
University of Luxembourg
Multilingual. Personalised. Connected.

AI for Software Vulnerabilities and Android Malware Detection

31st Asia-Pacific Software Engineering Conference (APSEC 2024)

Prof. Dr. Jacques Klein, Dec. 2024

University of Luxembourg
Multilingual. Personalised. Connected.

AI for Software Vulnerabilities and Android Malware Detection

31st Asia-Pacific Software Engineering Conference (APSEC 2024)

Prof. Dr. Jacques Klein, Dec. 2024

University of Luxembourg
Multilingual. Personalised. Connected.

Mobile App Analysis
31st Asia-Pacific Software Engineering Conference (APSEC 2024)

Prof. Dr. Jacques Klein, Dec. 2024

Why another topic?

Let’s go back to the roots of Software Engineering 4

Plenty of young and fearless researchers!

The LLM adventurers

Why not ask old and wise researchers?

Traditional SE researchers

Where is Luxembourg?

6

Where is

Luxembourg?

6

7

Where is

Luxembourg?

8

Where is

Luxembourg?

9

Where is

Luxembourg?

11

The University of Luxembourg is a research university

with a distinctly international, multilingual and
interdisciplinary character.

The University’s ambition is to provide the highest

quality research and teaching in its chosen fields and
to generate a positive scientific, educational, social,
cultural and societal impact in Luxembourg and the

Greater Region.

The University of

Luxembourg

~7000
students

~1000
PhDs

270
faculty members

56%
international
students

129
nationalities

Ranked

12th Young University
worldwide and #1 worldwide for its “international
outlook” in the Times Higher Education (THE)

World University Rankings 2020

Who we are

11

Trustworthy Software Engineering

TruX Research Group

Prof. Tegawendé F.

BISSYANDE

Prof. Jacques

KLEIN

13

TruX People

TruX

• Tegawendé F. BISSYANDE (head)

• Jacques KLEIN (co-head)

P r o f e s s o r s

1. Yinghua LI

R e s e a r c h A s s o c i a t e s 1. Fatou Ndiaye MBODJI (Apr. 2021)

2. Tiezhu SUN (Apr. 2021)
3. Xunzhu TANG (Oct. 2021)
4. Damien FRANCOIS (Nov. 2021)

5. Weiguo PIAN (Jan 2022)
6. Alioune DIALLO (Feb. 2022)

7. Christian OUEDRAOGO (Apr. 2022)
8. Aicha WAR (May 2022)
9. Yewei SONG (Jun. 2022)

10. Despoina GIARIMPAMPA (Sep. 2022)
11. Marco ALECCI (Oct. 2022)

12. Fred PHILIPPY (Mar. 2023)
13. Jules WAX (Mar. 2023)
14. Moustapha DIOUF (Apr. 2023)

15. Micheline MOUMOULA (Oct. 2023)
16. Pedro RUIZ JIMÉNEZ (Nov. 2023)

17. Omar EL BACHYR (Feb. 2024)
18. Prateek RAJPUT (Mar. 2024)
19. Albérick DJIRE (Mar. 2024)

20. Maimouna Tamah DIAO (Apr. 2024)
21. Maimouna OUATTARA (May 2024)

22. Aziz BONKOUNGOU (Jul. 2024)
23. Serge Lionel NIKIEMA (Jul. 2024)
24. Loic TALEB (Dec, 2024)

P h D S t u d e n t s

A s s i s t a n t

C o m i n g S o o n

1. Jordan SAMHI

R e s e a r c h S c i e n t i s t

BURKINA FASOBURKINA FASO

1

BURKINA FAS0
CHINA
SENEGAL

FRANCE
LUXEMBOURG

MOROCCO
ITALY
SPAIN

GREECE
INDIA

1

1

1

1

2

8

5

5

5

13

1. Paweł BORSUKIEWICZ

• Fiona LEVASSEUR

14

Trustworthy Software

Engineering

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

TruX

14

15

Trustworthy Software

Engineering

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

Software

Repair

• Patch Recommendation

• Automated Program Repair

• Bug Detection

• Vulnerability patching

TruX

15

16

Trustworthy Software

Engineering

Explainable Software

• Information Retrieval

• Natural Language Processing
• Time Series Pattern Recognition
• Machine learning, Explainable ML

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

Software

Repair

• Patch Recommendation

• Automated Program Repair

• Bug Detection

• Vulnerability patching

TruX

16

17

Trustworthy Software

Engineering

Explainable Software

• Information Retrieval

• Natural Language Processing
• Time Series Pattern Recognition
• Machine learning, Explainable ML

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

Software

Repair

• Patch Recommendation

• Automated Program Repair

• Bug Detection

• Vulnerability patching

Application Domains

• Mobile

• Fintech

• Smart Home

• Business Critical Systems

TruX

17

18 TruX

PhD students

Post-Docs

18

Mobile

App

Analysis

Mobile

App

Analysis

Android

App

Analysis

Why Android App Analysis is important?

22

Almost three-quarters are
Android-based

More than 6 billion people own
a smartphone

We manipulate a lot of sensitive data

Just a fraction of 2024!

23

24

Static Analysis
The Genesis

The need for a
large set of Apps

The Past The Present The Future

Static Analysis
Soundness?

Better
Analysis!

1 32 4

Agenda

AndroZoo

25

Static Analysis
The Genesis

The need for a
large set of Apps

The Past The Present The Future

Static Analysis
Soundness?

Better
Analysis!

1 32 4

Agenda

AndroZoo

AndroZoo
A repository of Android Apps

26

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community

AndroZoo: A Retrospective

AndroZoo is currently the biggest dataset of Android apps, with 24 million entries.

It was created in 2016 at the University of Luxembourg.

Constantly growing

27
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

AndroZoo: A Retrospective

24 million apks, but 8 708 304 apps (average of 2.7 apks for each app)

28
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

App Apk ≠

AndroZoo: A Retrospective

From November 2021 to November 2023:

365 604 948 download requests from 692 different users

=> 4 PiB of data sent

29
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

AndroZoo: A Retrospective

AndroZoo is currently used by more then 2000 users worldwide.

30

AndroZoo: A Glimpse into the Future

We started collecting metadata since 2020, and we are now
releasing them in AndroZoo together with the apps.

A few examples:

• Description

• Number of Downloads

• Ratings

• Permissions

• Upload Date

• Privacy Policy Link

• …. many others ….

31

What can you do with

AndroZoo?

33

Each Apk is sent to VirusTotal

AndroZoo for Malware Investigation

…………
AV1 AV2 AV59 AV60

Report with the
Antivirus labels

34

On 21,570,017 apks from Google Play
sent to VirusTotal,

85,782 have been tagged
by at least 10 Antivirus products

AndroZoo for Malware Investigation

What can you do with

AndroZoo?

Another Example

35

36

Let’s start with a simple
question

AndroZoo for Large Scale Empirical Studies

37

Let’s start with a simple
question

AndroZoo for Large Scale Empirical Studies

Do you know what is inside an
Android App?

38

Let’s start with a simple question

AndroZoo for Large Scale Empirical Studies

Do you know what is inside an Android App?

Native LibrariesDalvik Bytecode Manifest File Resource FilesCertificate

classes.dex xxx.so xxx.xml cert.rsa jpg, mp3, png

39

AndroZoo for Large Scale Empirical Studies

What else?

40

We dissected 410 125 apks

AndroZoo for Large Scale Empirical Studies

SANER 2025: Dissecting APKs from Google Play: Trends, Insights and Security Implications

270 million files
661 files on average

Over 15,000 file extensions

How many files?

How many file extensions (.dex,.jpg, .png)?

1000 file types

How many file types?

- Several apks embed
another apk file

- 10% of apks contain
compressed files

Other interesting facts

41

Static Analysis
The Genesis

The need for a
large set of Apps

The Past The Present The Future

Static Analysis
Soundness?

Better
Analysis!

1 32 4

Agenda

AndroZoo

Analyzing Android Apps (static)
Frist, need of decompiling Android App

Dexpler [2012]

Dalvik

Bytecode

Jimple

code
SOOT

42

Data Leaks

43

Data Leaks

Data Leaks for
Android Apps

FlowDroid
[PLDI’14]

- PLDI, 10 years Most
Influential Paper

- Over 2,700 citations

44

Example of Leak within a single
component

45

source

Example of Leak within a single
component

46

source

sink

Example of Leak within a single
component

47

source

sink

Example of Leak within a single
component

Modeling of the lifecycle methods

One of the main contributions of FlowDroid

48

So far so good,…

But in Android, do not forget

Inter-Component

Communication

(ICC)

49

Difficulty: ICC
Inter Component Communication

Example of Leak between Components

50

Difficulty: ICC
Inter Component Communication

source

sink

Example of Leak between Components

51

Data Leaks

To solve this issue, we proposed

ICCTA (ICSE 2015)
- Leverage a string retrieval

approach that we presented at
Usenix Security 2013

- We instrument the app to add an
explicit method call

52

Difficulty: ICC
Inter Component Communication

source

sink

Example of Leak between Components

Activity_B ab = new Activity_B();
ab.onCreate(…)

53

Thanks to our Colleagues from

54

Resolving reflection:

• DroidRA: Taming Reflection to Support Whole-Program Analysis of Android
Apps [ISSTA 2016, TOSEM 2020]

FlowDroid+ICCTA Extensions

55

56

Static Analysis
The Genesis

The need for a
large set of Apps

The Past The Present The Future

Static Analysis
Soundness?

Better
Analysis!

1 32 4

Agenda

AndroZoo

Call Graph

f() {
a = 4;
b = 2 * a;
k(b);

}
g(a) {

b = t(a);
m(b);

}

f

k

t

m

57

Reflection

Callback

ICC

Contribution 2

Contribution 3

Contribution 1

- Li, Li et al. Iccta: Detecting inter-component
privacy leaks in android apps. ICSE 2015.

- Wei et al., Amandroid: A precise and general

inter-component data flow analysis framework

for security vetting of android apps. TOPS 2018.

- Gordon et al. Information flow analysis of android applications
in droidsafe. NDSS 2015.

- Li, Li et al., Droidra: Taming reflection to support
whole-program analysis of android apps. ISSTA 2016.

- Barros et al. Static analysis of implicit control flow:

Resolving java reflection and android intents. ASE 2015.

- Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. PLDI 2014.

- Yang et al. Static control-flow analysis of user-driven callbacks

in Android applications. ICSE 2015.

58

Reflection

Callback

ICC

?

?

?

59

Reflection

Callback

ICC

?

?

?

Random
discoveries….

60

Reflection

Callback

ICC

?

?

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

● RAICC improves ICC modeling

● It is is already used by collaborators

● It is maintained

● Improvable on-demand

● RAICC and artifacts are available at:

https://github.com/JordanSamhi/RAICC

61

https://github.com/JordanSamhi/RAICC

Reflection

Callback

ICC

?

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

https://github.com/JordanSamhi/JuCify

● We proposed a new approach to unify the

bytecode and native code representations

● We demonstrated how JuCify is a step

toward code unification

● JuCify and artifacts are available at:

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,
ICSE 2022.

62

https://github.com/JordanSamhi/JuCify

Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., ”Archer: Resolving Conditional
Implicit Calls in Android Apps”, under
submission

● We proposed a new approach for Conditional

Implicit Calls

● We demonstrated how Archer improves static

analysis

● We demonstrated how Archer aids dynamic

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,
ICSE 2022.

63

Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., ”Archer: Resolving Conditional
Implicit Calls in Android Apps”, under
submission

● We proposed a new approach for Conditional

Implicit Calls

● We demonstrated how Archer improves static

analysis

● We demonstrated how Archer aids dynamic

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,
ICSE 2022. Is our call graph

comprehensive/complete now?

Or are we still missing something?

64

Let’s restart from the

beginning

65

Dynamic Analysis Static Analysis

1 2

Two main techniques to analyse a program

66

“Dynamic analysis operates by executing a program and
observing the executions”*

“Dynamic analysis is precise because no approximation or
abstraction need be done”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality."
WODA 2003: ICSE Workshop on Dynamic Analysis. 2003

Dynamic analysis is precise!

Dynamic Analysis

67

“Static analysis examines program code and reasons over all possible
behaviors that might arise at run time”*

“Typically, static analysis is conservative and sound”*

“Soundness guarantees that analysis results are an accurate description
of the program’s behavior, no matter on what inputs or in what

environment the program is run”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality."
WODA 2003: ICSE Workshop on Dynamic Analysis. 2003

Static analysis is sound!

Is it?

Static Analysis

68

Measure and understand the level of
unsoundness in Android static

analysis tools

Objective

69

How?

Dynamic Analysis Static Analysis
70

Dataset

AndroZoo

1000 apps from AndroZoo
from 2023

7
1

Dynamic Analysis

72

Dynamic Analysis

73

74

When possible, we
parametrized the call graph

construction algorithm :
25 configurations

Static Analysis

Each app has been processed
by a static analyzer:

75

Static Analysis

76

Static Analysis

77

78

• Tools find different numbers of methods in apps

• Some tools supposed to add edges have fewer edges than baselines

• More precise call graph algorithms lead to significantly fewer edges in the call

graph

• The same call graph construction algorithm leads to different call graphs

Comparison of Static Analysis Tools

79

Comparison

80

Comparison

The dynamic call Graph
can miss some method
calls (i.e., some nodes)

=> This is expected

81

Comparison

More interestingly, the
static call Graph can

miss some method calls
=> This is NOT expected

82

40%
methods missed with the

biggest over-approximation

83

Comparison of dynamic and static analysis

• More precise call graph construction algorithms fail at their tasks

• The more precise an algorithm, the more unsound

• CHA-based tools have less unsoundness

• Even if CHA is the biggest over-approximation, it still falls short

84

What is the cause of this unsoundness?

85

Remember the dynamic call graph?

86

Remember the dynamic call graph?

They have no predecessor!

87

We hypothesized that they are
one of the main reasons for

unsoundness

88

16%
of methods do not have a predecessor,

i.e., they are entrypoints

89

Causes of Unsoundness

• Many methods missed are derived from the Android framework
methods

• Many methods missed are derived from framework methods, e.g.,
Google, Flutter, Ryanheise, or Unity3d

90

Frameworks

91

Causes of Unsoundness

• Many methods missed are derived from the Android framework
methods

• Many methods missed are derived from framework methods, e.g.,
Google, Flutter, Ryanheise, or Unity3d

• All static analysis tools miss at least 35% of these entry points

• They represent 20% of all methods missed

• Constructors, obfuscated methods, and lifecycle methods are
among the most missed methods

92

Implications for Security

Better Static Code Modeling

Better Static Code Coverage
=

Malicious Code Detection

93

Our study highlights many opportunities
for future research and paves the way for

improving the soundness of static
analysis tools

Static analysis is NOT sound!

94

95

Static Analysis
The Genesis

The need for a
large set of Apps

The Past The Present The Future

Static Analysis
Soundness?

Better
Analysis!

1 32 4

Agenda

AndroZoo

96

Straightforward idea:
- Collect the entry point methods via

dynamic analysis
- Feed these entry point methods to the

static analyzer

Using dynamic analysis to improve static analysis

Preliminary results:
- On 100 apps
- By dynamically analyzing the

apps for 5 min each

+29% +79%

97

LLM for Mobile App Analysis

LLM for Static AnalysisGUI Testing with LLMs

Thank You!
Beautiful Chongqing!

	Intro slide
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	Content section
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: AndroZoo A repository of Android Apps
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Analyzing Android Apps (static)
	Slide 43
	Slide 44: Data Leaks
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Data Leaks
	Slide 53
	Slide 54: Thanks to our Colleagues from
	Slide 55: Resolving reflection:
	Slide 56
	Slide 57: Call Graph
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: How?
	Slide 71: Dataset
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Comparison
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Comparison of dynamic and static analysis
	Slide 85
	Slide 86: Remember the dynamic call graph?
	Slide 87
	Slide 88
	Slide 89
	Slide 90: Causes of Unsoundness
	Slide 91: Frameworks
	Slide 92: Causes of Unsoundness
	Slide 93: Implications for Security
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

