DU

UNIVERSITE
LUXEMBOURG

DU

UNIVERSITE
LUXEMBOURG

LUXEMBOURG

UNIVERSITE DU

e T T

IIIII

Why another topic?

Plenty of young and fearless researchers! Why not ask old and wise researchers?
The LLM adventurers Traditional SE researchers

Let's go back to the roots of Software Engineering ui.lu ‘ SIT

4

Where is Luxembourg?

= - <L X »"ir

[N
”
o
4
» »
”
l. -
' »
¥ -
o A * "
¢ "
" *
. * o
» _'
- >
p "

V5

Vs

. v'. "
» b :
T
* P

«

47\

> e
'Y -
poe ‘ . ®
> .‘v » ‘..
‘ L
»

X » : : o I
. . ~mIRl

UNIVERSITY OF

LUXEMBOURG

Where is

Luxembourg?

6

umi.ln | SnT

Where is

Luxembourg?

umi.ln | SnT

Where is
Luxembourg?

11

Who we are

The University of
Luxembourg

The University of Luxembourg is a research university
with a distinctly international, multilingual and
interdisciplinary character.

The University’'s ambition is to provide the highest
guality research and teaching in its chosen fields and
to generate a positive scientific, educational, social,
cultural and societal impact in Luxembourg and the
Greater Region.

Ranked
12th Young University

worldwide and #1 worldwide for its “international
outlook” in the Times Higher Education (THE)
World University Rankings 2020

UNIVERSITY OF
LUXEMBOURG

~7000

students

~1000
PhDs

270 56%

faculty members international
students

129

nationalities

umi.ln | SnT

11

SIT

Trustworthy Software Engineering =

TruX Research Group 7, %4
YA \

';*. . - : ‘ ‘*
Wy - L g -
W 4 |
o B .
__ - > % ‘.* . .
b‘ - - .

Prof. Tegclwende F 6 Prof. Jacques - b4 \ T
BISSYANDE e o KLEIN 'Y ‘ - M

UUUUUUUUUU

BURKINA FASO

13 ITUA

TruX People
Tiezhu SUN (Apr. 2021)
+ Tegawendé F. BISSYANDE (head) 1. Yinghua LI Xunzhu TANG (Oct. 2021)

« Jacques KLEIN (co-head) Damien FRANCOIS (Nov. 2021)
Weiguo PIAN (Jan 2022)

Alioune DIALLO (Feb. 2022)

Christian OUEDRAOGO (Apr. 2022)
Aicha WAR (May 2022)

Yewei SONG (Jun. 2022)

10. Despoina GIARIMPAMPA (Sep. 2022)

11. Marco ALECCI (Oct. 2022)
_ 12. Fred PHILIPPY (Mar. 2023)
13, Jules WAX (Mar. 2023)
1. Pawel BORSUKIEWICZ 14. Moustapha DIOUF (Apr. 2023)
15. Micheline MOUMOULA (Oct. 2023)

16. Pedro RUIZ JIMENEZ (Nov. 2023)
17. Omar EL BACHYR (Feb. 2024)

1. Jordan SAMHI » Fiona LEVASSEUR

©COoNoOrWN PR

INDIA 18. Prateek RAJPUT (Mar. 2024)
GREECE 19. Albérick DJIRE (Mar. 2024)

fTZAL'YN 20. Maimouna Tamah DIAO (Apr. 2024)
MOROCCO e 21. Maimouna OUATTARA (May 2024)
UXEMBOLGS 22. Aziz BONKOUNGOU (Jul. 2024)
FRANCE [N e — 23. Serge Lionel NIKIEMA (Jul. 2024)
SENEGAL [— 24. Loic TALEB (Dec, 2024)

CHINA [OR——

BURKINA FASO (T

umi.ln | SnT 13

14

TruX

Trustworthy Software
Engineering

* Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance
» Malware Detection, Software

Piggybacking Detection Security

L
k-
T

uni.In | SO

14

15 TruX

Trustworthy Software

Engineering

* Vulnerability detection,
Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance

» Malware Detection,
Piggybacking Detection

Software
Security

!

4@%

5

Software
Repair

Patch Recommendation
Automated Program Repair
Bug Detection
Vulnerability patching

uni.In | SO

15

16 TruX

Trustworthy Software

Engineering

* Vulnerability detection,
Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance

» Malware Detection,
Piggybacking Detection

{0k

Software
Security

Explainable Software

(. * |Information Retrieval

» Natural Language Processing

» Time Series Pattern Recognition
« Machine learning, Explainable ML

!

(1)

5

Patch Recommendation

Automated Program Repair

Bug Detection

Software Vulnerability patching

Repair

uni.In | SO

16

17 TruX

Trustworthy Software

Engineering

* Vulnerability detection,
Android app Analysis (e.g.,
Data Leaks)

* GDPR compliance

» Malware Detection,
Piggybacking Detection

{0k

Software
Security

2

Explainable Software
* |Information Retrieval

» Natural Language Processing
» Time Series Pattern Recognition
« Machine learning, Explainable ML

!

N
<Trux>—om
N—

J) Application Domains

Mobile

Fintech

Smart Home

Business Critical Systems

Patch Recommendation
Automated Program Repair
Bug Detection
Vulnerability patching

uni.In | SO

17

TruX

"t D 001000 yin
’Mn : =0 O
PhD students T",,,a ’r
- 7,

Z \
b 4
\ ¢ D
| = & o)
ool
= —, 2 ¢
7 ==
g V ~—)
) , el RS C
‘ —~—

Post-Docs Y N =—— f =

it C—
[oy oen —
| S s v et e b e aae
: Ll SR
;= A e emant pnas
——— - — e
— | Sttt
e —— et e — 5 s .

et %
.
\
—

e uni.lu | SIT 18

NI

Mobile

App
AVEWAIES

NI

NAKWilA

IVINVN L] O

App
AVEWAIES

'

« MRl
UNIVERSITY OF
* LUXEMBOURG
-

NI

Android

App
AVEWAIES

0 e
ol ctlon ,,,,,

Why Android App Analysis is important? o e e
o MOTIVATION =
|nnovat|on actlon desnre "\'r
et mlt;entlve. e nim,ﬂ[&ﬂm
R R “mhf'-°"?.?§.2'3§,ii;};'émbition """""""""
w[sh

More than 6 billion people own
a smartphone

We manipulate a lot of sensitive data

Almost three-quarters are
Android-based

uni.In | SO

22

W wal m
6 CO' ' ~ xhad in Xiaomt
RN Y - sies fixed I x : deo 'usa b
aoog\e g\| \neva erabill \owly \g the EvilVi d '/i/orc;rsa,;,7 king 0j
\ S . - e id ., dc €turn
N\(“0\ ‘o € poze = And id flavo g snce o regram for Andro e h o t:y calyoy,
{ - '8htwe; ®dune 25,
a\\O\NS es GoO Jetails bUg> ed o ” Telegra for Android exploit that allows sending *r/ayg 8Nt arian Pty e
\ \\e : . pverse UT? ESET researcth§ di?m\;e;:?,iz ;12;0 day S re SCreenshors and s
_«ysterious-tamily of malwi micousfles 3550 = "2 N —
Plav for vears Tt

New ‘Brokewell' Android Malware Spread Through Fake Browser Updates—

B8 Apr26,2024 & Ravie Lakshmanan Mobile Security / Cybercrime APPS

ith
04 Have tr ouble W
June28,2024

ned AP
" \ ey Elizap, aBot
(0030@ P oass 100 sy ader B & 0%t Montayp,,. aNd others Make syre toy, 3
oo™y " ' e 0
@ By naC . Car Efu”y . a'woadsd‘;)o,,7

23

Android’s February 2024 security patches resolve 46 vulnerabilities, including a critical remote code execution bug,

Agenda

1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

Andro/Zoo The Past The Present The Future

umi.ln | SnT 24

Agenda

4)

1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

\ Andro/Zoo / The Past The Present The Future

umi.ln | SnT 25

AndroZoo

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community

uni.In | SO

26

Andro/Zoo: A Retrospective

. AndroZoo is currently the biggest dataset of Android apps, with 24 million entries.
It was created in 2016 at the University of Luxembourg.

10M 30M
B Number of new APKs

—e— Total number of APKs 23.92M [25M

v 8Mj v,

< <

< 20M

= 6M o

Q C

- 15M &

o €

S 4M; 5

Qo F10M S

. S

. - (@]

Constantly growing z M sm

oM -0M

2016 2017 2018 2019 2020 2021 2022 2023
Year

[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

umi.ln | SnT 27

Andro/Zoo: A Retrospective

d 24 million apks, but 8 708 304 apps (average of 2.7 apks for each app)

App F Apk

Table 1: Top 10 apps by number of APKs

Package Name #APKs
com.chrome.canary 1986
org.mozilla.fenix 1811
wp.wpbeta 910
dating.app.chat flirt.wgbcv 826
com.blackforestapppaid.blackforest 822
com.brave.browser_nightly 787
com.topwar.gp 728
com.opodo.reisen 688
com.edreams.travel 679
com.styleseat.promobile 675

[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

Table 2: Lifespan of apps in ANDROZ00O

#Years | #Apps || #Years | #Apps || #Years | #Apps
10 9347 6 37099 2 315206
9 20072 5 84931 1 432 536
8 20171 4 108 962 0 2732016
7 37378 3 186 800

uni.ln | SAT

28

Andro/Zoo: A Retrospective

From November 2021 to November 2023:
365 604 948 download requests from 692 different users
=> 4 PiB of data sent

[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

uni.ln | SAT 29

Andro/oo: A Retrospective

AndroZoo is currently used by more then 2000 users worldwide.

700 2500
B Number of new users 2158
6001 —— Total number of users » "
g 12000 &
1764
Y 500 5
: 1500 5
400 1500 ©
c Q
%5 o]
= 300 1000 %
L c
£ 200 ©
> 500 ©
E i
100- "
6
Number of Users 072016 2017 2018 2019 2020 2021 2022 2023

Year
1 100 200 300 400 500

umi.ln | SnT 30

AndroZoo: A Glimpse into the Future

We started collecting metadata since 2020, and we are now
releasing them in AndroZoo together with the apps.

1000000
A few examples:

Number of apps

* Description 100000
* Number of Downloads 10000
« Ratings 1000
* Permissions 100
 Upload Date o)
* Privacy Policy Link)

° th 5+ | 50+ | 500+ | 5K+ | 50K+ 500K+ 5M+ 50M+ 500M+ 5B+
many O ers ... 1+ 10+ 100+ 1K+ 10K+ 100K+ 1M+ 10M+ 100M+ 1B+ 10B+

Max downloads

umi.ln | SnT

AE
+
O o
O O
@)
o M
V..r
C O
™ C
O <
-
O
M

AndroZoo for Malware Investigation

Each Apk is sent to VirusTotal

Report with the
Antivirus labels

umi.ln | SnT

33

AndroZoo for Malware Investigation

On 21,570,017 apks from Google Play
sent to Viruslotal,
89, /82 have been tagged
by at least 10 Antivirus products

uni.ln | SAT 34

What can you do with

Andro/Zoo?

Another Example

uni.ln | SAT 35

Andro/Zoo for Large Scale Empirical Studies

Let's start with a simple
guestion

uni.ln | SAT 36

Andro/Zoo for Large Scale Empirical Studies

Let's start with a simple
guestion

Do you know what is inside an
Android App?

SIT

37

Andro/Zoo for Large Scale Empirical Studies

n/

Let's start with a simple question

Do you know what is inside an Android App?

—
;@ ——

<<
1111

a_= = m

Dalvik Bytecode Native Libraries Manifest File Certificate Resource Files
classes.dex XXX.S0 XXX . XMl cert.rsa jpg, mp3, png

umi.ln | SnT

38

Andro/Zoo for Large Scale Empirical Studies

What else?

umi.ln | SnT 39

Andro/Zoo for Large Scale Empirical Studies

We dissected 410 125 apks

How many files? Other interesting facts
{ 270 million files] a N
661 files on average - Several apks embed
another apk file
How many file extensions (.dex,.jpg, .png)? - 10% of apks contain
| | compressed files
Over 15,000 file extensions L J

How many file types?
{ 1000 file types]

SANER 2025: Dissecting APKs from Google Play: Trends, Insights and Security Implications |||||I|| ‘ w

40

1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

Andro/Zoo \ The Past / The Present The Future

umi.ln | SnT 11

Analyzing Android Apps (static)

Frist, need of decompiling Android App

> Jimple > SOOT

code

Dalvik *

Bytecode

Dexpler [201 2]

uni.ln | SAT 12

Data Ledks

%
\N\\a".‘?\tgg‘ag e ,,\1\{\

velopers may

- 5 —wuwyl ,

N ' Angry Birds and other Mobile Gaming apps ==
4 Ieaklng your private information to NSA

by Swati Khandelwal on Monday, January 27, 2014

43

Data Leaks

-

"l

- PLDI, 10 years Most

Influential Paper

- QOver 2,700 citations

~

)

Data Leaks for
Android Apps
FlowDroid
[PLDI'14]

umi.ln | SnT

L

Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activityl);
String id = telManager.getDeviceId();
[/ eas
String number="+3524666445600";
sms.sendTextMessage(number,null, id, null, null);

umi.ln | SnT 15

Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setCon ' [y] ivityl);
tring id = telManager.getDevicelId();
[/ eas
String number="+3524666445600";
sms.sendTextMessage(number,null, id, null, null);

source

umi.ln | SnT 16

Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setCon ivityl);
source tring id = telManager.getDevicelId();
[/ was
Strin — =
sink sms . sendTextMessage (number, null, id, null, nulll >

uni.In | SO

L7

Example of Leak within a single
component

public class Activityl extends ActionBarActivity {

TelephonyManager telManager;
SmsManager sms;

protected void onCreateSimpleCase(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setCon ' 741

ivityl);

source tring id = telManager.getDevicelId();
/./l!l
Strin — =
sink sms . sendTextMessage (number, null, id, null, nulll >

}

One of the main contributions of FlowDroid

Modeling of the lifecycle methods }

uni.In | SO

48

So far so good, ..

But in Android, do not forget
Inter-Component

Communication

(ICC)

uni.ln | SAT

49

7

Example of Leak between Components

public class Activity A extends ActionBarActivity {
TelephonyManager telManager;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity);

String id = telManager.getDeviceld();

Intent intent = new Intent(Activity_A.this,Activity B.class);
intent.putExtra("sensitive"”, id);
Activity_A.this.startActivity(intent);

public class Activity B extends ActionBarActivity {

D|ff|CU|ty ICC SmsManager sms;

Inter Component Communication .
P J protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity b);

Intent i = getIntent();

String s = i.getStringExtra("sensitive");
String number="+3524666445600";
sms.sendTextMessage(number,null,s,null,null);

TR

50

7

Example of Leak between Components

public class Activity A extends ActionBarActivity {

TelephonyManager telManager;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity);

source

ctivity_A.this,Activity_B.class);
intent.putExtra("sensitive"”, id);
Activity_A.this.startActivity(intent);

public class Activity B extends ActionBarActivity {

D|ff|CU|ty ICC SmsManager sms;

Inter Component Communication

super.onCreate(savedInstanceState);

J protected void onCreate(Bundle savedInstanceState) {

setContentView(R. layout.activity activity b);

Intent i = getIntent();

String s = i.getStringExtra("sensitive");

String number=" o
. sms.sendTextMessage(number,null,s,null,
sink

nﬁfb

] }

TR

o1

Data Leaks

To solve this issue, we proposed

@ N

ICCTA (ICSE 2015)

- Leverage a string retrieval
approach that we presented at
Usenix Security 2013

- We instrument the app to add an

\ explicit method call /

uni.In | SO 52

Example of Leak between Components

public class Activity A extends ActionBarActivity {

TelephonyManager telManager;

J protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity);

source

ctivity_A.this,Activity_B.class);

intent.putExtra("sensitive”, id);
Activity_A.this.startActivity(intent);

. Activity B ab = new Activity B();
ab.onCreate(...) public class Activity B extends ActionBarActivity {

SmsManager sms;

J protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout.activity activity b);

Intent i = getIntent();

[)iffi(:LJlt\/: I(:(: String s = i.getStringExtra("sensitive");

Inter Component Communication String number=" "
P sink sms.sendTextMessage(number,null,s,null,hﬁTTTT‘j::::>

] }

TR

53

Thanks to our Colleagues from

PENNSTATE.
i

TECHNISCHE
UNIVERSITAT
DARMSTADT

uni.ln | SAT

04

ReSOIVing reflection: FlowDroid+ICCTA Extensions

* DroidRA: Taming Reflection to Support Whole-Program Analysis of Android
Apps [ISSTA 2016, TOSEM 2020]

N =

Ot =~

O © 00O

TelephonyManager telephonyManager = //default;
String imei = telephonyManager.getDeviceId();

Class c =
Class.forName ("de.ecspride.ReflectiveClass") ;
Object o = c.newlInstance () ;

Method m = c.getMethod("setIme" + "i",
String.class);

m.invoke (o, imei);

Method m2 = c.getMethod("getImei");

String s = (String) m2.invoke (o) ;

SmsManager sms = SmsManager.getDefault ();

sms .sendTextMessage ("+49 1234", null, s, null,
null) ;

uni.ln | SAT

09

1 2 3 4
The need for a Static Analysis Static Analysis Better
large set of Apps The Genesis Soundness? Analysis!

Andro/Zoo The Past \ The Present / The Future

umi.ln | SnT 56

Call Graph

f() {
a=Ah
b=27%a
k(b);

}

g(a) {
b =t(a):
m(b);

}

uni.ln | SAT 57

: . |CC - Li Lietal. Iccta: Detecting inter-component
. ‘ privacy leaks in android apps. ICSE 2015.
) S LY - Wei et al., Amandroid: A precise and general
Contribution 1 S e inter-component data flow analysis framework
H '4 - for security vetting of android apps. TOPS 2018.
et - Gordon et al. Information flow analysis of android applications
in droidsafe. NDSS 2015.
“:.4 N “4
Y. ey
A Reflection
R - Li, Li et al., Droidra: Taming reflection to support
. . R whole-program analysis of android apps. ISSTA 2016.
Contribution 2 G - Barros et al. Static analysis of implicit control flow:
s, ‘:' Resolving java reflection and android intents. ASE 2015.
v . - Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive
“““ " "’ Callback and lifecycle-aware taint analysis for android apps. PLDI 2014.
. H o - Yang et al. Static control-flow analysis of user-driven callbacks
- _A in Android applications. ICSE 2015.
Contribution 3

uni.ln | SAT

08

.
.
” -
Reflection

Random
discoveries....

Reflection

6

J. Samhi et al., “RAICC: Revealing Atypical ‘
Inter-Component Communication in Android ‘ ‘

apps”, ICSE 2021.

Contribution 1: ‘ ‘ ICC

‘ Reflection
? l:.a‘ ‘0‘:: A;..... - ‘ ‘
RAICC improves ICC modeling A

It is is already used by collaborators T ‘
It is maintained : '

Improvable on-demand P X ‘ ‘

RAICC and artifacts are available at: LT D Callback

https://github.com/JordanSamhi/RAICC ‘ ‘

uni.In | SO

61

https://github.com/JordanSamhi/RAICC

o s
\SeSP) mou
cRetcall, %eax

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical

Inter-Component Communication in Android ‘ i
] e ‘

apps”, ICSE 2021.

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”, ‘ ‘

ICSE 2022. ‘ ‘

® We proposed a new approach to unify the . ‘

bytecode and native code representations ‘ ‘ ’

® We demonstrated how JuCify is a step

toward code unification e S ‘ ‘

‘ WUl SOCK,%ea
. N o -
_@xa{%esp) movl, °
‘ ~getcall listen,ses
- acceptiess

4(%25P) | g0

Reflection

® JuCify and artifacts are available at: v ‘ s
https://github.com/JordanSamhi/JuCif i

? uni.In | SO 62

https://github.com/JordanSamhi/JuCify

Contribution 1: ‘
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android ‘

apps”, ICSE 2021.

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,

ICSE 2022. ‘ ‘

Contribution 3:

J. Samhi et al., "Archer: Resolving Conditional ‘ ‘ ‘ ‘ ‘

Implicit Calls in Android Apps”, under
submission

Reflection

® We proposed a new approach for Conditional

analysis ‘

Implicit Calls
® We demonstrated how Archer improves static
Callback
® We demonstrated how Archer aids dynamic .
analysis

uni.In | SO 63

Contribution 1: ICC

J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

Contribution
J. Samhi et al.
Code Unificat

ICSE 2022. S our Cau graph tion

Contribution ;
1. Sombi et al comprehensive/complete now?

Implicit Calls
submission

= [\

® We propo

micid, O are we still missing something”

® Wedemo
analysis \ /
® We demonstrated how Archer aids dynamic U‘
analysis

uni.ln | SAT 6

| et's restart from the

beginning

umi.ln | SnT 65

Two main technigues to analyse a program

2

1

Dynamic Analysis Static Analysis

uni.ln | SAT 66

Dynamic Analysis

“Dynamic analysis operates by executing a program and
observing the executions”*

Dynamic analysis is precise!

“Dynamic analysis is precise because no approximation or
abstraction need be done”*

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." . ST
WODA 2003 ICSE Workshop on Dynamic Analysis. 2003 il ‘ olll

67

Static Analysis

“Static analysis examines program code and reasons over all possible
behaviors that might arise at run time”*

Static analysis is sound!

“Typically, static analysis is conservative and sound”*

“Soundness guarantees that analysis results are an accurate description
of the program’s behavior, no matter on what inputs or in what
environment the program is run”*

Is it?

*Ernst, Michael D. "Static and dynamic analysis: Synergy and duality." m" I“ ‘ ST 68
WODA 2003: ICSE Workshop on Dynamic Analysis. 2003 : —

Objective

Measure and understand th

unsoundness in Android s

analysis tools

e

evel of

tatic

uni.ln | SAT

69

How'"?

@ RIDE FARR

5

Confirm drop-off location

Dynamic Analysis Static Analysis
mi.In | ST 70

Dataset

B =08TEHYES808D0N ﬁWCﬁ?EEW@?Q@wﬁﬁaﬁ
1BMHZEBTE ~BE¥VBATESCE8NEEBYTE -BE¥UHE0

A0 @ERAGH MM e - AR w6 (R 5B 0 2 TBHTES

2BPT =8 Tael L
== 1000 apps from AndroZoo ooen
?B ﬁf == w3
B9 - ¢ from 2023) v GRS
»)2 ¥ iAE 0
L EDT S
gw@@ﬂ

ﬂw@." %=€£W@@B _ ﬂw@." f}. B =0
&@@' ﬁﬁﬂﬂ‘gﬁﬂ§¢@=f@w@”' ﬁﬁﬁﬂ‘%ﬁﬂ?w

28R -02TEEvdSahr @EZ08Ta =6 Esﬁbﬁ@@u
£ G =) g R = O 63D 52 (73 G O TR (% ﬂﬁmwﬂﬁ“ﬁ'Dngﬁ

Dynamic Analysis

Pick-up

-
Where are you going?
@

oy azs N
(AN

&
P
W
=

mi.ln | SNT 7

Dynamic Analysis

1000
call grapns

umi.ln | SnT 73

O
/0

Average Code Coverage
i In | SOT 7

Static Analysis

When possible, we
parametrized the call graph
construction algorithm :

25 configurations

Each app has been processed
by a static analyzer:

umi.ln | SnT 75

Static Analysis

'@ &) ﬁ- le 5
o
% o 0
+ =5 29x1000=25000 os-
ﬁ: call graphs
O
513) .

F e

5) umi.ln | ST %

Static Analysis

Apps successtully analyzed by all tools
25 x126 =3150

call graphs
umi.ln | SnT 77

With libraries Without libraries
Avg. % M. Avg. Avg. % M. Avg.
ISM| | in CG |SE| ISM~l| | inCG | |SE™|
CHA 38% | 399975 6651 66% | 48218
FlowDroid | KTA 24% | 227493 6651 52% | 33802
VTA || 71045 | 18% | 109519 6651 42% | 16788
SPARK || 71031 5% 15 250 6649 12% 2391
CHA || 71051 | 38% | 399981 6651 66% | 48220
. RTA 71046 | 24% | 227541 6651 52% | 33746
VTA || 71045 | 18% | 109023 6651 41% | 16703
SPARK || 71031 5% 15 249 6649 12% 2391
CHA || 71051 | 38% | 397791 6651 66% | 47894
RAICC RTA 71046 | 24% | 224574 6651 52% | 33271
VTA || 71045 | 19% | 111151 6651 41% | 16605
SPARK || 71031 6% 16 264 6650 12% 2434
CHA || 71053 | 38% | 397872 6652 66% | 47903
DroidRA RTA 71048 | 24% | 224992 6652 52% | 33452
VTA || 71047 | 19% | 111188 6652 | 42% | 16749
SPARK || 71033 6% 16 437 6650 12% 2491
NatiDroid | CHA || 61758 | 81% | 469025 4837 | 88% | 40398
MaMaDroid | SPARK || 60500 5% 12 592 4791 14% 2007
BackDroid | SPARK || 60500 5% 12 592 4791 14% 2007
SootFX | SPARK || 61707 0% 101 4798 1% 9
ACID SPARK || 61707 8% 54 169 4798 | 48% 4124
Gator CHA || 110824 | 73% | 1920 412| 31342 | 90% | 655813
Jicer SPARK || 71144 | 6% 15763 6651 11% 2302
ArpDroid | SPARK || 60500 5% 12593 4791 14% 2007
| Difuzer | CHA || 60567 | 34% | 245987 || 4809 | 65% | 31060

ni.In | SOT

78

Comparison of Static Analysis Tools

* Tools find different numbers of methods in apps
 Some tools supposed to add edges have fewer edges than baselines

* More precise call graph algorithms lead to significantly fewer edges in the call

graph

* The same call graph construction algorithm leads to different call graphs

uni.ln | SAT

79

Comparison

o0

Dynamic Call Graph Static Call Graph

umi.ln | SnT 80

Comparison

The dynamic call Graph

can miss some method

calls (i.e., some nodes)
=> This is expected

@

umi.ln | SnT

81

Comparison

More interestingly, the
static call Graph can

miss some method calls
=> This is NOT expected

Qo

umi.ln | SnT

82

40%
methods missed with the
biggest over-approximation

uni.ln | SAT

Comparison of dynamic and static analysis

NJIJS SﬁYIN’m

* More precise call graph
* The more precise an alg
* CHA-based tools have le

e Even if CHA is the bigge:

I
B

J ()
ETTER

umi.ln | SnT

84

What is the cause of this unsoundness?

uni.In | SO 85

Remember the dynamic call graph?

O

-
 Ceves

umi.ln | SnT 86

Remember the dynamic call graph?

£\

They have no predecessor!

2y & ©
09 0O
What do these nodes have in common?
uni.In | SO

87

We hypothesized that they are
one of the main reasons for
unsoundness

uni.ln | SAT

167
of methods do not have a predecessor,
.e., they are entrypoints

uni.ln | SAT 89

Causes of Unsoundness

* Many methods missed are derived from the Android framework
methods

* Many methods missed are derived from framework methods, e.g.,
Google, Flutter, Ryanheise, or Unity3d

uni.ln | SAT 90

Frameworks / e Maven ¢ < Qo

JSON

Jsoul:;
E // JFreeChart E
JAXB LOG‘IJ@ mockitc®

A 3 N
, | |
Corona ——‘)
K O|on|c @ Aappceleratur .Qx.a — / Flutter Qsprlng

struts django O ¢, HIBERNATE @B Symf :
@srurs dingo [gyrisernaTe @ symfony: il L 91

Causes of Unsoundness

* Many methods missed are derived from the Android framework
methods

* Many methods missed are derived from framework methods, e.g.,
Google, Flutter, Ryanheise, or Unity3d

* All static analysis tools miss at least 39% of these entry points
* They represent 20% of all methods missed

* Constructors, obfuscated methods, and lifecycle methods are
among the most missed methods

uni.ln | SAT 92

Implications for Security

Better Static Code Modeling

Better Static Code Coverage

umi.ln | SnT 3

Our study highlights many opportunities
for future research and paves the way for
improving the soundness of static
analysis tools

‘ Static analysis is NOT sound!

uni.ln | SAT 9

1

The need for a
large set of Apps

2

Agenda

Andro/Zoo

Static Analysis
The Genesis

3

The Past

Static Analysis
Soundness?

The Present

4

Better
Analysis!

\ The Future

/

umi.ln | SnT

95

Using dynamic analysis to improve static analysis

Straightforward idea:

-

Preliminary results:

- Collect the entry point methods via - On 100 apps

dynamic analysis

- By dynamically analyzing the

- Feed these entry point methods to the apps for 5 min each

static analyzer

/

Average # of nodes | Median # of nodes
Without RD 50 626 25 899
With RD 65 534 46 307
+29% +79%

uni.ln | SAT

96

LLM for Mobile App Analysis

GUI Testing with LLLMs

Make LLM a Testing Expert: Bringing Human-like Interaction to

Aut
role
bec
Pop
due
suff
equ
dat:
Che
ing,
We

pas
and
eral

thal
of t

Goc
by :
rate
of v

Aut

ACI
Zhe
Wu!
Test
Fun
ence
ACH

Mobile GUI Testing via Functionality-aware Decisions

Zhe Liu"?,Chunyang Chen?, Junjie Wang"?*, Mengzhuo Chen'?, Boyu Wu?*,

Xing Che"?, Dandan Wang'?, Qing Wang"%5*

Intent-Driven Mobile GUI Testing with
Autonomous Large Language Model Agents

Juyeon Yoon
School of Computing

Daejeon, F
juyeon.y

Abstract—GUI
as expected whe
e.g., testing specii
scenarios. Curren
manual task since
adequacy metrics
coverage. We proj
agent for Androi
GUI testing. It is
mechanisms such
Android app, DR
quently tries to a
empirical evaluat
Themis benchmar
tasks, with a high
a messaging app,
added a first acc
without human in
61% activity cov
the-art GUI testil
that 317 out of tk
and relevant to a
interacts deeply v

Index Terms—:
artificial intellige:

Testing mobile

Arralitsr 11 fermo

Robert Feldt
Dept. of Computer Science & Engineering

Shin Yoo
School of Computing

Unblind Text Inputs: Predicting Hint-text of Text Input in Mobile

Zhe Liu
Laboratory for Internet Software
Technologies, University of Chinese
Academy of Sciences, Institute of
Software, Chinese Academy of
Sciences, China and Laboratory for
Internet Software Technologies,
University of Chinese Academy of
Sciences, Institute of Software,
Chinese Academy of Sciences
China
liuzhe181@mails.ucas.edu.cn

Mengzhuo Chen
University of Chinese Academy of
Sciences, China and Laboratory for

Internet Software Technologies,
Institute of Software Chinese
Academy of Sciences
China
chenmengzhuo23@mails.ucas.edu.cn

Jun Hu
Laboratory for Internet Software
Technologies, Institute of Software

Apps via LLM

Chunyang Chen
Technical University of Munich
Germany
chunyang.chen@monash.edu

Boyu Wu
University of Chinese Academy of
Sciences, China and Institute of
Software Chinese Academy of
Sciences
China
boyu_wu2021@163.com

Junjie Wang
University of Chinese Academy of
Sciences, China and Laboratory for

Internet Software Technologies,
Institute of Software Chinese
Academy of Sciences
China
jujie@iscas.ac.cn

Yuekai Huang
University of Chinese Academy of
Sciences
China
huangyuekail8@mails.ucas.ac.cn

Qing Wang
University of Chinese Academy of
Sciences, China and Laboratory for

LLM for Static Analysis

An Empirical Study of Large Language Models for
Type and Call Graph Analysis

Ask
Ros
Mir

Rece

Ab:
thei
this
anal
icall
moc
mar
Wor,
ing

we |

Fune
Nort

Ashy
Hein
E-m:

Rose
Pade
E-my

Sam|

Pade

2024 IEEE/ACM First International Conference on Al Foundation Models and Software Engineering (Forge)

The Emergence of Large Language Models in Static Analysis: A

First Look through Micro-benchmarks

Ashwin Prasad Shivarpatna Venkatesh$, Samkutty Sabul, Amir M. Mir¥, Sofia Reis', Eric Bodden™
Sashwin.prasad@upb.de, Heinz Nixdorf Institut, Paderborn University, Paderborn, Germany

Can Large Language Models Reason about Program Invariants?

Kexin Pei'? David Bieber > Kensen Shi®> Charles Sutton® Pengcheng Yin?

Abstract

Identifying invariants is an important program
analysis task with applications towards program
understanding, bug finding, vulnerability analy-
sis, and formal verification. Existing tools for
identifying program invariants rely on dynamic
analysis, requiring traces collected from multiple
executions in order to produce reliable invariants.
We study the application of large language models
to invariant prediction, finding that models trained
on source code and fine-tuned for invariant gen-
eration can perform invariant prediction as static
rather than dynamic analysis. Using a scratch-
pad approach where invariants are predicted se-
quentially through a program gives the best per-
formance, finding invariants statically of quality
combarable to those obtained bv a dvnamic anal-

has proved challenging even for simple programs.

In the programming languages literature, one of the most
important insights is to reason at the level of abstractions of
program states, e.g., the property “is n >= 1 when line 12 ex-
ecutes?”, rather than concrete states, such as “n = 17 at line
12”. This has been a fundamental insight from some of the
earliest proposals to formalize program semantics (Hoare,
1969; Dijkstra, 1975). This move has computational ad-
vantages, because abstracting away details can simplify the
analysis, but it is also representational, because the analysis
task is often to check over all plausible inputs rather than
specific concrete inputs.

If a program property is always true at a given program point,
it is an invariant, which abstracts multiple program states by
finding a common pattern that is easier to reason about. Iden-
tifying invariants is undecidable, so previous work has con-

AndroZoo for Large Scale Empirical Studies

Let's start with a simple
guestion

Do you know what is inside an
Android App?

mni.ln | SIT 37

Our study highlights many opportunities
for future research and paves the way for
improving the soundness of static
analysis tools

| Static analysis is NOT sound! |
- —

i ln | SIT 94

Data Leaks

- PLDI, 10 years Most
Influential Paper
- Over 2,700 citations

Data Leaks for
Android Apps
FlowDroid
[PLDI'14]

i ln | SOT 44

LLM for Maobile App Analysis

GUI Testing with LLLMs

Make LLM a Testing Expert: Bringing Human-like Interaction to
Mobile GUI Testing via Functionality-aware Decisions

LLM for Static Analysis

An Empirical Study of Large Language Models for
Type and Call Graph Analysis

2024 |EEE/ACM First Intemational Conference on Al Foundation Modls and Software Engineering (Forge)

Zhe Liu*? Chunyang Chen®, Junjie Wang
Xing Che'?, Dandan Wan,

Ast

Ros

Intent-Driven Mobile GUI Testing with Mir

The E f L. L; Maodels in Static Analysis: A
Autonomous Largc Languagc Model Agcnts e Emergence of Large Language Models in Static Analysis:

First Look through Micro-benchmarks

Juyeon Yoo Robert Feldt Rece Ashwin Prasad Shivarpatna Venkatesh, Samkutty SabuT, Amir M. Mir?, Sofia Reis', Eric Bodden™
Schaed of Computing. aputer Seience & Engi Sashwin prasad@upbde, Heinz Nixdorf Institut, Paderbom University, Paderborn, Germany
Decjeon, §
Juyeony i . icti int- i i Abr -~ i
Unblind Text Inputs Pred:\clmg H'r':ﬁ_f\:xt of Text Input in Mobile Powe Can Large Language Models Reason about Program Invariants?
s via
‘ PP this
AbtractGU1 Zhe Lin Chunyang Chen ~ Junjie Wang e
Laboratory for nternct Software~ Techaical University of Munich University of Chinese Acadeamy of b o N R N
Techmologies University of Chinese Germany Sci icall Kexin Pel'? Duvid Bicher? Kenorn Skl? Chaeles Sutton® Pengeheng Yin®
chunyang chen@menssh.ed moc
Academy of Scienoes max Abstract has proved challenging even for simple programs.
China wor
julie@iseas.acen Ing Id“v]mm:-g‘u-m:mm‘n an important program In the programming languages literature, one of the most
analysis task with applications towards program important insights i to reason st the level of abstractions of
- understanding, bug finding. vulnerability analy- program staies, €.g., the property “is n >= 1 when line 12 ex.
sis, and formal verification. Existing tools for ecutes?”, rather than concrete stafes, such as “n = 17 at line
e identifying program invariants rely on dynamic 12", This has been a fondamental insight from some of the
Mengzhuo Chen Boyu Wa Yuckai Huang Nort analysis, requiting liest proposals to (Hoers,
KE University of Chinese Academy of Universiy of Chinese Academy of University of Chinese Academny of — executions in order 10 produce reliable invariants. 1969; Dijkstra, 1975). This move has compatational ad-
Aat itute of Sesenies Ashy We study the application of large language models vantages, because abstracting away details can simplify the
- nese Academy of China Hein o invariant predition, finding that models rained analysi, but i s also representational, because the analysis
o hangyuekait @il ucas ac.cn Em o task is often to check over all plausible inputs rather than
- % - spesific conerete inputs.
fex Terms— Chins Scom rather than dynamic analysis.
aelicil ntlliges cherumen gabuo2s@mails.xcas cdu.co Pade Tl arrroach e toeaets 2 program prop Ivay point,
Jon Qine Wang Em queatlally theough & progrs it i an nverians, which absieacts multiple program siaies by
Tstag robik Laboeatory for Intemes University of Chinese Academmy of Sam formance, finding invarianis statically of quality finding a Hden
Technologies Insitu Sciences. Ching and Labaratory for o £ 10 those chuz p . Liying invariants s undecidable, so previous work has con

Beautiful Chongging!

Thank Youl!

SiT

	Intro slide
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	Content section
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: AndroZoo A repository of Android Apps
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Analyzing Android Apps (static)
	Slide 43
	Slide 44: Data Leaks
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Data Leaks
	Slide 53
	Slide 54: Thanks to our Colleagues from
	Slide 55: Resolving reflection:
	Slide 56
	Slide 57: Call Graph
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: How?
	Slide 71: Dataset
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: Comparison
	Slide 81
	Slide 82
	Slide 83
	Slide 84: Comparison of dynamic and static analysis
	Slide 85
	Slide 86: Remember the dynamic call graph?
	Slide 87
	Slide 88
	Slide 89
	Slide 90: Causes of Unsoundness
	Slide 91: Frameworks
	Slide 92: Causes of Unsoundness
	Slide 93: Implications for Security
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

