University of Luxembourg

Multilingual. Personalised. Connected.

Datasets, AI, and Static analysis for Mobile App Analysis PROMISE 2025, Trondheim, Norway Prof. Dr. Jacques Klein, June 2025

WE NEED

Where is Luxembourg?

7

The University of Luxembourg

The University of Luxembourg is a research university with a distinctly **international**, **multilingual** and **interdisciplinary** character.

The University's ambition is to provide the **highest quality research** and teaching in its chosen fields and to generate a positive scientific, educational, social, cultural and societal impact in Luxembourg and the Greater Region.

12th Young University

worldwide and #1 worldwide for its "international outlook" in the Times Higher Education (THE) World University Rankings 2020

~7000 270 students facult

faculty members **129**

nationalities

56% international students

7

SIIT

Trustworthy Software Engineering TruX Research Group

Prof. Tegawendé F. BISSYANDE

Prof. Jacques KLEIN

SIIT

Trustworthy Software Engineering TruX Research Group

Prof. Tegawendé F. BISSYANDE

Prof. Jacques KLEIN Dr. Jordan SAMHI

TruX People

Professors

- Tegawendé F. BISSYANDE (head)
- Jacques KLEIN (co-head)

R&D Specialists

1. Laura Bernardy

Research Scientist

1. Jordan SAMHI

Research Associates

- 1. Yinghua Ll
- 2. Tiezhu SUN
- 3. Aleksandr PILGUN
- 4. Olatunji IYIOLA (Emmanuel)
- 5. Navid KHALEDIAN
- 6. Tialia MALLOY

Assistant

• Fiona LEVASSEUR

Coming Soon

1. El-Hacen DIALLO

PhD Students

- 1. Fatou Ndiaye MBODJI (Apr. 2021)
- 2. Xunzhu TANG (Oct. 2021)
- 3. Damien FRANCOIS (Nov. 2021)
- 4. Weiguo PIAN (Jan 2022)
- 5. Alioune DIALLO (Feb. 2022)
- 6. Christian OUEDRAOGO (Apr. 2022)
- 7. Aicha WAR (May 2022)
- 8. Yewei SONG (Jun. 2022)
- 9. Despoina GIARIMPAMPA (Sep. 2022)
- 10. Marco ALECCI (Oct. 2022)
- 11. Fred PHILIPPY (Mar. 2023)
- 12. Jules WAX (Mar. 2023)
- 13. Moustapha DIOUF (Apr. 2023)
- 14. Micheline MOUMOULA (Oct. 2023)
- 15. Pedro RUIZ JIMÉNEZ (Nov. 2023)
- 16. Omar EL BACHYR (Feb. 2024)
- 17. Prateek RAJPUT (Mar. 2024)
- 18. Albérick DJIRE (Mar. 2024)
- 19. Maimouna Tamah DIAO (Apr. 2024)
- 20. Maimouna OUATTARA (May 2024)
- 21. Aziz BONKOUNGOU (Jul. 2024)
- 22. Serge Lionel NIKIEMA (Jul. 2024)
- 23. Loic TALEB (Dec, 2024)
- 24. Pawel BORSUKIEWICZ (Dec. 2024)

We specialize in Software Research

11

11

TruX

Software Security

TruX

Software Security

I ruX

Software Security

Debugging

Software Analytics

SIIT

Mobile App Analysis

Mobile App Analysis

SIIT

Android App Analysis

Why Android App Analysis is important?

More than 6 billion **people** own a smartphone

Almost three-quarters are Android-based

We manipulate a lot of sensitive data

AndroZoo A repository of Android Apps

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community

AndroZoo is currently the biggest dataset of Android apps, with 24 million entries. It was created in 2016 at the University of Luxembourg.

[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

App ≠ Apk

24 million apks, but 8 708 304 apps (average of 2.7 apks for each app)

Table 1: Top 10 apps by number of APKs

Package Name	#APKs
com.chrome.canary	1986
org.mozilla.fenix	1811
wp.wpbeta	910
dating.app.chat.flirt.wgbcv	826
com. black for estapp paid. black for est	822
com.brave.browser_nightly	787
com.topwar.gp	728
com.opodo.reisen	688
com.edreams.travel	679
com.styleseat.promobile	675

Table 2: Lifespan of apps in ANDROZOO

#Years	#Apps	#Years	#Apps	#Years	#Apps
10	9347	6	37 099	2	315 206
9	20 072	5	84 931	1	432 536
8	20 171	4	108 962	0	2 732 016
7	37 378	3	186 800		•

From November 2021 to November 2023: 365 604 948 download requests from 692 different users => 4 PiB of data sent

AndroZoo is currently used by more then 2000 users worldwide.

AndroZoo: A Glimpse into the Future

We started **collecting metadata since 2020**, and we are now **releasing them in AndroZoo** together with the apps.

EXAMPLE

A few examples:

- Description
- Number of Downloads
- Ratings
- Permissions
- Upload Date
- Privacy Policy Link
- many others

What can you do with AndroZoo?

AndroZoo for Malware Investigation

AndroZoo for Malware Investigation

On 21,570,017 apks from Google Play sent to VirusTotal, 85,782 have been tagged by at least 10 Antivirus products

What can you do with AndroZoo?

Another Example

Let's start with a simple question

Let's start with a simple question

Do you know what is inside an Android App?

Let's start with a simple question

Do you know what is inside an Android App?

We dissected 410 125 apks

How many files?

270 million files 661 files on average

How many file extensions (.dex,.jpg, .png)?

Over 15,000 file extensions

How many file types?

1000 file types

Other interesting facts

- Several apks embed another apk file
- 10% of apks contain compressed files

SANER 2025: Dissecting APKs from Google Play: Trends, Insights and Security Implications

Malware Detection

Performance Assessment Issues

App Code Representation

Temporal-Incremental Learning

Malware Detection

Performance Assessment Issues

App Code Representation

Temporal-Incremental Learning

SIIT

On the difficulty of Assessing Machine- learning- based Android Malware Detection Approaches

Classical ML-based Android malware detection

Building Blocks of Machine Learning-based Android malware detection

Outstanding malware detection score of existing approaches

F1 score = 0.99

• Be careful about TIME! We don't know the future yet...

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of Timeline in Machine Learning-Based Malware Detection

• Be careful about TIME! We don't know the future yet...

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of Timeline in Machine Learning-Based Malware Detection

• Be careful about TIME! We don't know the future yet...

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of Timeline in Machine Learning-Based Malware Detection

Ten-fold cross validation is not appropriated to assess machine learning-based malware detectors (paper at EMSE [2])

- Very good results "in the lab"
- Very poor results "in the wild"

[EMSE2014] Empirical Assessment of Machine Learning-Based Malware Detectors for Android: Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios

Malware Detection

Performance Assessment Issues

App Code Representation

Temporal-Incremental Learning

SIIT

App Code Representation

Classical ML-based Android malware detection

Building Blocks of Machine Learning-based Android malware detection

Issues with Robustness: The discriminatory power of DREBIN's features set

<u>Findings:</u>

- A single feature can offer a surprisingly high detection rate.
- DREBIN's most relevant features contain id-features.

[TOPS2022] "A Deep Dive Inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores"

Let's start simple DexRay: An app as an Image

Process of image generation from dalvik bytecode. 1: bytecode bytes' vectorisation; 2: Mapping bytes to pixels

[MLHat2021] "DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection based on Imag Representation of Bytecode" SNT

Effectiveness of DexRay

Dataset and experimental setup

- 96 994 benign + 61 809 malware = 158 803 apps
- Apps with compilation dates from 2019 and 2020
- Dataset split: 80% training, 10% validation, and 10% test
- Experiments are repeated 10 times

Performance of DexRay against SotA malware detection approaches

	Accuracy	Precision	Recall	F1-score
DexRay	0.97	0.97	0.95	0.96
Drebin	0.97	0.97	0.94	0.96
R2-D2	0.97	0.96	0.97	0.97
Ding et alModel 1	0.94	-	0.93	-
Ding et alModel 2	0.95	-	0.94	-
DexRay (Temporally Consistent)	0.97	0.97	0.98	0.98

<u>Findings:</u>

- DexRay yields performance metrics that are comparable to the state of the art.
- Its simplicity has not hindered its performance when compared to similar works presenting sophisticated configurations.

A little bit better... DexBERT: Class level Representation

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

DexBERT class embedding

[TSE2023] "DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode"

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Three embedding aggregation methods and fine-tuning of downstream tasks. (Addition is working the best)

[TSE2023] "DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode"

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Pre-Training

Pre-training on 158 000 apps (556 millions tokens)

[TSE2023] "DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode"

IIII SNT

DexBERT: Evaluation

Performance of Malicious Code localization on the MYST Dataset

Approach	F1 Score	Precision	Recall
MKLDroid	0.2488	0.1434	0.9400
smali2vec	0.9916	0.9880	0.9954
DexBERT-m	0.5749	0.4034	1.0000
DexBERT	0.9981	0.9983	0.9979

2000 apps for fine-tuning and 1000 for evaluation

DexBERT: Evaluation

Performance of Malicious Code localization on the MYST Dataset

Approach	F1 Score	Precision	Recall
MKLDroid	0.2488	0.1434	0.9400
smali2vec	0.9916	0.9880	0.9954
DexBERT-m	0.5749	0.4034	1.0000
DexBERT	0.9981	0.9983	0.9979

2000 apps for fine-tuning and 1000 for evaluation

Performance of Component Type Classification

Method	Activity	Service	BroadcastReceiver	ContentProvider	Average
BERT	0.8272	0.7642	0.5673	0.9091	0.7669
CodeBERT	0.917	0.5381	0.8756	0.8468	0.7943
DexBERT(woPT)	0.7402	0.5850	0.7660	0.8947	0.7465
DexBERT	0.9780	0.9117	0.9600	0.9756	0.9563

1000 real-world APKs (3406 components).

75% for training and 25% for testing.

DexBERT: Evaluation

Performance of Malicious Code localization on the MYST Dataset

Approach	F1 Score	Precision	Recall
MKLDroid	0.2488	0.1434	0.9400
smali2vec	0.9916	0.9880	0.9954
DexBERT-m	0.5749	0.4034	1.0000
DexBERT	0.9981	0.9983	0.9979

2000 apps for fine-tuning and 1000 for evaluation

Performance of Component Type Classification

Method	Activity	Service	BroadcastReceiver	ContentProvider	Average
BERT	0.8272	0.7642	0.5673	0.9091	0.7669
CodeBERT	0.917	0.5381	0.8756	0.8468	0.7943
DexBERT(woPT)	0.7402	0.5850	0.7660	0.8947	0.7465
DexBERT	0.9780	0.9117	0.9600	0.9756	0.9563

1000 real-world APKs (3406 components).

75% for training and 25% for testing.

Performance of App Defect Detection

Project	AnkiDroid	BankDroid	BoardGame	Chess	ConnectBot	Andlytics	FBreader	K9Mail	Wikipedia	Yaaic	Average	Weighted Average
# of classes	14767	12372	1634	5005	3865	5305	9883	11857	18883	974	Score	AUC Score
smali2vec	0.7914	0.7967	0.8887	0.8481	0.9516	0.834	0.8932	0.7655	0.8922	0.9371	0.8598	0.8399
DexBERT	0.9572	0.9363	0.7691	0.9125	0.8517	0.9248	0.9378	0.8674	0.8587	0.8764	0.8892	0.9032

92K smali classes labeled with Checkmarkx

SIT

Full App-level Representation

DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

62

DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

DetectBERT: Evaluation

Table 2: Performance comparison with existing state-of-theart approaches.

Model	Accuracy	Precision	Recall	F1 Score
Drebin	0.97	0.97	0.94	0.96
DexRay	0.97	0.97	0.95	0.96
DetectBERT	0.97	0.98	0.95	0.97

Table 3: Temporal consistency performance comparison with state-of-the-art approaches.

Model	Accuracy	Precision	Recall	F1 Score
Drebin	0.96	0.95	0.98	0.97
DexRay	0.97	0.97	0.98	0.98
DetectBERT	0.99	0.99	0.99	0.99

158 803 apks (96 994 benign 61 809 malware) 80% training, 10% validation, 10% test

Malware Detection

Performance Assessment Issues

App Code Representation

Temporal-Incremental Learning

SIIT

Temporal-incremental Learning for Android Malware Detection

Published at TOSEM in 2024

Presented at FSE 2025 by Tiezhu Sun

automatically learned features

Localization

Android Malware Family Classification

Family Name	Privacy Stealing	SMS/CALL	Remote Control	Bank Stealing	Ransom	Abusing Accessibility	Privilege Escalation	Stealthy Download	Ads	Miner	Tricky Behavior	Premium Service
RuMMS	√	\checkmark	\checkmark	\checkmark		0	0				\checkmark	
Xavier	\checkmark		\checkmark					\checkmark	\checkmark			
LIBSKIN	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark			
HiddenAd	\checkmark								\checkmark		\checkmark	
GhostClicker	\checkmark		\checkmark				\checkmark		\checkmark			
MilkyDoor	\checkmark		\checkmark									
EventBot	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark						
GhostCtrl	$$	\checkmark	\checkmark		0							
Lucy			\checkmark		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	
FAKEBANK	$$	\checkmark	\checkmark	\checkmark			\checkmark				\checkmark	
FakeSpy	$$	\checkmark	\checkmark	\checkmark								
Joker	\checkmark	\checkmark	\checkmark					0	\bigcirc			\checkmark
SpyNote		\checkmark	\checkmark								\checkmark	
solid									\checkmark		\checkmark	
ZNIU		\checkmark	\checkmark				\checkmark					

Malicious Behaviors of Different Malware Families [1]

SNT

Motivation

Life Span of 20 Malware Families

uni.lu <u>Snt</u>

Traditional Solution: Full Retraining

Drawbacks:

- Increasing resource demands for training time and data storage.
- Historical data might be unavailable due to privacy protection policies or security concerns.

CIL: Class-Incremental Learning

TIML: Temporal-Incremental Malware Learning

Multimodal TIML

Dataset

- Size: 1.2 million malware samples, categorized into 696 malware families, sourced from MalNet [1].
- **Time Span**: Covers a decade of malware evolution, with the "first-seen" timestamp obtained from AndroZoo [2].
- **Organization**: Samples are carefully organized in chronological order based on their emergence.

Preliminary Study: CIL vs TIML

Table 4.1 Accuracy comparison between adapted TIML approaches and their original CIL counterparts.

Method	Adapted	l TIML Ace	curacy	CIL Accuracy
LwF iCaRL SS-IL		$\begin{array}{c} 49.68\% \\ 58.15\% \\ 54.58\% \end{array}$		27.99% 23.13% 21.65%

Findings:

TIML methods demonstrate significant accuracy improvements.

RQ1: Is concept drift a significant factor affecting malware classification?

Distribution of new malware families – per 6-months time steps.

Performance drop curve of models trained on pre-2012 malware families and evaluated on post-2012 samples from the same families.

Findings:

- The two types of concept drift do exist.
- Concept drift degrade the performance of malware classifiers.

76

RQ2: How well do TIML approaches perform in malware classification?

Table 4.2 Performance comparison of different approaches based on two input features: MalNet and MalScan.

MalNet Fe	eature	
bytecode		

	Mean Ac	curacy (%)	Average Forgetting	
Approach	MalNet	MalScan	MalNet	MalScan
Random Prediction	1.72	1.72	-	-
Fine-tuning *	51.63	64.66	13.25	18.59
LwF	52.82	65.69	12.48	18.09
SS-IL	51.73	67.14	8.24	8.73
iCaRL	53.57	68.57	8.79	8.57
LwF with Exemplars	56.28	69.74	8.07	8.13
Full Retraining *	63.23	75.08	-	-
MM-TIML	70.53		7.66	

MalScan Feature

Findings:

- TIML approaches achieve competitive performance compared to full retraining.
- The slight gap is due to TIML's limited access to historical data.

RQ3: How resilient are TIML approaches to catastrophic forgetting?

Table 4.2 Performance comparison of different approaches based on two input features: MalNet and MalScan.

	Mean Ac	curacy $(\%)$	Average	Forgetting
Approach	MalNet	MalScan	MalNet	MalScan
Random Prediction	1.72	1.72	-	-
Fine-tuning *	51.63	64.66	13.25	18.59
LwF	52.82	65.69	12.48	18.09
SS-IL	51.73	67.14	8.24	8.73
iCaRL	53.57	68.57	8.79	8.57
LwF with Exemplars	56.28	69.74	8.07	8.13
Full Retraining *	63.23	75.08	-	-
MM-TIML	70.53		7	.66

Findings:

- TIML approaches exhibit signs of forgetting.
- MM-TIML demonstrates the strongest retention of previous knowledge.

RQ4: How effectively do TIML approaches optimize resource utilization?

Training time and data storage comparison of different approaches, based on MalNet.

Findings:

- TIML approaches significantly reduce training time and data storage requirements.
- The advantage of TIML becomes more pronounced with increasing model updates.

Summary

TIML: Temporal-Incremental Malware Learning

Today: Android Malware & Dynamic Analysis

LLMs?

Malicious code localization

Malware Family Characterization

Ground Truth Creation LLMs?

Code Obfuscation

App Instrumentation

ACV Tool AndroLog

Code Coverage – Logic Bombs

"Opportunistic" discoveries....

Contribution 1:

J. Samhi et al., "RAICC: Revealing Atypical Inter-Component Communication in Android apps", ICSE 2021.

- **RAICC** improves ICC modeling
- It is is already used by collaborators

?

- It is maintained
- Improvable on-demand
- RAICC and artifacts are available at:

https://github.com/JordanSamhi/RAICC

Contribution 1:

J. Samhi et al., "RAICC: Revealing Atypical Inter-Component Communication in Android apps", ICSE 2021.

Contribution 2:

J. Samhi et al., "JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis", ICSE 2022.

- We proposed a new approach to unify the bytecode and native code representations
- We demonstrated how JuCify is a step toward code unification
- JuCify and artifacts are available at:

https://github.com/JordanSamhi/JuCify

Zeav

mov]

listen

87

SOCK .%eax

Contribution 1:

J. Samhi et al., "RAICC: Revealing Atypical Inter-Component Communication in Android apps", ICSE 2021.

Contribution 2:

J. Samhi et al., "JuCify: A Step Towards Android Code Unification for Enhanced Static Analysis", ICSE 2022.

Contribution 3:

J. Samhi et al., "Resolving Conditional Implicit Calls to Improve Static and Dynamic Analysis in Android apps", TOSEM 2025

- We proposed a new approach for Conditional Implicit Calls
- We demonstrated how Archer improves static analysis
- We demonstrated how Archer aids dynamic analysis

Contribution 1: J. Samhi et al., "RAI Inter-Component	CC: Revealing Atypical				
apps, icse 20		Is our call	graph		
Contribution J. Samhi et al. Code Unificat ICSE 2022.	compre	ehensive/co	omplete no	w?	ion
Contribution J. Samhi et al. Calls to Impro Android apps	Or are w	e still miss	ing someth	ning?	
 We propo Implicit Ca We demon analysis 					
 We demonstrate analysis 	ed now Archer aids dyna	mic		uni.in snt	89

Contribution 1:	ісс
J. Samhi et al., "RA Inter-Component	AICC: Revealing Atypical
apps", ICSE 207	
	Is our call graph
Contribution	
J. Samhi et al.	comprehensive/complete now?
ICSE 2022.	
<i>J. Samhi et al.</i>	Or are we still missing something?
Calls to Imprc	or are we stitt missing something.
Android apps	ISSTA24 [.] Call Graph Soundness in Android Static Analysis Jordan Samhi
• We propo	René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein
Implicit Ca	
We demoi	
 We demonstration 	ited now Archer aids dynamic
analysis	

Let's restart from the beginning

Two main techniques to analyse a program

1

2

Dynamic Analysis

Static Analysis

Measure and understand the level of **unsoundness** in Android static analysis tools

How?

Dynamic Analysis

Static Analysis

Static Analysis

X

5

Each app has been processed by a static analyzer.

S

 \odot

When possible, we parametrized the call graph construction algorithm : 25 configurations

96

SNT

UNİ

40% methods missed with the biggest over-approximation

ISSTA 2024, Call Graph Soundness in Android Static Analysis, Jordan Samhi, René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein

What is the cause of this **unsoundness**?

Frameworks

Using dynamic analysis to improve static analysis

Straightforward idea:

- Collect the entry point methods via dynamic analysis
- Feed these entry point methods to the static analyzer

Preliminary results:

- On 100 apps
- By dynamically analyzing the apps for 5 min each

	Average # of nodes	Median # of nodes
Without RD	50626	25899
With RD	65534	46307
	+29%	+79%

FSE IVR 2025, Do you have 5 min? Improving Call Graph Analysis with Runtime Information, Jordan Samhi, Marc Miltenberger, Marco Alecci, Steven Arzt, Tegawendé F. Bissyandé, Jacques Klein i 📊

Let's start with a simple question

Do you know what is inside an Android App?

80

Summary

TIML: Temporal-Incremental Malware Learning

40% methods missed with the biggest over-approximation

ISSTA 2024, Call Graph Soundness in Android Static Analysis, Jordan Samhi, René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein

SIT SIT

97