
University of Luxembourg
Multilingual. Personalised. Connected.

AI for Software Vulnerabilities and Android Malware Detection

NLPAICS, Lancaster, UK, July 2024

Prof. Dr. Jacques Klein

Who am I?

3

Where is

Luxembourg?

3

4

Where is

Luxembourg?

4

5

Where is

Luxembourg?

5

6

Where is

Luxembourg?

6

7

The University of Luxembourg is a research university

with a distinctly international, multilingual and
interdisciplinary character.

The University’s ambition is to provide the highest

quality research and teaching in its chosen fields and
to generate a positive scientific, educational, social,
cultural and societal impact in Luxembourg and the

Greater Region.

The University of

Luxembourg

7000
students

1000+
PhDs

300
faculty members

60%
international
students

130
nationalities

Ranked

25th Young University
worldwide and #4 worldwide for its “international
outlook” in the Times Higher Education (THE)

World University Rankings 2023

Who we are

8

The University of Luxembourg

3 Faculties

Who we are

• Computer Science

& ICT Security

• Finance and

Financial Innovation

• Education

• Materials Science

• Contemporary and
Digital History

• Interdisciplinary theme: Health

and Systems Biomedicine

• Interdisciplinary theme: Data
Modelling and Simulation

Research Focus Areas

4 Interdisciplinary Centres

8

9

The University of Luxembourg

3 Faculties

Who we are

• Computer Science

& ICT Security

• Finance and

Financial Innovation

• Education

• Materials Science

• Contemporary and
Digital History

• Interdisciplinary theme: Health

and Systems Biomedicine

• Interdisciplinary theme: Data
Modelling and Simulation

Research Focus Areas

4 Interdisciplinary Centres

9

10

A leading international

research and innovation centre in secure,
reliable and trustworthy ICT systems and
services. We play an instrumental role in

Luxembourg by boosting R&D investments
leading to economic growth and highly

qualified talent.

Collaborative, demand-driven

research model based on strategic
partnerships

Interdisciplinary

research approach in key
economic sectors

High-risk

long-term research

Highly selective

global recruitment

Our vision

Who we are

10

11

Key Figures

Who we are

P
E

O
P

L
E

500+
Workforce

65+
Nationalities

31%
Alumni who stay
in Luxembourg

P
A

R
T

N
E

R
S

H
I

P
S

&

I

N
N

O
V

A
T

I
O

N

50%
Doctoral
Candidates on

Industrial Projects

65+
Partners

8M
Partners annual
contribution in Euros

6
Spin-offs

70%
External project funding

Trustworthy Software Engineering

TruX Research Group

Prof. Tegawendé F.

BISSYANDE

Prof. Jacques

KLEIN

16

TruX People

TruX

• Tegawendé F. BISSYANDE (head)

• Jacques KLEIN (co-head)

P r o f e s s o r s

1. Abdoul Kader KABORE

R e s e a r c h A s s o c i a t e s 1. Fatou Ndiaye MBODJI (Apr. 2021)

2. Yinghua LI (Apr. 2021)
3. Tiezhu SUN (Apr. 2021)
4. Xunzhu TANG (Oct. 2021)

5. Damien FRANCOIS (Nov. 2021)
6. Weiguo PIAN (Jan 2022)

7. Alioune DIALLO (Feb. 2022)
8. Christian OUEDRAOGO (Apr. 2022)
9. Aicha WAR (May 2022)

10. Yewei SONG (Jun. 2022)
11. Despoina GIARIMPAMPA (Sep. 2022)

12. Marco ALECCI (Oct. 2022)
13. Fred PHILIPPY (Mar. 2023)
14. Jules WAX (Mar. 2023)

15. Moustapha DIOUF (Apr. 2023)
16. Micheline MOUMOULA (Oct. 2023)

17. Pedro RUIZ JIMÉNEZ (Nov. 2023)
18. Omar EL BACHYR (Feb. 2024)
19. Prateek RAJPUT (Mar. 2024)

20. Albérick DJIRE (Mar. 2024)
21. Maimouna Tamah DIAO (Apr. 2024)

22. Maimouna OUATTARA (May 2024)
23. Aziz BONKOUNGOU (Jul. 2024)
24. Serge Lionel NIKIEMA (Jul. 2024)

P h D S t u d e n t s

A s s i s t a n t

• Fiona LEVASSEUR

1. Serge Lionel NIKIEMA

C o m i n g S o o n

1. Hocine REBATCHI

2. Yonghui LIU
3. Mohammad ANSARI

V i s i t o r s & I n t e r n s

BURKINA FASOBURKINA FASO

1

BURKINA FAS0
CHINA
SENEGAL

FRANCE
LUXEMBOURG

MOROCCO
ITALY
SPAIN

GREECE
INDIA

1

1

1

1

2

8

5

3

5

16

17

Trustworthy Software

Engineering

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

TruX

17

18

Trustworthy Software

Engineering

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

Software

Repair

• Patch Recommendation

• Automated Program Repair

• Bug Detection

• Vulnerability patching

TruX

18

19

Trustworthy Software

Engineering

Explainable Software

• Information Retrieval

• Natural Language Processing
• Time Series Pattern Recognition
• Machine learning, Explainable ML

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

Software

Repair

• Patch Recommendation

• Automated Program Repair

• Bug Detection

• Vulnerability patching

TruX

19

20

Trustworthy Software

Engineering

Explainable Software

• Information Retrieval

• Natural Language Processing
• Time Series Pattern Recognition
• Machine learning, Explainable ML

Software

Security

• Vulnerability detection,

Android app Analysis (e.g.,
Data Leaks)

• GDPR compliance

• Malware Detection,
Piggybacking Detection

Software

Repair

• Patch Recommendation

• Automated Program Repair

• Bug Detection

• Vulnerability patching

Application Domains

• Android

• Fintech

• Smart Home

• Business Critical Systems

TruX

20

AI for

Software Vulnerabilities &

Android Malware Detection

To save time, let’s skip the motivation slides ;)

22

I assume that we all agree that detecting malware and/or vulnerabilities is essential.

A

G

E

N

D

A
23

M a l wa re D et ec t i o n

Performance Assessment
Issues

The need for a large set of Apps
and a ground truth

App Code Representation

An app as a
Image

BERT-Based
class

representation

Full App-level
representation

V u l n er a b i l i t y D e t e c t i o n

CodeGRID: Representing code
as grids

WYSiWiM: Representing code as
images

Vulnerability Prediction with
WYSiWiM and CodeGRID

Code is Spatial

A

G

E

N

D

A
24

M a l wa re D et ec t i o n

Performance Assessment
Issues

The need for a large set of Apps
and a ground truth

App Code Representation

An app as a
Image

BERT-Based
class

representation

Full App-level
representation

V u l n er a b i l i t y D e t e c t i o n

CodeGRID: Representing code
as grids

WYSiWiM: Representing code as
images

Vulnerability Prediction with
WYSiWiM and CodeGRID

Code is Spatial

Part I
AI for Android Malware
Detection

Part I-A
Need for a large set
of Apps

AndroZoo
A repository of Android Apps

27

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community

AndroZoo: A Retrospective

AndroZoo is currently the biggest dataset of Android apps, with 24 million entries.

It was created in 2016 at the University of Luxembourg.

Constantly growing

28
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

AndroZoo: A Retrospective

24 million apks, but 8 708 304 apps (average of 2.74 apks for each app)

29
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

App Apk ≠

AndroZoo: A Retrospective

From November 2021 to November 2023:

365 604 948 download requests from 692 different users => 4 PiB of data sent

30
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

AndroZoo: A Retrospective

AndroZoo is currently used by more then 2000 users worldwide.

31

AndroZoo: A Glimpse into the Future

We started collecting metadata since 2020, and we are now
releasing them in AndroZoo together with the apps.

A few examples:

• Description

• Number of Downloads

• Ratings

• Permissions

• Upload Date

• Privacy Policy Link

• …. many others ….

32

33

=> Each App send to VirusTotal

AndroZoo for Malware Detection

34

A bit of Statistics

On 21,570,017 apks (from Google Play) sent to VirusTotal

Flagged by at least # Apks %

1 AV 1,787,482 8.29%

5 AVs 251,068 1.16%

10 AVs 85,782 0.4%

20 AVs 11,593 0.05%

35

VirusTotal Limitations (among others)

- Disagreements among Antivirus products

- [DIMVA2016] On the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights on Building

Ground Truths of Android Malware

- [MSR2017] Euphony: Harmonious Unification of Cacophonous Anti-Virus Vendor Labels for Android

Malware

- Malware / Adware

- [SANER2017] Should You Consider Adware as Malware in Your Study?

Part I-B
On the difficulty of Assessing
Machine- learning- based Android
Malware Detection Approaches

37

Classical ML-based Android malware detection

Background

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 37

38

Outstanding malware detection score of existing approaches

F1 score = 0.99

39

Machine Learning to detect Android Malware: main
Outcomes

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of
Timeline in Machine Learning-Based Malware Detection

Training
sample
Testing
sample

• Be careful about TIME! We don’t know the
future yet…

40

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of
Timeline in Machine Learning-Based Malware Detection

Training
sample
Testing
sample

Time

Machine Learning to detect Android Malware: main
Outcomes

• Be careful about TIME! We don’t know the
future yet…

• Be careful about TIME! We don’t know the
future yet…

41

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of
Timeline in Machine Learning-Based Malware Detection

Training
sample
Testing
sample

Time

Machine Learning to detect Android Malware: main
Outcomes

Ten-fold cross validation is not appropriated to
assess machine learning-based malware
detectors (paper at EMSE [2])

• Very good results “in the lab”

• Very poor results “in the wild”

42

[EMSE2014] Empirical Assessment of Machine Learning-Based Malware Detectors for Android:
Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios

Machine Learning to detect Android Malware: main
Outcomes

Part I-C
App Code Representation

44

Classical ML-based Android malware detection

Introduction

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 44

47

Issues with Robustness: The discriminatory power of DREBIN’s features set

Dissection of a state-of-the-art Android malware detector: DREBIN

Findings:

▪ A single feature can offer a surprisingly high detection rate.

▪ DREBIN’s most relevant features contain id-features.

of features F1-score

0.981 230 854

1 0.80

DREBIN

Changing the name of
one activity in the app

DREBIN

Flagged by 8 AV engines

[TOPS2022] “A Deep Dive Inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores” 47

48

Classical ML-based Android malware detection

Introduction

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 48

Part I-C-1
DexRay: An app as an Image

50

Approach

DL-based features extraction for malware detection: DexRay

Process of image generation from dalvik bytecode. ❶: bytecode bytes’ vectorisation; ❷: Mapping bytes to pixels

[MLHat2021] “DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection based on Image
Representation of Bytecode”

50

51

Effectiveness of DexRay

DL-based features extraction for malware detection: DexRay

Performance of DexRay against SotA malware detection approaches

Findings:

▪ DexRay yields performance metrics that are comparable to the state of the art.

▪ Its simplicity has not hindered its performance when compared to similar works presenting

sophisticated configurations.

Dataset and experimental setup

- 96 994 benign + 61 809 malware = 158 803 apps
- Apps with compilation dates from 2019 and 2020
- Dataset split: 80% training, 10% validation, and 10% test
- Experiments are repeated 10 times

51

52

Possibility to localise malicious code

DL-based features extraction for malware detection: DexRay

Sufficiency for malware images:
High (resp low) sufficiency is represented by white (resp black) colour

Sufficiency: A part of the image is sufficient for the detection

if DexRay predicts the malware app as malware when only
this part of the image is kept, and the rest is masked

Apply a mask

Masked

We assess the sufficiency of
this part of the image

High sufficiency
Low sufficiency

Findings:

▪ The first half of the vector images is highly sufficient

to detect malware, while the second half is almost

never sufficient.

▪ The sufficiency of the first pixels in the images

generally decreases when their size decreases.

High sufficiency Low sufficiency

52

53

Possibility to localise malicious code

DL-based features extraction for malware detection: DexRay

Apply a mask

Masked

We assess the necessity of
this part of the image

Necessity : A part of the image is necessary for the detection

if DexRay predicts the malware app as benign when this part
of the image is masked, and the rest is kept unchanged

Findings:

▪ The first half of the vector images is highly

necessary to detect malware.

▪ The necessity of the first pixels in the images

generally decreases when their size decreases.

Necessity for malware images:
High (resp low) necessity is represented by black (resp white) colour

High necessity Low necessity

High necessity Low necessity

53

54

Summary

DL-based features extraction for malware detection: DexRay

54

Part I-C-2
DexBERT: Class level Representation

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

DexBERT class embedding

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 56

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Three embedding aggregation methods and fine-tuning of downstream tasks.

(Addition is working the best)

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 57

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Pre-training on 158 000 apps (556 millions tokens)

Pre-Training

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 58

DexBERT: Evaluation

Performance of Malicious Code
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for
evaluation

59

DexBERT: Evaluation

Performance of Malicious Code
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for
evaluation

Performance of Component Type
Classification

1000 real-world APKs (3406 components).

75% for training and 25% for testing.

60

DexBERT: Evaluation

Performance of Malicious Code
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for
evaluation

Performance of App Defect Detection

Performance of Component Type
Classification

1000 real-world APKs (3406 components).

75% for training and 25% for testing.

92K smali classes labeled with Checkmarkx

61

Part I-C-3
Full App-level

Representation

DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

DexBERT for Android
class embedding +

[NLDB2024]: LaFiCMIL: Rethinking
Large File Classification from the
Perspective of Correlated Multiple

Instance Learning

LaFiCMIL

(Correlated Multiple
Instance Learning)

DetectBERT

63

DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

64

DetectBERT: Evaluation

158 803 apks

(96 994 benign 61 809 malware)

80% training, 10% validation, 10% test

65

Perspectives

66

Enhanced app representation

Ground truth quality

Explainability

Malicious code localisation

Artifacts availability and
reproducibility

A

G

E

N

D

A
67

M a l wa re D et ec t i o n

Performance Assessment
Issues

The need for a large set of Apps
and a ground truth

App Code Representation

An app as a
Image

BERT-Based
class

representation

Full App-level
representation

A

G

E

N

D

A
68

M a l wa re D et ec t i o n

Performance Assessment
Issues

The need for a large set of Apps
and a ground truth

App Code Representation

An app as a
Image

BERT-Based
class

representation

Full App-level
representation

V u l n er a b i l i t y D e t e c t i o n

CodeGRID: Representing code
as grids

WYSiWiM: Representing code as
images

Vulnerability Prediction with
WYSiWiM and CodeGRID

Code is Spatial

Part II
Vulnerability Detection

Part II-A
Code is Spatial

Code representation for ML

CODE IS SPATIAL

Representation

Model

Code Clone Detection

Code Classification

Vulnerability Prediction

Code Completion

...
Vector

Representation

▪ NLP-based representations are effective

▪ but doesn't exploit the full richness of the code

71

Representation

Model

Code Clone Detection

Code Classification

Vulnerability Prediction

Code Completion

...
Vector

Representation

Code representation for ML

CODE IS SPATIAL

Representation Model

DFG
AST

Pre-Processing

CFG

? Other signals may remain unexploited

▪ Code is also about structure

72

Code is also spatial

CODE IS SPATIAL

x

y

xp

yp

▪ Every single character can be positioned using xi and yi coordinates.

73

The spatial nature of the code matters

▪ New code representations using code spatiality as a new signal

▪ Leverage computer vision techniques to perform SE tasks

CODE IS SPATIAL

The shared suffix and the 250 outlier are obscured on the left and jump on the right.

74

Part II-B
WYSiWiM:

Representing code as

images

WYSiWiM

WYSIWIM: REPRESENTING CODE AS IMAGES

▪ The naive exploitation of code spatiality

▪ WYSiWiM: What You See is What it Means!

Image

"Screenshoot"

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 76

WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 77

WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 78

WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

▪ Mapping and replacing
some keywords with
geometric form

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 79

WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 80

WYSiWiM: four visualization variants

WYSIWIM: REPRESENTING CODE AS IMAGES

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 81

WYSiWiM (limitations)

WYSIWIM: REPRESENTING CODE AS IMAGES

▪ Code as images: a naive approach:

o Relying on image pixels: too noisy

→ Impossible to fit a single character in one pixel

→ May be difficult to learn, even with best computer vision techniques

[TOSEM2021] “What You See is What it Means! Semantic Representation Learning of Code based on Visualization” 82

Part II-B
CodeGRID:

Representing code as

Grids

Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval

Tokens

Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code
Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

With “Color Vectorizer”

[ISSTA2023] “CodeGrid: A Grid Representation of Code”
84

Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval

Tokens

Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code
Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

[ISSTA2023] “CodeGrid: A Grid Representation of Code” 85

Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval

Tokens

Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code
Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

Tokens extraction

▪ All code elements, including whitespaces, tabulations and line breaks

→ Preserving code spatiality

[ISSTA2023] “CodeGrid: A Grid Representation of Code” 86

Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval

Tokens

Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code
Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

Tokens coordinates retrieval

▪ Place in a 2D reference the location of each token

o Y: Line number

o X: Location of the token’s first caracter in the line

→ if xt1 = 0, xt2 = xt1 + len(t1)
[ISSTA2023] “CodeGrid: A Grid Representation of Code” 87

Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval

Tokens

Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code
Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

[ISSTA2023] “CodeGrid: A Grid Representation of Code” 88

CODEGRID: Three Tokens Vectorizing
Methods

CODEGRID: REPRESENTING CODE AS GRIDS

1 Term Frequency–Inverse Document frequency; measures the relevance of a token
2 Code2Vec is a NN model that capture the semantic meanings of code tokens

▪ Color Vectorizer

oRely on TF-IDF1 to map each token with a color

▪ Word2Vec Vectorizer

▪ Code2Vec Vectorizer

oReuse of a Code2Vec2 pretrained model

[ISSTA2023] “CodeGrid: A Grid Representation of Code” 89

Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval

Tokens

Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code
Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

[ISSTA2023] “CodeGrid: A Grid Representation of Code” 90

Preprocessing

(remove comments)

Tokens Extraction

Tokens

Coordinates

Retrieval

Tokens

Vectorizing

1

2

3

4

t1 t2

t4

t15

t27

t28

t3

 t5 t6 t7 t12 . t14

.. t23 ...

Output

Grid Visualization (for presentation only in this paper)

Code
Preprocessed Code

Code Grid

v1

v22

v6

v17

v6 v6

v17

vs

vs

vs

vs

CODEGRID: REPRESENTING CODE AS GRIDS

With “Color Vectorizer”

[ISSTA2023] “CodeGrid: A Grid Representation of Code”
91

Part II-C
Vulnerability Prediction

with WYSiWiM and

CodeGRID

Experimental Setup

• Dataset

• Labelled samples (vulnerable or non-vulnerable)

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

1 Collaborative knowledge database of vulnerabilities affecting open-source software

2 Dataset by Zhen et al (2018)
93

Experimental Setup

• Learning to predict vulnerable code snippets

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

Resnet is a CNN architecture characterized by residual connections that allow training much deeper neural
networks by addressing the vanishing gradient problem. (Kaiming He et al. 2015)

Learning to predict vulnerable

code using Resnet50
CodeGRID

Grids

Vulnerability

Prediction

Dataset

WYSiWiM

Images

94

Experimental Setup

• Learning to predict vulnerable code snippets: Model training

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

Pre-trained ResNets

WYSiWiM

or

CodeGrid

Model

Fine-Tuning

Vulnerability

Prediction Model

Vulnerability Prediction

Training Set: Code

Fragments + Labels

Code Representations

+ Labels

95

• Learning to predict vulnerable code snippets: Inference/Testing

Experimental Setup

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

WYSiWiM

or

CodeGrid

Vulnerability

Prediction ModelCode Representation

0

1

Non

Vulnerable

Vulnerable

Prediction

96

Experimental Results

• Performance

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

WYSiWiM + “Color Syntax Highlighting” outperforms the other visualization

methods.

97

Experimental Results

• Performance

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

CODEGRID + “Code2Vec” outperforms the other variants.

98

Experimental Results

• Performance

VULNERABILITY PREDICTION WITH WYSIWIM AND CODEGRID

1A Framework for Using Deep Learning to Detect Software Vulnerabilities (Zhen et al.)
2Checkmarx: a commercial tool

CODEGRID + “Code2Vec” outperforms the SySeVR and Checkmarx

99

Summary

▪ Code’s layout is a strong signal.

CODE IS SPATIAL

100

Summary

▪ Code’s layout is a strong signal.

▪ WYSiWiM

oRely on simple “screenshot”

oAchieve near SOTA performances in vulnerability prediction with

Resnet50

oAccepted at ACM Transactions on Software Engineering and

Methodology (TOSEM), 2021

CODE IS SPATIAL

101

Summary

▪ Code’s layout is a strong signal.

▪ WYSiWiM

▪ CODEGRID

o More rational exploitation of code spatiality

o Complements existing code representations (CodeGRID + Code2Vec)

o Outperforms SySeVR and Checkmarx in vulnerability prediction

o Accepted at the 32nd ACM/SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA), 2023

CODE IS SPATIAL

102

Ongoing Works

103

Just-in-Time Detection of Silent Security Patches

• This paper is about patch representation.

• Key idea: leverage large language models (LLMs) to augment patch information
with generated code change explanations

T

H

A

N

K

S
104

M a l wa re D et ec t i o n

Performance Assessment
Issues

The need for a large set of Apps
and a ground truth

App Code Representation

An app as a
Image

BERT-Based
class

representation

Full App-level
representation

V u l n er a b i l i t y D e t e c t i o n

CodeGRID: Representing code
as grids

WYSiWiM: Representing code as
images

Vulnerability Prediction with
WYSiWiM and CodeGRID

Code is Spatial

	Intro slide
	Slide 1

	Content section
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: AndroZoo A repository of Android Apps
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Outstanding malware detection score of existing approaches F1 score = 0.99
	Slide 39: Machine Learning to detect Android Malware: main Outcomes
	Slide 40
	Slide 41: Machine Learning to detect Android Malware: main Outcomes
	Slide 42
	Slide 43
	Slide 44
	Slide 47
	Slide 48
	Slide 49: Part I-C-1 DexRay: An app as an Image
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Part I-C-2 DexBERT: Class level Representation
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Part I-C-3 Full App-level Representation
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: Code representation for ML
	Slide 72: Code representation for ML
	Slide 73: Code is also spatial
	Slide 74: The spatial nature of the code matters
	Slide 75: Part II-B WYSiWiM: Representing code as images
	Slide 76: WYSiWiM
	Slide 77: WYSiWiM: four visualization variants
	Slide 78: WYSiWiM: four visualization variants
	Slide 79: WYSiWiM: four visualization variants
	Slide 80: WYSiWiM: four visualization variants
	Slide 81: WYSiWiM: four visualization variants
	Slide 82: WYSiWiM (limitations)
	Slide 83: Part II-B CodeGRID: Representing code as Grids
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: CODEGRID: Three Tokens Vectorizing Methods
	Slide 90
	Slide 91
	Slide 92: Part II-C Vulnerability Prediction with WYSiWiM and CodeGRID
	Slide 93: Experimental Setup
	Slide 94: Experimental Setup
	Slide 95: Experimental Setup
	Slide 96: Experimental Setup
	Slide 97: Experimental Results
	Slide 98: Experimental Results
	Slide 99: Experimental Results
	Slide 100: Summary
	Slide 101: Summary
	Slide 102: Summary
	Slide 103
	Slide 104

