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Why another topic?

Plenty of young and fearless researchers! Why not ask old and wise researchers?
The LLM adventurers Traditional SE researchers

Let's go back to the roots of Software Engineering ui.lu ‘ SIT
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Who we are

The University of
Luxembourg

The University of Luxembourg is a research university
with a distinctly international, multilingual and
interdisciplinary character.

The University’'s ambition is to provide the highest
guality research and teaching in its chosen fields and
to generate a positive scientific, educational, social,
cultural and societal impact in Luxembourg and the
Greater Region.

Ranked
12th Young University

worldwide and #1 worldwide for its “international
outlook” in the Times Higher Education (THE)
World University Rankings 2020

UNIVERSITY OF
LUXEMBOURG

~7000

students

~1000
PhDs

270 56%

faculty members international
students

129

nationalities

umi.ln | SnT
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TruX People
Tiezhu SUN (Apr. 2021)
+ Tegawendé F. BISSYANDE (head) 1. Yinghua LI Xunzhu TANG (Oct. 2021)

« Jacques KLEIN (co-head) Damien FRANCOIS (Nov. 2021)
Weiguo PIAN (Jan 2022)

Alioune DIALLO (Feb. 2022)

Christian OUEDRAOGO (Apr. 2022)
Aicha WAR (May 2022)

Yewei SONG (Jun. 2022)

10. Despoina GIARIMPAMPA (Sep. 2022)

11. Marco ALECCI (Oct. 2022)
_ 12. Fred PHILIPPY (Mar. 2023)
13, Jules WAX (Mar. 2023)
1. Pawel BORSUKIEWICZ 14. Moustapha DIOUF (Apr. 2023)
15. Micheline MOUMOULA (Oct. 2023)

16. Pedro RUIZ JIMENEZ (Nov. 2023)
17. Omar EL BACHYR (Feb. 2024)

1. Jordan SAMHI » Fiona LEVASSEUR

©COoNoOrWN PR

INDIA 18. Prateek RAJPUT (Mar. 2024)
GREECE 19. Albérick DJIRE (Mar. 2024)

fTZAL'YN 20. Maimouna Tamah DIAO (Apr. 2024)
MOROCCO e 21. Maimouna OUATTARA (May 2024)
UXEMBOLGS 22. Aziz BONKOUNGOU (Jul. 2024)
FRANCE [N e — 23. Serge Lionel NIKIEMA (Jul. 2024)
SENEGAL [ — 24. Loic TALEB (Dec, 2024)

CHINA [ OR——

BURKINA FASO (T
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TruX

Trustworthy Software
Engineering

* Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance
» Malware Detection, Software

Piggybacking Detection Security

L
k-
T

uni.In | SO
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15 TruX

Trustworthy Software

Engineering

* Vulnerability detection,
Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance

» Malware Detection,
Piggybacking Detection

Software
Security

!

4@%

5

Software
Repair

Patch Recommendation
Automated Program Repair
Bug Detection
Vulnerability patching

uni.In | SO
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16 TruX

Trustworthy Software

Engineering

* Vulnerability detection,
Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance

» Malware Detection,
Piggybacking Detection

{0k

Software
Security

Explainable Software

(. * |Information Retrieval

» Natural Language Processing

» Time Series Pattern Recognition
« Machine learning, Explainable ML

!

(1)

5

Patch Recommendation

Automated Program Repair

Bug Detection

Software Vulnerability patching

Repair

uni.In | SO
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17 TruX

Trustworthy Software

Engineering

* Vulnerability detection,
Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance

» Malware Detection,
Piggybacking Detection

{0k

Software
Security

2

Explainable Software
* |Information Retrieval

» Natural Language Processing
» Time Series Pattern Recognition
« Machine learning, Explainable ML

!

N
<Trux>—om
N—

J) Application Domains

Mobile

Fintech

Smart Home

Business Critical Systems

Patch Recommendation
Automated Program Repair
Bug Detection
Vulnerability patching

uni.In | SO
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TruX
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Why Android App Analysis is important? o e e
o MOTIVATION =
|nnovat|on actlon desnre "\'r
et mlt;entlve. e nim,ﬂ[&ﬂm
R R “mhf'-°"?.?§.2'3§,ii;};'émbition """""""""
w[sh

More than 6 billion people own
a smartphone

We manipulate a lot of sensitive data

Almost three-quarters are
Android-based

uni.In | SO
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Android’s February 2024 security patches resolve 46 vulnerabilities, including a critical remote code execution bug,




Agenda

1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

Andro/Zoo The Past The Present The Future
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Agenda

4 )

1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

\ Andro/Zoo / The Past The Present The Future
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AndroZoo

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community

uni.In | SO
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Andro/Zoo: A Retrospective

. AndroZoo is currently the biggest dataset of Android apps, with 24 million entries.
It was created in 2016 at the University of Luxembourg.

10M 30M
B Number of new APKs

—e— Total number of APKs 23.92M [25M

v  8Mj v,

< <

< 20M

= 6M o

Q C

- 15M &

o €

S 4M; 5

Qo F10M S

. S

. - (@]

Constantly growing z M sm

oM -0M

2016 2017 2018 2019 2020 2021 2022 2023
Year

[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future
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Andro/Zoo: A Retrospective

d 24 million apks, but 8 708 304 apps (average of 2.7 apks for each app)

App F Apk

Table 1: Top 10 apps by number of APKs

Package Name #APKs
com.chrome.canary 1986
org.mozilla.fenix 1811
wp.wpbeta 910
dating.app.chat flirt.wgbcv 826
com.blackforestapppaid.blackforest 822
com.brave.browser_nightly 787
com.topwar.gp 728
com.opodo.reisen 688
com.edreams.travel 679
com.styleseat.promobile 675

[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

Table 2: Lifespan of apps in ANDROZ00O

#Years | #Apps || #Years | #Apps || #Years | #Apps
10 9347 6 37099 2 315206
9 20072 5 84931 1 432 536
8 20171 4 108 962 0 2732016
7 37378 3 186 800

uni.ln | SAT
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Andro/Zoo: A Retrospective

From November 2021 to November 2023:
365 604 948 download requests from 692 different users
=> 4 PiB of data sent

[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

uni.ln | SAT 29



Andro/oo: A Retrospective

AndroZoo is currently used by more then 2000 users worldwide.

700 2500
B Number of new users 2158
6001 —— Total number of users » "
g 12000 &
1764
Y 500 5
: 1500 5
400 1500 ©
c Q
%5 o]
= 300 1000 %
L c
£ 200 ©
> 500 ©
E i
100- "
6
Number of Users 072016 2017 2018 2019 2020 2021 2022 2023

Year
1 100 200 300 400 500

umi.ln | SnT 30



AndroZoo: A Glimpse into the Future

We started collecting metadata since 2020, and we are now
releasing them in AndroZoo together with the apps.

1000000
A few examples:

Number of apps

* Description 100000
* Number of Downloads 10000
« Ratings 1000
* Permissions 100
 Upload Date o)
* Privacy Policy Link )

° th 5+ | 50+ | 500+ | 5K+ | 50K+ 500K+ 5M+ 50M+ 500M+ 5B+
many O ers ... 1+ 10+ 100+ 1K+ 10K+ 100K+ 1M+ 10M+ 100M+ 1B+ 10B+

Max downloads

umi.ln | SnT
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AndroZoo for Malware Investigation

Each Apk is sent to VirusTotal

Report with the
Antivirus labels

umi.ln | SnT
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AndroZoo for Malware Investigation

On 21,570,017 apks from Google Play
sent to Viruslotal,
89, /82 have been tagged
by at least 10 Antivirus products

uni.ln | SAT 34



What can you do with

Andro/Zoo?

Another Example

uni.ln | SAT 35



Andro/Zoo for Large Scale Empirical Studies

Let's start with a simple
guestion

uni.ln | SAT 36



Andro/Zoo for Large Scale Empirical Studies

Let's start with a simple
guestion

Do you know what is inside an
Android App?

SIT
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Andro/Zoo for Large Scale Empirical Studies

n/

Let's start with a simple question

Do you know what is inside an Android App?

—
;@ ——

<<
1111

a_= = m

Dalvik Bytecode Native Libraries  Manifest File Certificate Resource Files
classes.dex XXX.S0 XXX . XMl cert.rsa jpg, mp3, png

umi.ln | SnT
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Andro/Zoo for Large Scale Empirical Studies

What else?

umi.ln | SnT 39



Andro/Zoo for Large Scale Empirical Studies

We dissected 410 125 apks

How many files? Other interesting facts
{ 270 million files ] a N
661 files on average - Several apks embed
another apk file
How many file extensions (.dex,.jpg, .png)? - 10% of apks contain
| | compressed files
Over 15,000 file extensions L J

How many file types?
{ 1000 file types ]

SANER 2025: Dissecting APKs from Google Play: Trends, Insights and Security Implications |||||I|| ‘ w

40



1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

Andro/Zoo \ The Past / The Present The Future

umi.ln | SnT 11



Analyzing Android Apps (static)

Frist, need of decompiling Android App

> Jimple > SOOT

code

Dalvik *

Bytecode

Dexpler [201 2]

uni.ln | SAT 12



Data Ledks

%
\N\\a".‘?\tgg‘ag e ,,\1\{\

velopers may

- 5 —wuwyl ,

N ' Angry Birds and other Mobile Gaming apps ==
4 Ieaklng your private information to NSA

by Swati Khandelwal on Monday, January 27, 2014

43




Data Leaks

-

"l

- PLDI, 10 years Most

Influential Paper

- QOver 2,700 citations

~

)

Data Leaks for
Android Apps
FlowDroid
[PLDI'14]

umi.ln | SnT
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Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activityl);
String id = telManager.getDeviceId();
[/ eas
String number="+3524666445600";
sms.sendTextMessage(number,null, id, null, null);

umi.ln | SnT 15



Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setCon ' [y ] ivityl);
tring id = telManager.getDevicelId();
[/ eas
String number="+3524666445600";
sms.sendTextMessage(number,null, id, null, null);

source
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Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setCon ivityl);
source tring id = telManager.getDevicelId();
[/ was
Strin — =
sink sms . sendTextMessage (number, null, id, null, nulll >

uni.In | SO
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Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setCon ' 741

ivityl);

source tring id = telManager.getDevicelId();
/./l!l
Strin — =
sink sms . sendTextMessage (number, null, id, null, nulll >

}

One of the main contributions of FlowDroid

Modeling of the lifecycle methods }

uni.In | SO
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So far so good, ..

But in Android, do not forget
Inter-Component

Communication

(ICC)

uni.ln | SAT
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7

Example of Leak between Components

public class Activity A extends ActionBarActivity {
TelephonyManager telManager;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity );

String id = telManager.getDeviceld();

Intent intent = new Intent(Activity_A.this,Activity B.class);
intent.putExtra("sensitive"”, id);
Activity_A.this.startActivity(intent);

public class Activity B extends ActionBarActivity {

D|ff|CU|ty ICC SmsManager sms;

Inter Component Communication .
P J protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity b);

Intent i = getIntent();

String s = i.getStringExtra("sensitive");
String number="+3524666445600";
sms.sendTextMessage(number,null,s,null,null);

TR
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7

Example of Leak between Components

public class Activity A extends ActionBarActivity {

TelephonyManager telManager;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity );

source

ctivity_A.this,Activity_B.class);
intent.putExtra("sensitive"”, id);
Activity_A.this.startActivity(intent);

public class Activity B extends ActionBarActivity {

D|ff|CU|ty ICC SmsManager sms;

Inter Component Communication

super.onCreate(savedInstanceState);

J protected void onCreate(Bundle savedInstanceState) {

setContentView(R. layout.activity activity b);

Intent i = getIntent();

String s = i.getStringExtra("sensitive");

String number=" o
. sms.sendTextMessage(number,null,s,null,
sink

nﬁfb

] }

TR
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Data Leaks

To solve this issue, we proposed

@ N

ICCTA (ICSE 2015)

- Leverage a string retrieval
approach that we presented at
Usenix Security 2013

- We instrument the app to add an

\ explicit method call /

uni.In | SO 52



Example of Leak between Components

public class Activity A extends ActionBarActivity {

TelephonyManager telManager;

J protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity );

source

ctivity_A.this,Activity_B.class);

intent.putExtra("sensitive”, id);
Activity_A.this.startActivity(intent);

. Activity B ab = new Activity B();
ab.onCreate(...) public class Activity B extends ActionBarActivity {

SmsManager sms;

J protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity b);

Intent i = getIntent();

[)iffi(:LJlt\/: I(:(: String s = i.getStringExtra("sensitive");

Inter Component Communication String number=" "
P sink sms.sendTextMessage(number,null,s,null,hﬁTTTT‘j::::>

] }

TR
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Thanks to our Colleagues from

PENNSTATE.
i

TECHNISCHE
UNIVERSITAT
DARMSTADT
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ReSOIVing reflection: FlowDroid+ICCTA Extensions

* DroidRA: Taming Reflection to Support Whole-Program Analysis of Android
Apps [ISSTA 2016, TOSEM 2020]

N =

Ot =~

O © 00O

TelephonyManager telephonyManager = //default;
String imei = telephonyManager.getDeviceId();

Class c =
Class.forName ("de.ecspride.ReflectiveClass") ;
Object o = c.newlInstance () ;

Method m = c.getMethod("setIme" + "i",
String.class);

m.invoke (o, imei);

Method m2 = c.getMethod("getImei");

String s = (String) m2.invoke (o) ;

SmsManager sms = SmsManager.getDefault ();

sms .sendTextMessage ("+49 1234", null, s, null,
null) ;

uni.ln | SAT
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1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

Andro/Zoo The Past \ The Present / The Future
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Call Graph

f() {
a=Ah
b=27%a
k(b);

}

g(a) {
b =t(a):
m(b);

}

uni.ln | SAT 57



: . |CC - Li Lietal. Iccta: Detecting inter-component
. ‘ privacy leaks in android apps. ICSE 2015.
) S LY - Wei et al., Amandroid: A precise and general
Contribution 1 S e inter-component data flow analysis framework
H '4 - for security vetting of android apps. TOPS 2018.
et - Gordon et al. Information flow analysis of android applications
in droidsafe. NDSS 2015.
“:.4 ..... N “4
Y. ey
A Reflection
R - Li, Li et al., Droidra: Taming reflection to support
. . R whole-program analysis of android apps. ISSTA 2016.
Contribution 2 G - Barros et al. Static analysis of implicit control flow:
s, ‘:' Resolving java reflection and android intents. ASE 2015.
v . - Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive
“““ " "’ Callback and lifecycle-aware taint analysis for android apps. PLDI 2014.
. H o - Yang et al. Static control-flow analysis of user-driven callbacks
- _A in Android applications. ICSE 2015.
Contribution 3

uni.ln | SAT
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Random
discoveries....

Reflection

6



J. Samhi et al., “RAICC: Revealing Atypical ‘
Inter-Component Communication in Android ‘ ‘

apps”, ICSE 2021.

Contribution 1: ‘ ‘ ICC

‘ Reflection
? l:.a‘ ‘0‘:: A;..... - ‘ ‘
RAICC improves ICC modeling A

It is is already used by collaborators T ‘
It is maintained : '

Improvable on-demand P X ‘ ‘

RAICC and artifacts are available at: LT D Callback

https://github.com/JordanSamhi/RAICC ‘ ‘

uni.In | SO
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https://github.com/JordanSamhi/RAICC

o s
\SeSP)  mou
cRetcall, %eax

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical

Inter-Component Communication in Android ‘ i
] e ‘

apps”, ICSE 2021.

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”, ‘ ‘

ICSE 2022. ‘ ‘

® We proposed a new approach to unify the . ‘

bytecode and native code representations ‘ ‘ ’

® We demonstrated how JuCify is a step

toward code unification e S ‘ ‘

‘ WUl SOCK,%ea
. N o -
_@xa{%esp) movl, °
‘ ~getcall listen,ses
- acceptiess

4(%25P) | g0

Reflection

® JuCify and artifacts are available at: v ‘ s
https://github.com/JordanSamhi/JuCif i

? uni.In | SO 62


https://github.com/JordanSamhi/JuCify

Contribution 1: ‘
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android ‘

apps”, ICSE 2021.

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,

ICSE 2022. ‘ ‘

Contribution 3:

J. Samhi et al., "Archer: Resolving Conditional ‘ ‘ ‘ ‘ ‘

Implicit Calls in Android Apps”, under
submission

Reflection

® We proposed a new approach for Conditional

analysis ‘

Implicit Calls
® We demonstrated how Archer improves static
Callback
® We demonstrated how Archer aids dynamic .
analysis

uni.In | SO 63



Contribution 1: ICC

J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

Contribution
J. Samhi et al.
Code Unificat

ICSE 2022. S our Cau graph tion

Contribution ;
1. Sombi et al comprehensive/complete now?

Implicit Calls
submission

= [\

® We propo

micid, O are we still missing something”

® Wedemo
analysis \ /
® We demonstrated how Archer aids dynamic U‘
analysis

uni.ln | SAT 6



| et's restart from the

beginning
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Two main technigues to analyse a program

2

1

Dynamic Analysis Static Analysis

uni.ln | SAT 66



Dynamic Analysis

“Dynamic analysis operates by executing a program and
observing the executions”*

Dynamic analysis is precise!

“Dynamic analysis is precise because no approximation or
abstraction need be done”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." . ST
WODA 2003 ICSE Workshop on Dynamic Analysis. 2003 il ‘ olll

67



Static Analysis

“Static analysis examines program code and reasons over all possible
behaviors that might arise at run time”*

Static analysis is sound!

“Typically, static analysis is conservative and sound”*

“Soundness guarantees that analysis results are an accurate description
of the program’s behavior, no matter on what inputs or in what
environment the program is run”*

Is it?

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." m" I“ ‘ ST 68
WODA 2003: ICSE Workshop on Dynamic Analysis. 2003 : —



Objective

Measure and understand th

unsoundness in Android s

analysis tools

e

evel of

tatic
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How'"?

@ RIDE FARR

5

Confirm drop-off location

Dynamic Analysis Static Analysis
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Dataset
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Dynamic Analysis

Pick-up

-
Where are you going?
@

oy azs N
(AN

&
P
W
=
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Dynamic Analysis

1000
call grapns
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Average Code Coverage
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Static Analysis

When possible, we
parametrized the call graph
construction algorithm :

25 configurations

Each app has been processed
by a static analyzer:

umi.ln | SnT 75



Static Analysis

'@ &) ﬁ- le 5
o
% o 0
+ =5 29x1000=25000 os-
ﬁ: call graphs
O
513) .

F e
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Static Analysis

Apps successtully analyzed by all tools
25 x126 =3150

call graphs
umi.ln | SnT 77



With libraries Without libraries
Avg. % M. Avg. Avg. % M. Avg.
ISM| | in CG |SE| ISM~l| | inCG | |SE™|
CHA 38% | 399975 6651 66% | 48218
FlowDroid | KTA 24% | 227493 6651 52% | 33802
VTA || 71045 | 18% | 109519 6651 42% | 16788
SPARK || 71031 5% 15 250 6649 12% 2391
CHA || 71051 | 38% | 399981 6651 66% | 48220
. RTA 71046 | 24% | 227541 6651 52% | 33746
VTA || 71045 | 18% | 109023 6651 41% | 16703
SPARK || 71031 5% 15 249 6649 12% 2391
CHA || 71051 | 38% | 397791 6651 66% | 47894
RAICC RTA 71046 | 24% | 224574 6651 52% | 33271
VTA || 71045 | 19% | 111151 6651 41% | 16605
SPARK || 71031 6% 16 264 6650 12% 2434
CHA || 71053 | 38% | 397872 6652 66% | 47903
DroidRA RTA 71048 | 24% | 224992 6652 52% | 33452
VTA || 71047 | 19% | 111188 6652 | 42% | 16749
SPARK || 71033 6% 16 437 6650 12% 2491
NatiDroid | CHA || 61758 | 81% | 469025 4837 | 88% | 40398
MaMaDroid | SPARK || 60500 5% 12 592 4791 14% 2007
BackDroid | SPARK || 60500 5% 12 592 4791 14% 2007
SootFX | SPARK || 61707 0% 101 4798 1% 9
ACID SPARK || 61707 8% 54 169 4798 | 48% 4124
Gator CHA || 110824 | 73% | 1920 412| 31342 | 90% | 655813
Jicer SPARK || 71144 | 6% 15763 6651 11% 2302
ArpDroid | SPARK || 60500 5% 12593 4791 14% 2007
|  Difuzer | CHA || 60567 | 34% | 245987 || 4809 | 65% | 31060
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Comparison of Static Analysis Tools

* Tools find different numbers of methods in apps
 Some tools supposed to add edges have fewer edges than baselines

* More precise call graph algorithms lead to significantly fewer edges in the call

graph

* The same call graph construction algorithm leads to different call graphs
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Comparison

o0

Dynamic Call Graph Static Call Graph
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Comparison

The dynamic call Graph

can miss some method

calls (i.e., some nodes)
=> This is expected

@
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Comparison

More interestingly, the
static call Graph can

miss some method calls
=> This is NOT expected

Qo
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40%
methods missed with the
biggest over-approximation
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Comparison of dynamic and static analysis

NJIJS SﬁYIN’m

* More precise call graph
* The more precise an alg
* CHA-based tools have le

e Even if CHA is the bigge:

I
B

J ()
ETTER
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What is the cause of this unsoundness?
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Remember the dynamic call graph?

O

-
 Ceves
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Remember the dynamic call graph?

£\

They have no predecessor!

2y & ©
09 0O
What do these nodes have in common?
uni.In | SO
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We hypothesized that they are
one of the main reasons for
unsoundness
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167
of methods do not have a predecessor,
.e., they are entrypoints
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Causes of Unsoundness

* Many methods missed are derived from the Android framework
methods

* Many methods missed are derived from framework methods, e.g.,
Google, Flutter, Ryanheise, or Unity3d
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Causes of Unsoundness

* Many methods missed are derived from the Android framework
methods

* Many methods missed are derived from framework methods, e.g.,
Google, Flutter, Ryanheise, or Unity3d

* All static analysis tools miss at least 39% of these entry points
* They represent 20% of all methods missed

* Constructors, obfuscated methods, and lifecycle methods are
among the most missed methods

uni.ln | SAT 92



Implications for Security

Better Static Code Modeling

Better Static Code Coverage

umi.ln | SnT 3



Our study highlights many opportunities
for future research and paves the way for
improving the soundness of static
analysis tools

‘ Static analysis is NOT sound!

uni.ln | SAT 9



1

The need for a
large set of Apps

2

Agenda

Andro/Zoo

Static Analysis
The Genesis

3

The Past

Static Analysis
Soundness?

The Present

4

Better
Analysis!

\ The Future

/

umi.ln | SnT

95



Using dynamic analysis to improve static analysis

Straightforward idea:

-

Preliminary results:

- Collect the entry point methods via - On 100 apps

dynamic analysis

- By dynamically analyzing the

- Feed these entry point methods to the apps for 5 min each

static analyzer

/

Average # of nodes | Median # of nodes
Without RD 50 626 25 899
With RD 65 534 46 307
+29% +79%

uni.ln | SAT
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LLM for Mobile App Analysis

GUI Testing with LLLMs

Make LLM a Testing Expert: Bringing Human-like Interaction to
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Mobile GUI Testing via Functionality-aware Decisions
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Unblind Text Inputs: Predicting Hint-text of Text Input in Mobile
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LLM for Static Analysis

An Empirical Study of Large Language Models for
Type and Call Graph Analysis
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2024 IEEE/ACM First International Conference on Al Foundation Models and Software Engineering (Forge)

The Emergence of Large Language Models in Static Analysis: A

First Look through Micro-benchmarks

Ashwin Prasad Shivarpatna Venkatesh$, Samkutty Sabul, Amir M. Mir¥, Sofia Reis', Eric Bodden™
Sashwin.prasad@upb.de, Heinz Nixdorf Institut, Paderborn University, Paderborn, Germany

Can Large Language Models Reason about Program Invariants?

Kexin Pei'? David Bieber > Kensen Shi®> Charles Sutton® Pengcheng Yin?

Abstract

Identifying invariants is an important program
analysis task with applications towards program
understanding, bug finding, vulnerability analy-
sis, and formal verification. Existing tools for
identifying program invariants rely on dynamic
analysis, requiring traces collected from multiple
executions in order to produce reliable invariants.
We study the application of large language models
to invariant prediction, finding that models trained
on source code and fine-tuned for invariant gen-
eration can perform invariant prediction as static
rather than dynamic analysis. Using a scratch-
pad approach where invariants are predicted se-
quentially through a program gives the best per-
formance, finding invariants statically of quality
combarable to those obtained bv a dvnamic anal-

has proved challenging even for simple programs.

In the programming languages literature, one of the most
important insights is to reason at the level of abstractions of
program states, e.g., the property “is n >= 1 when line 12 ex-
ecutes?”, rather than concrete states, such as “n = 17 at line
12”. This has been a fundamental insight from some of the
earliest proposals to formalize program semantics (Hoare,
1969; Dijkstra, 1975). This move has computational ad-
vantages, because abstracting away details can simplify the
analysis, but it is also representational, because the analysis
task is often to check over all plausible inputs rather than
specific concrete inputs.

If a program property is always true at a given program point,
it is an invariant, which abstracts multiple program states by
finding a common pattern that is easier to reason about. Iden-
tifying invariants is undecidable, so previous work has con-



AndroZoo for Large Scale Empirical Studies

Let's start with a simple
guestion

Do you know what is inside an
Android App?

mni.ln | SIT 37

Our study highlights many opportunities
for future research and paves the way for
improving the soundness of static
analysis tools

| Static analysis is NOT sound! |
- —

i ln | SIT 94

Data Leaks

- PLDI, 10 years Most
Influential Paper
- Over 2,700 citations

Data Leaks for
Android Apps
FlowDroid
[PLDI'14]
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LLM for Maobile App Analysis

GUI Testing with LLLMs

Make LLM a Testing Expert: Bringing Human-like Interaction to
Mobile GUI Testing via Functionality-aware Decisions

LLM for Static Analysis

An Empirical Study of Large Language Models for
Type and Call Graph Analysis
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