
University of Luxembourg
Multilingual. Personalised. Connected.

AI for Software Vulnerabilities and Android Malware Detection

NLPAICS, Lancaster, UK, July 2024

Prof. Dr. Jacques Klein



Who am I?



3

Where is 

Luxembourg?

3



4

Where is 

Luxembourg?

4



5

Where is 

Luxembourg?

5



6

Where is 

Luxembourg?

6



7

The University of Luxembourg is a research university 

with a distinctly international, multilingual and 
interdisciplinary character.

The University’s ambition is to provide the highest 

quality research and teaching in its chosen fields and 
to generate a positive scientific, educational, social, 
cultural and societal impact in Luxembourg and the 

Greater Region.

The University of 

Luxembourg

7000
students

1000+
PhDs 

300
faculty members

60%
international 
students

130
nationalities

Ranked

25th Young University
worldwide and #4 worldwide for its “international 
outlook” in the Times Higher Education (THE) 

World University Rankings 2023

Who we are
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The University of Luxembourg

3 Faculties

Who we are

• Computer Science 

& ICT Security

• Finance and 

Financial Innovation

• Education 

• Materials Science

• Contemporary and 
Digital History

• Interdisciplinary theme: Health 

and Systems Biomedicine

• Interdisciplinary theme: Data 
Modelling and Simulation

Research Focus Areas 

4 Interdisciplinary Centres 
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A leading international 

research and innovation centre in secure, 
reliable and trustworthy ICT systems and 
services. We play an instrumental role in 

Luxembourg by boosting R&D investments 
leading to economic growth and highly 

qualified talent.

Collaborative, demand-driven 

research model based on strategic 
partnerships

Interdisciplinary 

research approach in key 
economic sectors

High-risk 

long-term research

Highly selective 

global recruitment 

Our vision

Who we are
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Key Figures
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Trustworthy Software 

Engineering

Software 

Security

• Vulnerability detection, 

Android app Analysis (e.g., 
Data Leaks)

• GDPR compliance

• Malware Detection, 
Piggybacking Detection

TruX
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AI for 

Software Vulnerabilities & 

Android Malware Detection



To save time, let’s skip the motivation slides ;)

22

I assume that we all agree that detecting malware and/or vulnerabilities is essential.
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M a l wa re  D et ec t i o n

Performance Assessment 
Issues

The need for a large set of Apps 
and a ground truth

App Code Representation

An app as a 
Image

BERT-Based 
class 

representation

Full App-level 
representation

V u l n er a b i l i t y  D e t e c t i o n

CodeGRID: Representing code 
as grids

WYSiWiM: Representing code as 
images

Vulnerability Prediction with 
WYSiWiM and CodeGRID

Code is Spatial
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Part I
AI for Android Malware 
Detection



Part I-A
Need for a large set 
of Apps



AndroZoo
A repository of Android Apps

27

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community



AndroZoo: A Retrospective

AndroZoo is currently the biggest dataset of Android apps, with 24 million entries. 

It was created in 2016 at the University of Luxembourg.

Constantly growing

28
[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future



AndroZoo: A Retrospective

24 million apks, but 8 708 304 apps (average of 2.74 apks for each app) 

29
[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

App Apk ≠



AndroZoo: A Retrospective

From November 2021 to November 2023:

365 604 948 download requests from 692 different users => 4 PiB of data sent

30
[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future



AndroZoo: A Retrospective

AndroZoo is currently used by more then 2000 users worldwide.

31



AndroZoo: A Glimpse into the Future

We started collecting metadata since 2020, and we are now 
releasing them in AndroZoo together with the apps.

A few examples:

• Description

• Number of Downloads

• Ratings

• Permissions

• Upload Date

• Privacy Policy Link

• …. many others ….

32
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=> Each App send to VirusTotal

AndroZoo for Malware Detection
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A bit of Statistics

On 21,570,017 apks (from Google Play) sent to VirusTotal

Flagged by at least # Apks %

1 AV 1,787,482 8.29%

5 AVs 251,068 1.16%

10 AVs 85,782 0.4%

20 AVs 11,593 0.05%
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VirusTotal Limitations (among others)

- Disagreements among Antivirus products

- [DIMVA2016] On the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights on Building 

Ground Truths of Android Malware 

- [MSR2017] Euphony: Harmonious Unification of Cacophonous Anti-Virus Vendor Labels for Android 

Malware

- Malware / Adware

- [SANER2017] Should You Consider Adware as Malware in Your Study?



Part I-B
On the difficulty of Assessing 
Machine- learning- based Android 
Malware Detection Approaches
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Classical ML-based Android malware detection

Background

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 37
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Outstanding malware detection score of existing approaches

F1 score = 0.99
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Machine Learning to detect Android Malware: main 
Outcomes

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of 
Timeline in Machine Learning-Based Malware Detection

Training 
sample
Testing 
sample

• Be careful about TIME! We don’t know the 
future yet…
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[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of 
Timeline in Machine Learning-Based Malware Detection

Training 
sample
Testing 
sample

Time

Machine Learning to detect Android Malware: main 
Outcomes



Ten-fold cross validation is not appropriated to 
assess machine learning-based malware 
detectors (paper at EMSE [2])

• Very good results “in the lab”

• Very poor results “in the wild”

42

[EMSE2014] Empirical Assessment of Machine Learning-Based Malware Detectors for Android: 
Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios

Machine Learning to detect Android Malware: main 
Outcomes



Part I-C
App Code Representation
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Classical ML-based Android malware detection

Introduction

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 44
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Issues with Robustness: The discriminatory power of DREBIN’s features set

Dissection of a state-of-the-art Android malware detector: DREBIN

Findings: 

▪ A single feature can offer a surprisingly high detection rate.

▪ DREBIN’s most relevant features contain id-features.

# of features F1-score

0.981 230 854

1 0.80

DREBIN

Changing the name of 
one activity in the app

DREBIN

Flagged by 8 AV engines

[TOPS2022] “A Deep Dive Inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores” 47
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Classical ML-based Android malware detection

Introduction

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 48



Part I-C-1
DexRay: An app as an Image
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Approach

DL-based features extraction for malware detection: DexRay

Process of image generation from dalvik bytecode. ❶: bytecode bytes’ vectorisation; ❷: Mapping bytes to pixels

[MLHat2021] “DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection based on Image 
Representation of Bytecode”

50
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Effectiveness of DexRay

DL-based features extraction for malware detection: DexRay

Performance of DexRay against SotA malware detection approaches

Findings:

▪ DexRay yields performance metrics that are comparable to the state of the art. 

▪ Its simplicity has not hindered its performance when compared to similar works presenting 

sophisticated configurations.

Dataset and experimental setup

- 96 994 benign + 61 809 malware = 158 803 apps
- Apps with compilation dates from 2019 and 2020
- Dataset split: 80% training, 10% validation, and 10% test
- Experiments are repeated 10 times

51
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Possibility to localise malicious code

DL-based features extraction for malware detection: DexRay

Sufficiency for malware images: 
High (resp low) sufficiency is represented by white (resp black) colour

Sufficiency: A part of the image is sufficient for the detection 

if DexRay predicts the malware app as malware when only 
this part of the image is kept, and the rest is masked

Apply a mask

Masked

We assess the sufficiency of 
this part of the image

High sufficiency
Low sufficiency

Findings: 

▪ The first half of the vector images is highly sufficient 

to detect malware, while the second half is almost 

never sufficient. 

▪ The sufficiency of the first pixels in the images 

generally decreases when their size decreases.

High sufficiency Low sufficiency

52
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Possibility to localise malicious code

DL-based features extraction for malware detection: DexRay

Apply a mask

Masked

We assess the necessity of 
this part of the image

Necessity : A part of the image is necessary for the detection 

if DexRay predicts the malware app as benign when this part 
of the image is masked, and the rest is kept unchanged

Findings: 

▪ The first half of the vector images is highly 

necessary to detect malware.

▪ The necessity of the first pixels in the images 

generally decreases when their size decreases.

Necessity for malware images: 
High (resp low) necessity is represented by black (resp white) colour

High necessity Low necessity

High necessity Low necessity

53
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Summary

DL-based features extraction for malware detection: DexRay

54



Part I-C-2
DexBERT: Class level Representation



DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

DexBERT class embedding

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 56



DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Three embedding aggregation methods and fine-tuning of downstream tasks.

(Addition is working the best)

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 57



DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Pre-training on 158 000 apps (556 millions tokens)

Pre-Training

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 58



DexBERT: Evaluation

Performance of Malicious Code 
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for 
evaluation

59



DexBERT: Evaluation

Performance of Malicious Code 
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for 
evaluation

Performance of Component Type 
Classification

1000 real-world APKs (3406 components). 

75% for training and 25% for testing.
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DexBERT: Evaluation

Performance of Malicious Code 
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for 
evaluation

Performance of App Defect Detection

Performance of Component Type 
Classification

1000 real-world APKs (3406 components). 

75% for training and 25% for testing.

92K smali classes labeled with Checkmarkx

61



Part I-C-3
Full App-level 

Representation



DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

DexBERT for Android 
class embedding +

[NLDB2024]: LaFiCMIL: Rethinking 
Large File Classification from the 
Perspective of Correlated Multiple 

Instance Learning

LaFiCMIL

(Correlated Multiple 
Instance Learning)

DetectBERT

63



DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

64



DetectBERT: Evaluation

158 803 apks

(96 994 benign 61 809 malware)

80% training, 10% validation, 10% test

65



Perspectives

66

Enhanced app representation       

Ground truth quality

Explainability

Malicious code localisation       

Artifacts availability and 
reproducibility
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Part II
Vulnerability Detection



Part II-A
Code is Spatial



Code representation for ML

CODE IS SPATIAL

Representation

Model

Code Clone Detection

Code Classification

Vulnerability Prediction

Code Completion

...
Vector 

Representation

▪ NLP-based representations are effective

▪ but doesn't exploit the full richness of the code

71

Representation

Model

Code Clone Detection

Code Classification

Vulnerability Prediction

Code Completion

...
Vector 

Representation



Code representation for ML

CODE IS SPATIAL

Representation Model

DFG
AST

Pre-Processing ....

CFG

? Other signals may remain unexploited

▪ Code is also about structure

72



Code is also spatial

CODE IS SPATIAL

x

y

xp

yp

▪ Every single character can be positioned using xi and yi coordinates.

73



The spatial nature of the code matters

▪ New code representations using code spatiality as a new signal

▪ Leverage computer vision techniques to perform SE tasks

CODE IS SPATIAL

The shared suffix and the 250 outlier are obscured on the left and jump on the right.

74



Part II-B
WYSiWiM: 

Representing code as 

images



WYSiWiM

WYSIWIM: REPRESENTING CODE AS IMAGES

▪ The naive exploitation of code spatiality

▪ WYSiWiM: What You See is What it Means!

Image

"Screenshoot"

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 76



WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 77



WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 78



WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

▪ Mapping and replacing 
some keywords with 
geometric form

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 79



WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 80



WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 81



WYSiWiM (limitations)

WYSIWIM: REPRESENTING CODE AS IMAGES

▪ Code as images: a naive approach:

o Relying on image pixels: too noisy

→ Impossible to fit a single character in one pixel 

→ May be difficult to learn, even with best computer vision techniques

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 82



Part II-B
CodeGRID: 

Representing code as 

Grids



Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval
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Code
Preprocessed Code
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v1

v22
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v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

With “Color Vectorizer”

[ISSTA2023] “CodeGrid: A Grid Representation of Code”
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CODEGRID: REPRESENTING CODE AS GRIDS

Tokens extraction

▪ All code elements, including whitespaces, tabulations and line breaks

→ Preserving code spatiality

[ISSTA2023] “CodeGrid: A Grid Representation of Code” 86
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Tokens coordinates retrieval

▪ Place in a 2D reference the location of each token

o Y: Line number

o X: Location of the token’s first caracter in the line

→ if xt1 = 0, xt2 = xt1 + len(t1)
[ISSTA2023] “CodeGrid: A Grid Representation of Code” 87
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CODEGRID: Three Tokens Vectorizing 
Methods

CODEGRID: REPRESENTING CODE AS GRIDS

1 Term Frequency–Inverse Document frequency; measures the relevance of a token
2 Code2Vec is a NN model that capture the semantic meanings of code tokens

▪ Color Vectorizer

oRely on TF-IDF1 to map each token with a color 

▪ Word2Vec Vectorizer

▪ Code2Vec Vectorizer

oReuse of a Code2Vec2 pretrained model

[ISSTA2023] “CodeGrid: A Grid Representation of Code” 89
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Part II-C
Vulnerability Prediction 

with WYSiWiM and 

CodeGRID



Experimental Setup

• Dataset

• Labelled samples (vulnerable or non-vulnerable)

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

1 Collaborative knowledge database of vulnerabilities affecting open-source software

2 Dataset by Zhen et al (2018)
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Experimental Setup

• Learning to predict vulnerable code snippets

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

Resnet is a CNN architecture characterized by residual connections that allow training much deeper neural 
networks by addressing the vanishing gradient problem. (Kaiming He et al. 2015)

Learning to predict vulnerable 

code using Resnet50
CodeGRID

Grids

Vulnerability

Prediction 

Dataset

WYSiWiM

Images 

94



Experimental Setup

• Learning to predict vulnerable code snippets: Model training

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

Pre-trained ResNets 

WYSiWiM

or 

CodeGrid

Model    

Fine-Tuning    

Vulnerability

Prediction Model

Vulnerability Prediction

Training Set: Code

Fragments + Labels

Code Representations

+ Labels
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• Learning to predict vulnerable code snippets: Inference/Testing

Experimental Setup

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

WYSiWiM

or 

CodeGrid

Vulnerability

Prediction ModelCode Representation

0

1

Non

Vulnerable

Vulnerable

Prediction
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Experimental Results

• Performance 

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

WYSiWiM + “Color Syntax Highlighting” outperforms the other visualization 

methods.
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Experimental Results

• Performance

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

CODEGRID + “Code2Vec” outperforms the other variants.
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Experimental Results

• Performance

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

1A Framework for Using Deep Learning to Detect Software Vulnerabilities (Zhen et al.) 
2Checkmarx: a commercial tool

CODEGRID + “Code2Vec” outperforms the SySeVR and Checkmarx
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Summary

▪ Code’s layout is a strong signal.

CODE IS SPATIAL
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Summary

▪ Code’s layout is a strong signal.

▪ WYSiWiM

oRely on simple “screenshot”

oAchieve near SOTA performances in vulnerability prediction with 

Resnet50

oAccepted at ACM Transactions on Software Engineering and 

Methodology (TOSEM), 2021

CODE IS SPATIAL
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Summary

▪ Code’s layout is a strong signal.

▪ WYSiWiM

▪ CODEGRID

o More rational exploitation of code spatiality 

o Complements existing code representations (CodeGRID + Code2Vec)

o Outperforms SySeVR and Checkmarx in vulnerability prediction

o Accepted at the 32nd ACM/SIGSOFT International Symposium on Software 

Testing and Analysis (ISSTA), 2023

CODE IS SPATIAL
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Ongoing Works

103

Just-in-Time Detection of Silent Security Patches

• This paper is about patch representation.

• Key idea: leverage large language models (LLMs) to augment patch information 
with generated code change explanations
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M a l wa re  D et ec t i o n

Performance Assessment 
Issues

The need for a large set of Apps 
and a ground truth

App Code Representation

An app as a 
Image

BERT-Based 
class 

representation

Full App-level 
representation

V u l n er a b i l i t y  D e t e c t i o n

CodeGRID: Representing code 
as grids

WYSiWiM: Representing code as 
images

Vulnerability Prediction with 
WYSiWiM and CodeGRID

Code is Spatial
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