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The University of Luxembourg is a research university 

with a distinctly international, multilingual and 
interdisciplinary character.

The University’s ambition is to provide the highest 

quality research and teaching in its chosen fields and 
to generate a positive scientific, educational, social, 
cultural and societal impact in Luxembourg and the 

Greater Region.

The University of 

Luxembourg

~7000
students

~1000
PhDs 

270
faculty members

56%
international 
students

129
nationalities

Ranked

12th Young University
worldwide and #1 worldwide for its “international 
outlook” in the Times Higher Education (THE) 

World University Rankings 2020

Who we are
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Why Android App Analysis is important?
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Almost three-quarters are 
Android-based

More than 6 billion people own 
a smartphone 

We manipulate a lot of sensitive data



Just a fraction of 2024!
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AndroZoo
A repository of Android Apps

22

[MSR 2016] AndroZoo: Collecting Millions of Android Apps for the Research Community



AndroZoo: A Retrospective

AndroZoo is currently the biggest dataset of Android apps, with 24 million entries. 

It was created in 2016 at the University of Luxembourg.

Constantly growing

23
[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future



AndroZoo: A Retrospective

24 million apks, but 8 708 304 apps (average of 2.7 apks for each app) 

24
[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future

App Apk ≠



AndroZoo: A Retrospective

From November 2021 to November 2023:

365 604 948 download requests from 692 different users 

=> 4 PiB of data sent

25
[ MSR 2024]: AndroZoo: A Retrospective with a Glimpse into the Future



AndroZoo: A Retrospective

AndroZoo is currently used by more then 2000 users worldwide.
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AndroZoo: A Glimpse into the Future

We started collecting metadata since 2020, and we are now 
releasing them in AndroZoo together with the apps.

A few examples:

• Description

• Number of Downloads

• Ratings

• Permissions

• Upload Date

• Privacy Policy Link

• …. many others ….

27



What can you do with 

AndroZoo?
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Each Apk is sent to VirusTotal

AndroZoo for Malware Investigation

…………
AV1 AV2 AV59 AV60

Report with the 
Antivirus labels
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On 21,570,017 apks from Google Play 
sent to VirusTotal, 

85,782 have been tagged 
by at least 10 Antivirus products

AndroZoo for Malware Investigation



What can you do with 

AndroZoo?

Another Example

31
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Let’s start with a simple 
question

AndroZoo for Large Scale Empirical Studies
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AndroZoo for Large Scale Empirical Studies

Do you know what is inside an 
Android App?
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Let’s start with a simple question

AndroZoo for Large Scale Empirical Studies

Do you know what is inside an Android App?

Native LibrariesDalvik Bytecode Manifest File Resource FilesCertificate

classes.dex xxx.so xxx.xml cert.rsa jpg, mp3, png
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AndroZoo for Large Scale Empirical Studies

What else?



36

We dissected 410 125 apks

AndroZoo for Large Scale Empirical Studies

SANER 2025: Dissecting APKs from Google Play: Trends, Insights and Security Implications

270 million files
661 files on average

Over 15,000 file extensions

How many files?

How many file extensions (.dex,.jpg, .png)?

1000 file types

How many file types?

- Several apks embed 
another apk file

- 10% of apks contain 
compressed files

Other interesting facts
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On the difficulty of Assessing 
Machine- learning- based Android 
Malware Detection Approaches
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Classical ML-based Android malware detection

Background

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 41
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Outstanding malware detection score of existing approaches

F1 score = 0.99
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Machine Learning to detect Android Malware: main 
Outcomes

[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of 
Timeline in Machine Learning-Based Malware Detection

Training 
sample
Testing 
sample

• Be careful about TIME! We don’t know the 
future yet…
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[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of 
Timeline in Machine Learning-Based Malware Detection

Training 
sample
Testing 
sample

Time

Machine Learning to detect Android Malware: main 
Outcomes

• Be careful about TIME! We don’t know the 
future yet…



• Be careful about TIME! We don’t know the 
future yet…
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[1] Are Your Training Datasets Yet Relevant? - An Investigation into the Importance of 
Timeline in Machine Learning-Based Malware Detection

Training 
sample
Testing 
sample

Time

Machine Learning to detect Android Malware: main 
Outcomes



Ten-fold cross validation is not appropriated to 
assess machine learning-based malware 
detectors (paper at EMSE [2])

• Very good results “in the lab”

• Very poor results “in the wild”

46

[EMSE2014] Empirical Assessment of Machine Learning-Based Malware Detectors for Android: 
Measuring the Gap between In-the-Lab and In-the-Wild Validation Scenarios

Machine Learning to detect Android Malware: main 
Outcomes
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App Code Representation
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Classical ML-based Android malware detection

Introduction

Building Blocks of Machine Learning-based Android malware detection

[EMSE2021] “Lessons learnt on reproducibility in machine learning based android malware detection” 49
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Issues with Robustness: The discriminatory power of DREBIN’s features set

Dissection of a state-of-the-art Android malware detector: DREBIN

Findings: 

▪ A single feature can offer a surprisingly high detection rate.

▪ DREBIN’s most relevant features contain id-features.

# of features F1-score

0.981 230 854

1 0.80

DREBIN

Changing the name of 
one activity in the app

DREBIN

Flagged by 8 AV engines

[TOPS2022] “A Deep Dive Inside DREBIN: An Explorative Analysis beyond Android Malware Detection Scores” 50



Let’s start simple
DexRay: An app as an Image
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Approach

DL-based features extraction for malware detection: DexRay

Process of image generation from dalvik bytecode. ❶: bytecode bytes’ vectorisation; ❷: Mapping bytes to pixels

[MLHat2021] “DexRay: A Simple, yet Effective Deep Learning Approach to Android Malware Detection based on Image 
Representation of Bytecode”
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Effectiveness of DexRay

DL-based features extraction for malware detection: DexRay

Performance of DexRay against SotA malware detection approaches

Findings:

▪ DexRay yields performance metrics that are comparable to the state of the art. 

▪ Its simplicity has not hindered its performance when compared to similar works presenting 

sophisticated configurations.

Dataset and experimental setup

- 96 994 benign + 61 809 malware = 158 803 apps
- Apps with compilation dates from 2019 and 2020
- Dataset split: 80% training, 10% validation, and 10% test
- Experiments are repeated 10 times

53



A little bit better…
DexBERT: Class level Representation



DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

DexBERT class embedding

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 55



DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Three embedding aggregation methods and fine-tuning of downstream tasks.

(Addition is working the best)

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 56



DexBERT: Effective, Task-Agnostic and Fine-Grained Representation Learning of Android Bytecode

Pre-training on 158 000 apps (556 millions tokens)

Pre-Training

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode” 57



DexBERT: Evaluation

Performance of Malicious Code 
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for 
evaluation

58



DexBERT: Evaluation

Performance of Malicious Code 
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for 
evaluation

Performance of Component Type 
Classification

1000 real-world APKs (3406 components). 

75% for training and 25% for testing.
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DexBERT: Evaluation

Performance of Malicious Code 
localization on the MYST Dataset

[TSE2023] “DexBERT: Effective, Task-Agnostic and Fine-grained Representation Learning of Android Bytecode”

2000 apps for fine-tuning and 1000 for 
evaluation

Performance of App Defect Detection

Performance of Component Type 
Classification

1000 real-world APKs (3406 components). 

75% for training and 25% for testing.

92K smali classes labeled with Checkmarkx

60



Full App-level 

Representation



DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

DexBERT for Android 
class embedding +

[NLDB2024]: LaFiCMIL: Rethinking 
Large File Classification from the 
Perspective of Correlated Multiple 

Instance Learning

LaFiCMIL

(Correlated Multiple 
Instance Learning)

DetectBERT

62[ESEM2024] “Towards Full App-Level Representation Learning to Detect Android Malware”



DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

63[ESEM2024] “Towards Full App-Level Representation Learning to Detect Android Malware”



DetectBERT: Evaluation

158 803 apks

(96 994 benign 61 809 malware)

80% training, 10% validation, 10% test

64[ESEM2024] “Towards Full App-Level Representation Learning to Detect Android Malware”
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Temporal-incremental 
Learning for Android 
Malware Detection

Published at TOSEM in 2024

Presented at FSE 2025 by Tiezhu Sun



Android Malware Learning

Dataset

Data-driven and
automatically learned features

Deep learning model Detection

Classification

Localization

67



Malicious Behaviors of Different Malware Families [1]

Android Malware Family Classification

[1] Wang et al. 2022. MalRadar: MalRadar: Demystifying android malware in the new era. Proceedings of the ACM on Measurement and Analysis of Computing Systems 
68



Motivation

Concept Drift

1. The emergence 
of new malware 

families.

2. The shifts in the 
data distribution 
of old families.

Life Span of 20 Malware Families

69



Traditional Solution: Full Retraining

Task 1 Task 2 Task 3

Drawbacks: 
• Increasing resource demands for training time and data storage.
• Historical data might be unavailable due to privacy protection policies or 

security concerns.

Bird Dog

Tiger Fish Monkey Sheep

70



CIL: Class-Incremental Learning

Bird Dog Tiger Fish Monkey Sheep

1. The emergence of 
new classes.

2. The shifts in the data 
distribution of old classes.

Knowledge 
Retention 

Knowledge 
Retention 

New Bird New Dog New Tiger New Fish

71



TIML: Temporal-Incremental Malware Learning

shifted new 
samples of 
old families

samples of 
new families

72



Multimodal TIML

73



Dataset

• Size: 1.2 million malware samples, categorized into 696 malware families, sourced from MalNet [1].

• Time Span: Covers a decade of malware evolution, with the “first-seen” timestamp obtained from 

AndroZoo [2].

• Organization: Samples are carefully organized in chronological order based on their emergence.

[1] S., Freitas, "MalNet: A Large-Scale Image Database of Malicious Software,” CIKM 2022.

[2] K., Allix, “Androzoo: Collecting millions of android apps for the research community”, MSR 2016.
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Preliminary Study: CIL vs TIML

Table 4.1 Accuracy comparison between adapted TIML approaches and 
their original CIL counterparts.

Findings: 
TIML methods demonstrate significant accuracy improvements. 

75



RQ1: Is concept drift a significant factor affecting malware classification? 

Distribution of new malware families – per 6-months time steps.
Performance drop curve of models trained on pre-2012 malware 
families and evaluated on post-2012 samples from the same families.

Findings: 
• The two types of concept drift do exist.
• Concept drift degrade the performance of malware classifiers. 76



RQ2: How well do TIML approaches perform in malware classification? 

Table 4.2 Performance comparison of different approaches based on two 
input features: MalNet and MalScan.

Findings: 
• TIML approaches achieve competitive performance compared to full retraining.
• The slight gap is due to TIML’s limited access to historical data.

bytecode

MalNet Feature

function call graph

MalScan Feature
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RQ3: How resilient are TIML approaches to catastrophic forgetting? 

Table 4.2 Performance comparison of different approaches based on two 
input features: MalNet and MalScan.

Findings: 
• TIML approaches exhibit signs of forgetting.
• MM-TIML demonstrates the strongest retention of previous knowledge.

78



RQ4: How effectively do TIML approaches optimize resource utilization? 

Training time and data storage comparison of different approaches, based on MalNet.

Findings: 
• TIML approaches significantly reduce training time and data storage requirements.
• The advantage of TIML becomes more pronounced with increasing model updates.

79



Summary

80
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Today: Android Malware & Dynamic Analysis

Malicious code localization 

Malware Family Characterization

LLMs? 

Ground Truth Creation
LLMs?

Code Obfuscation

App Instrumentation

LLMs? 

ACV Tool
AndroLog

Code Coverage – Logic Bombs
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Reflection

Callback

ICC - Li, Li et al. Iccta: Detecting inter-component 
privacy leaks in android apps. ICSE 2015.

- Li, Li et al., Droidra: Taming reflection to support 
whole-program analysis of android apps. ISSTA 2016.

- Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive 
and lifecycle-aware taint analysis for android apps. PLDI 2014.

83

Let’s come back to Call Graph



Reflection

Callback

ICC

Contribution 2

Contribution 3

Contribution 1

- Li, Li et al. Iccta: Detecting inter-component 
privacy leaks in android apps. ICSE 2015.

- Li, Li et al., Droidra: Taming reflection to support 
whole-program analysis of android apps. ISSTA 2016.

.

- Arzt et al. Flowdroid: Precise context, flow, field, object-sensitive 
and lifecycle-aware taint analysis for android apps. PLDI 2014.

84

Are we missing something?



Reflection

Callback

ICC

?

?

?

“Opportunistic” 
discoveries….
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Reflection

Callback

ICC

?

?

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical 
Inter-Component Communication in Android 
apps”, ICSE 2021.

● RAICC improves ICC modeling

● It is is already used by collaborators

● It is maintained

● Improvable on-demand

● RAICC and artifacts are available at:

https://github.com/JordanSamhi/RAICC

86

https://github.com/JordanSamhi/RAICC


Reflection

Callback

ICC

?

Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical 
Inter-Component Communication in Android 
apps”, ICSE 2021.

https://github.com/JordanSamhi/JuCify

● We proposed a new approach to unify the 

bytecode and native code representations

● We demonstrated how JuCify is a step 

toward code unification

● JuCify and artifacts are available at:

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android 
Code Unification for Enhanced Static Analysis”, 
ICSE 2022.

87

https://github.com/JordanSamhi/JuCify


Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical 
Inter-Component Communication in Android 
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., “Resolving Conditional Implicit 
Calls to Improve Static and Dynamic Analysis in 
Android apps”, TOSEM 2025

● We proposed a new approach for Conditional 

Implicit Calls

● We demonstrated how Archer improves static 

analysis

● We demonstrated how Archer aids dynamic 

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android 
Code Unification for Enhanced Static Analysis”, 
ICSE 2022.
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Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical 
Inter-Component Communication in Android 
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., “Resolving Conditional Implicit 
Calls to Improve Static and Dynamic Analysis in 
Android apps”, TOSEM 2025

● We proposed a new approach for Conditional 

Implicit Calls

● We demonstrated how Archer improves static 

analysis

● We demonstrated how Archer aids dynamic 

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android 
Code Unification for Enhanced Static Analysis”, 
ICSE 2022.
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Is our call graph 
comprehensive/complete now?

Or are we still missing something?

ISSTA24: Call Graph Soundness in Android Static Analysis, Jordan Samhi, 
René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein



Reflection

Callback

ICC
Contribution 1:
J. Samhi et al., “RAICC: Revealing Atypical 
Inter-Component Communication in Android 
apps”, ICSE 2021.

Contribution 3:
J. Samhi et al., “Resolving Conditional Implicit 
Calls to Improve Static and Dynamic Analysis in 
Android apps”, TOSEM 2025

● We proposed a new approach for Conditional 

Implicit Calls

● We demonstrated how Archer improves static 

analysis

● We demonstrated how Archer aids dynamic 

analysis

Contribution 2:
J. Samhi et al., “JuCify: A Step Towards Android 
Code Unification for Enhanced Static Analysis”, 
ICSE 2022.
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Is our call graph 
comprehensive/complete now?

Or are we still missing something?

ISSTA24: Call Graph Soundness in Android Static Analysis, Jordan Samhi, 
René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein



Let’s restart from the 

beginning

91



Dynamic Analysis Static Analysis

1 2

Two main techniques to analyse a program

92



Measure and understand the level of  
unsoundness in Android static 

analysis tools

Objective

93



How?

Dynamic Analysis Static Analysis
94



Dynamic Analysis
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When possible, we 
parametrized the call graph 

construction algorithm : 
25 configurations

Static Analysis

Each app has been processed 
by a static analyzer: 

96



40% 
methods missed with the biggest 

over-approximation

97

ISSTA 2024, Call Graph Soundness in Android Static Analysis, Jordan Samhi, 
René Just, Tegawendé F. Bissyandé, Michael D. Ernst, Jacques Klein



What is the cause of this unsoundness?
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Frameworks

99



100

Straightforward idea: 
- Collect the entry point methods via 

dynamic analysis
- Feed these entry point methods to the 

static analyzer

Using dynamic analysis to improve static analysis

Preliminary results: 
- On 100 apps
- By dynamically analyzing the 

apps for 5 min each

+29% +79%

FSE IVR 2025, Do you have 5 min? Improving Call Graph Analysis with Runtime Information, Jordan 
Samhi, Marc Miltenberger, Marco Alecci, Steven Arzt, Tegawendé F. Bissyandé, Jacques Klein
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