TelephonyManager.getDeviceId()

28 android.location.LocationManager.getLastKnownLocation(String)

25 android.location.Location.getLatitude()

17 android.location.Location.getLongitude()

11 android.database.Cursor.getString(int)

Sinks
Occurrence Method

90 android.content.SharedPreferences$Editor.putString(String,String)

19 android.util.Log.d(String,String)

18 android.content.Context.registerReceiver(BroadcastReceiver,IntentFilter)

10 android.util.Log.e(String,String,Throwable)

10 android.os.Bundle.putAll(Bundle)
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⃝★ = true-positive, ⃝ = true-negative

• = constraint, ◦ = no constraint

Test Case # Constraints T C # Detection
WorkManager_enqueue •• • ⃝★⃝★
WorkManager_enqueueUniqueWork • • • • ⃝★ ⃝★ ⃝★
WorkManager_enqueue1 • • ⃝★
TimerTask_schedule • • ⃝★
JobScheduler_schedule • • • • • ⃝★ ⃝★ ⃝★
JobScheduler_schedule1 ◦ ⃝
CompletableFuture_runAsync ◦ ⃝
CompletableFuture_thenRun ◦ ⃝
CompletableFuture_runAsync1 ◦ ⃝
ExecutorCompletionService_submit ◦ ⃝
ScheduledThreadPoolExecutor_scheduledAtFixedRate • • • • ⃝★ ⃝★ ⃝★
ScheduledThreadPoolExecutor_invokeAll ◦ ⃝
ScheduledThreadPoolExecutor_scheduleWithFixedDelay • • • • ⃝★ ⃝★ ⃝★
ExecutorService_submit ◦ ⃝
Poolexecutor_scheduleWithFixedDelay_enqueue • • • • ⃝★ ⃝★ ⃝★
SynchronousExecutor_execute ◦ ⃝

Table 8. Results of constraints detection on our benchmark (T = temporal trigger, C = conditional trigger).

RQ2.b answer: Archer discovers previously unreachable methods (∼4% on average) for inter-procedural dataflow

analyses. Archer’s precision is 88%, and the imprecision is due to the SPARK points-to analysis used in our experiments.

Archer makes FlowDroid detect previously unknown data leaks in real-world apps.

5.3 RQ3: Archer’s effect on dynamic analyzers

This section evaluates Archer’s ability to extract the conditions under which CI calls are executed. If Archer can provide

dynamic analyzers with inputs to cover these CI calls, it will improve the coverage of dynamic analysis for Android

apps, thereby improving the chances to discover logic bombs.

5.3.1 RQ3.a: Archer’s effect on benchmark apps. On our benchmark_dataset, Archer achieves a perfect score (Table 8).
For apps without constraints, Archer does not report any constraints. For apps with constraints, Archer accurately

reports all the constraints with the correct parameters. For example, in sample WorkManager_enqueueUniqueWork, the

implicit call is only triggered if the device is not in an idle state, is connected to the Internet, and is charging.

Archer’s benefit to dynamic analysis. To approximate how much Archer’s constraints aid dynamic analyzers, we

measured code coverage. We used ACVTool [44] to monitor apps’ execution in an emulator with ① default emulator

configuration; and ② emulator configured with the constraints provided by Archer (e.g., device in charge or not). In

both cases, we use the same inputs generated with Google’s Monkey [27].

We selected apps with constraints in the code (see Table 8) and code executed in the executee for this experiment.

Table 9 shows that Archer’s constraints increase code coverage by 17 percentage points on average. We manually

confirmed that executee methods were not triggered when the conditions were not set properly.

RQ3.a answer: On our benchmark dataset, Archer extracts all the conditions under which implicit calls can occur.

Archer’s extracted conditions improve the performance of dynamic analyzers by increasing code coverage. In other

words, malicious behavior triggered under certain circumstances (i.e., logic bombs) with CI calls can be reached thanks

to Archer.
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With Archer With default

Constraints Constraints

WorkManager_enqueue 80% 65%

WorkManager_enqueueUniqueWork 83% 71%

WorkManager_enqueue1 78% 59%

TimerTask_schedule 70% 56%

JobScheduler_schedule 78% 63%

ScheduledThreadPoolExecutor_scheduledAtFixedRate 73% 60%

Poolexecutor_scheduleWithFixedDelay_enqueue 74% 45%

Average 77% 60%

Table 9. Code coverage of the main app package (i.e., not library code) with and without constraints satisfied in the execution
environment.

5.3.2 RQ3.b: Archer’s effect on real-world apps. This section evaluates the precision of the constraints generated by

Archer that must be met in order to trigger CI calls. To do so, we executed Archer on apps having calls to executor

methods in our real_world_dataset, i.e., 576 goodware and 350 malware (Table 2).

Just under half of these apps use constraints when using executors: 253/576 (44%) for goodware and 144/350 (41%) for

malware. We found 820 constraints in goodware and 327 in malware. Figure 8 reports the distribution of the number of

constraints found per app.

Most of the constraints we observed are temporal constraints (based on the list we previously built, see Section 3).

Indeed, 68% of constraints in goodware require triggering the executee after a delay and 59% in malware. Other

constraints involved in goodware are: run executee periodically (3%), the device is connected to a specific network type

(3%), the device is charging (2%), the device is in an idle state (1%), executee is persistent (5%), the time unit extracted to

set time-related constraints (18%). Other constraints involved in malware are: the device is charging (2%), the device is

connected to a specific network type (2%), executee is persistent (31%), the device is in an idle state (1%), run executee

periodically (0.3%), the time unit extracted to set time-related constraints (4%).

2 4 6 8 10 12

Malware

Goodware

Fig. 8. Distribution of the number of constraints per app. For malware, the median is 2.

We conclude that: ① dynamic analyzers might not cover part of the code in almost half of the apps if conditions to

trigger implicit calls are not met; and ② several constraints are found per app that condition the triggering of executees

which can complicate the tasks of dynamic analyzers to cover the code triggered.

Manual analysis. Since static analyzers often suffer from false-positive results, the authors of this paper manually

analyzed Archer’s results. We randomly sampled 100 of 1147 (820 in goodware + 327 in malware) constraints found by

Archer, providing a confidence level of 95% and confidence interval of ± 10%. For each sample, we ① downloaded the

app from AndroZoo; ② decompiled the app using Jadx; ③ read the method in which the executor is called; and ④ if the

constraints found by Archer (e.g., trigger after 10 seconds) correspond to the code decompiled, we mark it as correct,

incorrect otherwise. For instance, for Listing 1, Archer yields the following constraints: ① the device is connected to a

network; and ② the device is charging, to execute the Worker.doWork() method. We would manually analyze method

MainActivity.onCreate() and check what are the constraints set to trigger the executee. In this case, the constraints

yielded by Archer are marked as correct.
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The constraints found by Archer were correct in 96 cases out of 100 (96%). For the remaining 4 apps, the types of the

constraints were correct (e.g., a specific time before execution). However, Archer could not statically determine the

values used to set the constraints, since the app computed them at run time.

The Scylla malware.We also assessed Archer’s ability to help dynamic analyzers on a real-world Android malware

that uses CI calls, known as Scylla [32] which entered Google Play. The Scylla malware uses the JobScheduler [32]

to execute its malicious code under specific conditions. This allows Scylla to operate undetected, making it a subtle

yet effective security threat. To better explain, let us focus on a specific instance of the Scylla malware
1
. In function

useJobServiceForKeepAlive() of Service com.Talentnewdev.gjxFfCOcq.KbLDfknMveZUxWuT, the Jobscheduler is used

to trigger a JobService (class com.Talentnewdev.gjxFfCOcq.ScheduleService). When its onStartJob() method is triggered,

it checks whether Service com.Talentnewdev.gjxFfCOcq.KbLDfknMveZUxWuT is alive or not, in case it is not, it

launches it, creating an infinite loop that would trigger Service com.Talentnewdev.gjxFfCOcq.KbLDfknMveZUxWuT

forever. When the latter is created and executed, code to check whether the screen is on or off is executed. If the

screen is off, as described in [32], a fake window is displayed (i.e., with a size of 0), in our example, using the

com.Talentnewdev.gjxFfCOcq.TekuHhrsAGActivity class, to show ads. Then the app will generate fake clicks to

generate revenue. Eventually method useJobServiceForKeepAlive() is triggered again to restart the cycle. This example

illustrate that if the code triggered by the JobScheduler is not executed at run time because the conditions are not met,

then a dynamic analyzer might never cover the code and leave the malware undetected (Scylla entered Google Play).

Similar to the previous section, we ran the Scylla malware with and without the constraints extracted by Archer. Since

the constraints were correclty set, the malicious code (well described at https://www.humansecurity.com/learn/blog/

poseidons-offspring-charybdis-and-scylla) was successfully triggered (i.e., the code was covered by ACVTool). This

result suggests that dynamic analyzers, designed for identifying malicious activities, have better chances of detecting

malware when supported by Archer (i.e., with additional inputs given by Archer). The interested reader can refer to the

README file of Archer’s GitHub repository in which we give the execution result of Archer on the given Scylla sample.

RQ3.b answer: Almost half of the apps using CI calls rely on constraints to execute the code, challenging dynamic

analyzers to cover parts of the code. Archer can precisely report constraints used to trigger CI calls in 96% of the cases.

Thus, Archer helps dynamic analyzers to uncover malicious behavior.

6 LIMITATIONS AND THREATS TO VALIDITY

We manually analyzed the Android documentation to collect ways to perform CI calls in the Android framework.

Although we followed a systematic approach, it is possible that we missed some mechanisms for performing CI implicit

calls in the Android framework, though our process allows for high precision. We mitigate this threat to validity in two

ways: we make all our artifacts available to the community for further verification and exploration, and if new CI call

mechanisms are discovered, they can easily be integrated into Archer.

Archer accounts for implicit calls which can be explicitly constrained, i.e., it does not account for calls that are

triggered under certain circumstances such as the onPause() method. The rationale behind our study is to focus on

potential malicious trigger-based behavior, in which conditions have to be explicitly set by malicious developers (with a

reasoned choice).

Archer over-approximates the behavior of certain CI calls. In cases where a CI call mechanism cannot execute a

particular executee at run time because the constraints will never be met (e.g., triggering an executee in the past, as

1
SHA-256: 2D46A76C94DFF80992615354C713E1552A1F55F3EB0C4D5297D52571180D6402

Manuscript submitted to ACM

https://www.humansecurity.com/learn/blog/poseidons-offspring-charybdis-and-scylla
https://www.humansecurity.com/learn/blog/poseidons-offspring-charybdis-and-scylla


20 Jordan Samhi, René Just, Michael D. Ernst, Tegawendé F. Bissyandé, and Jacques Klein

discussed in Section 5.2.1), Archer still connects the executor and potential executees involved. Future work could check

if the constraint is feasible at run time to improve the accuracy of Archer.

Archer uses points-to analysis to infer the potential targets of executor methods. As a result, it shares the limitations

of the algorithm used to compute the points-to set of variables, such as over-approximation of the targets.

7 RELATEDWORK

This section discusses other research on resolving specific kinds of implicit control flow. Our study is the first to catalog

and analyze general Android framework mechanisms for conditional implicit calls (i.e., triggering code under specific

circumstances). None of the previous work addresses these types of triggers, and a tool should incorporate both previous

techniques and our new contributions to fully capture implicit control flow in Android apps.

Inter-Component Communication. Android apps are made of components communicating through inter-component

communication (ICC) [40]. ICCmethods provided by theAndroid framework (e.g., startActivity(), startService()) [4]

trigger (i.e., implicitly call) lifecycle methods (e.g., onCreate(), onBind()).

A large body of work tries to resolve target components of ICC communication. IccTA [36] infers Intent potential

targets using IC3 [41]. Amandroid [61] infers possible target components by generating a component-wise dataflow

graph and component-level data dependence graph. Amandroid’s engine then relies on a summary table that models

ICC channels. DroidSafe [29] relies on string and class designator analysis to infer potential target components, then

DroidSafe modifies ICC method calls into explicit lifecycle method calls. RAICC [48] resolves “atypical” ICC methods

(e.g., AlarmManager.set()). “Atypical” methods usually rely on PendingIntent or IntentSender objects wrapping

component targets. After resolving potential targets with new IC3 rules, RAICC instruments the app and adds typical

ICC method (e.g., startActivity()) calls. ICCBot [64] infers the component transition (i.e., ICC) that are connected

via Android’s fragments (i.e., modular and reusable components of an activity that represents a portion of a GUI) [12].

ICCBot performs a context-sensitive and inter-procedural analysis to precisely model data carried by ICC objects (e.g.,

Intents). Chen et al. [13, 14] developed an approach to construct an Activity Transition Graph (ATG) to build Android

apps’ storyboards. To do so, the authors rely on ICC-related information used to trigger new Activities.

Callbacks.Wu et al. [62] proposed a callback-aware approach to detect resource leaks in Android apps. The authors

focus on two types of callback methods: system-triggered callbacks and user-triggered callbacks. The former represents,

in their study, lifecycle methods and resource classes’ callback methods (e.g., onPause()) while the latter represents

callbacks triggered by user interaction with the GUI. Similarly, Yang et al. [65] study lifecycle and user-driven callbacks.

Their approach relies on a GUI model by generating a callback control flow graph. It then extracts possible sequences

of user GUI events derived from valid paths in the GUI model.

EdgeMiner [11] statically finds implicit control flow through the Android framework. The authors focus on the

registration mechanisms that allow passing procedures as parameters. A classic example is the setOnClickListener

() method that triggers the onClick() method. This approach aims to identify as many implicit calls as possible within

the framework. The authors produce a list of pairs that represents the potential executors and executees of implicit

calls. Contrary to our work, their list is not manually vetted, so it is possible that some of the pairs may not represent

actual implicit calls. Additionally, they do not present a method for resolving the potential targets of these calls or

for accounting for the conditions that may trigger them. Yang et al. [66] proposed an approach based on the effect of

GUI-related callbacks to construct a model of the behavior of Android apps’ user interfaces.

Reflection. Reflection permits introspection at execution time. For instance, method.invoke(object) triggers the

execution of the method represented by method on object, but the method’s name is not a token in the source code.
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DroidRA [37, 55] is an instrumentation-based analysis tool that modifies Android apps to make them more amenable to

static analysis by making implicit calls explicit. The authors resolve reflective calls using the COAL [41] solver to infer

reflection targets. They instrument the app for analysis purpose, and for each reflective call resolved, a corresponding

explicit call is added in the app. Besides Intent resolution, SPARTA [7] resolves Java reflection calls targets. Their

solution is two-fold: ① a reflection type system tracking and inferring potential names of classes and methods; ② a

reflection solver estimating method signatures that can be invoked. Blackshear et al. [8] proposed Droidel, an approach

to make the Android framework more amenable to static analysis by manually replacing reflective calls from the

Android framework with direct calls.

Qualitative Analyses. Pan et al. [42] identified five techniques to perform asynchronous tasks. They implement

AsyncChecker and conduct a qualitative analysis to check for misuse in Android apps. You et al. [67] study the possible

implicit information flow that can arise in Android’s Dalvik bytecode. They develop a control-transfer-oriented analysis

in a formal structured semantic model. They show which Dalvik instructions are responsible for implicit information

flow: if, switch, throw, etc. Fengguo et al. [60] explore how Android malware uses task scheduling to trigger malicious

code. For instance, they discovered that malware relies on recurring tasks with Thread objects to receive commands

from external servers. Linghui et al. [39] recently introduced GenCG, an approach designed to simplify the modeling of

Java frameworks, including the Android framework. They conduct a qualitative evaluation of GenCG on benchmark

apps, demonstrating that the application of their tool results in more static code coverage. Contrary to these approaches,

we do not aim to provide qualitative information about the implementation of mechanisms. We propose to improve

state-of-the-art static analyzers with previously overlooked links between method calls that can be used to trigger code

under specific circumstances.

8 CONCLUSION

Conditional implicit calls are common in Android apps, and they present a challenge for both static and dynamic

analysis. We developed Archer, a tool that improves the soundness and precision of static analysis for Android apps.

Archer does this by adding new edges to the call graph that were previously overlooked, as well as by resolving the

targets of CI calls. In addition, Archer provides dynamic analyzers with the conditions under which these calls may

be executed by extracting them from the code. Our evaluation of Archer demonstrates its effectiveness at improving

the coverage and accuracy of both static and dynamic analysis for Android apps. Overall, our work contributes to the

research effort in understanding and analyzing implicit calls in the Android framework as well as making the Android

ecosystem a safer place for end-users.

9 DATA AVAILABILITY

To promote transparency and facilitate reproducibility, we are making the artifacts used in our study available to the

community. This includes the source code and executable of Archer, the datasets used in our experimentation, our

scripts to run third-party tools, our benchmark apps, the results produced, and any other artifacts related to our study.

We archived our artifacts on the preserved repository Zenodo:

https://github.com/JordanSamhi/Archer

https://doi.org/10.5281/zenodo.10474310
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