
University of Luxembourg
Multilingual. Personalised. Connected.

Datasets, AI, and Static analysis for Mobile App Analysis

PROMISE 2025, Trondheim, Norway

Prof. Dr. Jacques Klein, June 2025

Where is Luxembourg?

3

Where is

Luxembourg?

3

4

Where is

Luxembourg?

5

Where is

Luxembourg?

6

Where is

Luxembourg?

7

The University of Luxembourg is a research university

with a distinctly international, multilingual and
interdisciplinary character.

The University’s ambition is to provide the highest

quality research and teaching in its chosen fields and
to generate a positive scientific, educational, social,
cultural and societal impact in Luxembourg and the

Greater Region.

The University of

Luxembourg

~7000
students

~1000
PhDs

270
faculty members

56%
international
students

129
nationalities

Ranked

12th Young University
worldwide and #1 worldwide for its “international
outlook” in the Times Higher Education (THE)

World University Rankings 2020

Who we are

7

Trustworthy Software Engineering

TruX Research Group

Prof. Tegawendé F.

BISSYANDE

Prof. Jacques

KLEIN

Trustworthy Software Engineering

TruX Research Group

Prof. Tegawendé F.

BISSYANDE

Prof. Jacques

KLEIN
Dr. Jordan

SAMHI

10

TruX People

TruX

• Tegawendé F. BISSYANDE (head)

• Jacques KLEIN (co-head)

P r o f e s s o r s

1. Laura Bernardy

R & D S p e c i a l i s t s

1. Fatou Ndiaye MBODJI (Apr. 2021)

2. Xunzhu TANG (Oct. 2021)
3. Damien FRANCOIS (Nov. 2021)
4. Weiguo PIAN (Jan 2022)

5. Alioune DIALLO (Feb. 2022)
6. Christian OUEDRAOGO (Apr. 2022)

7. Aicha WAR (May 2022)
8. Yewei SONG (Jun. 2022)
9. Despoina GIARIMPAMPA (Sep. 2022)

10. Marco ALECCI (Oct. 2022)
11. Fred PHILIPPY (Mar. 2023)

12. Jules WAX (Mar. 2023)
13. Moustapha DIOUF (Apr. 2023)
14. Micheline MOUMOULA (Oct. 2023)

15. Pedro RUIZ JIMÉNEZ (Nov. 2023)
16. Omar EL BACHYR (Feb. 2024)

17. Prateek RAJPUT (Mar. 2024)
18. Albérick DJIRE (Mar. 2024)
19. Maimouna Tamah DIAO (Apr. 2024)

20. Maimouna OUATTARA (May 2024)
21. Aziz BONKOUNGOU (Jul. 2024)

22. Serge Lionel NIKIEMA (Jul. 2024)
23. Loic TALEB (Dec, 2024)
24. Pawel BORSUKIEWICZ (Dec. 2024)

P h D S t u d e n t s

A s s i s t a n t

C o m i n g S o o n

1. Jordan SAMHI

R e s e a r c h S c i e n t i s t

1. El-Hacen DIALLO

BURKINA FASOBURKINA FASO

10

• Fiona LEVASSEUR

1. Yinghua LI

2. Tiezhu SUN
3. Aleksandr PILGUN
4. Olatunji IYIOLA (Emmanuel)

5. Navid KHALEDIAN
6. Tialia MALLOY

R e s e a r c h A s s o c i a t e s

11

We specialize in
So Researchrewaft

11

Software

Security

12

Software

Security

Software

Debugging

13

Software

Security

Software

Debugging

Software

Analytics

14

Mobile

App

Analysis

Mobile

App

Analysis

Android

App

Analysis

Why Android App Analysis is important?

18

Almost three-quarters are
Android-based

More than 6 billion people own
a smartphone

We manipulate a lot of sensitive data

Just a fraction of 2024!

19

20

M a l wa re D et ec t i o n M o b i l e Ap p S t a t i c A na l ys is

La r g e Se t o f Mo b i l e A p p s

1

2 3

21

M a l wa re D et ec t i o n M o b i l e Ap p S t a t i c A na l ys is

La r g e Se t o f Mo b i l e A p p s

1

2 3

AndroZoo
A repository of Android Apps

22

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community

AndroZoo: A Retrospective

AndroZoo is currently the biggest dataset of Android apps, with 24 million entries.

It was created in 2016 at the University of Luxembourg.

Constantly growing

23
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

AndroZoo: A Retrospective

24 million apks, but 8 708 304 apps (average of 2.7 apks for each app)

24
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

App Apk ≠

AndroZoo: A Retrospective

From November 2021 to November 2023:

365 604 948 download requests from 692 different users

=> 4 PiB of data sent

25
[MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

AndroZoo: A Retrospective

AndroZoo is currently used by more then 2000 users worldwide.

26

AndroZoo: A Glimpse into the Future

We started collecting metadata since 2020, and we are now
releasing them in AndroZoo together with the apps.

A few examples:

• Description

• Number of Downloads

• Ratings

• Permissions

• Upload Date

• Privacy Policy Link

• …. many others ….

27

What can you do with

AndroZoo?

29

Each Apk is sent to VirusTotal

AndroZoo for Malware Investigation

…………
AV1 AV2 AV59 AV60

Report with the
Antivirus labels

30

On 21,570,017 apks from Google Play
sent to VirusTotal,

85,782 have been tagged
by at least 10 Antivirus products

AndroZoo for Malware Investigation

What can you do with

AndroZoo?

Another Example

31

32

Let’s start with a simple
question

AndroZoo for Large Scale Empirical Studies

33

Let’s start with a simple
question

AndroZoo for Large Scale Empirical Studies

Do you know what is inside an
Android App?

34

Let’s start with a simple question

AndroZoo for Large Scale Empirical Studies

Do you know what is inside an Android App?

Native LibrariesDalvik Bytecode Manifest File Resource FilesCertificate

classes.dex xxx.so xxx.xml cert.rsa jpg, mp3, png

35

AndroZoo for Large Scale Empirical Studies

What else?

36

We dissected 410 125 apks

AndroZoo for Large Scale Empirical Studies

SANER 2025: Dissecting APKs from Google Play: Trends, Insights and Security Implications

270 million files
661 files on average

Over 15,000 file extensions

How many files?

How many file extensions (.dex,.jpg, .png)?

1000 file types

How many file types?

- Several apks embed
another apk file

- 10% of apks contain
compressed files

Other interesting facts

37

M a l wa re D et ec t i o n M o b i l e Ap p S t a t i c A na l ys is

La r g e Se t o f Mo b i l e A p p s

1

2 3

38

M a l wa re D et ec t i o n

Performance Assessment
Issues

App Code Representation

Temporal-Incremental Learning

39

M a l wa re D et ec t i o n

Performance Assessment
Issues

App Code Representation

Temporal-Incremental Learning

On the difficulty of Assessing
Machine- learning- based Android
Malware Detection Approaches

41

Classical ML-based Android malware detection

Background

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 41

42

Outstanding malware detection score of existing approaches

F1 score = 0.99

43

Machine Learning to detect Android Malware: main
Outcomes

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of
Timeline in Machine Learning-Based Malware Detection

Training
sample
Testing
sample

• Be careful about TIME! We don’t know the
future yet…

44

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of
Timeline in Machine Learning-Based Malware Detection

Training
sample
Testing
sample

Time

Machine Learning to detect Android Malware: main
Outcomes

• Be careful about TIME! We don’t know the
future yet…

• Be careful about TIME! We don’t know the
future yet…

45

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of
Timeline in Machine Learning-Based Malware Detection

Training
sample
Testing
sample

Time

Machine Learning to detect Android Malware: main
Outcomes

Ten-fold cross validation is not appropriated to
assess machine learning-based malware
detectors (paper at EMSE [2])

• Very good results “in the lab”

• Very poor results “in the wild”

46

[EMSE2014] Empirical Assessment of Machine Learning-Based Malware Detectors for Android:
Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios

Machine Learning to detect Android Malware: main
Outcomes

47

M a l wa re D et ec t i o n

Performance Assessment
Issues

App Code Representation

Temporal-Incremental Learning

App Code Representation

49

Classical ML-based Android malware detection

Introduction

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 49

50

Issues with Robustness: The discriminatory power of DREBIN’s features set

Dissection of a state-of-the-art Android malware detector: DREBIN

Findings:

▪ A single feature can offer a surprisingly high detection rate.

▪ DREBIN’s most relevant features contain id-features.

of features F1-score

0.981 230 854

1 0.80

DREBIN

Changing the name of
one activity in the app

DREBIN

Flagged by 8 AV engines

[TOPS2022] “A Deep Dive Inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores” 50

Let’s start simple
DexRay: An app as an Image

52

Approach

DL-based features extraction for malware detection: DexRay

Process of image generation from dalvik bytecode. ❶: bytecode bytes’ vectorisation; ❷: Mapping bytes to pixels

[MLHat2021] “DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection based on Image
Representation of Bytecode”

52

53

Effectiveness of DexRay

DL-based features extraction for malware detection: DexRay

Performance of DexRay against SotA malware detection approaches

Findings:

▪ DexRay yields performance metrics that are comparable to the state of the art.

▪ Its simplicity has not hindered its performance when compared to similar works presenting

sophisticated configurations.

Dataset and experimental setup

- 96 994 benign + 61 809 malware = 158 803 apps
- Apps with compilation dates from 2019 and 2020
- Dataset split: 80% training, 10% validation, and 10% test
- Experiments are repeated 10 times

53

A little bit better…
DexBERT: Class level Representation

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

DexBERT class embedding

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 55

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Three embedding aggregation methods and fine-tuning of downstream tasks.

(Addition is working the best)

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 56

DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Pre-training on 158 000 apps (556 millions tokens)

Pre-Training

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 57

DexBERT: Evaluation

Performance of Malicious Code
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for
evaluation

58

DexBERT: Evaluation

Performance of Malicious Code
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for
evaluation

Performance of Component Type
Classification

1000 real-world APKs (3406 components).

75% for training and 25% for testing.

59

DexBERT: Evaluation

Performance of Malicious Code
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for
evaluation

Performance of App Defect Detection

Performance of Component Type
Classification

1000 real-world APKs (3406 components).

75% for training and 25% for testing.

92K smali classes labeled with Checkmarkx

60

Full App-level

Representation

DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

DexBERT for Android
class embedding +

[NLDB2024]: LaFiCMIL: Rethinking
Large File Classification from the
Perspective of Correlated Multiple

Instance Learning

LaFiCMIL

(Correlated Multiple
Instance Learning)

DetectBERT

62[ESEM2024] “Towards Full App-Level Representation Learning to Detect Android Malware”

DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

63[ESEM2024] “Towards Full App-Level Representation Learning to Detect Android Malware”

DetectBERT: Evaluation

158 803 apks

(96 994 benign 61 809 malware)

80% training, 10% validation, 10% test

64[ESEM2024] “Towards Full App-Level Representation Learning to Detect Android Malware”

65

M a l wa re D et ec t i o n

Performance Assessment
Issues

App Code Representation

Temporal-Incremental Learning

Temporal-incremental
Learning for Android
Malware Detection

Published at TOSEM in 2024

Presented at FSE 2025 by Tiezhu Sun

Android Malware Learning

Dataset

Data-driven and
automatically learned features

Deep learning model Detection

Classification

Localization

67

Malicious Behaviors of Different Malware Families [1]

Android Malware Family Classification

[1] Wang et al. 2022. MalRadar: MalRadar: Demystifying android malware in the new era. Proceedings of the ACM on Measurement and Analysis of Computing Systems
68

Motivation

Concept Drift

1. The emergence
of new malware

families.

2. The shifts in the
data distribution
of old families.

Life Span of 20 Malware Families

69

Traditional Solution: Full Retraining

Task 1 Task 2 Task 3

Drawbacks:
• Increasing resource demands for training time and data storage.
• Historical data might be unavailable due to privacy protection policies or

security concerns.

Bird Dog

Tiger Fish Monkey Sheep

70

CIL: Class-Incremental Learning

Bird Dog Tiger Fish Monkey Sheep

1. The emergence of
new classes.

2. The shifts in the data
distribution of old classes.

Knowledge
Retention

Knowledge
Retention

New Bird New Dog New Tiger New Fish

71

TIML: Temporal-Incremental Malware Learning

shifted new
samples of
old families

samples of
new families

72

Multimodal TIML

73

Dataset

• Size: 1.2 million malware samples, categorized into 696 malware families, sourced from MalNet [1].

• Time Span: Covers a decade of malware evolution, with the “first-seen” timestamp obtained from

AndroZoo [2].

• Organization: Samples are carefully organized in chronological order based on their emergence.

[1] S., Freitas, "MalNet: A Large-Scale Image Database of Malicious Software,” CIKM 2022.

[2] K., Allix, “Androzoo: Collecting millions of android apps for the research community”, MSR 2016.

74

Preliminary Study: CIL vs TIML

Table 4.1 Accuracy comparison between adapted TIML approaches and
their original CIL counterparts.

Findings:
TIML methods demonstrate significant accuracy improvements.

75

RQ1: Is concept drift a significant factor affecting malware classification?

Distribution of new malware families – per 6-months time steps.
Performance drop curve of models trained on pre-2012 malware
families and evaluated on post-2012 samples from the same families.

Findings:
• The two types of concept drift do exist.
• Concept drift degrade the performance of malware classifiers. 76

RQ2: How well do TIML approaches perform in malware classification?

Table 4.2 Performance comparison of different approaches based on two
input features: MalNet and MalScan.

Findings:
• TIML approaches achieve competitive performance compared to full retraining.
• The slight gap is due to TIML’s limited access to historical data.

bytecode

MalNet Feature

function call graph

MalScan Feature

77

RQ3: How resilient are TIML approaches to catastrophic forgetting?

Table 4.2 Performance comparison of different approaches based on two
input features: MalNet and MalScan.

Findings:
• TIML approaches exhibit signs of forgetting.
• MM-TIML demonstrates the strongest retention of previous knowledge.

78

RQ4: How effectively do TIML approaches optimize resource utilization?

Training time and data storage comparison of different approaches, based on MalNet.

Findings:
• TIML approaches significantly reduce training time and data storage requirements.
• The advantage of TIML becomes more pronounced with increasing model updates.

79

Summary

80

81

Today: Android Malware & Dynamic Analysis

Malicious code localization

Malware Family Characterization

LLMs?

Ground Truth Creation
LLMs?

Code Obfuscation

App Instrumentation

LLMs?

ACV Tool
AndroLog

Code Coverage – Logic Bombs

82

M a l wa re D et ec t i o n M o b i l e Ap p A na l ys is

La r g e Se t o f Mo b i l e A p p s

1

2 3

Reflection

Callback

ICC - Li, Li et al. Iccta: Detecting inter-component
privacy leaks in android apps. ICSE 2015.

- Li, Li et al., Droidra: Taming reflection to support
whole-program analysis of android apps. ISSTA 2016.

- Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. PLDI 2014.

83

Let’s come back to Call Graph

Reflection

Callback

ICC

Contribution 2

Contribution 3

Contribution 1

- Li, Li et al. Iccta: Detecting inter-component
privacy leaks in android apps. ICSE 2015.

- Li, Li et al., Droidra: Taming reflection to support
whole-program analysis of android apps. ISSTA 2016.

.

- Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. PLDI 2014.

84

Are we missing something?

Reflection

Callback

ICC

?

?

?

“Opportunistic”
discoveries….

85

Reflection

Callback

ICC

?

?

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

● RAICC improves ICC modeling

● It is is already used by collaborators

● It is maintained

● Improvable on-demand

● RAICC and artifacts are available at:

https://github.com/JordanSamhi/RAICC

86

https://github.com/JordanSamhi/RAICC

Reflection

Callback

ICC

?

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

https://github.com/JordanSamhi/JuCify

● We proposed a new approach to unify the

bytecode and native code representations

● We demonstrated how JuCify is a step

toward code unification

● JuCify and artifacts are available at:

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,
ICSE 2022.

87

https://github.com/JordanSamhi/JuCify

Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., “Resolving Conditional Implicit
Calls to Improve Static and Dynamic Analysis in
Android apps”, TOSEM 2025

● We proposed a new approach for Conditional

Implicit Calls

● We demonstrated how Archer improves static

analysis

● We demonstrated how Archer aids dynamic

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,
ICSE 2022.

88

Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., “Resolving Conditional Implicit
Calls to Improve Static and Dynamic Analysis in
Android apps”, TOSEM 2025

● We proposed a new approach for Conditional

Implicit Calls

● We demonstrated how Archer improves static

analysis

● We demonstrated how Archer aids dynamic

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,
ICSE 2022.

89

Is our call graph
comprehensive/complete now?

Or are we still missing something?

ISSTA24: Call Graph Soundness in Android Static Analysis, Jordan Samhi,
René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein

Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical
Inter-Component Communication in Android
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., “Resolving Conditional Implicit
Calls to Improve Static and Dynamic Analysis in
Android apps”, TOSEM 2025

● We proposed a new approach for Conditional

Implicit Calls

● We demonstrated how Archer improves static

analysis

● We demonstrated how Archer aids dynamic

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android
Code Unification for Enhanced Static Analysis”,
ICSE 2022.

90

Is our call graph
comprehensive/complete now?

Or are we still missing something?

ISSTA24: Call Graph Soundness in Android Static Analysis, Jordan Samhi,
René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein

Let’s restart from the

beginning

91

Dynamic Analysis Static Analysis

1 2

Two main techniques to analyse a program

92

Measure and understand the level of
unsoundness in Android static

analysis tools

Objective

93

How?

Dynamic Analysis Static Analysis
94

Dynamic Analysis

95

When possible, we
parametrized the call graph

construction algorithm :
25 configurations

Static Analysis

Each app has been processed
by a static analyzer:

96

40%
methods missed with the biggest

over-approximation

97

ISSTA 2024, Call Graph Soundness in Android Static Analysis, Jordan Samhi,
René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein

What is the cause of this unsoundness?

98

Frameworks

99

100

Straightforward idea:
- Collect the entry point methods via

dynamic analysis
- Feed these entry point methods to the

static analyzer

Using dynamic analysis to improve static analysis

Preliminary results:
- On 100 apps
- By dynamically analyzing the

apps for 5 min each

+29% +79%

FSE IVR 2025, Do you have 5 min? Improving Call Graph Analysis with Runtime Information, Jordan
Samhi, Marc Miltenberger, Marco Alecci, Steven Arzt, Tegawendé F. Bissyandé, Jacques Klein

	Intro slide
	Slide 1

	Introduction-UL-TruX
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

	Context
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	AndroZoo
	Slide 21
	Slide 22: AndroZoo A repository of Android Apps
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

	Assessment
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Outstanding malware detection score of existing approaches F1 score = 0.99
	Slide 43: Machine Learning to detect Android Malware: main Outcomes
	Slide 44
	Slide 45: Machine Learning to detect Android Malware: main Outcomes
	Slide 46

	App Representation
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Let’s start simple DexRay: An app as an Image
	Slide 52
	Slide 53
	Slide 54: A little bit better… DexBERT: Class level Representation
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Full App-level Representation
	Slide 62
	Slide 63
	Slide 64

	Temporal Incremental Learning
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

	Static Analysis - The Past
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

	Static Analysis Soundness
	Slide 91
	Slide 92
	Slide 93
	Slide 94: How?
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Frameworks
	Slide 100

	Conclusion
	Slide 101

